BD-DEVNET USER'S GUIDE

Form 750-990421 - April, 1999

43044 Business Park Drive, Temecula, CA 92590-3614 Phone: 800-321-OPTO (6786) or 951-695-3000 Fax: 800-832-OPTO (6786) or 951-695-2712 www.opto22.com

Product Support Services: 800-TEK-OPTO (835-6786) or 951-695-3080 Fax: 951-695-3017 E-mail: support@opto22.com Web: support.opto22.com

BD-DEVNET User's Guide Form 750-990421 – April, 1999

All rights reserved. Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22 assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation, labor, or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of 1/96 or later are guaranteed for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID modules, and modules that contain mechanical contacts or switches. Opto 22 does not warrant any product, components, or parts not manufactured by Opto 22; for these items, the warranty from the original manufacturer applies. These products include, but are not limited to, the OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson GT-48; see the product data sheet for specific warranty information. Refer to Opto 22 form number 1042 for complete warranty information.

Opto 22 FactoryFloor, Cyrano, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl, ioDisplay, ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl, OptoDisplay, OptoENETSniff, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, SNAP Ethernet I/O, SNAP I/O, SNAP OEM I/O, SNAP Simple I/O, SNAP Ultimate I/O, and SNAP Wireless LAN I/O are trademarks of Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET is a registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric. Wiegand is a registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M Gateway Software, and Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia Corporation. Sony is a trademark of Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

TABLE OF CONTENTS

Welcome iv
About This Manual v
Document Conventions
Introduction 1–1
Overview
Specifications 1-2
Compatible I/O 1-3
Application Interface 1-4
Installation And Configuration 2-1
Dimensions
BD-DEVNET Mounting 2-2
Configuration
DeviceNet Connector 2-4
Hardware Reset
LED Indicators
DeviceNet Information
DeviceNet Information
Data Access
Data Access
Data Access
Data Access 3-1 DEVICENET Model 3-1 DEVICENET Message Types 3-2 DEVICENET Class Services 3-2
Data Access 3-1 DEVICENET Model 3-1 DEVICENET Message Types 3-2 DEVICENET Class Services 3-2 DEVICENET Class Services 3-3
Data Access 3-1 DEVICENET Model 3-1 DEVICENET Message Types 3-2 DEVICENET Class Services 3-2 DEVICENET Object Classes 3-3 Identity Object-Class Code: 01H 3-3
Data Access3-1DEVICENET Model3-1DEVICENET Message Types3-2DEVICENET Class Services3-2DEVICENET Object Classes3-3Identity Object-Class Code: 01H3-3Router Object-Class Code: 02H3-5
Data Access3-1DEVICENET Model3-1DEVICENET Message Types3-2DEVICENET Class Services3-2DEVICENET Object Classes3-3Identity Object-Class Code: 01H3-3Router Object-Class Code: 02H3-5DeviceNet Object-Class Code: 03H3-5
Data Access3-1DEVICENET Model3-1DEVICENET Message Types3-2DEVICENET Class Services3-2DEVICENET Object Classes3-3Identity Object-Class Code: 01H3-3Router Object-Class Code: 02H3-5DeviceNet Object-Class Code: 03H3-5Assembly Object-Class Code: 04H3-7
Data Access3-1DEVICENET Model3-1DEVICENET Message Types3-2DEVICENET Class Services3-2DEVICENET Object Classes3-3Identity Object-Class Code: 01H3-3Router Object-Class Code: 02H3-5DeviceNet Object-Class Code: 03H3-5Assembly Object-Class Code: 04H3-7Connection Object-Class Code: 05H3-8

WELCOME

ABOUT BD-DEVNET

Thank you for purchasing a BD-DEVNET. BD-DEVNET allows DeviceNet customers to take advantage of the world's leading I/O hardware from Opto 22. The configuringable board, which can control up to 16 digital I/O points, connects easily with Opto 22's digital I/O mounting racks. Software parameters can be set using standard DeviceNet tools (node address and operaing speed may also be set by switches), allowing the board to communicate on a DeviceNet network.

ABOUT OPTO 22

Opto 22's goal to deliver total control to industrial automation customers dates back to its beginnings in 1974 with the introduction of optically-isolated solid-state relays. Today, Opto 22 is the number one provider of I/O systems, with more than 80 million points of I/O working reliably worldwide. After earning a reputation for consistent innovation and leadership in automation hardware, Opto 22 realized it was time to take a new approach to control software. In 1988, Opto 22 introduced the first flowchart-based control programming language. Opto 22 continues to deliver successively more advanced generations of hardware and software.

All Opto 22 products are manufactured in the U.S. at the company's headquarters in Temecula, California, and are sold through a global network of distributors, system integrators, and OEMs. Sales offices are located throughout the United States. For more information, contact Opto 22, 43044 Business Park Drive, Temecula, CA 92590-3614. Phone Opto 22 Inside Sales at 1-800-452-OPTO or Opto 22 headquarters at 951-695-3000. Fax us at 951-695-3095.

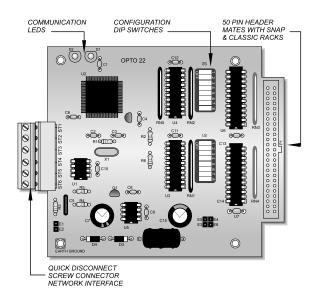
You can also visit our Web site at www.opto22.com.

ABOUT THIS MANUAL

This reference manual provides complete specifications and instructions to set up and install a BD-DEVNET DeviceNet card.

In this manual, you'll find:

- Chapter 1: Introduction Overview of the DeviceNet card, a compatibility chart, and specifications.
- Chapter 2: Installation and Configuration Drawings, settings, connections, and additional information regarding installation and configuration procedures.
- Chapter 3: DeviceNet Inforamtion Additional information: Interfaces, data access, tables, etc.



OVERVIEW

The BD-DEVNET is a DeviceNet-compatible 16-channel digital I/O adapter that allows DeviceNet customers to integrate Opto 22 digital I/O mounting racks on the popular DeviceNet communication and power network.

The BD-DEVNET's brain board form-factor and standard 50-pin header connector allows the digital adapter to plug directly into Opto 22 digital I/O mounting racks similar to Opto 22's other 16-channel digital brain boards (B1, B5, and B100). The BD-DEVNET can be powered either from the 5V on the I/O rack or from the standard DeviceNet 24 VDC bus power.

Software parameters, set using standard DeviceNet tools, allow the unit to be configured to meet a wide range of industrial interface requirements. The BD-DEVNET's network node address and operating speed may be set up using an eight position switch or as software parameters. Network signals are connected using removable screw terminals, simplifying field installation. The CAN interface includes on-board circuitry to protect against wiring faults such as loss of ground and reverse polarity.

Figure 1-1: BD-DEVNET

SPECIFICATIONS

The BD-DEVNET DeviceNet application interface conforms to the specifications as published by the Open DeviceNet Vendor's Association.

Table 1-1: BD-DEVNET Specifications

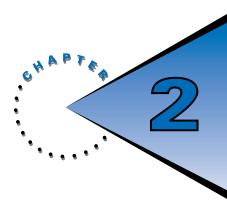
Class	Min	Тур	Max	Units
Operating Voltage	18	24	28	VDC
Operating Current + ~10mA per I/O module installed		30	40	mA
Data Rates	125		500	kbit/sec
Operating Temperature	0		+60	О°
Digital I/O (driver to I/O module) Sink (output mode), IoI = 32mA			.55	VDC
Source (output mode), IoI = 12mA	2.4			VDC
V _{in} (low) (input mode), IiI = 1mA			.8	VDC
V _{in} (high) (input mode), lih = 1mA	2			VDC

COMPATIBLE I/O

The BD-DEVNET Brain Board provides up to 16 bits of digital I/O in a DeviceNet-compatible network. The brain board is compatible with Opto 22 snap and classic digital I/O racks. Each heading in Table 1-2 lists Opto 22 I/O racks that are compatible with the BD-DEVNET. Under each heading are the module types compatible with those racks.

PB4H, PB8H, PE	316H, and PB16HC					
IAC5x*	IDC5x					
OAC5x	ODC5x					
G4PB8H a	nd G4PB16H					
G4IAC5x	G4IDC5x					
G40AC5x	G40DC5x					
G4SWIN	G4SWOUT					
РВ	PB16HQ					
ΙΑϹ5ΩΧ	IDC5Qx					
OAC5Qx	ODC5Qx					
SNAPD4M, SNAPD4	SNAPD4M, SNAPD4MC, and SNAP4MC-P					
SNAP-IAC5x	SNAP-IDC5					
SNAP-0AC5	SNAP-ODC5SRC					
SNAP-OCD5SNK						

Table 1-2: Compatible Opto 22 I/O


*x specifies module voltage.

APPLICATION INTERFACE

The BD-DEVNET DeviceNet application interface conforms to the specifications as published by the Open DeviceNet Vendor's Association. Refer to Table 1-3.

Table 1-3: BD-DEVNET Application Interface

Class	Instances	Services	Description
Identity	1	Get/Reset	per DeviceNet standard, rev 1.1.
Router	1	Get	per DeviceNet standard, rev 1.1.
DevNet	1	Get/Set/Reset	per DeviceNet standard, rev 1.1.
Assembly	1	Get/Set	Static assembly. Returns states of all 16 digital I/O data, used by Poll I/O connections.
Connections	2	Get/Set/Reset	Supports Explicit Message connections.
Digital Input	16	Get/Set	Each data bit may be treated as an input or an output, depending on the type of I/O module used.
Digital Output	16	Get/Set	Each data bit may be treated as an input or an output, depending on the type of I/O module used.

INSTALLATION AND CONFIGURATION

DIMENSIONS

Refer to Figure 2-1 for BD-DEVNET dimensions.

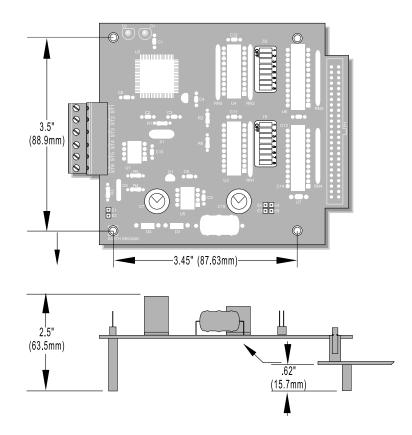


Figure 2-1: BD-DEVNET Dimensions

BD-DEVNET MOUNTING

Be sure that power to all devices is turned off before connecting or disconnecting boards.

The BD-DEVNET mounts to an Opto 22 digital I/O rack via a header connector. The BD-DEVNET board should be oriented away from the I/O rack, as shown in Figure 2-2. To avoid possible damage to the boards, be sure the BD-DEVNET is centered with the connector. The connector ends will close completely if the board is properly installed. Refer to the Opto 22 technical documentation on the particular I/O rack for additional mounting information.

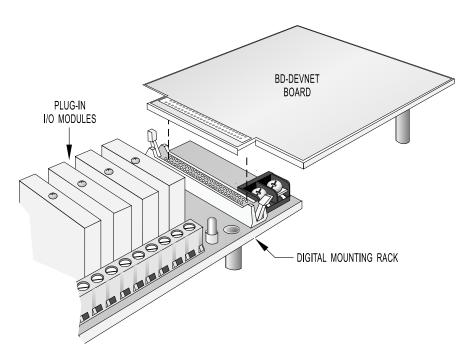


Figure 2-2: BD-DEVNET Installation

CONFIGURATION

Power Connectors

The adapter may be powered from the Opto 22 I/O racks or from the DeviceNet bus power. Refer to Table 2-2 for jumper settings. The factory default and recommended setting is supplying power directly from the rack.

The Opto 22 I/O racks must be powered from +5 volts, and the associated I/O modules must operate on 5 volts. Power requirements are 40 mA, 5 VDC plus the current required to drive the Opto 22 modules (typically 15 mA per module).

Table 2-2: Jumper Settings for Power Connectors

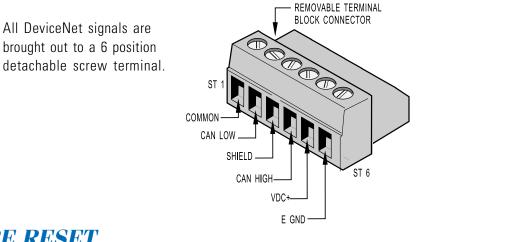
E3-E5	E4-E6	Description	
NO	YES	+5 VDC I/O rack power to Node	
YES	NO	Bus power to Node, Separate Rack power	
YES	YES	Bus power to Node and Rack	

Address

The BD-DEVNET has an eight-position switch that sets both the adapter address and the communications speed. The adapter address is set by switch S1, positions 1-6. If the switch is in the OFF position, it is read as zero. Refer to Table 2-3.

S3 Address **S**6 **S5 S4 S2 S1** Off Off Off Off Off Off 0 Off Off Off Off Off 0 n 1 2 Off Off Off Off 0n Off 3 Off Off Off Off 0n 0n ---------------------Off 62 On On On 0 n On On On On 0 n On On 63

Table 2-3: Address Settings


Communication Speed

The communication speed is determined by switch S1, positions 7 and 8, as shown in Table 2-4.

Table 2-4: Communication Speed Settings

S 8	\$7	Description	
Off	Off	125 Kbits/second	
Off	On	250 Kbits/second	
On	Off	500 Kbits/second	
On	On	Software configurable speed/address	

DEVICENET CONNECTOR

HARDWARE RESET

The adapters will power on with all outputs in the OFF state. When the on-board processor is operating, the output states are determined by the DeviceNet commands.

LED INDICATORS

The BD-DEVNET has two LED indicators, referred to as the HEALTH and the COMM indicators. Refer to the DeviceNet specifications for a complete description of these LEDs. During the power up sequence, each LED will cycle from RED to GREEN as part of the self diagnostics firmware.

DEVICENET INFORMATION

DeviceNet reads and writes access the adapter data buffers. The buffers are open collector inverting drivers with inverting input bus transceivers providing data read capability. For a bit to act as an input, the corresponding output data buffer bit must have a zero written to it. This causes the open collector driver to be turned OFF, and the physical I/O bit will be pulled high by a pull-up resistor. External signals may then pull the input signal to ground, which will be read as a logic 1.

No status information is available for either the inputs or outputs.

The I/O drivers are fully compatible with Opto 22 I/O modules.

DEVICENET MODEL

The BD-DEVNET (16-bit Opto 22 Digital Adapter) device operates as a slave on the DeviceNet network. The unit supports Explicit Messages and Polled I/O Messages of the predefined master/slave connection set. It does not support the Explicit Unconnected Message Manager (UCMM).

DEVICENET MESSAGE TYPES

As a group 2 slave device, the BD-DEVNET supports the following message types.

Table 3-1: DeviceNet Message Types

CAN Identifier	Group 2 Message Type	
10xxxxxx111	Duplicate MAC ID Check Message	
10xxxxx110	Unconnected Explicit Request Message	
10xxxxx101	Master I/O Poll Command Message	
10xxxxx100	Master Explicit Request Message	

xxxxxx = Node Address

DEVICENET CLASS SERVICES

As a group 2 slave device, the BD-DEVNET supports the following class services and instance services.

Table 3-2: DeviceNet Class Services

Service Code	Service Name	
0x05	Reset	
0x0E	Get Attribute Single	
0x10	Set Attribute Single	
0x4B	Allocate Group 2 Identifier Set	
0x4C	Release Group 2 Identifier Set	

DEVICENET OBJECT CLASSES

The BD-DEVNET device supports the following DeviceNet object classes.

Class Code	Object Type	
0x01	Identity	
0x02	Router	
0x03	DeviceNet	
0x04	Assembly	
0x05	Connection	
0x08	Digital Input Point	
0x09	Digital Output Point	

Table 3-3: DeviceNet Object Classes

Identity Object Class Code: 01H

The Identity Object is required on all devices and provides identification of, and general information about, the device.

Table 3-4: Class Attributes

Attr	Access	Name	Туре	Value
1	Get	Revision	UINT	1
2	Get	Max Object Instance	UINT	1
6	Get	Max Class ID	UINT	7
7	Get	Max Instance Attr.	UINT	7

Attr	Access	Name	Туре	Value
1	Get	Vendor	UINT	58
2	Get	Product Type	UINT	7
3	Get	Product Code	UINT	25
4	Get	Revision	STRUCT of	
		Major Revision	USINT	1
		Minor Revision	USINT	0
5	Get	Device Status	UINT	*
6	Get	Serial Number	UDINT	* *
7	Get	Product Name	STRUCT of	
		Length	USINT	5
		Name	STRING [5]	BD-DEVNET

Table 3-5: Identity Object, Instance 1 Attributes

* Device Status

bit 0	owned	0=not owned
		1=owned (allocated)
bit 1	reserved	0
bit 2	configured	0
bit 3	reserved	0
bit 4-7	vendor specific	0
bit 8	minor cfg fault	0=no fault
	ů.	1=minor fault
bit 9	minor dev. fault	0=no fault
		1=minor device fault
bit 10	major cfg. fault	0=no fault
	, ,	1=major cfg. fault
bit 11	major dev. fault	0=no fault
	,	1=major device fault
bit 12-15	reserved	0

** Unique Serial Number

Table 3-6: Common Services

Service Code	Implemented for: Class Instance		Service Name
0 E	Yes	Yes	Get_Attribute_Single
05	N o	Yes	Reset

Router Object Class Code: 02H

The Message Router Object provides a messaging connection point through which a client may address a service to any object class or instance residing in the physical device.

Table 3-7: Class Attributes

Attr	Access	Name Type Value		Value
1	Get	Revision	UINT	1
6	Get	Max Class Attr.	UINT	7
7	Get	Max Instance Attr.	UINT	2

Table 3-8: Router Object, Instance 1 Attributes

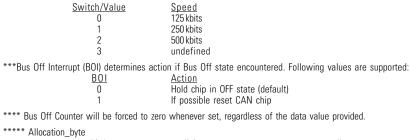
Attr	Access	Name	Туре	Value
2	Get	Number Connection	UIN	2
			•	

Table 3-9: Common Services

Service Code	Implemented for: Class Instance		Service Name
0 E	Yes	Yes	Get_Attribute_Single
10	No	Yes	Set_Attribute_Single

DeviceNet Object Class Code: 03H

Table 3-10: Class Attributes


Attr	Access	Name	Туре	Value
1	Get	Revision	UINT	1

Attr	Access	Name	Name Type		
1	Get/Set	MAC ID USINT		*	
2	Get/Set	Baud Rat	USINT	* *	
3	Get/Set	Bus Off Interrupt BOOL		* * *	
4	Get/Set	Bus Off Counter	USINT	* * * *	
5	Get/Spc	Allocation Info	STRUCT of	* * * * *	
		Choice Byte	BYTE		
		Master Node Addr.	USINT		

Table 3-11: DeviceNet Object, Instance 1 Attributes

*Settable only if switch 7 and 8 are both in the ON position. Value returned will be switch 1..6 or last value set.

**Settable by switch 7 or 8 or through DeviceNet if switch 7 and 8 are both on.

te explicit bit 0 explicit bit 1 polled bit 2 strobed bit 3-7 reserved

Table 3-12: Common Services

Service Code	Implemented for: Class Instance				Service Name
0 E	Yes	Yes	Get_Attribute_Single		
10	No	Yes	Set_Attribute_Single		
4 B	No	Yes	Allocate_Master/Slave		
4 C	No	Yes	Release_Master/Slave		

set to 1 to allocate

set to 1 to allocate

(not supported)

always 0

Assembly Object Class Code: 04H

The Assembly Objects bind attributes of multiple objects to allow data to or from each object to be sent or received over a single connection.

Table 3-13: Class Attributes

Attr	Access	Name	Туре	Value
1	Get	Revision	UNIT	1
2	Get	Max Class ID	UNIT	2

Table 3-14: Assembly Object, Instance 1 Attributes

Attr	Access	Name	Туре	Value
3	Get	Data (state)	UINT	*

Table 3-15: Assembly Object, Instance 2 Attributes

Attr	Access	Name	Туре	Value	
3	Get/Set	Data (state)	UINT	* *	

* Input Data:

			_	_
*	Input Data:	**	<u>Output</u>	Data:
	bit 0 = DIP instance 1 state		bit 0 🛛 🗧	= DOP instance 1 state
	bit 1 = DIP instance 2 state		bit 1 =	= DOP instance 2 state
	bit 2 = DIP instance 3 state		bit 2 🛛 =	= DOP instance 3 state
	bit 3 = DIP instance 4 state		bit 3 🛛 =	= DOP instance 4 state
	bit 4 = DIP instance 5 state		bit 4 🛛 =	= DOP instance 5 state
	bit 5 = DIP instance 6 state		bit 5 🛛 =	= DOP instance 6 state
	bit 6 = DIP instance 7 state			= DOP instance 7 state
	bit 7 = DIP instance 8 state		bit 7 🛛 =	= DOP instance 8 state
	bit 8 = DIP instance 9 state		bit 8 🛛 =	= DOP instance 9 state
	bit 9 = DIP instance 10 state		bit 9 🛛 =	= DOP instance 10 state
	bit 10 = DIP instance 11 state		bit 10 🛛	= DOP instance 11 state
	bit 11 = DIP instance 12 state		bit 11 🛛	= DOP instance 12 state
	bit 12 = DIP instance 13 state		bit 12 🛛	= DOP instance 13 state
	bit 13 = DIP instance 14 state		bit 13 🛛	= DOP instance 14 state
	bit 14 = DIP instance 15 state		bit 14 🛛	= DOP instance 15 state
	bit 15 = DIP instance 16 state		bit 15 🛛	= DOP instance 16 state

Table 3-16: Common Services

Service Code	Implemented for: Class Instance				
0 E	Yes	Yes	Get_Attribute_Single		
10	N o	Yes	Set_Attribute_Single		

Connection Object Class Code: 05H

The Connection Objects manages the characteristics of each communication connection. As a Group II Only Slave device the unit supports one explicit and one POLL message connection.

Table 3-17: Class Attributes

At	tr	Access	Name	Туре	Value
1		Get	Revision	UINT	1

Table 3-18:Connection Object, Instance 1 Attributes (Explicit Message)

Attr	Access	Name	Туре	Value
1	Get	State	USINT	*
2	Get	Instance Type	USINT	0=Exp Msg
3	Get	Transport Class Trig.	USINT	83H
4	Get	Prod. Connection ID	UINT	* *
5	Get	Cons. Connection ID	UINT	* *
6	Get	Initial Comm Char.	USINT	21H
7	Get	Prod. Conn. Size	UINT	7
8	Get	Cons. Conn. Size	UINT	7
9	Get	Expected Packet Rate	UINT	2,500 msec
12	Get	Watchdog Timeout Act	USINT	1=autodel
13	Get	Prod. Conn. Path. Lngth	USINT	0
14	Get	Prod. Conn. Path	USINT	(null)
15	Get	Cons. Conn. Path. Lngth	USINT	0
16	Get	Cons. Conn. Path	USINT	(null)

xxxxxx = Node Address

Connection States: 0 = non-existent

** <u>Connection ID's:</u> Connection 1 Produced Connection ID: 10xxxxx011

Connection 1 Consumed Connection ID: 10xxxxx100 Connection 2 Produced Connection ID: 01111xxxxxx

Connection 2 Consumed Connection ID: 10xxxxx101

1 = configuring 2 = established

3 = timed out

ંગ્ર

Attr	Access	Name	Туре	Value
1	Get	State	USINT	*
2	Get	Instance Type	USINT	1=I/OMsg
3	Get	Transport Class Trig.	USINT	82H
4	Get	Prod. Connection ID	UINT	* *
5	Get	Cons. Connection ID	UINT	* *
6	Get	Initial Comm Char.	USINT	01H
7	Get	Prod. Conn. Size	UINT	2
8	Get	Cons. Conn. Size	UINT	2
9	Get	Expected Packet Rate	UINT	2,500 msec
12	Get	Watchdog Timeout Act.	USINT	* * *
13	Get	Prod. Conn. Path. Lngth	USINT	6
14	Get	Prod. Conn. Path	STRUCT of	
		Log. Seg., Class	USINT	20H
		Class Number	USINT	04H
		Log. Seg., Inst.	USINT	24H
		Inst. Number	USINT	01H
		Log. Seg., Attribute	USINT	30H
		Attr. Number	USINT	03H
15	Get	Prod. Conn. Path. Lngth	USINT	6
16	Get	Prod. Conn. Path	STRUCT of	
		Log. Seg., Class	USINT	20H
		Class Number	USINT	04H
		Log. Seg., Inst.	USINT	24H
		Inst. Number	USINT	02H
		Log. Seg., Attribute	USINT	30H
		Attr. Number	USINT	03H

Table 3-19: Connection Object, Instance 2 Attributes (I/O Messaging)

xxxxxx = Node Address

* <u>Connection States:</u> 0 = non-existent

- 1 = configuring 3 = established
- 4 = timed out

** <u>Connection ID's:</u> Connection 1 Produced Connection ID: 10xxxxxx011 Connection 1 Consumed Connection ID: 10xxxxx100 Connection 2 Produced Connection ID: 01111xxxxxx Connection 2 Consumed Connection ID: 10xxxxx101

*** <u>Watch Dog TimeOut Activity:</u> 0 = Timeout

1 = Auto Delete (Explicit Messaging) 2 = Auto Reset (I/O Message default)

Service Code	Impleme Class	nted for: Instance	Service Name
0 E	Yes	Yes	Get_Attribute_Single
10	Nо	Yes	Set_Attribute_Single
05	Yes	Yes	Reset

Table 3-20: Common Services

Discrete Input (DIP) Object Class Code: 08H

The Discrete Input Point (DOP) Object models discrete inputs in a product. You can use this object in applications as simple as a toggle switch or as complex as a discrete I/O control module. There is a separate instance for each discrete input available on the device.

Table 3-21: Class Attributes

Attr	Access	Name	Туре	Value
1	Get	Revision	UINT	1
2	Get	Max Object Instance	UINT	6
6	Get	Max Class ID	UINT	7
7	Get	Max Instance Attr.	UINT	16

Table 3-22: DIP Object, Instance 1..n Attributes

Attr	Access	Name	Туре	Value
3	Get	Value	BOOL	*
4	Get	Status	BOOL	*

*Input Value determines the overall condition of inputs. The status information will always be 0. State x Interpretation

ate x	Interpretation
0	Input is OFF

mput	10	011	
Input	is	ΟN	

Table 3-23: Common Services

1

Service Code	Implem Class	ented for: Instance	Service Name	
0 E	Yes	Yes	Get_Attribute_Single	

Discrete Output (DOP) Object Class Code: 09H

The Discrete Output Point (DOP) Object models discrete outputs in a product. You can use this object in applications as simple as an indicator lamp or as complex as a discrete I/O control module. There is a separate instance for each discrete output available on the device.

Attr	Access	Name	Туре	Value
1	Get	Revision	UINT	1
2	Get	Max Object Instance	UINT	4
6	Get	Max Class ID	UINT	7
7	Get	Max Instance Attr.	UINT	16

Table 3-24: Class Attributes

Table 3-25: DIP Object, Instance 1..n Attributes

Attr	Access	Name	Туре	Value
3	Get	Value	BOOL	*
4	Get	Status	BOOL	*
5	Get	Fault State	BOOL	* *
6	Get	Fault Value	BOOL	* *
7	Get	Idle Sta	BOOL	* * *
8	Get	Idle Value	BOOL	* * *

Table 3-26: Common Services

Service Code	Implemented for: Class Instance		Service Name
0 E	Yes	Yes	Get_Attribute_Single
10	N o	Yes	Set_Attribute_Single

*Input Value determines the overall condition of inputs. The status information will always be 0.			
State x		Interpretation	
0		Output is OFF	
1		Output is ON	
0		Output faulted	
**The Fault Value and Fault State determine the unit's reaction to an output fault condition.			
State	Value	Interpretation	
0	0	Turn output OFF if faulted	
0	1	Turn output ON if faulted	
1	Х	Leave output unchanged if faulted	
***The Idle Value and Idle State determine the unit's reaction to an output idle condition.			
State	Value	Interpretation	
0	0	Turn output OFF if idle	
0	1	Turn output ON if idle	
1	Х	Leave output unchanged if idle	

PRODUCT SUPPORT

If you have any questions about this product, contact Opto 22 Product Support Monday through Friday, 8 a.m. to 5 p.m. Pacific Time.

Phone:	800-TEK-OPTO (835-6786) 951-695-3080
Fax:	951-695-3017
E-mail:	support@opto22.com
Opto 22 Web site:	www.opto22.com

When calling for technical support, be prepared to provide the following information about your system to the Product Support engineer:

- Software and version being used
- Controller firmware version
- PC configuration
- A complete description of your hardware and operating systems, including:
 - jumper configuration
 - accessories installed (such as expansion daughter cards)
 - type of power supply
 - types of I/O units installed
 - third-party devices installed (e.g., barcode readers)
- Specific error messages seen