
ioCONTROL
USER’S GUIDE

Form 1300-060515 —May, 2006

43044 Business Park Drive • Temecula • CA 92590-3614
Phone: 800-321-OPTO (6786) or 951-695-3000

Fax: 800-832-OPTO (6786) or 951-695-2712
www.opto22.com

Product Support Services
800-TEK-OPTO (835-6786) or 951-695-3080

Fax: 951-695-3017
Email: support@opto22.com
Web: support.opto22.com

ioControl User’s Guide
Form 1300-060515 —May, 2006

Copyright © 2001–2006 Opto 22.
All rights reserved.
Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22
assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to change without
notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the
manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation,
labor, or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of 1/96 or later are
guaranteed for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID
modules, and modules that contain mechanical contacts or switches. Opto 22 does not warrant any product,
components, or parts not manufactured by Opto 22; for these items, the warranty from the original manufacturer
applies. These products include, but are not limited to, OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson
GT-48; see the product data sheet for specific warranty information. Refer to Opto 22 form number 1042 for
complete warranty information.

Cyrano, Opto 22 FactoryFloor, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl,
ioDisplay, ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl,
OptoDisplay, OptoENETSniff, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, SNAP Ethernet
I/O, SNAP I/O, SNAP OEM I/O, SNAP Simple I/O, SNAP Ultimate I/O, and SNAP Wireless LAN I/O are trademarks of
Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered
trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET
is a registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric.
Wiegand is a registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M
Gateway Software, and Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia
Corporation. Sony is a trademark of Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.
ii ioControl User’s Guide

Table of Contents
Chapter 1: Welcome to ioControl .. 1-1

Introduction .. 1-1

About this Guide... 1-1
Document Conventions ... 1-3

Other Resources ... 1-4
Documents and Online Help.. 1-4
Product Support... 1-4

Installing ioControl ... 1-5
System Requirements ... 1-5

Installation Requirements .. 1-5
Compatible Control Engines and I/O Units .. 1-6
Important Note on Disk Drives... 1-6

Chapter 2: ioControl Tutorial.. 2-1

Introduction .. 2-1
In this Chapter ... 2-1

Opening the Strategy ... 2-1

Saving the Strategy.. 2-3

Examining the Strategy .. 2-5
The Strategy Tree.. 2-5
Docking the Strategy Tree... 2-5

Opening a Chart.. 2-6

Opening a Block.. 2-9

Adding a Command .. 2-12

Configuring a Control Engine ... 2-17

Compiling the Strategy... 2-20

Running the Strategy.. 2-21
Inspecting Messages .. 2-23
ioControl User’s Guide iii

Stepping Through the Chart .. 2-24
Auto Stepping.. 2-27

Compiling and Downloading the Change... 2-31

Using a Watch Window ... 2-33

Closing the Strategy and Exiting .. 2-40

What’s Next?.. 2-40

Chapter 3: What Is ioControl?...3-1

Introduction .. 3-1
In this Chapter ... 3-1

About ioControl .. 3-1
Control System Example ... 3-2

General Control Concepts .. 3-3
Automation .. 3-3
Control Engines ... 3-3
Digital and Analog Inputs and Outputs ... 3-3
SNAP Special-Purpose I/O Modules... 3-4

Key Features ...3-4

ioControl Terminology ..3-5
Analog Point .. 3-5
Blocks .. 3-6
Digital Point ... 3-6
External Value ... 3-7
Flowcharts ... 3-7
Input Point ... 3-7
Instructions (Commands) ... 3-8
Internal Value .. 3-8
Multitasking .. 3-8
Output Point...3-9
Pointer ... 3-9
Strategy ...3-9
Variables.. 3-9

ioControl Main Window... 3-11
Status Bar .. 3-11
Mode ...3-11
Toolbars ...3-12

Moving Toolbars... 3-13
Hiding and Showing Toolbars .. 3-13

Strategy Tree... 3-14

Windows and Dialog Boxes in ioControl ... 3-15
Using Tabs to View Open Windows ... 3-15
Docking Windows ... 3-17
iv ioControl User’s Guide

Splitting a Chart or Subroutine Window... 3-18
Zooming in a Chart or Subroutine Window .. 3-20
Redrawing a Chart or Subroutine Window... 3-21
Changing Column Width in a Dialog Box.. 3-22
Sorting Data in a Dialog Box... 3-23

Customizing ioControl for Your Needs... 3-24
Setting Decimal, Binary, or Hex Display Mode... 3-24

Setting Hex String View... 3-25
Customizing Toolbars .. 3-25

Choosing Toolbars for Your Screen Resolution ... 3-25
Moving Toolbars... 3-26
Moving and Deleting Buttons .. 3-27
Creating Your Own Toolbar.. 3-28

Setting Up Applications to Launch from ioControl ... 3-29

Online Help ... 3-30

Chapter 4: Designing Your Strategy .. 4-1

Introduction .. 4-1
In this Chapter ... 4-1

Steps to Design .. 4-1
Solving the Problem .. 4-2

Defining the Problem.. 4-2
Designing a Logical Sequence of Steps to Solve the Problem.............................. 4-3
Testing the Steps ... 4-4

Building the Strategy... 4-4
Configuring Hardware .. 4-4
Determining and Configuring Variables... 4-5
Creating ioControl Charts and Adding Instructions ... 4-6
Compiling and Debugging the Strategy ... 4-8

Using and Improving the Strategy... 4-8

Basic Rules ... 4-9
Chart Guidelines.. 4-9
Naming Conventions ... 4-10

Instruction Examples .. 4-11
Creating Messages to Display On Screen .. 4-11
Error Handling.. 4-13
Counting .. 4-14
Using a Count Variable for Repetitive Actions ... 4-15
Programming Case Statements... 4-16
Using a Timer .. 4-17
Using a Flag... 4-18
Pointers and Indexing.. 4-19

Optimizing Throughput ... 4-21
ioControl User’s Guide v

Understanding ioControl Multitasking.. 4-21
Host Task.. 4-21

Optimizing PC to Control Engine Throughput .. 4-22
Increasing Host Task Frequency... 4-22
Increasing Efficiencies in Your Strategy .. 4-22
Ensuring Data Freshness for ioDisplay .. 4-23

Optimizing Control Engine to I/O Throughput ... 4-23
Using I/O Unit Commands..4-23
Handling I/O Errors Efficiently.. 4-23

Chapter 5: Working with Control Engines...5-1

Introduction .. 5-1
In this Chapter ... 5-1

Configuring Control Engines... 5-1
Defining a Control Engine on Your PC... 5-2

Control Engine Configuration Dialog Box... 5-4
Associating the Control Engine with Your Strategy ... 5-4

Using Network Segmenting in ioControl ... 5-5

Using Ethernet Link Redundancy in ioControl .. 5-6
System Architecture for Ethernet Link Redundancy ... 5-6

Ethernet Link Redundancy..5-7
Ethernet Link, Computer, and Software Redundancy .. 5-8
Ethernet Link Redundancy with Serial I/O Units.. 5-9

Configuring Ethernet Link Redundancy ... 5-9
Using Strategies with Link Redundancy ... 5-10

Changing or Deleting a Control Engine .. 5-10
Changing a Control Engine’s Definition .. 5-10
Changing the Control Engine that Receives the Downloaded Strategy 5-11
Removing a Control Engine’s Association with a Strategy .. 5-11
Deleting a Control Engine from Your PC ... 5-12

Inspecting Control Engines and the Queue .. 5-12
Inspecting Control Engines in Debug Mode.. 5-12
Viewing the Message Queue.. 5-14

Message Queue Information.. 5-16
Inspecting Control Engines from the ioTerminal Utility .. 5-16

Downloading Files to the Control Engine... 5-17
Archiving Strategies .. 5-17

Archiving to the Control Engine ... 5-17
Restoring Archived Strategies from the Control Engine...................................... 5-18

Downloading Files Without Opening ioControl .. 5-19

Chapter 6: Working with I/O ...6-1
vi ioControl User’s Guide

Introduction .. 6-1
In this Chapter ... 6-1

Choosing a Configuration Tool ... 6-1
Importing I/O Configuration into ioControl ... 6-3
Copying I/O Configurations ... 6-3

Creating the Configuration Export File... 6-4
Importing the Configuration File .. 6-4

About I/O Units... 6-4

Addressing I/O Units .. 6-6
SNAP Ethernet Analog and Digital Systems... 6-6
SNAP Ethernet Analog and Simple Digital Systems .. 6-8
SNAP Ethernet Digital-Only Systems.. 6-9
SNAP Serial-Based (mistic) I/O Units ... 6-10
Non-SNAP Serial-Based (mistic) I/O Units ... 6-12

Adding an I/O Unit.. 6-12
Add I/O Unit Dialog Box .. 6-13
Changing the Baud Rate for Serial I/O Units .. 6-14
Changing Configured I/O Units ... 6-16
Deleting Configured I/O Units... 6-16

Adding I/O Points ... 6-16
Adding a Digital I/O Point ... 6-16

Add Digital Point Dialog Box.. 6-20
Adding an Analog I/O Point... 6-21

Add Analog Point Dialog Box ... 6-23

Configuring Special-Purpose Modules... 6-25
Configuring a Serial Module ... 6-25
Configuring a SNAP High-Density Digital Module ... 6-25

Changing Point Configuration .. 6-25
Moving a Configured I/O Point.. 6-25
Copying a Configured I/O Point ... 6-26
Changing a Configured I/O Point... 6-29
Deleting a Configured I/O Point .. 6-29

Configuring PID Loops .. 6-29
PIDs and Strategies... 6-30
Adding a PID Loop (Ethernet) .. 6-30

Add PID Loop Dialog Box.. 6-32
Adding a PID Loop (mistic) .. 6-34

Add PID Loop Dialog Box (mistic)... 6-36
Setting PID Loop Control Options (mistic PIDs).. 6-38
PID Loop Control Options Dialog Box... 6-39
Mistic PID Loop Configuration Example... 6-39

Changing a PID Loop (Ethernet or mistic).. 6-40
Deleting a PID Loop (Ethernet or mistic) ... 6-41
ioControl User’s Guide vii

Configuring Event/Reactions.. 6-42
Add Event/Reaction Dialog Box ... 6-43

Adding a MOMO Event or Reaction (mistic I/O Units Only) 6-46
Event/Reaction Configuration Example .. 6-48
Using Event/Reaction Groups (mistic I/O Units Only) ... 6-49

Creating Groups.. 6-49
Deleting Groups.. 6-50

Changing Configured Event/Reactions (mistic I/O Units Only) 6-50
Deleting Event/Reactions (mistic I/O Units Only) ... 6-51

Inspecting I/O in Debug Mode ... 6-51
Inspecting I/O Units... 6-52
Inspecting Digital I/O Points ... 6-53
Inspecting Analog I/O Points... 6-54
Inspecting Event/Reactions... 6-56

View Event/Reaction Dialog Box ... 6-57
MOMO Event/Reactions .. 6-57

Inspecting and Tuning PID Loops ... 6-58
Inspecting a PID (Ethernet) .. 6-58
Determining System Lag ... 6-59
Tuning a PID Loop (Ethernet) ... 6-64
Inspecting a PID Loop (mistic) ... 6-71

View PID Loop (mistic) Dialog .. 6-72

Using Watch Windows for Monitoring .. 6-73
Creating a Watch Window.. 6-73
Opening an Existing Watch Window .. 6-75
Working in Watch Windows... 6-75

Chapter 7: Working with Strategies...7-1

Introduction .. 7-1
In this Chapter ... 7-1

Creating a New Strategy.. 7-1

Opening a Strategy... 7-2
Opening an Existing Strategy.. 7-2
Opening a Recently Used Strategy ... 7-2
Loading a Strategy or Mode at Startup .. 7-2
Opening Strategies in ioControl Basic and ioControl Professional 7-2
Opening an OptoControl Strategy ... 7-3

Saving and Closing ... 7-3
Saving the Strategy and All Charts ... 7-3
Saving the Strategy and Some Charts .. 7-3
Saving the Strategy to a New Name .. 7-4
Saving Before Debugging.. 7-4
Closing a Strategy ... 7-4
viii ioControl User’s Guide

Saving a Strategy to Flash ... 7-4
Saving to Flash Once... 7-4
Saving to Flash on Every Download.. 7-5

Archiving Strategies ... 7-5
Archiving to the Computer .. 7-5
Archiving to the Control Engine .. 7-6

Compiling and Downloading .. 7-6
Compiling and Downloading in One Step ... 7-7
Compiling without Downloading... 7-8

Compiling the Active Chart or Subroutine ... 7-8
Compiling Changes Only .. 7-8
Compiling the Entire Strategy .. 7-8

Downloading Only ... 7-9
Downloading Without Using ioControl ... 7-9

Creating the Control Engine Download (.cdf) File.. 7-9
Downloading the .cdf File using ioTerminal .. 7-10
Downloading the .cdf File Using a DOS Batch File.. 7-10

Changing Download Compression .. 7-11

Running a Strategy Manually... 7-12

Running a Strategy Automatically (Autorun) ... 7-12
Protecting a Running Strategy .. 7-13

Stopping a Strategy.. 7-13

Debugging .. 7-13
Choosing Debug Level ... 7-13
Changing Debugger Speed.. 7-14
Pausing a Chart or Subroutine .. 7-14
Stepping Through a Chart or Subroutine .. 7-15

Single Stepping .. 7-15
Auto Stepping... 7-17

Setting and Removing Breakpoints... 7-18
Managing Multiple Breakpoints ... 7-19
Interpreting Elapsed Times ... 7-20

Viewing and Printing .. 7-20
Viewing Strategy Filename and Path.. 7-21
Viewing an Individual Chart or Subroutine ... 7-21
Viewing All Charts in a Strategy... 7-21
Printing Chart or Subroutine Graphics .. 7-23

Setting Up the Page ... 7-23
Previewing a Flowchart Printout .. 7-24
Printing One Chart or Subroutine ... 7-25
Printing All Charts in a Strategy... 7-25

Viewing and Printing Strategy or Subroutine Commands .. 7-25
Viewing and Printing Strategy or Subroutine Elements ... 7-26
ioControl User’s Guide ix

Viewing and Printing a Cross Reference... 7-28
View and Print a Bill of Materials ... 7-29

Searching and Replacing.. 7-29
Searching...7-30
Replacing ...7-31

Chapter 8: Working with Flowcharts..8-1

Introduction .. 8-1
In this Chapter ... 8-1

Creating a New Chart...8-1

Working with Chart Elements .. 8-2
What’s In a Chart?... 8-2

Using the Drawing Toolbar ..8-3
Changing the Appearance of Elements in a Chart Window ... 8-3

Configure Chart Properties Dialog Box .. 8-4
Changing Existing Elements to Match New Defaults.. 8-5

Drawing Blocks.. 8-6
Naming Blocks... 8-6

Renaming Blocks .. 8-6
Connecting Blocks ... 8-7

Action Blocks and OptoScript Blocks ... 8-7
Condition Blocks... 8-8

Adding Text ... 8-9
Editing Text... 8-10

Selecting Elements.. 8-10
Moving Elements... 8-11

Moving Elements in Front of or Behind Other Elements (Changing Z-Order) 8-11
Cutting, Copying, and Pasting Elements ... 8-12
Deleting Elements ... 8-12
Changing Element Color and Size ... 8-12

Resizing Blocks or Text Blocks ... 8-13
Changing Block Colors.. 8-13
Changing Text... 8-13
Changing an Element Back to the Defaults ... 8-13

Opening, Saving, and Closing Charts ... 8-14
Opening a Chart... 8-14
Saving a Chart ... 8-14
Closing a Chart .. 8-14

Copying, Renaming, and Deleting Charts .. 8-14
Copying a Chart ... 8-14
Renaming a Chart .. 8-15
Deleting a Chart .. 8-16

Printing Charts .. 8-16
x ioControl User’s Guide

Exporting and Importing Charts.. 8-17
Exporting a Chart... 8-17
Importing a Chart... 8-18

Chapter 9: Using Variables and Commands .. 9-1

Introduction .. 9-1
In this Chapter ... 9-1

About Variables .. 9-1
Types of Data in a Variable... 9-2
Variables in ioControl .. 9-3

Table Variables... 9-4
Persistent Data.. 9-4
Literals... 9-5

Adding Variables .. 9-5
Add Variable Dialog Box .. 9-6

Adding Tables... 9-8
Adding Table Variables ... 9-9
Setting Initial Values in Tables During Strategy Download 9-10

Creating the Initialization File .. 9-10
Text Examples .. 9-10
Downloading the Initialization File .. 9-12

Changing a Configured Variable .. 9-13

Deleting a Variable... 9-13

Viewing Variables in Debug Mode .. 9-14
Viewing Numeric, String, and Communication Handle Variables 9-14
Viewing Pointer Variables... 9-16
Viewing Numeric and String Tables ... 9-16
Viewing Pointer Tables ... 9-17

Adding Commands ... 9-18

Changing a Command .. 9-23

Deleting a Command.. 9-23
Permanently Deleting a Command.. 9-23
Commenting Out a Command ... 9-24

Cutting or Copying a Command.. 9-24

Pasting a Command.. 9-25

Configuring a Continue Block ... 9-25

Viewing and Printing Chart Instructions .. 9-26

Chapter 10: Programming with Commands..10-1

Introduction .. 10-1
ioControl User’s Guide xi

In this Chapter ... 10-1

Digital Point Commands ... 10-2
States, Latches, and Counters ..10-3

Latches ... 10-3
Counters ... 10-3
Quadrature Counters .. 10-4

Totalizers ...10-4
Pulses .. 10-4
IVAL and XVAL... 10-5

Simulation and Test: The “Real” Use for XVAL and IVAL.................................... 10-5
Additional Commands to Use with Standard Digital Points 10-5
Standard Digital Points and OptoScript Code... 10-6

High-Density Digital Module Commands... 10-6
About High-Density Digital Modules .. 10-6

Comparing SNAP High-Density and Standard Digital Modules 10-7
Counting on High-Density Digital Modules .. 10-7

Using HDD Module Counters ... 10-8
Using HDD Module Commands... 10-8

Individual Point ... 10-9
All Points on a Module... 10-9
All HDD Modules on the I/O Unit... 10-12

Analog Point Commands .. 10-13
Offset and Gain Commands .. 10-14
Minimum/Maximum Values.. 10-14
Analog Totalizers... 10-14
Analog Points and OptoScript Code.. 10-15

I/O Unit Commands .. 10-15
Commands for Ethernet Link Redundancy .. 10-15
Table Commands ... 10-16

Control Engine Commands ... 10-16
Commands Relating to Permanent Storage.. 10-17

Chart Commands .. 10-17
About the Task Queue... 10-17

Time/Date Commands.. 10-18

Timing Commands .. 10-19
Delay Commands... 10-19
Using Timers.. 10-19

Down Timer Operation ... 10-20
Up Timer Operation .. 10-20

Miscellaneous Commands ... 10-21
Comment Commands .. 10-21

Event Reaction Commands... 10-22
xii ioControl User’s Guide

Understanding Event/Reactions (mistic I/O Units Only) ... 10-22
Why Use Event/Reactions?.. 10-22
Typical Applications for Event/Reactions .. 10-23

String Commands ... 10-23
Using Strings ... 10-23
String Length and Width ... 10-24
Using Numeric Tables as an Alternative to Strings.. 10-24
Strings and Multitasking... 10-25
Adding Control Characters to a String .. 10-25
Sample String Variable ... 10-25
Sample String Table.. 10-26
String Data Extraction Examples... 10-26

Find Substring in String: Example 1 ... 10-27
Find Substring in String: Example 2 ... 10-27

String Building Example .. 10-27
Move String.. 10-27
Append Character to String.. 10-28
Append String to String.. 10-28
Append Character to String.. 10-28

Comparison to Visual Basic and C .. 10-29
Convert-to-String Commands.. 10-30
ASCII Table.. 10-31

Mathematical Commands .. 10-32
Using Integers ... 10-32
Using Floats... 10-32

Controlling Rounding.. 10-33
Mixing and Converting Integers and Floats .. 10-33

Logical Commands ... 10-33
Understanding Logical Commands.. 10-34

Logical True and Logical False ... 10-34

Communication Commands.. 10-35
Communication Handles ... 10-35
Using TCP Communication Handles.. 10-36

Incoming and Outgoing Communication .. 10-36
TCP Communication Handle Examples .. 10-38
Using Flowcharts to Control TCP/IP Communication... 10-39
Ethernet Connections and Ports... 10-41

Using the Control Engine’s File System .. 10-42
Working with Files in Your Strategy .. 10-43

Moving Files via FTP.. 10-48
FTP Communication Handle Examples... 10-48
Using FTP Communication Handles in Your Strategy .. 10-48
Retrieving a Directory Listing... 10-50

Using Serial Communication Handles to Communicate with Serial Devices........... 10-50
Serial Communication Handle Examples ... 10-51
ioControl User’s Guide xiii

Using Serial Communication Handles in Your Strategy 10-51

I/O Unit—Scratch Pad Commands ..10-51

I/O Unit—Event Message Commands... 10-54

I/O Unit—Memory Map Commands..10-55

Error Handling Commands.. 10-56

Pointer Commands ... 10-56
Understanding Pointers ... 10-57
Advantages of Using Pointers ... 10-57
Referencing Objects with Pointers.. 10-57

PID—Ethernet Commands ... 10-58
What is a PID? ... 10-59
PID Loops on I/O Units .. 10-59
Algorithm Choices (PID—Ethernet) .. 10-60

Equations Common to All Algorithms .. 10-61
Velocity Algorithm.. 10-61
Non-velocity Algorithms... 10-61

PID—Mistic Commands... 10-62
What is a PID? ... 10-62
Using PIDs on mistic I/O Units ..10-63
Velocity PID Equation (PID—mistic) ... 10-63

Gain (P) ... 10-63
Integral (I) ... 10-64
Derivative (D) .. 10-64
Integral-Derivative Interaction ... 10-64

Configuration Tips (PID—mistic) .. 10-64
Tuning Guidelines (PID—mistic) ... 10-65

Setting the Scan Rate .. 10-65
Determining the Loop Dead Time .. 10-66
Tuning... 10-66
Solving Tuning Problems.. 10-67
Starting the Tuning Process for a New PID Loop... 10-67
Derivative ... 10-67

Tuning Graphs (PID—mistic)... 10-68

Simulation Commands ... 10-69

Chapter 11: Using OptoScript .. 11-1

Introduction .. 11-1
In this Chapter ... 11-1

About OptoScript .. 11-1

When To Use OptoScript.. 11-2
For Math Expressions.. 11-3
For String Handling.. 11-4
xiv ioControl User’s Guide

For Complex Loops .. 11-6
For Case Statements ... 11-7
For Conditions.. 11-8
... 11-8
For Combining Expressions, Operators, and Conditions ... 11-10

OptoScript Functions and Commands .. 11-11
Standard and OptoScript Commands.. 11-11
Using I/O in OptoScript ... 11-12

OptoScript Syntax... 11-13
More About Syntax with Commands .. 11-13

OptoScript Data Types and Variables .. 11-14
Variable Name Conventions.. 11-14
Using Numeric Literals.. 11-15
Making Assignments to Numeric Variables ... 11-16
Using Strings ... 11-16
Working with Pointers... 11-17
Working with Tables ... 11-18

OptoScript Expressions and Operators .. 11-19
Using Mathematical Expressions.. 11-19
Using Comparison Operators .. 11-20
Using Logical Operators .. 11-20
Using Bitwise Operators ... 11-21
Precedence .. 11-21

OptoScript Control Structures .. 11-22
If Statements... 11-22
Switch or Case Statements... 11-23
While Loops... 11-23
Repeat Loops... 11-24
For Loops ... 11-24

Using the OptoScript Editor.. 11-25

Troubleshooting “Unable To Find” Errors .. 11-29

Troubleshooting Syntax Errors ... 11-29

Debugging Strategies with OptoScript .. 11-30

Chapter 12: Using Subroutines...12-1

Introduction .. 12-1
In this Chapter ... 12-1

About Subroutines.. 12-1
Data Types for Subroutines... 12-2

Creating Subroutines.. 12-3
Tips for Subroutines .. 12-3
ioControl User’s Guide xv

Drawing the Flowchart .. 12-3
Configuring Subroutine Parameters .. 12-5

Configured Parameters Example.. 12-8
Adding Commands and Local Variables.. 12-8
Compiling and Saving the Subroutine... 12-9

Using Subroutines .. 12-9
Including a Subroutine in a Strategy... 12-9
Adding a Subroutine Instruction ... 12-10
Debugging Subroutines ... 12-12

Viewing and Printing Subroutines.. 12-12
Viewing Subroutines ... 12-13

Viewing All Subroutines in a Strategy... 12-13
Printing Subroutines.. 12-13

Appendix A: ioControl Troubleshooting ... A-1

How to Begin Troubleshooting.. A-1
1. Read Any Error Message Box... A-1
2. Check Communication with the Control Engine... A-2
3. Check the Message Queue .. A-2
4. Check Status Codes in Your Strategy .. A-2
5. Call Product Support... A-2

Strategy Problems ... A-2
If You Cannot Delete an Item... A-2
If You Have Memory Problems... A-3

Archiving Strategies.. A-4
Do You Use Online Mode? .. A-4

Checking Communication with the Control Engine... A-4

Resolving Communication Problems ... A-5
Matching ioControl Configuration to the Real World.. A-5
Resolving TCP/IP Cannot Connect Errors (-412) ... A-5

Pinging the Control Engine.. A-5

Other Troubleshooting Tools ... A-7
Checking Detailed Communication Information Using ioMessage Viewer................. A-7
Checking File Versions for Opto 22 Software .. A-8
Problems with Permissions in Windows 2000... A-9

Appendix B: ioControl Errors and Messages ... B-1

Introduction ..B-1

Types of Errors..B-1
ioControl Errors..B-1
Queue Messages...B-2

Using Queue Messages ...B-3
xvi ioControl User’s Guide

Status Codes ...B-3

List of Common Messages...B-3

Appendix C: ioControl Files .. C-1

Introduction ..C-1

Files Related to a Strategy...C-1

Files Associated with a Subroutine ...C-2

Files in the ioControl Directory...C-2

Appendix D: Sample Strategy ..D-1

Introduction ..D-1

Factory Schematic ..D-1

Description of the Process ...D-2
Dough Vessel...D-2
Chip Hopper...D-2
Oven...D-2
Inspection Station ...D-2
Conveyor..D-2
Emergency Stops...D-3

Required I/O ...D-3
Analog I/O ...D-3
Digital I/O ..D-3

Appendix E: OptoScript Command Equivalents E-1

Introduction .. E-1

Appendix F: OptoScript Language Reference ...F-1

Introduction .. F-1

OptoScript Comparison with Standard Programming Languages F-1
Function Comparison... F-2
Variable Comparison ... F-6

Notes to Experienced Programmers... F-6
Variable Database and Other Surprises.. F-6
ioControl's Target Audience.. F-6
Language Syntax ... F-7

OptoScript Lexical Reference... F-8
Token Syntax Legend .. F-8
Literals and Names ... F-8
Keywords (Reserved Words) ... F-9
ioControl User’s Guide xvii

Operators ... F-9
Comments.. F-10

OptoScript Grammar Syntax Reference ... F-11

Index ... Index-1
xviii ioControl User’s Guide

CHAPTER 1
1—Welcome to ioControlChapter 1

Welcome to ioControl
Introduction
Welcome to ioControl™, Opto 22’s visual control language for Opto 22 Ethernet-based control
systems and the input/output (I/O) units that work with them.

ioControl makes it easy to write control applications with little or no programming experience. If
you know how to design a control application and can draw some flowcharts to describe it, you
already know the basics of ioControl. At the same time, ioControl provides a complete and
powerful set of commands, as well as the OptoScript™ programming language, to meet your
most demanding industrial control needs.

ioControl comes in two forms: ioControl Basic and ioControl Professional™.

• ioControl Basic is included in the purchase of an Opto 22 Ethernet-based controller and
is also available as a free download from our Web site, www.opto22.com. ioControl Basic
includes both flowchart and OptoScript programming, subroutines, a graphical debugger,
and about 400 commands.

• ioControl Professional is available for purchase either separately or as part of the
complete ioProject Professional™ software suite. The Professional version of ioControl
adds Ethernet link redundancy to controllers and I/O units, supports additional features in
Ethernet-based I/O units (such as ramping and pulsing), and offers additional data types in
subroutines. ioControl Professional also provides a migration path for Opto 22
FactoryFloor™ customers by adding support for serial-based mistic® I/O units and by
including a conversion utility to help customers move older OptoControl™ strategies to
ioControl. ioControl Professional includes about 500 commands.

About this Guide
This user’s guide not only teaches you how to use ioControl, but also provides programming
instruction and tips. The separate ioControl Command Reference describes in detail all ioControl
programming commands, or instructions.

This guide assumes that you are already familiar with Microsoft® Windows® on your personal
computer, including how to use a mouse, standard commands, and menu items to open, save,
ioControl User’s Guide 1-1

WELCOME TO IOCONTROL
and close files. If you are not familiar with Windows or your PC, refer to the documentation from
Microsoft and your computer manufacturer.

This guide covers both ioControl Basic and ioControl Professional. Features that are available
only in ioControl Professional are marked with .

Here’s what is in this user’s guide:

Chapter 1, “Welcome to ioControl”—Information about the guide and how to reach Opto 22
Product Support.

Chapter 2, “ioControl Tutorial”—A tutorial designed to help you use ioControl as quickly as
possible. The chapter leads you through a sample strategy that you can manipulate, download,
and run in Debug mode.

Chapter 3, “What Is ioControl?”—An introduction to ioControl, key terminology, and the main
windows and toolbars.

Chapter 4, “Designing Your Strategy”—Programming in ioControl: how to get from your
real-world control problem to a working strategy.

Chapter 5, “Working with Control Engines”—How to configure and communicate with
control engines.

Chapter 6, “Working with I/O”—How to configure and communicate with input/output (I/O)
units, I/O points, and PID loops.

Chapter 7, “Working with Strategies”—Detailed steps for creating, compiling, and running
strategies.

Chapter 8, “Working with Flowcharts”—Detailed steps for creating and working with the
flowcharts that make up your strategy.

Chapter 9, “Using Variables and Commands”—Steps for configuring the seven types of
variables you can use in programming: communication handle, numeric, string, pointer, numeric
table, string table, and pointer table variables. Also shows how to use the commands that control
the I/O and variables you’ve configured.

Chapter 10, “Programming with Commands”—Important tips on using ioControl commands
to accomplish what you want in your strategy.

Chapter 11, “Using OptoScript”—Details on the optional scripting language available in
ioControl for complex loops, string handling, and mathematical expressions.

Chapter 12, “Using Subroutines”—How to use subroutines to streamline your strategy
development.

Appendix A, “ioControl Troubleshooting”—Tips for resolving communication problems and
other difficulties you may encounter.

Appendix B, “ioControl Errors and Messages”—Types of errors, where you’ll see them, and
the causes of common errors.
1-2 ioControl User’s Guide

WELCOME TO IOCONTROL
Appendix C, “ioControl Files”—A list of all ioControl files located in the ioControl directory
and in any strategy directory.

Appendix D, “Sample Strategy”—An illustration and description of the sample “Cookies”
strategy used in Chapter 1.

Appendix E, “OptoScript Command Equivalents”—A table of all standard ioControl
commands, showing their equivalents in OptoScript code.

Appendix F, “OptoScript Language Reference”—Details about OptoScript code, including
comparisons to other languages, lexical reference, and notes to experienced programmers.

Index—Alphabetical list of key words and the pages they are located on.

Document Conventions
The following conventions are used in this document:

• The Pro icon next to text indicates that a feature is available only in ioControl Professional,
not in ioControl Basic.

• Italic typeface indicates emphasis and is used for book titles. (Example: “See the ioDisplay
User’s Guide for details.”)

• Names of menus, commands, dialog boxes, fields, and buttons are capitalized as they
appear in the product. (Example: “From the File menu, select Print.”)

• File names appear either in all capital letters or in mixed case, depending on the file name
itself. (Example: “Open the file TEST1.txt.”)

• Key names appear in small capital letters. (Example: “Press SHIFT.”)

• Key press combinations are indicated by hyphens between two or more key names. For
example, SHIFT+F1 is the result of holding down the shift key, then pressing and releasing
the F1 key. Similarly, CTRL+ALT+DELETE is the result of pressing and holding the CTRL and ALT
keys, then pressing and releasing the DELETE key.

• “Click” means press and release the left mouse button on the referenced item.
“Right-click” means press and release the right mouse button on the item.

• Menu commands are referred to with the Menu➞Command convention. For example,
“File➞Open Project” means to select the Open Project command from the File menu.

• Numbered lists indicate procedures to be followed sequentially. Bulleted lists (such as this
one) provide general information.
ioControl User’s Guide 1-3

WELCOME TO IOCONTROL
Other Resources

Documents and Online Help
To help you understand and use ioControl systems, the following resources are provided:

• Online Help is available in ioControl and in most of the utility applications. To open online
Help, choose Help➞Contents and Index in any screen.

• ioControl User’s Guide shows how to install and use ioControl.

• ioControl Command Reference contains detailed information about each command
(instruction) available in ioControl.

• A quick reference card, located in the front pocket of the ioControl Command Reference,
lists all ioControl commands plus their OptoScript™ code equivalents and arguments.

• ioManager User’s Guide and other guides provided with specific hardware help you
install, configure, and use controllers and I/O units.

Online versions (Adobe® Acrobat® format) of ioControl documents are provided on the CD that
came with your controller or purchase of Professional software and are also available from the
Help menu in ioControl. To view a document, select Help➞Manuals, and then choose a
document from the submenu.

When you purchase ioControl Professional or ioProject Professional, you also receive a complete
set of printed documents.

Resources are also available on the Opto 22 Web site at www.opto22.com. You can conveniently
access the Web site using the Help menu in ioControl. Select Help➞Opto 22 on the Web, and
then select an online resource from the submenu.

Product Support
If you have any questions about ioControl, you can call, fax, or email Opto 22 Product Support.

Phone: 800-TEK-OPTO (835-6786)
951-695-3080
(Hours are Monday through
Friday,
7 a.m. to 5 p.m. Pacific Time)

Fax: 951-695-3017

Email: support@opto22.com

Opto 22 Web site: support.opto22.com

When calling for technical support, be prepared to provide the following information about your
system to the Product Support engineer:

NOTE: Email messages
and phone calls to
Opto 22 Product Support
are grouped together
and answered in the
order received.
1-4 ioControl User’s Guide

WELCOME TO IOCONTROL
• Software and version being used

• Firmware versions

• PC configuration (type of processor, speed, memory, and operating system)

• A complete description of your hardware and operating systems, including:

– type of power supply

– types of I/O units installed

– third-party devices installed (for example, barcode readers)

• Specific error messages seen.

Installing ioControl
ioControl installation is easy and quick. Insert the CD containing ioControl in your CD-ROM drive,
and the installation wizard should appear. If the wizard does not appear, start Windows Explorer
and navigate to your CD-ROM drive. Double-click Setup.exe to begin installation.

NOTE: If you run ioProject applications in Microsoft Windows XP, make sure to use the Windows
Classic theme. Otherwise, a Microsoft bug with how themes are handled may cause the system
to crash.

If you have trouble installing ioControl, contact Opto 22 Product Support at 800-835-6786 or
951-695-3080.

System Requirements

Installation Requirements

Here’s what you need to install and run ioControl:

• A computer with at least the minimum processor required for your version of Microsoft
Windows (1 GHz Pentium®-class or better recommended) and Ethernet capability

• VGA or higher resolution monitor (Super VGA recommended). Minimum size: 800x600 with
small fonts.

• Mouse or other pointing device

• Installed Windows printer (optional)

• Microsoft Windows XP or Windows 2000® (with SP4) workstation operating system

• At least 128 MB RAM (256 MB recommended)

If you are using ioDisplay, please note its requirements in the ioDisplay User’s Guide.

• Available hard disk space : at least 29 MB for ioControl Basic or at least 30 MB for
ioControl Professional

• Compatible control engine and I/O unit(s), as shown in the following section.
ioControl User’s Guide 1-5

WELCOME TO IOCONTROL
Compatible Control Engines and I/O Units

The following control engine and I/O unit combinations are compatible with ioControl Basic and
ioControl Professional as shown:

Important Note on Disk Drives

Opto 22 applications, including ioControl, perform best when using files from a local hard disk.
Network drives may be used, but performance may suffer and depends upon the speed and
reliability of the network. While it may be possible to use other drive types, such as floppy disks,
key chain USB drives, and memory cards, their use is not recommended. They are better suited
for transferring files rather than directly accessing them.

Using this control engine ioControl Basic
supports these I/O units

ioControl Professional
supports these I/O units

SNAP PAC S-series controller SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*

SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*
B3000 serial
SNAP-BRS

G4D16R, G4D32RS, G4A8R
B100 and B200

SNAP PAC R-series controller SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*

SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*

SNAP-LCE controller SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*

**

SNAP Ultimate controller/brain SNAP-PAC-R1
SNAP-PAC-R2

SNAP Ultimate I/O
SNAP Ethernet I/O
SNAP Simple I/O

E1 and E2*

**

* E1 and E2 I/O units are supported for the features available under the OptoMMP protocol only, not for all
Optomux features. See the E1 and E2 User’s Guide (form #1563) for details. For configuration, see I/O
Configuration for E1 and E2 Brain Boards (form #1576).
** SNAP-LCE controllers and SNAP Ultimate I/O can use ioControl Basic, but they are not equipped to use
the extra features in ioControl Professional. For example, they do not have dual Ethernet interfaces for
network segmenting nor RS-485 ports to support serial mistic I/O units.
1-6 ioControl User’s Guide

CHAPTER 2
2—ioControl TutorialChapter 2

ioControl Tutorial
Introduction
In this chapter, we’ll start with a sample strategy: a control application for a simple cookie
factory. You’ll learn how to work with strategies, open and manipulate flowcharts, work with
variables and I/O points, configure a control engine, compile and download a strategy, run it in
Debug mode, make an online change, and more. The tutorial can be used with either ioControl
Basic or ioControl Professional. (ioControl Basic is shown in the graphics.)

The best way to use the tutorial is to sit down at your computer and follow it through. All you
need is ioControl and access to a control engine. Even if you can’t access a control engine at the
moment, you can still do everything up to the point of downloading your strategy.

In this Chapter
Opening the Strategy 2-1 Compiling the Strategy 2-20
Saving the Strategy 2-3 Running the Strategy 2-21
Examining the Strategy 2-5 Compiling and Downloading the Change 2-31
Opening a Chart...................................... 2-6 Using a Watch Window............................... 2-33
Opening a Block...................................... 2-9 Closing the Strategy and Exiting 2-40
Adding a Command 2-12 What’s Next?.. 2-40
Configuring a Control Engine 2-17

Opening the Strategy
A strategy is a complete control program developed in ioControl. Our sample strategy controls a
cookie factory. Appendix C describes the sample strategy in detail, but for now, let’s just open
and explore it.

1. Start ioControl by clicking the Start button and selecting Programs➞Opto 22➞ioProject
Software➞ioControl.
ioControl User’s Guide 2-1

IOCONTROL TUTORIAL
The ioControl main window opens.

2. Click the Open Strategy button on the toolbar, or choose File➞Open Strategy.

3. In the Open Strategy dialog box, navigate to ioControl\Examples.

4. In the Examples directory, double-click the ioCookies subdirectory to open it.

The strategy file Cookies.idb appears.

5. Double-click the Cookies.idb file to open it.
2-2 ioControl User’s Guide

IOCONTROL TUTORIAL
The Cookies strategy opens and the ioControl window now shows the Cookies strategy
(yours may look somewhat different).

Saving the Strategy
Now let’s save the strategy to a new name, so we can change it while leaving the original intact.

1. Select File➞Save Strategy As.

Since each ioControl strategy must be located in its own directory, we cannot save the
strategy to a new name in its current location.

2. Click the Up One Level button to move up to the Examples directory.
ioControl User’s Guide 2-3

IOCONTROL TUTORIAL
3. Click the Create New Folder button .

The new folder appears in the list.

4. Type My Cookies to replace New Folder. Double-click the folder to open it.

5. Click in the File name field and type Cookies.

The dialog box now looks like this:

6. Click Save.

The strategy is saved as Cookies in the My Cookies directory.
2-4 ioControl User’s Guide

IOCONTROL TUTORIAL
Examining the Strategy
Briefly, our cookie factory includes a tank of pre-mixed cookie dough, a tank of chocolate chips,
an oven, a visual inspection station, a conveyor belt, and some compressed air to blow rejected
cookies off the belt. The process starts when a ball of dough drops on the belt. It moves along
under the chip tank to receive some chips, and then it moves into the oven to be baked. The next
stop is an inspection, where rejected cookies are blown off the belt and good cookies move along
to shipping. Should anything go wrong, we also have some alarms built in to stop the process
when necessary.

The best way to see all the components of the strategy is to look at the Strategy Tree.

The Strategy Tree
As with any window in ioControl, you can move the
Strategy Tree window by clicking and dragging the
title bar, you can minimize, maximize, or dock it by
clicking buttons at the right of the title bar, or you can
reshape it by dragging any edge in any direction.

However, the Strategy Tree window is unique in that
it must remain open, since closing it is equivalent to
closing the strategy.

The Strategy Tree works like Windows Explorer: you
can expand and collapse folders to show or hide what
is in them. A quick look at the tree reveals that our
strategy includes five flowcharts (in the Charts folder),
eight Numeric Variables, and one Mixed I/O Unit (with
both analog and digital points).

The Strategy Tree not only shows you all components
of the strategy but also provides shortcuts to many
common ioControl activities, for example, opening
flowcharts.
ioControl User’s Guide 2-5

IOCONTROL TUTORIAL
Docking the Strategy Tree
Since the Strategy Tree is so useful, you’ll probably want to keep it visible while you create and
debug your strategy. To keep the Strategy Tree window always visible, you can dock it in a
separate frame.

1. Click the docking button in the upper-right corner of the Strategy Tree window.

The Strategy Tree moves into its own frame at the left side of the main window.

2. To change the width of the Strategy Tree’s frame, move your mouse over the right side of
the frame. When the cursor changes, click and drag the side to make the frame wider or
narrower.

Docked Strategy Tree
2-6 ioControl User’s Guide

IOCONTROL TUTORIAL
Opening a Chart
Every control process can be planned and mapped out using one or several ioControl flowcharts,
or charts. Because flowcharts are easy to follow, ioControl strategies are easy to understand. For
an example, let’s take a look at the Dough_Chip_Control chart.

1. Double-click the Dough_Chip_Control chart name on the Strategy Tree. (You can also open
a chart by selecting Chart➞Open and navigating to the chart name.)

The chart appears somewhere in the large frame of the main window.

2. Click and drag the title bar of the chart window if necessary to see the maximize button at
the upper right. Click the maximize button.

Maximize
button
ioControl User’s Guide 2-7

IOCONTROL TUTORIAL
The chart now covers the whole frame. Notice the tabs at the bottom of the main window;
the white tab tells you you’re viewing a chart, and the gray tab shows the chart’s name.

Let’s take a closer look at what this chart does. Even without its descriptive comments, it’s easy
to see that this program segment begins by starting a conveyor belt. If the belt is not running at
the correct speed, the process goes into a loop until the speed is correct. When it is correct,
dough is dropped on the belt, and then chips are dropped on the dough. The process then loops
back to re-evaluate the conveyor speed, waiting if it’s incorrect, and dropping more dough and
chips if it’s correct.

The rectangular-shaped blocks are called action blocks. They do things. The diamond-shaped
blocks are condition blocks. They decide things. Charts may also contain other blocks, including
oval-shaped continue blocks, which route the program logic back to another block in the same
chart, and hexagon-shaped script blocks, which contain instructions and logic written in
ioControl’s built-in OptoScript programming language.

Connections link the blocks together and show how the program logic flows. Action blocks exit
through just one connection, since they always go in one direction. Condition blocks exit through
two connections, one for a true evaluation and the other for a false evaluation.

Gray tab shows
chart name.

White tab shows
this is a chart.
2-8 ioControl User’s Guide

IOCONTROL TUTORIAL
Opening a Block
Let’s see what’s in a block.

1. Double-click the Drop Dough block.

The Instructions dialog box appears.

This block contains four instructions: Move, Turn On, Delay (Sec), and Turn Off. Each one
has a description above it.

2. Double-click the Turn On instruction to see more about it. (You could also click it once and
click Modify).

The Edit Instruction dialog box for the Turn On command appears.

Here we see the details of the command, which simply turns on the digital output
Dough_Dispense_Valve. In other words, it opens the valve.
ioControl User’s Guide 2-9

IOCONTROL TUTORIAL
3. Close the Edit Instruction dialog box by clicking OK or Cancel.

4. Back in the Drop Dough block’s Instructions dialog box, move your cursor to the bottom
right edge of the dialog box.

When your cursor changes to a bidirectional arrow, you can resize this dialog box by
clicking and dragging any edge.

5. Close the Instructions - Dough_Chip_Control - Drop Dough dialog box by clicking Close or
by pressing ESC.

Before we leave the Dough_Chip_Control chart, let’s make a cosmetic change. We noted
earlier that we didn’t have any continue blocks in this chart. Let’s add one to replace the
long connection that loops from the Drop Chips block up to the Speed OK? block.

6. Select the connection line by clicking it at a bend or junction point, and delete it by
pressing DELETE. Click the down arrow at the bottom right of the chart window once to
scroll down a little.

7. Now click the continue block tool button in the toolbar.

When you bring the mouse back into the chart area, an oval outline appears, representing
the new continue block.

8. Position the oval about half an inch below the Drop Chips block, and click your mouse
button once.

A continue block appears with the default name Block 19. (The number on yours may be
different.) If you move the mouse again, a new oval outline follows. Deactivate the
continue block tool by clicking the right mouse button or by pressing ESC.

Your screen should now look like this:
2-10 ioControl User’s Guide

IOCONTROL TUTORIAL
9. Connect the Drop Chips block to this new block by clicking the connection tool in the
toolbar. Click once in the block the connection is coming from, Drop Chips.

If you move your cursor around the screen, you see a connection following your
movements. If you move the cursor to the top of Block 19, the connection becomes a short
line from the bottom center of Drop Chips to the top center of Block 19.

10. Click inside the upper part of Block 19 to complete the connection. Click the right mouse
button or press ESC to release the tool, returning your cursor to an arrow.

Let’s name Block 19 something more descriptive.

11. Click Block 19 once to select it, then right-click it and select Name from its pop-up menu.

The Name Block dialog box appears.

12. Type Back to ‘Speed OK?’ right over the selected text, then click OK.

The chart now looks like this:

Now let’s give the continue block its instructions.
ioControl User’s Guide 2-11

IOCONTROL TUTORIAL
13. Double-click the continue block to see a list of all the blocks in the chart.

14. Select the Speed OK? block by clicking it once, and then click OK.

When the program reaches the continue block, it returns to the Speed OK? block. We
haven’t changed the way the program works; we’ve just done the same thing in a different
way. Continue blocks are useful in a complex chart to avoid crossing connection lines.

Adding a Command
Now we’re going to add a command, or instruction, to a block in the Dough_Chip_Control chart.
We’ll add the command so we can keep track of the number of cookies we produce.

1. Double-click the Drop Dough block.

We’ll add the new instruction (command) between the Turn On and Delay (Sec) commands.

2. Click anywhere on Delay (Sec) to highlight this command.

This highlight indicates the position where the next command is added.
2-12 ioControl User’s Guide

IOCONTROL TUTORIAL
3. Click Add to open the Add Instruction dialog box.

If you knew the exact name of the command to enter, you could type it over Absolute Value
(which is first in the alphabetical list of commands). As you typed, the first command that
matched the pattern you entered would be filled in automatically. For example, if you really
wanted to enter Absolute Value, you would start typing abs.

Another way to add a command is to click the down arrow just to the left of the Select
button. You could scroll through the resulting list of commands to find the right one.

The third way to enter a command is the one we’ll use here.

4. Click Select.
ioControl User’s Guide 2-13

IOCONTROL TUTORIAL
All ioControl command groups are listed on the left, and commands in the highlighted
group are listed on the right. The command we want has something to do with increasing a
counter. Counting sounds like math, so let’s try the Mathematical group.

5. Click Mathematical on the left to highlight it, then scroll down the list on the right until you
find the command Increment Variable. Click it once.

Notice that if you need information about any command, you can click the Command Help
button.

6. Click OK and this command is entered in the Add Instruction dialog box.

The cursor is automatically moved to the next field, which is Comment. Comments are
optional; they can help someone else understand the purpose of the instruction.

7. In the Comment field, type Increment a counter of cookies produced.

8. Next, click the arrow in the Type field, the one that currently reads All Valid Types.

This list shows what those valid types are: a float variable, an integer 32 variable, and an
integer 64 variable.

9. Counters are integers, so select Integer 32 Variable.

Now we’re going to add the integer 32 variable to increment, which will be called
nCookie_Counter.

10. Click the arrow in the Name field, which currently reads bStartFlag.
2-14 ioControl User’s Guide

IOCONTROL TUTORIAL
The drop-down list shows all variables currently configured as integer 32 variables:

nCookie_Counter is not in the list, because we never needed it before, so we never created
it. We’ll create it now using what we call on-the-fly configuration.

11. Highlight bStartFlag and type the new variable name, nCookie_Counter, right over it.

As soon as you try to do something else, such as click OK to close the dialog box, the
following message appears.

12. Click Yes.

Notice that the name (nCookie_Counter) and type (Integer 32) have already been filled in.
ioControl User’s Guide 2-15

IOCONTROL TUTORIAL
13. Add a description, if you wish. Leave the initial value at zero, which is the default. Then
click OK to accept the data and close the dialog box.

14. In the Add Instruction dialog box, click OK.

The new instruction appears in the Instructions window for Drop Dough.

But maybe it makes more sense to start the counter at the beginning of the process, rather
than in the middle, after some dough has already been dropped.

15. With the Increment Variable command highlighted, press the right mouse button and select
Cut from the pop-up menu.

You can also use CTRL+X to cut. Cutting puts the instruction in the Windows Clipboard.

16. Now click Turn On to highlight it. Click the right mouse button and select Paste from the
pop-up menu.

You can also use CTRL+V to paste. The Increment Variable command is pasted above the
highlighted instruction, like this:
2-16 ioControl User’s Guide

IOCONTROL TUTORIAL
17. Click Close to return to the chart.

You’ve just added a cookie counter. On the Strategy Tree, open the Numeric Variables
folder in the Variables folder. The new numeric variable is there.

18. Save the changes you’ve made by clicking the Save Strategy button on the toolbar.
Click OK to save.

Now we’re ready to download the strategy to a control engine. But first we have to tell
ioControl that we have a control engine.

Configuring a Control Engine
Up to this point, we’ve been able to play around in ioControl without hardware. Now it’s time to
configure a control engine.

1. If you have an ioControl-compatible control engine and I/O unit you can use, make sure
they are on the same network as your PC, and make sure you have loaded the most recent
firmware.

For a list of compatible control engines and I/O units, see page 1-6. For instructions to load
firmware, see Opto 22 form 1440, the ioManager User’s Guide.

2. Turn the I/O unit off and then back on again.

3. Double-click the Control Engines folder on the Strategy Tree, or click the Configure Control
Engine button on the toolbar.

The Configure Control Engines dialog box appears.

Since we haven’t configured a control engine yet, there are no control engines in the list.
ioControl User’s Guide 2-17

IOCONTROL TUTORIAL
4. Click Add.

5. Click Add again to add a control engine.

The Control Engine Configuration dialog box appears.

6. Enter Cookie Controller as the control engine name.

The name can contain letters, numbers, spaces, and most other characters except colons
and square brackets. Spaces cannot be used as first or last characters.

7. Enter the control engine’s IP address.

On a hardware control engine such as a SNAP PAC or SNAP-LCE controller or a SNAP
Ultimate brain, the IP address assigned to the device is usually written on a sticker on the
side of the unit. If an IP address has not been assigned to the control engine, see Opto 22
form 1440, the ioManager User’s Guide, for configuration instructions.

NOTE: In ioControl Professional, a second IP address field is available, so you can designate
a secondary communication path to the control engine should the primary one fail. For more
information, see “Using Ethernet Link Redundancy in ioControl” on page 5-6.

8. Make sure that you have not changed the values in the Port, Retries, and Timeout fields,
and then click OK.
2-18 ioControl User’s Guide

IOCONTROL TUTORIAL
The newly configured control engine appears in the Select Control Engine dialog box.

9. Click the new Cookie Controller control engine to select it, and then click OK.

The new control engine appears in the Configure Control Engines dialog box.

Since you have only one configured control engine at this point, it is automatically set as
the active control engine. If there were more than one control engine, you would have to
select it and click Set Active to load it into the Active Engine field.

10. Click OK to close the Configure Control Engines dialog box.

On the Strategy Tree, the new control engine appears as the first entry in the Control
Engines folder.
ioControl User’s Guide 2-19

IOCONTROL TUTORIAL
Compiling the Strategy
The simplest way to compile a strategy is to enter Debug mode. The strategy is saved and
compiled before changing modes.

1. Click the Debug Mode button on the toolbar (or select Debug from the Mode menu).

2. In the Save Strategy dialog box, click Yes to save the strategy.

3. If you see a Powerup Clear Expected message, click OK.

You may see a Download Warning message like this one:

Or you may see a message that the control engine’s memory has been cleared.

4. Click Yes to proceed.

Two additional dialog boxes appear briefly. The first displays the progress as the strategy is
compiled. The second shows progress as the strategy is downloaded to the control engine.

Assuming the strategy was compiled and downloaded successfully, you are now in Debug
mode.
2-20 ioControl User’s Guide

IOCONTROL TUTORIAL
In the ioControl window, you’ll notice that the Debug toolbar is now available. The mode is
shown at the bottom of the main window. The open chart window shows that the strategy
is stopped, as shown in the following figure:

Running the Strategy
In Debug mode, we’re going to run our strategy and examine it. We’ll see how the strategy run
affects variables, how the command blocks are executed, and so on. The first chart to run in any
strategy is the Powerup chart, so we’ll look at it first.

1. Double-click the Powerup chart on the Strategy Tree. When it opens, notice that it says
Stopped at the bottom left.

2. Click the Run button .

At the bottom of the chart window, the word Stopped changes to Running. Let’s try
pausing the program to see where we are.

Debug toolbar
buttons

Mode

Strategy status
ioControl User’s Guide 2-21

IOCONTROL TUTORIAL
3. Click the Pause button .

The hatch marks on the Start? block indicate that this command block was about to be
executed when we clicked Pause. Apparently the program isn’t getting past this block.
Notice that the False exit routes right back to the top of the Start? block, while the True
exit moves on to Start Charts. We can see that if the start flag had been true (non-zero), the
program would have gone right into the Start Charts block. Since we didn’t get that far, the
start flag must be zero.

And in fact it is. We planned it that way because we wanted someone (for example, a
factory operator) to start the process intentionally. We can simulate this ourselves in
ioControl by manually setting the flag to a non-zero value.

4. Double-click the bStartFlag variable on the Strategy Tree.

A little box appears.

In this dialog box you can view the variable value, but you cannot change it unless you
maximize the dialog box.

Maximize buttonMinimize button
2-22 ioControl User’s Guide

IOCONTROL TUTORIAL
5. Click the Maximize button.

This dialog box displays current information on the variable bStartFlag. You can see that
the variable is initialized to zero on strategy download.

6. Highlight the value zero in the dialog box and type 1 to replace it.

The field turns purple, indicating a change has been made but not implemented.

7. Click Apply to implement the change. Click the Minimize button in the bStartFlag View
Variable dialog box and move it out of the way. Click the Powerup tab to make the Powerup
chart the active window.

Inspecting Messages

1. Look for a light-blue box in
the status bar at the bottom of the
window.

The status bar in the main
ioControl window tells you when
an information, warning, or error
message has been placed in the
message queue. Messages can
help in troubleshooting your
strategy. In this example an
Information message is in the
message queue.

2. Click the box.

The dialog box that appears
(illustrated at right) shows you
information about the control
engine.
ioControl User’s Guide 2-23

IOCONTROL TUTORIAL
3. Click View Messages to see the information message.

This message tells you that the I/O unit recently lost power but is now on.

4. Close both dialog boxes to return to the Powerup chart.

Stepping Through the Chart
Now let’s step through the chart to see what’s happening.

1. Click inside the Powerup chart, and then click the Step Over button .

The hatch marks move from Start? to Start Charts. We’ve just moved (stepped) to the next
block.

2. Click the button again.

ioControl executes the Start Charts block and steps to the next command block. Since there
are no more blocks in this chart, we are actually exiting this chart and moving on to new
instructions in another chart. The Powerup chart has stopped, and you can see the word
Stopped at the bottom left of the chart.

In the View Variable dialog box, the bStartFlag value reverts to zero, because the Start
Charts block set the flag back to zero.

3. Close the bStartFlag View Variable dialog box. In the Powerup chart window, click the
Pause button to turn stepping off.

Then close the Powerup chart.

4. Double-click the Charts folder on the Strategy Tree.
2-24 ioControl User’s Guide

IOCONTROL TUTORIAL
The View Chart Status dialog box appears.

This dialog box shows us all the charts in our strategy. As you can see, four of the charts
are running and one (Powerup) is stopped.

Powerup is stopped because it has already done its job. Let’s check the running charts.

5. Close the View Chart Status dialog box and click inside the Dough_Chip_Control chart
again.

6. Click the Zoom Out button on the toolbar to view the window at a smaller percentage.

There are several other ways to zoom out, too. You can right-click on the chart and select
Zoom from the pop-up menu. You can select Zoom Out from the View menu. You can press
the + or - keys on the keyboard. If your mouse has a wheel, you can also hold down the
CTRL key and move the mouse wheel up or down to change the zoom.
ioControl User’s Guide 2-25

IOCONTROL TUTORIAL
After zooming out, the chart looks something like this:

You can zoom back in if you wish, using the Zoom In button on the toolbar or one of the
other methods.

The chart’s status bar indicates that it is running, but we can’t see much happening.

7. Click the Pause button .

One of the command blocks appears with hatch marks.

8. Now click the Step Over button .

The next command block is hatched.

9. Continue clicking and watch how the program proceeds from Speed OK? to Drop Dough to
Drop Chips to Back to ‘Speed OK?’ and back up to Speed OK?

A pulsating green border appears around a block when the commands inside the block are
being executed. While you are stepping through, and anytime the Pause button is clicked,
the chart status indicates Step On.

10. Click the Pause button again to run the strategy at full speed.

Step Off now appears in the chart status bar.
2-26 ioControl User’s Guide

IOCONTROL TUTORIAL
Auto Stepping
The final stepping option is auto stepping. You can select this option whether or not the chart is
currently paused.

1. Click the Auto Step Chart button and watch the program move from block to block.

At one time or another, your chart looks like this:

Notice that in the ioControl toolbar, the Run and Auto Step Chart buttons are depressed.
The chart status bar shows us the chart is running and in Step Auto mode. The time
indicator to the right of Break Off shows the time it took for the most recent block to
execute.

2. Click the Auto Step Chart button again to end auto stepping.

Step Off appears, indicating the program is again running without interruption.

Now let’s see how many cookies we’ve produced to this point.

3. On the Strategy Tree, double-click the numeric variable nCookie_Counter.

The Value field should increase every time a cookie is produced, adding to the total number
of cookies produced since the strategy run began. The nCookie_Counter above shows this
figure as 138. (Yours may be different.)

But nCookie_Counter tells us the total number of cookies put on the conveyor belt, without
considering that some of them may be rejected by the inspection station. We need to
ioControl User’s Guide 2-27

IOCONTROL TUTORIAL
subtract the number of bad cookies so that nCookie_Counter keeps track of the number of
cookies sent out the door, not just sent to the oven.

4. Close the nCookie_Counter View Variable window and click the Configure mode button on
the toolbar.

5. Double-click the Oven_Inspection_Control chart on the Strategy Tree to open it.

The chart window looks something like this:

Near the bottom of the chart, the Reject Cookie? block determines whether a bad cookie
has been found. If one has, the strategy moves to the next block, Blow Off, which is where
the bad cookie gets blown off the conveyor. When that happens, we want to decrement
the nCookie_Counter variable.
2-28 ioControl User’s Guide

IOCONTROL TUTORIAL
6. Double-click the Blow Off block to open its instructions window:

This command block is executed only when a bad cookie has been found. This block first
resets the on-latch triggered by the bad cookie, so that the next cookie won’t be marked
bad, too. The block then turns on the reject valve. The valve stays on for two seconds
before being shut off. Let’s decrement the counter after the cookie is gone and the valve is
shut.

7. Scroll down and click on the open spot, below the other instructions.

The highlighted line marks the position of the next command to be added.

8. Click Add.

You can use ioControl without a mouse, and to demonstrate how, we’ll use only the
keyboard to enter data in this dialog box.

9. Type dec in the Instruction field.
ioControl User’s Guide 2-29

IOCONTROL TUTORIAL
The Decrement Variable command appears, since it’s the first command that starts with
that text pattern. This is the command we want to use.

10. Press TAB twice to move to the Comment field. Type in a comment.

11. Press TAB again to move to the Type field. Press the down arrow on your keyboard twice to
select Integer 32 Variable.

12. Press TAB again to advance to the Name field, and then press the down arrow until you see
nCookie_Counter.

13. Press TAB again and notice that an outline appears on the OK button.

An outlined button means that pressing the space bar or ENTER is equivalent to clicking the
button.

Now the dialog box looks like this:

14. Press ENTER.

The dialog box closes and the new command appears in the Instructions window.

New command
2-30 ioControl User’s Guide

IOCONTROL TUTORIAL
15. Click Close to return to the Oven_Inspection_Control chart.

Compiling and Downloading the Change
Now we’ll compile and download the modified strategy.

1. Click the Debug mode button on the toolbar.

A message box appears, warning you that changes have been detected and asking if you
want to save them before downloading

2. Click Yes to continue.

Another warning notes that the strategy name or timestamp differs from that in the control
engine and asks if you want to continue.

3. Click Yes.

4. On the toolbar, click the Run button . In the Strategy Tree, doubleclick the bStartFlag
variable. Maximize the dialog box, change the value to 1, and click Apply. Close the dialog
box.

5. Click inside the Oven_Inspection_Control chart to make it the active chart, and then click
the Auto Step Chart button.

You see three blocks being processed: Speed OK?, Oven On, and Reject Cookie? The
strategy doesn’t move into the Blow Off block. That’s because an inspector has to flag bad
cookies, but we don’t have an inspector right now. So we’ll simulate what would happen
by tripping the digital input that flags a bad cookie.

6. In the Oven_Inspection_Control chart, click the Auto Step Chart button again to stop auto
stepping.

Step Auto changes to Step Off in the status bar.

7. Click the Pause button.

Step Off changes to Step On.

8. Click the Breakpoint Tool button and click once on the Blow Off block.

A breakpoint hand appears on the block.
ioControl User’s Guide 2-31

IOCONTROL TUTORIAL
9. Click the right mouse button or press ESC to release the tool. Notice that Break On now
appears in the chart status bar.

10. Click the Dough_Chip_Control tab at the bottom of the ioControl main window.

The chart appears.

11. Click the Pause button to pause the chart.

Break On

Dough_Chip_Control tab
2-32 ioControl User’s Guide

IOCONTROL TUTORIAL
Using a Watch Window
To see clearly what we’re doing, we’ll create a watch window to monitor cookie production.

1. In the Strategy Tree, double-click nCookie_Counter.

The value is frozen at some number, such as the 74 shown above. Since the counter is no
longer increasing, we can see that cookie production has temporarily stopped.

2. Maximize the dialog box.

3. Click Add Watch.

Since there is no watch window available to select, we’ll create one.
ioControl User’s Guide 2-33

IOCONTROL TUTORIAL
4. Click New.

5. Make sure the My Cookies directory appears in the Look in field. Type a name for the
watch window in the File name field. Then click Open.

The watch window name appears in the Add Watch dialog box, and the new watch
window appears behind it.

6. In the Add Watch Entry dialog box, click OK. Close the nCookie_Counter view variable
dialog box.

The new watch window looks something like this:

Docking iconWatch window
2-34 ioControl User’s Guide

IOCONTROL TUTORIAL
Since we want to be able to see chart windows as well as the watch window, let’s dock
the watch window at the bottom.

7. In the watch window, click the docking button in the upper-right corner.

The watch window moves to the bottom of the main window.

Now we’ll trip the latch that signals a bad cookie.

8. On the Strategy Tree, under the I/O Units folder at the bottom of the window, expand
Mixed_IO_Unit by clicking the plus sign at the left of the name.

You see a folder named Points.

Docked watch window
ioControl User’s Guide 2-35

IOCONTROL TUTORIAL
9. Expand the Points folder to display the digital I/O points configured for this I/O unit.

10. Double-click diInspectionPassFailSwitch. In the minimized dialog box, click the maximize
button.

NOTE: Don’t worry if the red error message “I/O unit not configured” or XVAL values appear
in this dialog box. This occurs because the strategy is configured for sample hardware that
probably doesn’t correspond to your actual I/O units and modules. ioControl can’t locate this
hardware. That’s okay for this example.

When an inspection finds a bad cookie, the on-latch attached to the I/O point
diInspectionPassFailSwitch is supposed to go on. We’re going to trip it manually.

11. Click one of the arrows in the On-Latch IVAL field to change it to On. Also make sure that
the Enable comm field says No.

Points folder
2-36 ioControl User’s Guide

IOCONTROL TUTORIAL
The dialog box should look like this:

12. Click Apply.

The On-Latch IVAL field turns green after a second or two, indicating the latch is on.

13. Click Add Watch.

We’ll add the variable to our watch window, so we can see what happens.

14. In the Add Watch dialog box, leave all portions checked. Click OK to add the variable to the
Cookie Watch window. Close the view point dialog box.

15. In the Cookie Watch window, click the plus sign next to (02) diInspectionPassFailSwitch.

Your screen may show only part of the words.

16. Move your cursor over the right side of the Name column until the cursor changes shape.
Then click and drag the column to make it wider, until you can see all the words.

17. Click in the Oven_Inspection_Control chart to make it active, and move the scroll bars until
you can see the Blow Off block at the bottom.

On-latch On
ioControl User’s Guide 2-37

IOCONTROL TUTORIAL
Your window now looks something like this:

18. Click the Step Over button as many times as it takes to get the hatch marks to the Blow Off
block. Now watch the nCookie_Counter IVAL value in the watch window as you click the
button again.
2-38 ioControl User’s Guide

IOCONTROL TUTORIAL
A bad cookie was found, so the counter was decreased by one. At the same time, the
on-latch was reset to Off, as you can also see in the watch window.

19. Click the Auto Step Chart button to go back to auto stepping.

The counter does not decrease again, because the on-latch is no longer set. But the
counter won’t increase until we start the Dough_Chip_Control chart again.

20. Click the Dough_Chip_Control chart tab. Click the Pause button to unpause the chart.
Verify that Step On changes to Step Off in the chart status bar.

The watch window shows the nCookie_Counter value going up again.

Counter decreased by oneOn-latch reset to Off
ioControl User’s Guide 2-39

IOCONTROL TUTORIAL
Closing the Strategy and Exiting
Before we finish this tutorial, you may want to explore the sample strategy on your own. You can
double-click items in the Strategy Tree or open up other charts to see what they do. You can also
double-click command blocks to see what they contain.

1. When you’re ready to stop, click the Stop button in the toolbar.

This action prevents the strategy from running continuously unattended on the control
engine.

2. To close the strategy, select File➞Close Strategy; or select File➞Exit to quit ioControl. If
dialog boxes ask whether you want to remove breakpoints and take charts out of stepping
mode, click Yes.

What’s Next?
Your introduction to ioControl is now complete. Using the sample Cookies strategy, you have
learned how to:

• Open, save, and close a strategy

• Work with the Strategy Tree

• Work with charts and add commands in blocks

• Configure a control engine

• Compile, run, step through, and add breakpoints to a strategy

• Make an online change

• Use a watch window to monitor variables and I/O points.

The rest of this book expands on the knowledge you’ve just acquired. Now may be a good time
to look at the table of contents or thumb through the book and familiarize yourself with its
contents. Some sections you may want to read; others you’ll probably just refer to as needed.
2-40 ioControl User’s Guide

CHAPTER 3
3—What Is ioControl?Chapter 3

What Is ioControl?
Introduction
The tutorial in Chapter 2 introduced you to ioControl without explaining much about it. In this
chapter we’ll learn more about ioControl and see its main windows and toolbars.

In this Chapter
About ioControl 3-1 Windows and Dialog Boxes in ioControl 3-15
General Control Concepts 3-3 Customizing ioControl for Your Needs.............. 3-24
ioControl Terminology........................ 3-5 Online Help.. 3-30
ioControl Main Window.................. 3-11

About ioControl
ioControl is a programming language based on flowcharts. Whether you have ioControl Basic or
ioControl Professional, you use ioControl to develop software that monitors and controls all kinds
of equipment and sensors, from a simple heating system to a complex factory. The software you
develop controls the Opto 22 hardware that runs your heating system or factory.

The diagram below shows how ioControl on your PC can work with the hardware in your control
system. This example shows a small system; yours may be even smaller or considerably larger
and more complex. The diagram uses a SNAP-PAC-S1 as the control engine. Input/output (I/O)
points on the subordinate SNAP Ethernet and SNAP Simple I/O units monitor and control the
analog, digital, and serial devices connected to them. All these terms are defined in the following
pages.
ioControl User’s Guide 3-1

WHAT IS IOCONTROL?
Control System Example

ioDisplay
Viewing, Trending,
Alarming

ioControl
Programming,
Debugging

SNAP PAC
S-series controller
Runs strategy,
controls all I/O

SNAP Ethernet
I/O unit

SNAP Simple
I/O unit

SNAP Ethernet
I/O unit

Pump (On or Off)
(Digital output)

Tank Level
(Analog input)

Barcode Reader
(Serial device)

Photo Eye
(Digital input)

Conveyor

Furnace Temperature
(Thermocouple)
(Analog input)

Fuel Pump
(Analog output)
3-2 ioControl User’s Guide

WHAT IS IOCONTROL?
General Control Concepts

Automation
Automation is a way of adding intelligence to an industrial process. When you automate a
process, you are less dependent on human action to carry out the process. The process generally
becomes faster, more accurate, and more reliable. For example, take a look at the tank level and
pump combination in the diagram on the previous page. Instead of having a person watch the
level in the tank and turn the pump on or off when the level gets too low or too high, you can
automate the process by installing a processor and I/O. The processor and I/O respond in
milliseconds and are on the job 24 hours a day.

Control Engines
These processors are programmable electronic components that provide the intelligence
required for automation. In an Opto 22 ioControl system, the processor is called a control engine,
and it is built into the Opto 22 controller.

Using ioControl, you create a set of instructions (a software program) that tells the control engine
how every aspect of a process should work. Using ioControl, you download the software program
to a Opto 22 SNAP PAC controller, and the controller runs it as a stand-alone application. Since
the instruction set is stored in the processor’s electronic memory, much as a small computer
would store it, the PC can be turned off or used for other operations while the control engine in
the processor runs the program. And the instructions can be easily modified when necessary.

In the diagram on the previous page, one SNAP PAC S-series controller runs the program that
controls the three areas of automation.

Digital and Analog Inputs and Outputs
An industrial process can include many different hardware components: switches, pumps, tanks,
valves, furnaces, conveyors, photo eyes, thermocouples, and so on. All the components
communicate with the control engine in the controller by way of input/output (I/O) points.

Input points are wired to hardware that brings information into the control engine from the
process. Examples of devices that can be wired to input points are thermocouples, switches, and
sensors. The control engine takes the information from the input points—such as whether a
switch is on or what temperature is registered on a sensor—processes it using the software
instruction set, and returns information to the process through output points.

Output points are wired to hardware that receives information from the control engine and uses
this information to control components of the process. For example, lights, motors, and valves
are all devices that can be wired to output points. Using an output point, the control engine might
turn on a light or open a valve.
ioControl User’s Guide 3-3

WHAT IS IOCONTROL?
There are two types of I/O points, digital and analog:

• Digital points can be either on or off (True or False). Push buttons and LEDs are examples
of digital devices. An LED is either on or off; it has no other possible state.

In the diagram on page 3-2, the photo eye is an example of a digital input device. The photo
eye is either on or off. When it turns off as the sheet passes through its beam, the digital
I/O module tells the control engine it is off, and the control engine responds as
programmed to stamp the sheet.

The pump is an example of a digital output device. Based on information from the tank
level input, the control engine turns the pump on or off as programmed.

• Analog points have a range of possible values. Temperature and pressure are examples
of analog information. Temperature might be any number in a range, -2 or 31.65 or 70.1 or
many other possible numbers.

In the diagram on page 3-2, the tank level sensor is an analog input device. It registers the
changing level of water in the tank and reports the level to the control engine, which
responds by turning the pump on or off.

The fuel pump is an example of an analog output device. Based on information about the
temperature in the furnace, the control engine adjusts the pressure of fuel through the
pump as programmed.

SNAP Special-Purpose I/O Modules
In the ioControl system, some I/O modules do not contain standard analog or digital input/Output
Points, but are used for special purposes.

SNAP serial communication modules provide two channels of serial data. Through these
channels data can be sent to and received from a serial device. In the diagram on page 3-2, the
barcode reader is an example of a serial device.

SNAP high-density digital (HDD) modules provide 32 channels of digital input or 32
channels of digital output in one module. Any of the digital input or output devices shown in the
diagram could be wired to HDD modules rather than standard 4-channel digital modules.
3-4 ioControl User’s Guide

WHAT IS IOCONTROL?
Key Features
See the following topics for some of ioControl key features:

• “Copying I/O Configurations” on page 6-3

A configuration file allows you to copy an I/O configuration from one strategy to another.
Or, using ioManager you can send the configuration to multiple I/O units at the same time.

• “Using Network Segmenting in ioControl” on page 5-5

Using the two independent Ethernet network interfaces on a SNAP PAC controller, you can
segment the control network from the company network.

• “Using Ethernet Link Redundancy in ioControl” on page 5-6

(ioControl Pro only) If you are using SNAP PAC controllers and ioControl Professional, you
can use Ethernet link redundancy to set up alternate network links.

• “Configuring Event/Reactions” on page 6-42

(ioControl Pro only) For serial-based mistic I/O units you can configure specific reactions to
events when they occur.

• “Persistent Data” on page 9-4

You can configure the data in most variables to be persistent. The variable’s value is saved
in the controller’s memory; it does not change when the strategy is run, stopped, or started,
and it does not change if the strategy is changed and downloaded again.

• “Pointer Commands” on page 10-56

For advanced programming, you can create pointers that store the memory address of a
variable or some other ioControl item, such as a chart, an I/O point, or a PID loop. You can
perform any operation on the pointer that you could perform on the object the pointer
points to.

• “Setting Initial Values in Tables During Strategy Download” on page 9-10

When you are adding table variables in ioControl, you can set all table elements to one
initial value. Or, you set each individual table element to its own value by creating an
initialization file to download with your ioControl strategy.

• “Using Subroutines” on page 12-1

You can use subroutines that are independent from strategies, but that can be called from
any strategy. Subroutines offer two ways to work with variables and other logical
elements: they can be passed in or they can be local to the subroutine.

• “Configuring PID Loops” on page 6-29

A proportional integral derivative (PID) control system (often referred to as a PID loop)
monitors a process variable, compares the variable’s current value to a desired value (a
setpoint), and calculates an output to correct error between the setpoint and the variable.
Because the calculation is complex, it is done by a mathematical formula, or algorithm, that
you can then adjust (tune) for each PID loop.
ioControl User’s Guide 3-5

WHAT IS IOCONTROL?
ioControl Terminology

Analog Point
Analog points have a range of possible values. Temperature and pressure are examples of analog
information. Temperature might be any number in a range, -2 or 31.65 or 70.1 or many other
possible numbers. Analog points can be either inputs (such as a tank level sensor) or outputs
(such as a fuel pump).

Blocks
A chart is made up of action, condition, continue, and OptoScript blocks connected by arrows,
which show how the process flows.

Action Block

Rectangular blocks in a flowchart
that contain one or more
instructions (actions) that do the
work of the strategy, such as
turning things on or off, setting
variables, and so on. Several
instructions can be placed in one
action block. Action blocks can have
many entrances, but only one exit.

Condition Block

Diamond-shaped blocks in a
flowchart that contain questions
(conditions) that control the logical flow of a strategy. Condition blocks can have many entrances,
but only two exits: True and False. The block can contain more than one condition, and you can
use AND or OR to indicate whether all conditions must be true to exit True, or whether any one
condition must be true to exit True.

Continue Block

Oval-shaped blocks in a flowchart that route the flow of execution to an action, condition, or
OptoScript block. They do not contain any instructions, but store only the name of the next block
to execute. Continue blocks can have many entrances, but no exits, since the exit is defined
within the block. Continue blocks avoid awkward connections between two blocks that are far
apart.

Action block

Condition block

OptoScript block

Continue block
3-6 ioControl User’s Guide

WHAT IS IOCONTROL?
OptoScript Block

Hexagonal blocks in a flowchart that contain OptoScript code. OptoScript is a procedural
language that can simplify tasks such as math computations, string handling, and complex loops
and conditions. OptoScript blocks can have more than one entrance but only one exit.

Digital Point
Digital points can be either on or off (true or false). Push buttons and LEDs are examples of digital
devices: an LED is either on or off; it has no other possible state. Digital points can be either
inputs (such as a photo eye) or outputs (such as a pump).

External Value
The external value (XVAL) is the real-world value measured or set by an I/O point. The ioControl
strategy reads and writes only to internal values, and transfers internal values to external values
if the associated I/O unit is enabled.

Flowcharts
Since most control applications are complex, the strategy typically consists of a series of process
flowcharts, or charts, that all work together. Each chart controls one aspect of the strategy—one
piece of the automated process. Together, all the charts constitute the strategy. The total number
of charts in a strategy is limited only by the amount of memory available in the control engine.

A chart can be running, suspended, or stopped. A running chart is actively performing its
assigned task. A suspended chart is temporarily paused. A stopped chart is inactive. Every chart
in an ioControl strategy can change the status of any other chart in the strategy, yet every chart
is independent of every other chart. Any combination of charts can be running simultaneously, up
to the maximum limit allowed on the control engine. (See also, “Multitasking” on page 3-8.)

Every strategy automatically contains a Powerup chart. The Powerup chart is automatically
started when the strategy begins running, so it starts other charts. All other charts you create,
based on the needs of your process.

Input Point
Input points are wired to hardware that brings information into the brain from the process.
Examples of devices that can be wired to input points are thermocouples, switches, and sensors.
The control engine in the brain takes the information from the input points—such as whether a
switch is on or what temperature is registered—processes it using commands in the strategy,
and returns information to the process through output points.

• A floating point (or float) is a numeric value that contains a decimal point, such as
3.14159, 1.0, or 1234.2. A good example of a float variable is one that stores readings from
an analog input, such as a thermocouple.
ioControl User’s Guide 3-7

WHAT IS IOCONTROL?
• An integer is a whole number with no fractional part. Examples of integer values are -1, 0,
1, 999, or -456. The state of a switch, for example, could be stored in an integer variable as
1 (on) or 0 (off).

• A timer stores elapsed time in units of seconds with resolution in milliseconds. Up timers
count up from zero, and down timers start from a value you set and count down to zero. For
example, you could set a down timer to make sure a value is updated at precise intervals.

• A string stores text and any combination of ASCII characters, including control codes and
extended characters. For instance, a string variable might be used to send information to a
display for an operator to see.

A string variable can contain numeric characters, but they no longer act as numbers. To use
them in calculations, you must convert them into floating point or integer numbers. And a
numeric value to be displayed on a screen must be converted into a string first.

• A pointer does not store the value of a variable; instead, it stores the memory address of a
variable or some other ioControl item, such as a chart or an I/O point.

• Communication handles store parameters needed for communication with other
devices.

You can use variables that are individual pieces of information, and you can also use table
variables, which are groups of related information in the form of a table.

Instructions (Commands)
ioControl commands, or instructions, tell the control engine what to do at each step in the
flowchart to control the process. Each block in a chart contains one or more instructions, such as
Convert Number to String or Start Counter or Chart Running?

Commands are in two forms: Actions and Conditions.

• Action commands do something in the process; for example, Convert Number to String
and Start Counter are both action commands. On the flowchart they appear as instructions
in Action Blocks, which are rectangular in shape. They may also appear in hexagonal
OptoScript Blocks.

• Condition commands check a condition and are in the form of a question. Chart Running?
and Variable False? are examples of condition commands. They appear as instructions in
Condition Blocks, which are diamond-shaped, or in hexagonal OptoScript blocks. Condition
commands are questions that always have two possible answers, either yes or no (true or
false). The answer determines the flow of logic and what happens next in the chart.

Internal Value
The internal value (IVAL) is the value read or written by the ioControl strategy. Internal values are
transferred to external values only when the I/O unit is enabled.
3-8 ioControl User’s Guide

WHAT IS IOCONTROL?
Multitasking
The control engine can run several charts seemingly at once, each performing a different task,
through a time-slicing technique called multitasking (also called multicharting). Opto 22 SNAP
Ultimate I/O control engines can run up to eight charts plus one host task simultaneously; SNAP
PAC R-series and SNAP-LCE controllers can run up to 16 charts plus one host task
simultaneously; SNAP-PAC S-series controllers can run up to 32 charts plus one host task
simultaneously. The host task is an invisible chart used to communicate to a PC, which may be
running ioControl in Debug mode or ioDisplay.

Each chart in a running or suspended state counts toward the total that can run simultaneously.
Charts that are stopped do not. When the Powerup chart is running, it also counts.

The actual order and timing for running tasks is not deterministic—that is, it is not always the
same, but depends on priorities at any given time. For example, communication may sometimes
take a higher priority than a running chart.

Output Point
Output points are wired to hardware that receives information from the brain and uses this
information to control components of the process. For example, lights, motors, and valves are all
devices that can be wired to output points. Using an output point, the control engine in the brain
might turn on a light or open a valve.

Pointer
A pointer does not store the value of a variable; instead, it stores the memory address of a
variable or some other ioControl item, such as a chart, an I/O point, or a PID loop. You can perform
any operation on the pointer that you could perform on the object the pointer points to. Pointers
are an advanced programming feature and are very powerful, but they also complicate
programming and debugging.

Because pointers can point to any data type, pointer tables can store an assortment of data types
in a single table.

Pointers allow one level of indirection within ioControl; a pointer cannot point to another pointer.
After you add a pointer through the Add/Edit Variable Dialog Box, you can use it wherever the
object itself would be used.

Strategy
The software program you create using ioControl Basic or ioControl Professional. The strategy
includes all the definitions and instructions (commands) necessary to control the process that
one Opto 22 controller handles. Since most control processes are complex, the strategy typically
consists of a series of process flowcharts that all work together, with each chart controlling one
piece of the automated process. You may have several ioControl systems, each controlling a
ioControl User’s Guide 3-9

WHAT IS IOCONTROL?
different process and therefore running different strategies. Or you may have two or more
ioControl systems controlling identical processes in different areas and running the same
strategy.

Variables
A variable is a holding place that represents a piece of information in a strategy, such as the
parameters for communication, temperature reported by a thermocouple, the name of a chart, or
a group of words and numbers to be sent to a display. The information a variable represents is
called the value of the variable. As a strategy runs, the variable’s name remains the same, but its
value may change. For example, the value of a variable named Oven_Temperature may change
several times while its strategy is running, but its name remains Oven_Temperature.

A variable stores one of six types of data: floating point, integer, timer, string, pointer, or
communication handle. When you create the variable, you designate the type of data it contains.

The instruction shown below is for the condition block, Button D3 On? This block contains only
one instruction. As you look at the chart, you can see that the answer to the question in the
instruction determines whether the process flows to Turn LED D7 On or to Turn LED D7 Off.

Instruction for the block
named Button D3 On?
3-10 ioControl User’s Guide

WHAT IS IOCONTROL?
ioControl Main Window
With a strategy open, the main window in ioControl Basic and ioControl Pro looks similar to this:

Since ioControl uses standard Microsoft Windows conventions, you’ll recognize the title bar and
menu bar and already be familiar with some of the menus, such as File, Edit, View, Window, and
Help. This section discusses some things that may not be familiar.

Status Bar
The status bar at the bottom of the window shows you information about ioControl. When you
move your mouse over the toolbar, a description of the button you’re pointing to appears in the
status bar. The status bar indicates the mode ioControl is in and indicates messages or errors
helpful in debugging.

To hide or show the status bar, choose View➞Status Bar. A check mark next to the menu item
means the status bar will show; no check mark means it is hidden.

Mode
You can run ioControl in three modes: Configure, Debug, or Online. The current mode is shown in
the status bar, on the right. Toolbars and menus change depending on the mode.

• Configure mode is used to create, modify, save, and compile strategies, flowcharts, and
subroutines; and to configure control engines, I/O, and variables.

ioControl title bar
Menu bar
Toolbars

Strategy Tree

Mode
Status bar
ioControl User’s Guide 3-11

WHAT IS IOCONTROL?
• Debug mode is used to download, run, and debug strategies and to view control engine
and communication status and errors while the Strategy is running.

• Online mode is a scaled-down version of Configure mode, used to change a strategy
while it is running. You cannot add variables and I/O in Online mode, but you can change
ones that already exist.

NOTE: When you change a chart in Online mode, a new copy of that chart is downloaded to
the control engine, but the old one is not deleted. After you have made a few online changes,
the additional chart copies begin to take up memory. To avoid memory problems, be sure you
stop the strategy after making several online changes and completely compile and download
it to clear out old chart copies.

To change modes, choose the mode you want from the Mode menu, or click its button in the
toolbar.

Toolbars
Toolbars give you shortcuts for doing many things that also appear on menus. Toolbars in
ioControl include standard Windows buttons like New and Help as well as special buttons for
ioControl functions. Like the menu bar, the tools that you can use depend on which mode you’re
in. Tools that don’t apply to a mode are grayed out.

The following toolbars are standard in ioControl. To change the buttons in them or to create your
own toolbar, see “Customizing Toolbars” on page 3-25.

File Toolbar New
Open

Copy
Paste

Help
Cut

Save Find
Replace

About

Delete

User’s Guide

Web links

Drawing Toolbar Select

Action Block

Connect
Text

Continue Block

Condition Block

OptoScript Block

Configure Toolbar Control Engine

I/O

Variables

Subroutines
3-12 ioControl User’s Guide

WHAT IS IOCONTROL?
Moving Toolbars

You can move toolbars to the place where they are most convenient for you. To move a toolbar,
click and drag it with the mouse to the location where you want it to be.

Hiding and Showing Toolbars

To hide or show a toolbar, choose View➞Toolbars. In the dialog box, click to put a check mark in
the box next to the toolbar you want to show. To hide a toolbar, click the box to remove the check
mark.

Compile Toolbar Active View
All

Changes

Mode Toolbar Configure
Debug

Online

Debug Toolbar

Run Strategy

Step Into

Pause Chart

Step Out

Auto Step

Breakpoint
New Watch Window

Open Watch Window

Inspect Control Engine

Sniff Communications

Step Over

Stop Strategy

View Toolbar Zoom in
Zoom Out

Hex Integer Display

Binary Integer Display

Hex String Display
ioControl User’s Guide 3-13

WHAT IS IOCONTROL?
Strategy Tree
The Strategy Tree (shown at left) opens when you open a
Strategy, and closing it is equivalent to closing the
strategy. The Strategy Tree shows you all the elements of
your strategy: control engines, flowcharts, subroutines,
variables, I/O units and points, and PIDs.

The Strategy Tree works just like Windows Explorer: you
can expand or collapse folders to view or hide what is in
them. You can easily see what is in your strategy, open
elements to change them by double-clicking them, or
open a pop-up menu by right-clicking on an element.

Each element in the strategy is represented by a button,
shown just to the left of its name. The table below shows
the buttons and what they represent.

Button Description Button Description

Control Engine Integer 32 Table

Chart Integer 64 Table

Subroutine String Table

Integer 32 Variable Pointer Table

Integer 64 Variable Digital I/O Unit

Float Variable Mixed I/O Unit

Down Timer Variable Analog Input Point

Up Timer Variable Digital Input Point

String Variable Analog Output Point

Communication Handle Digital Output Point

Float Table PID Loop

Pointer Variable
3-14 ioControl User’s Guide

WHAT IS IOCONTROL?
Windows and Dialog Boxes in ioControl
Windows and dialog boxes in ioControl follow Microsoft Windows standards. You can minimize,
maximize, move, resize, and tile them as needed. See your Microsoft Windows documentation
for information on how to do these things.

The following topics describe other useful features in ioControl:

• “Using Tabs to View Open Windows” on page 3-15

• “Docking Windows” on page 3-17

• “Splitting a Chart or Subroutine Window” on page 3-18

• “Zooming in a Chart or Subroutine Window” on page 3-20

• “Redrawing a Chart or Subroutine Window” on page 3-21

• “Changing Column Width in a Dialog Box” on page 3-22

• “Sorting Data in a Dialog Box” on page 3-23

Using Tabs to View Open Windows
When multiple windows are open—especially if they are maximized—it can be difficult to know
where you are, and windows can become lost behind each other. However, you can click the tabs
at the bottom of the main ioControl window to move among chart windows, subroutine windows,
watch windows, and blocks you may be stepping through for debugging.
ioControl User’s Guide 3-15

WHAT IS IOCONTROL?
The upper layer of tabs appears when you are stepping through your Strategy in Debug mode. It
acts as a kind of call stack to let you see how you got to the current block or command.

Gray tabs show open windows. Click
a tab to bring its window into view.

White tabs show where you are
when stepping through a chart or
subroutine.
3-16 ioControl User’s Guide

WHAT IS IOCONTROL?
Docking Windows
You can place the Strategy Tree and watch windows where you want them (“dock” them) in the
ioControl main window. Docked windows do not have tabs but are contained in their own frames.
ioControl remembers their position the next time you open that strategy.

• To dock a window, click the docking button in the window’s title bar.

This white tab shows you are stepping inside the Variable_Increase_
Notification subroutine, which was called by the Increment Counter
action block on the gray tab at left. The gray Chart tab farther left shows
the chart this action block is in. Click any tab to see how you got to
where you are.

Click the arrow buttons to see
tabs that are not visible or are
only partly visible.
ioControl User’s Guide 3-17

WHAT IS IOCONTROL?
The window moves to its own frame. (Compare the following figure with the one on
page 3-11 to see the difference in the Strategy Tree window.)

• To change the docked position, click and drag the window’s title bar to any edge of the
main window.

• To change the docked window’s width or height, click and drag the edge of its frame
in the direction you want.

• To free the window from its docked position, click the docking button in its title
bar.

Splitting a Chart or Subroutine Window
In chart and subroutine windows, you can split the view of a window to see two horizontal views,
two vertical views, or even four views of the same chart or subroutine. You can scroll around
within each view to compare parts or to copy and paste elements. Splitting is especially useful
for large charts and subroutines.

“Docked” Strategy Tree
3-18 ioControl User’s Guide

WHAT IS IOCONTROL?
Split bars appear at the top of the right scroll bar and at the left of the bottom scroll bar.

• To divide a window vertically, double-click the split bar at the left of the bottom scroll
bar, or click and drag the split bar to the right.

The window is split into two vertical views of the same chart or subroutine.

• To scroll in any view, click in the view to make it active, then use the scroll bars as usual.

You can also zoom in the active view. (See page 3-20 for more information on zooming.)

• To return the window to full view, double-click the split bar again or click and drag it
back to the left of the scroll bar.

Split bar

Split bar

Split bar
ioControl User’s Guide 3-19

WHAT IS IOCONTROL?
• To divide a window horizontally, double-click the split bar at the top of the right scroll
bar, or click and drag the split bar down.

The window is split into two horizontal views of the same chart or subroutine.

• To return the window to full view, double-click the split bar again or click and drag it
back to the top of the scroll bar.

You can divide a window into four views by splitting horizontally and vertically at the same time.

Remember that when you split a window, you are looking at multiple views of the same chart or
subroutine. You do not create two different charts/subroutines when you split a window.

Zooming in a Chart or Subroutine Window
You can change the scale of any chart or subroutine window by using the zoom feature. You can
view elements at seven sizes, from one-eighth to eight times the normal size. There are several
ways to zoom:

• Click the Zoom In or Zoom Out buttons on the toolbar.

• Press the + or - keys on the keyboard.

• Right-click anywhere on a chart or subroutine window to display a pop-up menu. Select
Zoom and choose In (to zoom in at twice the size), Out (to zoom out at half the size), or
Reset (to return the zoom to 100 percent).

• From the Window menu, choose Zoom In, Zoom Out, or Zoom Reset.

• To pick the zoom percentage you want, click the Zoom field at the bottom right of the
window and select 12.5 percent, 25 percent, 50 percent, 100 percent (the default), 200
percent, 400 percent, or 800 percent.

Split bar
3-20 ioControl User’s Guide

WHAT IS IOCONTROL?
NOTE: Zooming always takes place with reference to the center point of the window.

Here is a window at 50 percent zoom:

The same window at 200 percent zoom looks like this:
ioControl User’s Guide 3-21

WHAT IS IOCONTROL?
Redrawing a Chart or Subroutine Window
If you want to move quickly to a particular block, you can redraw a chart or subroutine window
with any block at its center.

1. With a chart or subroutine open in the active window, select View➞Center On Block, or
right-click in the chart or subroutine window and choose Center On Block from the popup
menu.

The Center On Block dialog box appears, listing all blocks in the chart.

2. Double-click the block you want, or click it once and click OK.

The chart or subroutine is redrawn with the selected block in the center of the window.

Changing Column Width in a Dialog Box
Many dialog boxes include several columns of information. To see all the data in some columns,
you may need to make columns wider.

• To widen or narrow a column, click the right edge of the column label and drag it
horizontally.

Click and drag
3-22 ioControl User’s Guide

WHAT IS IOCONTROL?
• To resize a column to the exact width of its longest entry, double-click the line that
separates the column from the one on its right.

Sorting Data in a Dialog Box
In some dialog boxes with columns of data, you can sort the information in the way you want to
see it. The Center On Block dialog box provides an example. The blocks in this dialog box normally
appear in alphabetical order by the block name.

• To sort by block number instead, click the Block Id column label.

• To sort in the opposite order (descending numbers instead of ascending numbers), click
the Block Id column label again.

Some dialog boxes don’t allow custom sorting. If you click a column label in these dialog boxes,
nothing happens.
ioControl User’s Guide 3-23

WHAT IS IOCONTROL?
Customizing ioControl for Your Needs

Setting Decimal, Binary, or Hex Display Mode
You can set up ioControl to show the values of all integers and integer tables in decimal (the
default), binary, or hexadecimal (hex) format. Binary and hex formats help you use masks. Hex
format is particularly useful for entering integer literals and initial values for a digital-only
Ethernet brain. Hex view is available in all modes: Configure, Debug, and Online.

The default view is in decimal notation, as shown in the following figure.

To view integers and integer tables in binary view, click the Binary Integer Display button
on the toolbar or choose View➞Binary Integer Display. The integers appear as shown
below.

• To view integers and integer tables in hex view, click the Hex Integer Display button
on the toolbar or choose View➞Hex Integer Display. Here’s how the integers appear
in hex:

• To return to decimal view, click the toolbar button again or choose the same item again
from the View menu.

Decimal view

Binary view. All the bits cannot be
shown at once.

Here you can see all the bits, shown in
bytes so masks are easy to understand.
Click on a line to see its place in the string.

Hex view. The 0x before
the number indicates that
the number is in hex.
3-24 ioControl User’s Guide

WHAT IS IOCONTROL?
Setting Hex String View

You can also set strings to appear in hex notation. Here is the View Variable window showing a
string in regular notation:

To change to hex notation, click the Hex String Display button on the toolbar or choose
View➞Hex String Display. Here’s how the string appears in hex:

Customizing Toolbars
You can customize toolbars in ioControl for the way you work. You can choose toolbars to match
your screen resolution. You can move toolbars to another place in the window. You can move a
button into another position or toolbar, or delete it if you don’t use it. You can even create your
own toolbar with just the buttons you use.

Choosing Toolbars for Your Screen Resolution

You can choose toolbars to match your screen resolution and place the most frequently used
toolbar buttons all on one line. To do so, follow these steps:

1. Choose View➞Toolbars.
ioControl User’s Guide 3-25

WHAT IS IOCONTROL?
2. In the Customize dialog box, make sure the Toolbars tab is open.

3. Click to place a check mark next to the toolbar for your current screen resolution. Click OK.

The most commonly used tools appear in a single line in the main window. If you want to
change the tools, see “Moving and Deleting Buttons” on page 3-27.

Moving Toolbars

To move a toolbar, click on its edge to outline the whole toolbar. Then drag the toolbar where you
want it. You can place it at the top, bottom, left, or right of the main window or of any docked
window.

Toolbars tab
3-26 ioControl User’s Guide

WHAT IS IOCONTROL?
Moving and Deleting Buttons

1. Choose View➞Toolbars.

2. In the Customize dialog box, click the Commands tab.

3. In the Categories list, click the name of the toolbar you want to move the button from.

The buttons in that toolbar appear in the Buttons area.

• To change a button’s position in its current toolbar, click the button in the ioControl main
window (not in the dialog box) and drag it to the position you want.

• To move a button to another toolbar, click the button either in the dialog box or in the
main window, and drag it to the toolbar in the main window where you want it.

• To delete a button from a toolbar, click the button in the main window and drag it out of
its toolbar.

Commands tab
ioControl User’s Guide 3-27

WHAT IS IOCONTROL?
Creating Your Own Toolbar

1. Choose View➞Toolbars.

2. In the Customize dialog box, make sure the Toolbars tab is open.

3. Click New. Enter a name for the custom toolbar and click OK.

A small box appears in the upper-left corner of the main window. You build your custom
toolbar by placing the buttons you want in this box.

4. In the Customize dialog box, click the Commands tab.

Toolbars tab

Commands tab
3-28 ioControl User’s Guide

WHAT IS IOCONTROL?
5. In the Categories list, click the name of the standard toolbar that contains the button you
want to place in the custom toolbar.

The buttons in that toolbar appear in the Buttons area.

6. Click the button you want and drag it to its place in the small gray box. Repeat until you
have all the buttons you want in the custom toolbar.

7. When you have finished building the custom toolbar, click it to outline it, and drag it into
position in the ioControl main window.

8. When you have finished customizing toolbars, click OK in the Customize dialog box.

Setting Up Applications to Launch from ioControl
You may find it useful to launch other software applications directly from ioControl. For example,
you may want to launch ioDisplay, Notepad, or the Calculator from ioControl. You can set up
ioControl so that these applications appear in the Tools menu.

NOTE: If you launch an application from within ioControl when that application is already
running, a second instance of the application may open. It depends on the application; some
check to see whether the application is already running, and some do not.

1. With ioControl open, choose Tools➞Customize.

The Customize dialog box appears.

2. Click Add.

3. In the Menu Text field, type the name of the application as you want it to appear in the
Tools menu.

4. In the Command field, type the path for the application’s executable file, or click the
browse button and navigate to the file.
ioControl User’s Guide 3-29

WHAT IS IOCONTROL?
5. (Optional) In the Arguments field, type any necessary command line parameters.

6. (Optional) In the Initial Directory field, type the directory the application should default to
when it runs.

For example, this is the directory the application would show when you open or save files.

7. Repeat the steps to add other applications. To change an application’s position in the menu
list, highlight it and click the Move Up or Move Down keys.

8. When you have finished adding applications, click OK.

You return to the ioControl main window, and the applications you’ve added now appear in
the Tools menu.

Online Help
To open online Help, choose Help➞Help Topics, or click the Help button in any dialog box. Help
buttons in dialog boxes are context sensitive and provide help specifically on that dialog box.
Buttons labeled “Command Help” give specific information on the command (instruction) you are
currently using.

For brief explanations of buttons, move your mouse over the button and look in the status bar.

In Action and Condition Instructions dialog boxes, let your mouse rest for a second on an
instruction (command), and you’ll see a list of the variable types used in that command. (To show
or hide the variable types list, in Configure mode, choose ioControl Options➞Show/Hide
Instruction Type Information.)

To open online copies of ioControl manuals and quick reference cards, choose Help➞Manuals.
You will need Adobe Acrobat Reader to open these files. You can also find information,
documents, and support on the Opto 22 Web site by choosing Help➞Opto 22 on the Web.
3-30 ioControl User’s Guide

CHAPTER 4
4—Designing Your StrategyChapter 4

Designing Your Strategy
Introduction
This chapter introduces you to ioControl programming—how to design an ioControl strategy to
control your automated process. For additional important information on using ioControl
commands (instructions) to program your strategy effectively, see Chapter 10, “Programming
with Commands,” and the individual command information in the ioControl Command Reference.

In this Chapter
Steps to Design 4-1 Instruction Examples.................................... 4-11
Basic Rules ... 4-9 Optimizing Throughput................................. 4-21

Steps to Design
How do you get from your real-world control problem to a working ioControl strategy that solves
it? Here’s an outline of the basic approach; we’ll fill in the details on the following pages.

First, solve the problem.

• Define the problem.

– What am I trying to do?

– What inputs and data do I have to work with?

– What do the outputs have to be?

– How many times does the process have to be repeated?

• Design a logical sequence of steps to solve the problem.

– Break down the larger process task into sub-process tasks.

– Break down the sub-process tasks into detailed steps.

• Test the steps.
ioControl User’s Guide 4-1

DESIGNING YOUR STRATEGY
Next, build the strategy.

• Configure hardware.

– Control Engines

– I/O units

– I/O points

• Determine necessary variables and configure them.

• Create charts, one for each sub-process, and add instructions.

• Compile and debug each chart.

• Compile and debug the whole strategy.

Finally, use and improve the strategy.

Now let’s take a look at each of these steps in order.

Solving the Problem
You can avoid a lot of extra time and rework if you define and solve your problem before you ever
start building a flowchart in ioControl.

Defining the Problem

Suppose, for example, you want to automate a simple lawn sprinkler system. Start by asking
yourself (or others) questions about the control process you’re trying to do.

What are you trying to do? Start with the big picture and work down to the smaller details.

• Big picture: I’m trying to control this sprinkler system.

• Smaller details:

– The sprinklers should turn on every Sunday and every Wednesday.

– They should not turn on if it’s raining.

– They should start at six o’clock in the morning.

– They need to run for 15 minutes.

What inputs and data do you have to work with? List all the inputs. Describe the data they
provide. Check for any inputs or data you need but don’t have.

Input Data the input provides

Hygrometer Humidity (percentage from 0–100%)

Day Day of the week (Sunday through Saturday)

Time Hour of the day (24-hour clock)
4-2 ioControl User’s Guide

DESIGNING YOUR STRATEGY
What do the outputs need to be? List all the outputs. Describe the results that are needed.
Check for any outputs you need but don’t have.

How many times does the process have to be repeated? Our example is a simple sprinkler
system in which the process happens twice a week on certain days. In a more complex system,
however, you might have one section of the sprinklers turn on, followed by other sections,
repeating the process several times in different areas and then repeating the whole pattern on
certain days.

Designing a Logical Sequence of Steps to Solve the Problem

Now that you’ve determined what you’re trying to do and what your inputs, data, and outputs
look like, you’re ready to outline the steps needed to solve the control problem. Think about how
you would do the job if you were doing it by hand. Again, work from the top down, starting with
big steps and then breaking those big steps into smaller steps.

If a human being were doing this job, this level of instruction would probably be just fine. With
a computer, however, the instructions need more detail. For example, the first instruction, “Every
day at 6:00 a.m.,” would have to be expanded more like this:

a. Read the hour.
b. If the hour equals six, go on to the next step.
c. If the hour does not equal six, go back to step a.

Sprinkler status Whether sprinklers are currently running (on or off)

Input from timer Length of time sprinklers have been on (in minutes)

Output What it does

Sprinkler switch Turns sprinklers on or off

Timer control Sets timer

Input Data the input provides

Sprinkler Control System

Every day at 6:00 a.m.:
1. Check the day and the weather.

1. Check the day and the weather.
Read the day of the week.
If it’s Sunday or Wednesday, read the
hygrometer.

2. If it’s raining, leave them off.
If the hygrometer says 100%,
check to make sure sprinklers
are off.
If they’re on, turn them off.

3. If it’s the right day and it’s
dry, turn them on.

If it’s Sunday or Wednesday and
if the hygrometer says 99% or
below, turn sprinklers on.
Start the timer.
When they’ve been on for 15
minutes, turn them off.

2. If it’s raining, leave the
sprinklers off.

3. If it’s the right day and it’s dry,
turn them on.
ioControl User’s Guide 4-3

DESIGNING YOUR STRATEGY
Testing the Steps

Now that you have your steps in place, run through each sub-process in your mind to see if
anything is missing. Is there an answer for every “if”? Are all the possibilities taken into account?

It may help you to draw out your control process as a flowchart. Often it is easier to see decision
points and responses to decisions in a flowchart. You’re still working at the human level at this
point; just be aware that the computer may require more details.

Here is a possible flowchart for the simple sprinkler control problem.
:

Building the Strategy
Once you have the control problem solved in detail, you can begin building the strategy in
ioControl. Now you’ll add all the logical details the computer needs.

Configuring Hardware

The first step in building your strategy is to configure your control engine, I/O units, and I/O
points. (For more information and step-by-step procedures, see Chapter 5, “Working with Control

At 6:00 a.m., read the
day of the week

Is it Sunday or
Wednesday?

Read the hygrometer

Is humidity less
than 100%? Are sprinklers off?

Turn sprinklers on
and set timer for
15 minutes

Turn sprinklers off

Yes

Yes

Yes

No

No

No

Wait 24 hours

Has timer expired?

Yes

Turn sprinklers off

No

Simple Sprinkler System Process Flowchart
4-4 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Engines,” and Chapter 6, “Working with I/O.”) You can add more I/O units and points later if
needed, but it saves time to configure them now.

When you solved this control problem, some of the inputs and outputs you defined were physical
I/O, such as the hygrometer and the switch to turn on the sprinklers. You configure these physical
inputs and outputs as the I/O points.

Here are the I/O points you might configure for the simple sprinkler system:

Determining and Configuring Variables

Some of the inputs and outputs you defined when you solved the problem were not physical I/O,
but information. For example, the day of the week is not a physical input; it’s a piece of
information you can get using a command in ioControl. These inputs and outputs become
variables.

You also need variables to store the information that input points give you. And you may need
variables for manipulating information.

To determine the variables you need, think about the pieces of information your process requires.
Then look at the ioControl commands in the ioControl Command Reference. Find the commands
you need and check them to see what types of variables each command requires.

For example, you need to know what day of the week it is. Will the control engine give you this
information as a string (for example, “Wednesday”) or in some other format? When you check
the command Get Day of Week, you discover that the day is returned as a number
(Wednesday = 3), so you set up this variable as a numeric integer.

Here are some variables you may need. (See Chapter 9, “Using Variables and Commands,” for
more information and step-by-step procedures to add variables.) You can change them or add
other variables later if necessary.

Physical I/O Type I/O Point Name

Hygrometer Analog Input Hygrometer

Sprinkler status Digital Input Sprinkler_Status

Sprinkler switch Digital Output Sprinkler_Switch

Variable Needed Type Name in ioControl

Hour of the day Numeric (32-bit integer) Time_of_Day

Day of the week Numeric (32-bit integer) Day_of_the_Week

Humidity Numeric (float) Humidity

Down timer Timer Timer
ioControl User’s Guide 4-5

DESIGNING YOUR STRATEGY
Creating ioControl Charts and Adding Instructions

If you have already drawn the process in a flowchart, this step will go faster. ioControl is based
on flowcharts because they are a natural way to show a control process. And the block names
and instructions you add to charts—just like the names of variables—are in normal, everyday
language. (For more information and step-by-step procedures, see Chapter 8, “Working with
Flowcharts,” and Chapter 9, “Using Variables and Commands.”)

The difference between the flowchart you drew before and the chart you create in ioControl is
that the flowchart was designed for human beings, but the ioControl chart must be more detailed
so the computer can follow it.

Because the chart is more detailed—and because most control processes are far more complex
than our sprinkler system—you will usually create multiple charts for an ioControl strategy.
Break the process down into logical chunks, or modules, and then create a chart for each module.
A modular design makes it easier to test and to update your strategy.

Even for a simple process like our sprinkler control, there is no single “correct” way to solve the
control problem and build the strategy. Instead, there are many possible ways. The following
chart shows one example:
4-6 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Notice one of the differences between this chart and the human-level chart on page 4-4: several
delays have been added to the chart. There is one before rechecking the hour of the day, one
before rechecking the day of the week, one before rechecking whether the timer has expired, and
finally one before starting the flowchart over again.

This sprinkler system is not time-critical. If the sprinklers turn on at a little past 6:00 a.m. or the
grass is watered an extra few seconds, it doesn’t matter. Delays give the control engine time to
do other things. (For more information on delays and using control engine time effectively, see
“Optimizing Throughput” on page 4-21.)

Each block in the chart contains the ioControl commands (instructions) that do the work in the
system. For example, here are the instructions for the block “Turn on sprinklers, set timer”:

As you create charts and enter instructions, keep referring to the ioControl Command Reference.
The Command Reference describes the “arguments” for each command, which are pieces of
information you must enter in the instruction. You can also press F1 to open online help for
commands, which gives you the same information as in the printed Command Reference.

For example, one of the commands shown above, Set Down Timer Preset Value, has two
arguments. The Command Reference and online help tell you that the first argument—the target
value, or the value from which the timer counts down—can be a float variable or a float literal,
ioControl User’s Guide 4-7

DESIGNING YOUR STRATEGY
and that the second argument is the name of the down timer variable. You need this information
when you enter the instruction in the Add Instruction dialog box.

The sample flowchart we’ve shown uses standard ioControl commands only. If you have a
programming background, you may wish to incorporate OptoScript blocks in your flowchart.
OptoScript is a procedural language that can simplify some programming tasks, including string
handling, math calculations, and complex loops and conditions. See Chapter 11, “Using
OptoScript,” for more information.

Compiling and Debugging the Strategy

When all charts are completed and their instructions added, the next step is to compile and
debug the strategy. But first, check your hardware. Check cabling and connections, and make
sure the actual I/O matches the configured I/O in the strategy.

Now compile and debug the strategy. (See Chapter 7, “Working with Strategies,” for more
information and step-by-step procedures. If you have problems, see Appendix A, “ioControl
Troubleshooting,”) If you have multiple charts, debug each one separately and then debug the
strategy as a whole. It is easier to find errors in one flowchart than in a group of interrelated
ones.

Make sure the connections between charts are accurate. For example, is a chart started at the
correct block in another chart?

Use the debugging tools discussed in Chapter 6 to find errors by stepping through a chart and
setting breakpoints to discover which block or line contains the problem. And if you’ve tried
everything and it still doesn’t work, contact Opto 22 Product Support. (See page 1-4.)

Arguments
4-8 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Using and Improving the Strategy
Any strategy is one of several possible ways to solve a control problem. One way may be more
efficient under some circumstances; another way may be better for others. As you use the
strategy over time, as control needs change, and as you become more knowledgeable about
ioControl, you’ll find ways to make the strategy better.

Basic Rules
The sprinkler strategy we just created is a simple example. This section gives basic rules to keep
in mind when you’re solving more complex control problems.

When you create a new ioControl strategy, a Powerup chart is automatically included. You add
all the other charts you need, and the total number of charts in the strategy is limited only by the
control engine’s memory. Be aware, however, that the maximum number of charts that can be
running at any one time is based on the control engine you are using:

• 32 charts on a SNAP PAC S-series controller

• 16 charts on a SNAP PAC R-series or SNAP-LCE controller

• 8 charts on SNAP Ultimate I/O

Program logic moves through a flowchart in one of two ways: flow-through or loop.

• A chart with flow-through logic performs a set of specific commands and then stops. It
has a beginning and an end, and at the end is a condition or action block that has no exit.

Subroutines, the Powerup chart, and any other chart that does not need to run continuously
should always have flow-through logic. In complex strategies, be careful when using
delays and condition looping (waiting for something to occur) in charts with flow-through
logic.

• A chart with loop logic has no end. It loops through a set of actions and conditions
continuously. A loop-logic chart can have several paths through which the direction of the
logic may flow, depending on certain criteria. Use loop logic for a chart that needs to run
continuously. (The simple sprinkler chart has loop logic; it runs continuously.)

Chart Guidelines
As you design your strategy, put each sub-process of your overall control problem into a separate
chart within the strategy. As noted above, on a SNAP Ultimate brain, you can have a maximum
of eight charts (plus one host task) running at once. On a SNAP PAC R-series or SNAP-LCE
controller, a maximum of 16 charts (plus one host task) can run at once. On a SNAP PAC S-series
controller, 32 charts (plus one host task) can run at once. (For more information, see “Optimizing
Throughput” on page 4-21.)
ioControl User’s Guide 4-9

DESIGNING YOUR STRATEGY
In general, follow these chart guidelines:

• Use the Powerup chart just to set initial values for variables, perform setup commands, and
start the main charts. Use flow-through logic so the Powerup chart will stop as soon as the
other charts begin.

• Create a few charts to monitor essential or time-critical pieces of your process, such as
emergency stops on dangerous equipment or I/O that must be monitored continuously.
These charts should use loop logic so they are constantly running.

• If a set of operations is used more than once in your strategy or is used in more than one
strategy, you can put it in a subroutine and call the subroutine when needed. Calling a
subroutine doesn’t require as much time as calling a chart or starting a new chart. In
addition, a subroutine starts as soon as it is called, but a chart is simply placed in the task
queue and started in turn. See Chapter 12, “Using Subroutines,” for more information.

• Use the text tool to type a descriptive title in each chart and add any necessary
explanations. Keep blocks far enough apart to easily see the flow, and if possible, design
the chart so its entire flow can be seen within one window. If a chart becomes too
complex, split it into smaller charts.

• When you use OptoScript code, remember that it is not self-documenting. Be sure to add
comments so that you or others can easily see what the code is doing. (Similar comments
are also useful in other ioControl flowchart blocks.) Use OptoScript blocks within a
flowchart for operations they make easier, such as string handling and math calculations,
but keep the logic and purpose of the strategy clear in the flowchart.

• Within a chart, use the start block (Block 0) for setting initial values but not for control. If a
block contains more instructions than can be easily traced and debugged, break it down
into two or more sequential blocks. Never place another block in the flowchart before
Block 0.

Naming Conventions
To save trouble in the long run, it’s wise to establish naming conventions for charts, blocks,
variables, I/O units and points, control engines, subroutines, and so on. If you name these
elements in a consistent way from the beginning, it is easier to find them in lists, to see related
elements, and to know their functions without opening them.

Since ioControl automatically alphabetizes these names, you can plan naming schemes to place
similar items together in the way you expect to use them.

Names have a maximum length of 50 characters. They can be all upper-case characters, or they
can be mixed case.

In chart names, for example, you might include a few letters indicating whether the chart
monitors critical tasks, is a master chart calling others, or is periodically called:

• Mntr_Tank_Leak (constantly running chart that monitors a critical situation)

• Mstr_Conveyor_Process (master chart that calls others for a sub-process)

• Call_Message_Display (chart called by a master chart for a specific purpose)
4-10 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Block names should tell what the block does, so you can understand a chart without needing
additional explanations. Block names should describe the purpose of the instructions within
them. Use a question for the name of a condition block, with a true exit reflecting the answer yes.

• Read Thermometer (action block)

• Temperature Too High? (condition block)

• Turn On Pump 1 or Pump 1 On (action block)

• Pump On? (condition block)

Variable names can use Hungarian notation to indicate the type of variable, since the variable
type is not always apparent in its name. See “Variable Name Conventions” on page 11-14 for a
suggested list of notations.

Variable names might also include a way to distinguish variables used in a single chart or process
from variables used by more than one chart or process. If your strategy is large, it’s helpful to
separate them. Variables that are used only in a table could include the table name in their name,
for example Fail_Count_in_Config_Values. (Config_Values is the table name.)

In I/O point names, you may want to indicate the point’s function, the state of the device when
the point is active, its location, or a schematic reference. You can abbreviate names of familiar
devices and write out less familiar names. Include the information you need in the order in which
it will be most useful to you:

• Heater_Switch (You have only one heater.)

• Htr6_Switch_SW23B (You have many heaters, and the schematic reference is needed.)

• Cnvyr_Speed_Encoder_BldgA (You want all conveyors to appear together.)

• BldgA_Cnvyr_Speed_Encoder (You want all points in Building A to appear together.)

Instruction Examples
This section includes examples of common instructions you may want to use. See Chapter 10,
“Programming with Commands,” for additional information on programming with ioControl. If
you need to use math calculations, strings, or complex loops and conditions in your strategy, also
see Chapter 11, “Using OptoScript,” for examples of OptoScript. OptoScript is a procedural
language within ioControl that can make programming easier, especially if you are an
experienced programmer.
ioControl User’s Guide 4-11

DESIGNING YOUR STRATEGY
Creating Messages to Display On Screen
You may need to create messages to display on screen, for example to give data to operators.
Typically these messages consist of some specific, literal words and symbols followed by a
variable value and maybe some additional literal words or symbols.

You can create the message in a single block in your ioControl chart, like this:

Alternatively, you can create the message by placing the following OptoScript code within a
single OptoScript block:
FloatToString(Current_Temp, 5, 1, Current_Temp_String);

Current_Temp_Message = "Current temperature = " + Current_Temp_String +
"F.";

OptoScript can be more efficient for string handling than standard ioControl commands. See
Chapter 11, “Using OptoScript,” for more information.

Current temperature = 86.3 F.

Literal words
& symbols

Literal words
& symbols

Variable
value

Average price = $4.86

1. To enter the literal text, use the
command Move String. Remember
to include spaces where you want
them to appear, such as after the
equal sign.

2. Add the variable value by converting
it to a string and appending it to the
string you just created.

3. If needed, append another literal
string.
4-12 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Error Handling
Every strategy should have a way to handle errors. It’s important to check values and errors that
are returned from the commands in your strategy. An I/O unit, for example, will be automatically
disabled if a command sends it variable values that are clearly wrong, such as a memory map
address in an incorrect format.

You can easily build a simple error handling chart like the one shown below, which automatically
checks errors and other messages and takes action based on the type of error.

This chart, for example, checks for I/O unit errors. Suppose a remote I/O unit loses power for a
few seconds, and then the power comes back on. When the power is lost, communication to the
unit is disabled. To enable it again, you could stop the strategy and restart it, or you could enable
the unit in the debugger. With this error handling chart, however, you can automatically enable
the I/O unit and restore communication while the strategy is running.

The chart checks the top error in the message queue. If it is an I/O unit error, communication to
the unit is enabled. If it is not an I/O unit error, another action happens (another chart in the
strategy is stopped). Two delays are built in: the first one to release the time slice if an error is
not found, and the second one to allow the control engine time to restore communication with
the I/O unit.

If the error is an I/O
unit error, the I/O
unit that caused it
is enabled
(communication
to that unit is
restored).

The top error is removed
from the queue, and the
chart checks for more
errors.

The chart first checks to see if there’s an error. If not, a slight delay
gives the control engine time to do other tasks. See “Increasing
Efficiencies in Your Strategy” on page 4-22 for more information on
using a delay in this way.

Continued on next page
ioControl User’s Guide 4-13

DESIGNING YOUR STRATEGY
The error chart shown on the previous page is designed to be started by the Powerup chart and
to run continuously. If necessary, you might modify the chart to take different actions depending
on the error code, using the command Get Error Code of Current Error. Or you might want to track
problem I/O units with the command Get Name of I/O Unit Causing Current Error, and then save
the I/O unit names to a string table. These and other commands used in error handling are listed
on page 10-56.

Counting
If an I/O unit supports counting, any digital input on it can be used as a counter. Counters count
the number of times the input changes from off to on. You must start the counter before you
can read it. See “Counters” on page 10-3 for more information.

Counters are often started in the Powerup Chart. For example, suppose you wanted to count the
number of widgets moving along a conveyor belt from manufacturing to shipping. You could start
the counter in the Powerup Chart, like this:

Once the counter is started, you can read its value at any time by using the command Get
Counter.

If you want the counter to start over when you read its value—for example, to count the number
of widgets in each 24-hour period—use the command Get & Clear Counter.

The counter is started in the Powerup Chart.
4-14 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Using a Count Variable for Repetitive Actions
A numeric variable for counting is useful when the same action needs to be repeated a specific
number of times. For example, suppose your process includes filling a packing box with a dozen
bags of cookies. You can use a count variable to track how many bags are dropped into the box.

Here’s part of a chart showing how you would use a count variable in this way:

If you are an experienced programmer, you’ll notice that this example is a for loop. You can use
the following OptoScript code within a single OptoScript block to accomplish the same result:
for Bag_Count = 1 to 12 step 1 //Count 12 items dropped into box

Bag_Dropper = 1; //Turn on bag dropper

next

See Chapter 11, “Using OptoScript,” for more information on using code to streamline control
structures in your strategy.
ioControl User’s Guide 4-15

DESIGNING YOUR STRATEGY
Programming Case Statements
A frequent need in programming is to create case statements, also called “switch” statements,
“if/then/else” statements, or “nested if” statements. These statements create multiple decision
points: if the condition is A, then X will happen; if the condition is B, then Y will happen, and so
on. (This example uses regular ioControl commands; see Chapter 11, “Using OptoScript,” for
another option that takes up less space in your flowchart.)

For example, suppose you have a conveyor with three speeds: high (3), low (2), and stopped (1).
Sometimes it runs at high speed, sometimes at low speed; but before a box can be put on the
conveyor, the conveyor must be stopped. And it can only be stopped from low speed, not from
high speed. Here’s a portion of a chart showing the case statements that control this process:

The example above shows three cases, because there are three possible speeds and each speed
demands a different action.

If you had only two possibilities,
for example if the box could also
be put on the conveyor at low
speed, you could handle both
possibilities within one condition
block. For example, you could put
two Equal? commands in the
same condition block, and check
the Or operator, as shown at
right.

Conveyor speed is
checked and moved
(copied) into a
variable.

Each condition
block checks for
a particular
speed. This one
checks for high
speed (3).

If speed is too
high, it is shifted
down to the next
level, until the
conveyor is finally
stopped and the
box can be put on.

Or operator
4-16 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Using a Timer
Timers come in two forms:

• Up timers count up from zero and are generally used to measure how long something
takes.

• Down timers count down to zero from a number you set and are frequently used to
determine when events should begin.

Here’s an example of a down timer. This process starts every 1.5 seconds.

Timers can be tricky. For additional details, see “Using Timers” on page 10-19.

The starting value for the
timer is set in Block 0.

The condition block
checks whether the
timer has reached
zero. If it hasn’t, the
chart loops until it
has.

When the timer has
expired, it is
restarted and the
process begins.

When the process
ends, the logic loops
back to check
whether the timer
has expired again.
ioControl User’s Guide 4-17

DESIGNING YOUR STRATEGY
Using a Flag
A flag is a way of controlling logical flow within a strategy. You can set a flag in one part of the
strategy and then test it in another part. If the flag is set, the logic flows one way; if the flag is
not set, it flows another way.

For example, a flag could be set to indicate that a machine is busy with one process, to prevent
another process from using the machine at the same time. The following chart shows logic for
one of the processes that uses the machine. If another process has already set the flag, this
process must wait until the flag is cleared.

The condition block
checks whether the
flag has been set,
indicating that
another process is
using the machine. If
the flag has been
set, the chart logic
loops until it has
been cleared.

This block sets the flag
so another process can
see that the machine is
busy.

When this process is
complete, this block
clears the flag,
indicating that the
machine is now
available for use.
4-18 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Pointers and Indexing
This example shows three possible ways to control 16 fans based on setpoints.

Without Pointers. The first way, shown below, uses individual fan outputs and setpoint variables
to determine whether to turn off or on the appropriate fan. It’s a simple way to solve the problem
but takes a long time to program and produces a large, repetitive section in the flowchart. It also
consumes more control engine memory, due to the large number of conditional and action blocks.

Each fan output (Motor01–Motor16) uses a separate
temperature input (Temp01–Temp16) and a separate setpoint
variable (SP01–SP16). The flowchart cycles through them all
to control the fans.
ioControl User’s Guide 4-19

DESIGNING YOUR STRATEGY
With Pointers and Indexing. The second way uses pointers and indexing to accomplish the same
result in a smaller space, using less control engine memory and fewer programming steps. The
fan outputs and the temperature inputs are referred to by pointers. The setpoints, instead of
requiring individual variables, are simply numbers in a table.

Using OptoScript.The third way also uses pointers and indexing, but places all the action in an
OptoScript block. See Chapter 11, “Using OptoScript,” for more information on using OptoScript.

The flowchart sets initial values for the
pointers, and then cycles through the pointer
tables to control the fans. (Tables have
already been initialized in the Powerup chart.)
4-20 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Optimizing Throughput
See additional related information on throughput in Opto 22 form #1302, the ioDisplay User’s
Guide.

Throughput can refer to communications between a PC and the control engine, or
communications between the control engine and I/O. The following factors affect throughput for
these two types of communication:

In both types of communication, throughput is affected by control strategy design. The following
sections discuss how to design your control strategy to maximize throughput.

Understanding ioControl Multitasking
When SNAP controllers run ioControl strategies, they can multitask, or run several tasks at once.
The total number depends upon the controller you use:

• A SNAP PAC S-series controller can run up to 33 tasks (32 flowcharts plus the host task).

• A SNAP PAC R-series or SNAP-LCE controller can run up to 17 tasks (16 charts plus the
host task).

• A SNAP Ultimate brain can run up to 9 tasks at once (8 charts plus the host task).

Total tasks include:

• Host task, which is a vehicle for communicating with a PC

• Powerup Chart

• Any other chart or subroutine in your strategy that is running or suspended. (A subroutine
assumes the time slice of the chart that called it.)

The tasks are not actually run simultaneously; each task gets a small amount of time before the
control engine moves to the next task in the queue. If a task is finished before its time is up, the
control engine moves to the next task sooner. For example, a suspended chart uses no time, even
though it is counted as a task.

Host Task

The host task functions as a slave, which means it never originates messages, but only responds
to inquiries or commands. The host task runs by default, but it only uses time when there is
communication to the controller.

The host task must be used to download new firmware to the control engine.

PC ↔ Control Engine Control Engine ↔ I/O

Increasing host task frequency
Using design efficiencies

Using I/O unit commands
Using an I/O error-handling chart
ioControl User’s Guide 4-21

DESIGNING YOUR STRATEGY
Optimizing PC to Control Engine Throughput
You can optimize throughput between the PC and the control engine by increasing the host task’s
frequency and by using design efficiencies in your strategy.

Increasing Host Task Frequency

If you minimize the number of tasks in the queue, the host task is done more frequently and all
tasks get more time. To minimize tasks, combine processes so you have fewer charts. Here’s
how:

• Determine the processes that are time-critical. Put these processes in charts with looping
logic that runs constantly.

• Use subroutines for any processes that recur within the strategy. A subroutine does not
add an additional task; it assumes the time slice of the chart that called it. Make sure you
check the status variable each time a subroutine is called to verify that the call was
successful. See Chapter 12, “Using Subroutines,” for more information.

Increasing Efficiencies in Your Strategy

A second way to optimize PC to Control Engine throughput is to increase efficiency in condition
block loops.

If the condition block continually loops waiting for the condition to be true, the entire time slice
for the chart is used up. However, you can build in a slight delay by using the command Delay
(mSec) with a value of one. This command causes the chart to wait one millisecond before
checking the condition again, and the rest of the chart’s time slice is given up while it waits.

The following graphic shows two conditional loops. In the one on the left, the entire time slice is
used up waiting for the condition to become true. In the example on the right, however, the delay
allows the control engine to run other tasks while waiting for the condition to become true.
4-22 ioControl User’s Guide

DESIGNING YOUR STRATEGY
Ensuring Data Freshness for ioDisplay

Remember to develop your ioControl strategy in conjunction with your ioDisplay project to help
optimize performance. To ensure maximum throughput, the strategy should be coordinated with
Refresh groups in ioDisplay. For example, if ioDisplay is using typical freshness values of one
second, then the strategy should read all of the I/O at least once every second. (One efficient way
to do so is to use I/O Unit commands. See the section below.)

Optimizing Control Engine to I/O Throughput
Throughput between the control engine and I/O is also affected by strategy design. You can take
advantage of I/O unit commands to communicate with several I/O points at once, and you can
use an error-handling chart to handle I/O errors efficiently.

Using I/O Unit Commands

I/O unit commands speed up communications between the control engine and I/O by using tables
to read or write all points on an I/O unit at once, rather than reading or writing one point at a
time. For example, using the command Move I/O Unit to Numeric Table is many times faster than
using the Move command once for each point. The command Move Numeric Table to I/O Unit is
many times faster than using Turn On or Turn Off for each point.

Handling I/O Errors Efficiently

If the control engine encounters an error when communicating to I/O, it disables communication
to the I/O unit. Disabling communication ensures that control engine performance is maintained.
If an I/O timeout error occurred and communication with the I/O unit was not disabled,
throughput to the remaining I/O units would drop significantly while the control engine tried to
communicate.

If you use an I/O error-handling chart, make sure there is a reasonable delay after each attempt
to re-enable communication to the I/O unit. In addition, for debugging purposes it is helpful if the
error-handling chart logs the error. Investigate and correct the root cause of any I/O unit
communication error to maintain throughput.
ioControl User’s Guide 4-23

DESIGNING YOUR STRATEGY
4-24 ioControl User’s Guide

CHAPTER 5
5—Working with Control EnginesChapter 5

Working with Control Engines
Introduction
This chapter shows you how to configure and work with control engines. See “Compatible
Control Engines and I/O Units” on page 1-6.

In this Chapter
Configuring Control Engines..................................... 5-1
Using Network Segmenting in ioControl 5-5
Using Ethernet Link Redundancy in ioControl 5-6
Changing or Deleting a Control Engine 5-10
Inspecting Control Engines and the Queue 5-12
Downloading Files to the Control Engine............... 5-17

Configuring Control Engines
Before you can use a control engine to run a Strategy, you must first define the control engine on
your PC and then associate the control engine with your ioControl strategy.

• See “Defining a Control Engine on Your PC” below to identify the connection through
which the PC and the control engine communicate. Because this process writes to the
Windows Registry on your PC, you must define control engines for each computer that uses
your strategy. (If your computer can boot to two operating systems, you must configure
control engines for each OS.) You can define control engines in ioControl or in the software
utility ioTerminal.

• See “Associating the Control Engine with Your Strategy” on page 5-4 to identify which
defined control engine is the active control engine. Although you can associate several
control engines with the same strategy if necessary, the strategy can be downloaded to
only one at a time. The control engine set to receive the download is called the active
engine. You must use ioControl for associating the control engine with your strategy.
ioControl User’s Guide 5-1

WORKING WITH CONTROL ENGINES
Defining a Control Engine on Your PC

1. Choose one of the following:

• Using ioTerminal: Choose Start➞Programs➞Opto 22➞ioProject
Software➞Tools➞ioTerminal. From the Configure menu, choose Control Engines to
open the Select Control Engine dialog box. Skip to step 3.

• Using ioControl: With a Strategy open in Configure mode or Online mode,
double-click the Control Engines folder on the Strategy Tree.
You can also click the Configure Control Engines button in the toolbar, select
Configure➞Control Engines, or right-click an individual control engine on the Strategy
Tree.

The Configure Control Engines dialog box appears.

2. Click Add.

The Select Control Engine dialog box appears.

This dialog box lists all the control engines configured on your system, whether or not they
are associated with your strategy.
5-2 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
3. If the control engine you want appears in the list, it has already been defined on this PC,
Click to highlight the control engine’s name and click OK. Then skip to “Associating the
Control Engine with Your Strategy” on page 5-4.

4. If the control engine you want is not in the list, click Add.

The Control Engine Configuration dialog box appears.

5. Complete the fields as described in “Control Engine Configuration Dialog Box” below.

6. Click OK.

In the Select Control Engines dialog box, the control engine appears in the list.

7. In the Select Control Engine dialog box, highlight the control engine you want to associate
with the strategy. Click OK. Continue with “Associating the Control Engine with Your
Strategy” below.

A

B

D
E
F

C

ioControl User’s Guide 5-3

WORKING WITH CONTROL ENGINES
Control Engine Configuration Dialog Box

(A) Control Engine Name Enter a descriptive name for the control engine. Valid characters are
letters, numbers, spaces, and most other characters except colons and square brackets. Spaces
cannot be used as first or last characters.

(B) IP Address Enter the IP address of the control engine in decimal notation (for example,
192.9.200.24).

(C) Second IP (ioControl Pro only) To configure Ethernet link redundancy, enter a secondary IP
address. The secondary IP address can be the second Ethernet interface on a SNAP PAC
controller, or a separate controller running a strategy designed to respond if the primary control
engine is unavailable. Note that both IP addresses use the same port number. See “Configuring
Ethernet Link Redundancy” on page 5-9 for more information.

(D) Port Enter the control engine’s IP port number. The default of 22001 is the port of the host
task on the control engine; this default normally should not be changed.

(E) Retries Retries indicate the number of times ioControl will reattempt communications with
the control engine. Since retries are automatically handled by the protocol (TCP/IP), enter zero
here.

(F) Timeout Enter the timeout value in milliseconds. Timeout value is the length of time ioControl
tries to establish communication through the port. If it fails, it tries again as many times as
specified in D. Any positive integer is valid. For Ethernet, 3–5 seconds (3000–5000 milliseconds)
is a good starting point.

Associating the Control Engine with Your Strategy
After you have defined the control engine on your PC (see page 5-2), it can be associated with
your Strategy.

1. If you are in ioTerminal, close ioTerminal. Open the strategy in ioControl (Configure mode
or Online mode) and choose Configure➞Control Engine.
5-4 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
In the Configure Control Engines dialog box, the engine’s name appears in the list.

2. Check to make sure the correct control engine appears in the Active Engine field. If not,
highlight the one you want and click Set Active.

Only one control engine can be active at any time. If only one control engine is listed, it
automatically becomes the Active Engine.

Your control engine configuration is complete.

Using Network Segmenting in ioControl
You can take advantage of the two independent Ethernet network interfaces on a SNAP PAC
controller to segment the control network from the company network. Because the two network
interfaces are completely independent and have separate IP addresses, they can be set up on
two separate networks. Host traffic can communicate on one, while I/O units are on the other.

To segment networks, start by assigning a secondary IP address in ioManager, following
instructions in the ioManager User’s Guide. The secondary IP address is used for communication
through the controller’s ENET2 interface. Remember that this interface must be on a completely
separate network segment.

You don’t need to do anything special in ioControl. Configure only one control engine, using the
IP address of the Ethernet interface to be used for host communication. The control engine will
direct communication to I/O units through the other interface, based upon the I/O unit’s IP
address.

NOTE: ioDisplay Basic and other hosts on the company network cannot communicate with I/O
units when they are on a separate network. To solve this problem, you can purchase ioProject
Professional, or ioDisplay Professional and OptoOPCServer (version 7.0 and newer) separately;

List of control engines

Active engine
ioControl User’s Guide 5-5

WORKING WITH CONTROL ENGINES
these applications support network segmenting by communicating with I/O units through the
controller.

Using Ethernet Link Redundancy in ioControl
In ioControl Professional, you can configure a secondary control engine IP address for
Ethernet link redundancy in case communication to the primary address fails. The secondary
address can be the second Ethernet network interface on a SNAP PAC controller or a separate
controller. If it is the second Ethernet network interface on a SNAP PAC controller, you must
assign the secondary IP address in ioManager in order to communicate with it. See the
ioManager User’s Guide for instructions.

NOTE: If you use a separate controller for link redundancy, be aware that coordinating strategy
data on two controllers can be difficult, and no automatic method for doing so is available. Using
a separate controller for monitoring over a redundant link is usually less difficult to coordinate
than using a separate controller for control over a redundant link.

The two Ethernet interfaces on a SNAP PAC controller are ideal for adding redundant Ethernet
network links to your control system. An ioDisplay Professional project or OptoOPCServer, for
example, can be set up to use the primary and secondary addresses to access data from the
ioControl strategy running on the control engine. If the primary address is unavailable, the client
application will automatically shift to the secondary address; if the secondary address then fails,
it will automatically try the primary address again. (You can also manually change the address,
from within the client application. See the OptoOPCServer or ioDisplay user’s guide for details.)

ioControl Professional also provides for Ethernet link redundancy from the controller to
Ethernet-based I/O units. You can configure a secondary I/O unit IP address in case
communication with the primary address fails. The secondary address can be the second
Ethernet network interface on a SNAP PAC R-series controller, or a separate I/O unit. (If you use
a separate I/O unit, you may find that wiring is problematical.) See “Commands for Ethernet Link
Redundancy” on page 10-15 for more information on primary and secondary I/O units.

System Architecture for Ethernet Link Redundancy
You can set up your system in several ways to take advantage of the link redundancy capability
in ioControl. The following diagrams show some of those ways. For additional information, see
the user’s guides for the SNAP PAC controllers. For details on how ioDisplay and OptoOPCServer
work with link redundancy, see their user’s guides.
5-6 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
Ethernet Link Redundancy

In this example, the primary concern is that the Ethernet network may need maintenance or may
fail, leaving the computer running OptoOPCServer, the PC running ioDisplay Professional, the
controller, and the I/O units unable to communicate.

This solution is to connect all these devices on two networks; if one network goes down, devices
can communicate on the other. Note that each computer has two network interface cards (NICs).

If one network needs maintenance, for example to replace a switch, you can safely shut it down
using the Set Target Address commands in ioControl and options in ioDisplay Professional and
OptoOPCServer.
ioControl User’s Guide 5-7

WORKING WITH CONTROL ENGINES
Ethernet Link, Computer, and Software Redundancy

The second example of link redundancy illustrates concern not only about the stability of the
Ethernet network, but also about the computers and the software run on them. Any of these
things—the network, a computer, or the OptoOPCServer or ioDisplay Professional software
running on the computer—may need maintenance or may fail.

The solution here is to provide duplicate computers and software, and connect all devices on two
networks. Each computer has two network interface cards (NICs).
5-8 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
Ethernet Link Redundancy with Serial I/O Units

This third example of link redundancy shows a SNAP PAC S-series controller with serial I/O units.
The redundancy is in the Ethernet networks between the controller and computers running
ioDisplay Professional and OptoOPCServer. This example provides link redundancy for the
Ethernet network and a separate serial control network. Again, note that the computers all have
two NICs.
ioControl User’s Guide 5-9

WORKING WITH CONTROL ENGINES
Configuring Ethernet Link Redundancy
 Ethernet link redundancy to the control engine is easy to configure. First, make sure the
secondary IP address has been assigned in ioManager. Then in ioControl, just enter both the
primary and secondary IP addresses when you configure the control engine (see page 5-1). It is
not necessary to separately define the second controller on your PC.

To configure link redundancy from the control engine to I/O units, make sure the secondary IP
address has been assigned in ioManager. Then enter both the primary and secondary IP
addresses when you configure the I/O unit (see “Adding an I/O Unit” on page 6-12).

Using Strategies with Link Redundancy
 Although clients of ioControl strategies such as ioDisplay and OptoOPCServer automatically
shift to the secondary address if the primary address is not available, the ioControl debugger
does not. In ioControl, you control which address receives communication, so you know exactly
how communication is occurring during debugging. To change between primary and secondary
control engine addresses, you must be in Configure or Online mode. Follow the steps in
“Changing the Control Engine that Receives the Downloaded Strategy” on page 5-11.

Once you have changed the address, when you enter Debug mode, you are communicating
through the address you chose. Downloading the strategy to a SNAP PAC controller through one
of its Ethernet interfaces replaces any strategy that was downloaded earlier through its other
interface.

Changing or Deleting a Control Engine
See the following topics to change or delete a control engine:

• “Changing a Control Engine’s Definition” (below)

• “Changing the Control Engine that Receives the Downloaded Strategy” on page 5-11

• “Removing a Control Engine’s Association with a Strategy” on page 5-11

• “Deleting a Control Engine from Your PC” on page 5-12

Changing a Control Engine’s Definition
Whenever necessary, you can change a control engine’s definition on your PC—its name, the port
the PC uses to communicate with it, or the PC port setup (such as timeouts and retries). These
changes can be made either in ioControl or in the ioTerminal utility.

1. Choose one of the following:

• In ioControl: With the Strategy open in Configure mode or Online mode, right-click the
control engine name on the Strategy Tree and choose Modify from the pop-up menu.

• In ioTerminal: Choose Start➞Programs➞Opto 22➞ioProject
Software➞Tools➞ioTerminal. From the Configure menu, choose Control Engine.
5-10 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
Select Control Engine dialog box appears.

2. In the Select Control Engine dialog box, click the control engine you want to change and
click Modify.

3. Make the necessary changes, following the same steps you would for configuring the
control engine initially. (For help, see “Defining a Control Engine on Your PC” on page 5-2.)

Changing the Control Engine that Receives the Down-
loaded Strategy
You can configure several control engines for a Strategy, but only one at a time can receive the
downloaded strategy. The control engine that receives the strategy is called the active engine.

NOTE: In ioControl Professional, you can also configure a control engine for Ethernet link
redundancy (see “Using Ethernet Link Redundancy in ioControl” on page 5-6 for more
information). In this case, you can also choose whether the primary or secondary IP address will
receive the strategy.

To change the control engine that receives the downloaded strategy, follow these steps:

1. Make sure the strategy is open and in Configure or Online mode.

2. On the Strategy Tree, right-click the name of the control engine you want to set as the
active engine.

If its name does not appear in the Strategy Tree, follow the steps in “Configuring Control
Engines” on page 5-1.

3. From the pop-up menu, choose Set Active.

The active engine moves to the top of the list in the Strategy Tree.

4. I(ioControl Pro only) If the control engine is configured for Ethernet link redundancy,
right-click the name of the control engine on the Strategy Tree again. From the pop-up
menu, choose Use Primary IP Address or Use Secondary IP Address.

Removing a Control Engine’s Association with a Strategy
If you no longer want to use a control engine with a Strategy, you can remove its association with
the strategy. This action does not delete the control engine’s definition on your PC.

CAUTION: Do not delete the control engine from within the Select Control Engine dialog box.
Doing so will delete it from the PC as well as the strategy.

1. Make sure the strategy is open in Configure mode or Online mode.

2. On the Strategy Tree, right-click the name of the control engine you want to remove. From
the pop-up menu, choose Delete.

The control engine is no longer associated with your strategy.
ioControl User’s Guide 5-11

WORKING WITH CONTROL ENGINES
Deleting a Control Engine from Your PC
If you are sure that a control engine will no longer be used with your PC, you can delete it using
the ioTerminal utility. Deleting the control engine removes its definition only on the PC you are
using.

1. Choose Start➞Programs➞Opto 22➞ioProject Software➞Tools➞ioTerminal.

2. Right-click the name of the control engine in the list.

CAUTION: Make sure you are highlighting the right one. You cannot undo a deletion.

3. From the pop-up menu, choose Delete.

The control engine is no longer defined on the PC.

Inspecting Control Engines and the Queue
You may want to inspect or change control engines while you are running the Strategy in Debug
mode. See the following topics to view control engine information and the engine’s message
queue, either from ioControl in Debug mode or from the ioTerminal utility:

• “Inspecting Control Engines in Debug Mode” (below)

• “Viewing the Message Queue” on page 5-14

• “Inspecting Control Engines from the ioTerminal Utility” on page 5-16

Inspecting Control Engines in Debug Mode
With the Strategy running in Debug mode, click the Inspect Control Engine button in the
toolbar.

You can also double-click the active engine (the first one under the Control Engines folder) on the
Strategy Tree, or right-click the control engine and choose Inspect from the pop-up menu, or
select Control Engine➞Inspect. Also, if a blue INFO, yellow WARNING, or red ERROR box
appears in the strategy’s status bar, you can click the box.
5-12 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
The Inspecting dialog box opens.

Here you see data relating to the control engine. If you are using Ethernet link redundancy in
ioControl Professional, remember that the information shown is for the IP address you chose
before entering Debug mode. (See “Using Strategies with Link Redundancy” on page 5-10 for
more information.)

(A) Device Type Type of device the control engine is running on

(B) Address Device’s IP address

(C) Loader Version Version of the loader software. The loader is used to download firmware to
the device.

(D) Firmware Version Version number of the firmware (kernel) loaded on the device, and the date
the firmware was released

(E) Volative and Persistent RAM Amount of memory (RAM) available on the control engine. For
example, a SNAP Ultimate brain has a total of 8 MB of RAM on the control side, 256 KB of which
is battery-backed. Volatile RAM shows the amount of total RAM available for use. Persistent
RAM shows the amount available in battery-backed RAM, where persistent variables, variables
initialized on download, the autorun flag, and the strategy archive are stored.

(F) File Space Avail Space available in the control engine’s file system (See the ioManager User’s
Guide for more information about the file system.)

A
B

F
E

L

G

D

M
O

K

P
Q

C

N

I

R

J
H

ioControl User’s Guide 5-13

WORKING WITH CONTROL ENGINES
(G) Device Time Current date and time recorded on the control engine

(H) Sync time to PC Click to synchronize the control engine’s time and date to that of the PC
running ioControl, click the Sync to PC’s Time/Date button.

(I) Queue Number of messages (information, warning, and error messages) encountered when
attempting to run the strategy on the control engine (up to a maximum of 1000 messages). (See
“” on page 5-14.)

(J) View Messages Click to open the View Messages dialog box, listing the details of any
information, warning, or error messages.

(K) Name and Time Name of the strategy currently running on the control engine, and the date
and time it was downloaded

(L) Status Current status of the strategy

(M) Autorun Click to indicate whether the strategy should automatically run when the control
engine is restarted. The strategy must be stored to flash to autorun. See page 7-4 for more
information.

(N) Run/Stop Buttons to start or stop the strategy. This example shows the strategy running.

(O) Archive Information about the strategy currently archived on the control engine

(P) Loop Time Time required to gather the inspection data from the control engine (the time
taken for a single transaction)

(Q) Up Time Total time that the control engine has been running since powerup

(R) Errors Any communication errors

 Viewing the Message Queue
The message queue holds error, information, and warning messages. All may be helpful in
troubleshooting. When a message is placed in the queue, a blue INFO, yellow WARNING, or red
ERROR box appears in the ioControl status bar, as shown in the following diagram.
5-14 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
To see the message queue,

1. Click the INFO, WARNING, or ERROR box, or click the Inspect Control Engine button
in the toolbar.

2. In the Inspect Control Engine dialog box, click the View Messages button.

Drag the edge of a column heading to see all the information in the column. See Message
Queue Information below.

3. To delete the top (oldest) message on the list, click Pop First Message.

4. To delete all messages, click Clear Messages.

5. Close the dialog box to return to the Inspect Control Engine dialog box.

Any changes you have made to the queue are reflected there.

Messages have been placed in the queue.
ioControl User’s Guide 5-15

WORKING WITH CONTROL ENGINES
Message Queue Information

Each message in the View Messages dialog box includes the following information:

Code The message or error code number (see “List of Common Messages” on page B-3) or User
if the message was placed in the queue using the command Add Message to Queue.

Severity Information, Warning, or Error.

Chart and Block The chart and block being executed when the error occurred. If the error
occurred someplace outside the strategy, for example when trying to connect to an I/O unit, Chart
shows <system>. If the error occurred in a subroutine, Chart shows the chart that called the
subroutine, and Block indicates the name of the subroutine plus the block number in the format
<sub name>.<block number>. For example, error #4 above (“Cannot divide by zero”)
occurred in block 1 of the subroutine Variable_Increase_Notification, which was called by the
Temperature_Control chart.

Line If you are in Full Debug mode, the line being executed when the error occurred.

Object The table, I/O unit, or other object affected by the message. In errors #1 and #2 above,
the control engine was unable to communicate with I/O unit EIO_C. The unit’s IP address is
shown for easy reference.

Time and Date When the error occurred.

 Inspecting Control Engines from the ioTerminal Utility
You can also inspect control engines from the ioTerminal utility.

1. Click the Windows Start menu and select Programs➞Opto22➞ioProject
Software➞Tools➞ioTerminal.

The ioTerminal window appears.
5-16 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
2. Double-click the control engine you want to see (or right-click it and choose Status from the
pop-up menu).

The Inspect Control Engine dialog box appears. The dialog box is explained on page 5-12.

Downloading Files to the Control Engine
This section discusses how to archive strategies and download Forth files directly related to a
Strategy, such as library or initialization files. For information on using the brain’s file system to
store data and manipulate it within your strategy, see page 10-42.

Archiving Strategies
Archiving strategies on the control engine provides a backup in case original Strategy files on the
computer are lost. Archive files are date and time stamped, and zipped for compact storage. The
archive file name on the control engine is in one of the following formats:

Path\Filename.Download.D02282000.T114351.zip
Path\Filename.Online.D02282000.T114351.zip

The date stamp (D) is in the format mm/dd/yyyy. In the examples above, the date is February 28,
2000. The time stamp (T) is in the format hh/mm/ss. In the examples above, the time is 51
seconds past 11:43 A.M.

Archiving to the Control Engine

When you archive a Strategy to the control engine, you are placing the zipped file in
battery-backed RAM. If power to the control engine is lost, the archive is still there. Archiving to
the control engine as well as the computer makes sure that an older strategy can always be
found and updated, even after personnel changes occur and years pass.

Make sure the control engine has sufficient memory available to store the archive file. Since only
one strategy can be on the control engine at any time, only the latest archive for that strategy is
on the control engine. Other archives are erased during strategy download.

Follow these instructions to archive a strategy to the control engine:
ioControl User’s Guide 5-17

WORKING WITH CONTROL ENGINES
1. In ioControl, choose File➞Strategy Options.

2. In the Strategy Options dialog box, make sure the Archive tab is on top. Click Archive
strategy to disk when strategy is downloaded. Also click “During download, save archive to
the control engine and save strategy to flash memory.”

3. Click OK.

The strategy will be archived to the computer and to the control engine when it is
downloaded. Any archive already on the control engine will be replaced by the new
archive. In addition, the strategy will be saved to flash memory, so it will still be available if
power to the controller or SNAP Ultimate brain is turned off.

Restoring Archived Strategies from the Control Engine

If original Strategy files are lost or damaged, you can use ioTerminal to restore the strategy
archive from the control engine to a computer.

1. Click the Windows Start menu and choose Programs➞Opto22➞ioProject
Software➞Tools➞ioTerminal.
5-18 ioControl User’s Guide

WORKING WITH CONTROL ENGINES
The ioTerminal window appears.

2. Right-click the control engine and choose Upload➞Strategy Archive from the pop-up
menu.

3. In the Save ioControl Strategy Archive As dialog box, navigate to the folder where you
want to save the archive file. Keep the file name as it is, so you can see the date and time
it was originally downloaded to the control engine. Click Save.

A dialog box shows progress as the archive file is uploaded to the computer.

4. Navigate to the zipped archive file. Assuming you are using WinZip, double-click the file
name. Highlight all files and click Extract. Extract them to the location you want.

5. When all files are extracted, double-click the .idb file to open the strategy. If necessary,
re-link subroutines and files run before or after a strategy.

Re-linking may be necessary because the directory structure in the zip file may not match
what was originally on the computer. The zip file structure is as follows:

Root (.idb, chart files, .inf)
Subroutines
Control engine files

Control_Engine_Name_1
Before run file
After run file

Control_Engine_Name_2
Etc.
ioControl User’s Guide 5-19

WORKING WITH CONTROL ENGINES
Downloading Files Without Opening ioControl
Using the ioTerminal utility, you can download ioControl strategies or Forth files related to the
Strategy, such as library or initialization files, directly to a control engine, without having to open
each program.

(For information on using the brain’s file system to store data and manipulate it within your
strategy, see page 10-42.)

NOTE: If you are downloading an ioControl strategy that requires other files, be sure to download
the files in the correct order (for example, library file, then strategy file, then initialization file). If
you need to set initial values for individual table elements on strategy download only, see
page 9-10.

1. Click the Windows Start menu and choose Programs➞Opto22➞ioProject
Software➞Tools➞ioTerminal.

The ioTerminal window appears.

2. Right-click the control engine and choose Download➞Forth Files from the pop-up menu.

3. In the Download File dialog box, click Browse.

4. In the Open dialog box, locate the file you want to download. When the full path appears,
click OK.

If necessary to find the file, choose All Files from the Files of Type drop-down menu.

The download begins, and a dialog box shows its progress.
5-20 ioControl User’s Guide

CHAPTER 6
6—Working with I/OChapter 6

Working with I/O
Introduction
In addition to configuring a control engine to run your strategy, you also need to configure
input/output hardware to do the work: turning things on, setting temperatures, monitoring
controls, and so on.

This chapter shows you how to configure and work with I/O units, I/O points, and PID loops.

In this Chapter
Choosing a Configuration Tool 6-1 Changing Point Configuration...................... 6-25
About I/O Units.. 6-4 Configuring PID Loops.................................. 6-29
Addressing I/O Units 6-6 Configuring Event/Reactions 6-42
Adding an I/O Unit................................. 6-12 Inspecting I/O in Debug Mode..................... 6-51
Adding I/O Points 6-16 Inspecting and Tuning PID Loops 6-58
Configuring Special-Purpose Modules.. 6-25 Using Watch Windows for Monitoring 6-73

Choosing a Configuration Tool
Configuring I/O is one of your major planning steps in developing an ioControl Strategy. Generally
it’s best to configure all I/O units, points, and PID loops at once, before you start building
flowcharts.

There are two tools you can use for configuration: ioControl and ioManager. These two tools
serve different purposes, but they overlap when it comes to configuring I/O. The graphic on the
next page compares their functions.
ioControl User’s Guide 6-1

WORKING WITH I/O
I/O units and points must be configured to match the ioControl strategy you will run. You can
configure most Ethernet-based I/O unit and point functions either in ioControl or in ioManager.

IMPORTANT: For E1 and E2 I/O units, you must use ioManager. See form #1576, Technical Note:
I/O Configuration for E1 and E2 Brain Boards, for instructions.

For mistic I/O units, ioManager cannot be used for configuration. Use ioControl.

For most I/O units, if you are already in ioControl, configuration is easier there and you can use
the loopback IP address for SNAP Ultimate I/O units controlling themselves. However, some
functions for Ethernet-based I/O units cannot be configured in ioControl.

If you use ioManager, you can save your configuration to a file, load it to multiple I/O units at
once, and use it for referencing points in OPC. However, you cannot use the loopback address in
ioManager and you cannot use ioManager for mistic I/O units.

Choose your configuration tool based on what you need to do:

Whichever tool you use for configuring I/O, be aware of the impact if you later change
configuration. For example, if you configure I/O in ioManager, download the configuration file to
I/O units, and then later add a point in ioControl, remember that your configuration file doesn’t
contain that point.

Use ioControl for I/O configuration if Use ioManager for I/O configuration if

• You have only one I/O unit or I/O unit
configurations are different.

• You are configuring mistic I/O units.
• The strategy will run on SNAP PAC R-series

or SNAP Ultimate I/O units that are controlling
themselves using the loopback IP address,
127.0.0.1

• You are using an Ethernet network for
communications. (Exception: Use ioManager
for E1 or E2 I/O units.)

• The strategy handles all logic; you are not also
configuring events and reactions on I/O units.

• You have multiple I/O units whose
configurations are exactly the same or similar.

• You have an E1 or E2 I/O unit.
• You are using a modem connection (PPP) or

SNMP.
• You are using event messages or email.
• You are configuring events and reactions on

the I/O unit in addition to strategy logic.
• You are using OPC to communicate with I/O

units.
• You are not using ioControl.

ioManager Tasks
ioControl Tasks

Assign and change
IP address

Load firmware
Configure communications

and events

Configure
control engine

(So PC running ioControl
can communicate with
the SNAP controller)

Program and
debug control

logic

 I/O can be configured in ioControl.
Ethernet-based I/O can also be configured in
ioManager and imported into ioControl.

Configure I/O
6-2 ioControl User’s Guide

WORKING WITH I/O
If you use ioManager, follow instructions in Opto 22 form #1440, the ioManager User’s Guide.
When you have finished configuration and saved the configuration file, you can import it into
ioControl following the steps in “Importing I/O Configuration into ioControl” below.

If you use ioControl, follow the steps beginning with “About I/O Units” on page 6-4.

Importing I/O Configuration into ioControl
If you have configured all I/O units, points, and PID loops in ioManager, follow these steps to
import the configuration file into an ioControl Strategy.

1. Open the strategy in ioControl. In the Strategy Tree, right-click the I/O units folder. From
the pop-up menu, choose Import.

2. Navigate to the configuration file you created and saved in ioManager. Double-click it to
open it.

The configuration information is imported. You can expand the I/O units folder to see the
imported units and their points.

If you need to configure additional I/O units from within ioControl, see “About I/O Units” on
page 6-4. To tune PID loops, see “Inspecting and Tuning PID Loops” on page 6-58.

Copying I/O Configurations
If you have two strategies that use similar I/O units and points, you can export an I/O
configuration from one Strategy into a file, and then import it into the other strategy.

If you need similar configurations for several Ethernet-based I/O units, you can use ioManager
to send it to multiple I/O units at once. (You cannot use ioManager for serial-based I/O units.) For
more information on using ioManager, see Opto 22 form #1440, the ioManager User’s Guide.
ioControl User’s Guide 6-3

WORKING WITH I/O
Creating the Configuration Export File

1. Open the strategy you are copying from in ioControl. In the Strategy Tree, right-click the I/O
Units folder and choose Export from the pop-up menu.

The Export I/O Units to an Opto Tag Database dialog box appears.

2. Navigate to the location where you want to place the export file. Type the file name, and
click Save.

The export file is created. It is a comma-delimited ASCII file. If you wish, you can open it in
Notepad or Excel.

Importing the Configuration File

When you import the I/O configuration file, it does not delete any I/O units or points that are
already there. If the import file contains I/O units with the same names as those already in the
Strategy, you can choose whether to update them. Updating changes points that have the same
name and adds new points, but does not delete points.

1. Open the strategy into which you want to import the I/O configuration.

2. In the Strategy Tree, right-click I/O Units and choose Import from the pop-up menu.

3. Navigate to the location of the export file you created. Highlight its name and click Open.

The I/O units and points are updated from the configuration file. To see them, click the plus
sign next to the I/O Units folder on the Strategy Tree.

About I/O Units
In ioControl, the term I/O unit usually refers to a mounting rack with a brain or brain board and
up to 16 I/O modules attached. The following table shows brains, racks, and I/O modules that
can be used in ioControl:

Brain Part Number Compatible
Racks

Max #
Modules Module types

The following I/O units are supported in ioControl Basic and ioControl Professional:

SNAP-UP1-ADS
SNAP-B3000-ENET
SNAP-ENET-RTC

SNAP-B4M 4

SNAP analog, digital, and special-purposeSNAP-B8M
SNAP-B8MC
SNAP-B8MC-P

8

SNAP-B12M
SNAP-B12MC
SNAP-B12MC-P

12
SNAP analog, digital, and special-purpose
(standard digital in positions 0–7 only;
high-density digital in any position)SNAP-B16M

SNAP-B16MC
SNAP-B16MC-P

16
6-4 ioControl User’s Guide

WORKING WITH I/O
For most serial-based brain boards, racks are limited to 16 points of either analog or digital I/O,
so each I/O unit is either digital or analog. Racks for Ethernet-based brains, however, hold up to
64 points and can be either digital only or both analog and digital. If the rack attached to a SNAP
Ethernet-based brain accommodates both analog and digital modules, the I/O unit includes both
analog and digital modules.

In most cases the “I/O unit” you configure in ioControl is the same as the physical I/O unit (rack,
brain, and I/O modules). The entire rack of points is configured as one I/O unit, because that’s
how the points are addressed by the brain.

(ioControl) In two cases, however, the “I/O unit” in ioControl does not exactly correspond to the
physical I/O unit, because these brains address their I/O modules in a different way:

• A SNAP B3000 serial brain addresses up to four groups of 16 points on the largest rack.
Each group of 16 points must be configured as a separate I/O unit, either analog or digital.

SNAP-UP1-D64
SNAP-ENET-D64

SNAP-D64RS 16 SNAP digital
(limited digital functions; no high-density digital)

SNAP-UP1-M64
SNAP-ENET-S64

SNAP-M16 4
SNAP analog, digital, and special-purpose
(limited digital functions; standard and
high-density digital modules OK in any position)

SNAP-M32 8

SNAP-M64 16

The following I/O units are supported in ioControl Professional Only:

B3000 (serial)

SNAP-B4M 4

SNAP analog and standard digital
(no high density digital; no serial)

SNAP-B8M
SNAP-B8MC
SNAP-B8MC-P

8

SNAP-B12M
SNAP-B12MC
SNAP-B12MC-P

12
SNAP analog and standard digital
(no high density digital; no serial;
standard digital in positions 0–7 only)SNAP-B16M

SNAP-B16MC
SNAP-B16MC-P

16

SNAP-BRS
SNAP-B8M
SNAP-B8MC
SNAP-B8MC-P

8 SNAP standard digital only (no high-density
digital. Max. 32 points)

G4D16R Brick 16 G4 digital (max. 16 points)

G4D32RS Brick 32 G4 digital (max. 32 points)

G4A8R Brick 8 G4 analog (max 8 points

B100
PB16
G4PB16

16 G1, G4, or Quad Pak digital (max. 16 points)

B200 PB16A 16 G1 analog (max 16 points)

Brain Part Number Compatible
Racks

Max #
Modules Module types
ioControl User’s Guide 6-5

WORKING WITH I/O
(Some ioControl commands communicate with all the points on one I/O unit at once. For
more information on these commands, see “Using I/O Unit Commands” on page 4-23.)

• A G4D32RS brick contains the equivalent of two 16-module units, and the brain board
addresses them separately. When you configure it in ioControl, notice that it is called a
G4D16RS. Configure two G4D16RS I/O units for each brick.

Addressing I/O Units
To configure I/O, you must know how the brain addresses its I/O points. The following pages
show module and point numbers for the brains listed below.

IMPORTANT: These diagrams show addressing for analog and standard SNAP digital modules
only. High-density digital modules do not require configuration. Serial modules are not
configured unless you need to change communication parameters; if so, use ioManager.

For this brain See

SNAP-PAC-R1
SNAP-UP1-ADS
SNAP-B3000-ENET
SNAP-ENET-RTC

page 6-6

SNAP-PAC-R2
SNAP-UP1-M64
SNAP-ENET-S64

page 6-8

SNAP-UP1-D64
SNAP-ENT-D64

page 6-9

B3000 (serial)
SNAP-BRS

page 6-9

G4 bricks
B100
B200

page 6-12

E1
E2

See form #1576, I/O Configuration
for E1 and E2 Brain Boards
6-6 ioControl User’s Guide

WORKING WITH I/O
SNAP Ethernet Analog and Digital Systems

CAUTION: Make certain you use a rack shown as compatible for the processor. Using any
other rack will severely damage the brain or controller.

The mounting racks used with these processors can hold either 4, 8, 12, or 16 Opto 22 SNAP I/O®
modules. Analog, serial, and high-density digital modules can be placed in any position on these
racks. For the larger racks, standard digital modules can be placed in positions 0–7 only. For more
information, see the data sheet for your rack. Data sheets can be downloaded from
www.opto22.com

Each standard SNAP digital module contains four input or four output points. SNAP analog
modules supported by these processors contain either two or four points.

Each point on the rack is numbered; when you configure the point or read or write to it, you
reference it by its number. The following diagram shows the largest rack as an example. Note

Processor Compatible Racks

SNAP-PAC-R1 SNAP M-series (SNAP-M16, SNAP-M32, SNAP-M48, SNAP-M64)

SNAP-UP1-ADS
SNAP-B3000-ENET
SNAP-ENET-RTC

SNAP-B series (SNAP-B4, SNAP-B8, SNAP-B12; SNAP-B16,
SNAP-B8MC, SNAP-B12MC, SNAP-B16MC, SNAP-B8MC-P,
SNAP-B12MC-P, SNAP-B16MC-P)
ioControl User’s Guide 6-7

WORKING WITH I/O
that four numbers are shown for each analog module. If you are using analog modules that
contain only two points, ignore the upper two point numbers.

SNAP Ethernet Analog and Simple Digital Systems

CAUTION: Make certain you use a rack shown as compatible for the processor. Using any
other rack will severely damage the brain or controller.

Processors Compatible Racks

SNAP-PAC-R2
SNAP-UP1-M64
SNAP-ENET-S64

SNAP-M series (SNAP-M16, SNAP-M32, SNAP-M48,
SNAP-M64)

NOTE: Analog modules can be placed in
any position; standard digital modules
can be placed in positions 0–7 only.

This diagram does not apply to SNAP
high-density digital modules, which can
be placed in any position, have 32
points, and are usually read or written
to using a bitmask or table.

Module position 0

This diagram applies to:
SNAP-PAC-R1
SNAP-UP1-ADS
SNAP-B3000-ENET
SNAP-ENET-RTC
6-8 ioControl User’s Guide

WORKING WITH I/O
SNAP M-series mounting racks can hold up to 4, 8, 12, or 16 Opto 22 SNAP I/O modules. Any
combination of analog, digital, serial, and high-density modules can be placed in any position on
the rack (not exceeding eight serial modules).

Each standard SNAP digital module contains four input or four output channels (points). Digital
functions on this brain are limited; see the brain’s data sheet for specifications. SNAP analog
modules supported by these processors contain either two or four points.

Each point on the rack is numbered; when you configure the point, you reference it by its number.
The following diagram shows the largest rack as an example. All modules start with the same
point numbers in position zero on the rack. If you are using analog modules with only two points,
the top two addresses for those analog modules will be empty.

Module position 0

This diagram does not apply to
SNAP high-density digital
modules, which have 32 points
and are usually read or written
to using a bitmask or table.

This diagram applies to:

SNAP-PAC-R2
SNAP-UP1-M64
SNAP-ENET-S64
ioControl User’s Guide 6-9

WORKING WITH I/O
SNAP Ethernet Digital-Only Systems

CAUTION: Do NOT connect a digital-only processor to any rack except the SNAP-D64RS. Using
any other rack will severely damage the brain or controller.

A SNAP-D64RS I/O mounting rack can hold up to 16 standard digital modules. Analog, serial, and
high-density digital modules cannot be used with digital-only processors. Each SNAP standard
digital module contains four input or four output channels, for a total of 64 points of I/O on the
rack.

Each point on the rack is numbered; when you configure the point, you reference it by its number.
The diagram below shows the reference numbers for all 64 digital points.

Processors Compatible Racks

SNAP-UP1-D64
SNAP-ENET-D64

SNAP-D64RS

Module position 0

D
64

This diagram does not apply to
SNAP high-density digital
modules, which cannot be used
with digital-only processors.

This diagram applies to:
SNAP-UP1-D64
SNAP-ENET-D64
6-10 ioControl User’s Guide

WORKING WITH I/O
SNAP Serial-Based (mistic) I/O Units

SNAP B-series mounting racks can hold either 4, 8, 12, or 16 Opto 22 SNAP I/O modules. The
serial B3000 brain can use any size B-series rack and both analog and digital modules. It cannot
use serial or high-density digital modules. The SNAP-BRS uses standard SNAP digital modules
only (no high-density digital) and only on an 8-module rack.

Analog modules can be placed in any position on these racks. For the larger racks, standard SNAP
digital modules can be placed in positions 0–7 only. Each standard SNAP digital module contains
four input or four output points. SNAP analog modules supported by the B3000 contain either one
or two points.

Each point on the rack is numbered; when you configure the point or read or write to it, you
reference it by its number. Each SNAP brain is really up to four logical brains in one: two digital
16-channel multifunctional brains plus (for a B3000) up to two analog 16-channel multifunctional
brains.

Jumpers on the SNAP brain set the base address, which must be zero, four, or a multiple of four.
The base address is the first digital address, digital channels 0–15. The second digital address,
digital channels 16–31, is the base address plus one. On a B3000, the first analog address,
analog channels 0–15, is the base address plus two; the second analog address, analog channels
16–31, is the base address plus three.

Brains Racks

B3000 (serial)
SNAP-BRS

SNAP-B series
(SNAP-BRS is limited to 8-module racks)
ioControl User’s Guide 6-11

WORKING WITH I/O
The following diagram shows the largest rack as an example. Note that two numbers are shown
for each analog module. If you are using analog modules that contain only one point, ignore the
upper point number.

Non-SNAP Serial-Based (mistic) I/O Units

Because non-SNAP serial-based brain boards generally have a maximum of 16 modules on the
rack, and each module has only one point, addressing points is simple. Point numbers correspond
to module positions on the rack, 0–15, except for the following:

• If you are using Quad Pak modules, each module contains four points: module position zero
contains points 0–3, module position one contains points 4–7, and so on.

Brain boards Racks

G4D16R
G4D32RS
G4A8R

Bricks (brain is built into rack)

B100
B200

PB16
G4PB16
PB16A

NOTE: On the B3000, analog
modules can be placed in any
position; standard digital modules
can be placed in positions 0–7 only.

The SNAP-BRS brain uses digital
modules only on an 8-module rack.

SNAP serial and high-density
digital modules cannot be used
with these brains.

Module position 0

This diagram applies to:
B3000 (serial mistic)
SNAP-BRS
6-12 ioControl User’s Guide

WORKING WITH I/O
• A G4D32RS brick contains the equivalent of two 16-module units, and the brain board
addresses them separately. When you configure it in ioControl, notice that it is called a
G4D16RS. Configure two G4D16RS I/O units for each brick.

Adding an I/O Unit
NOTE: If you have already configured I/O in ioManager, you can also add I/O units or points if
necessary from within ioControl, as you add commands to the blocks in your strategy.

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, double-click
the I/O Units folder.

You can also click the Configure I/O icon on the toolbar, or select Configure➞I/O.

The Configure I/O Units dialog box opens, showing all configured I/O units.

2. To configure a new I/O unit, click Add or double-click anywhere in the box below any listed
units.
ioControl User’s Guide 6-13

WORKING WITH I/O
The Add I/O Unit dialog box appears.

3. Complete the fields as described in “Add I/O Unit Dialog Box” below.

Add I/O Unit Dialog Box

(A) Name Enter a name for the I/O unit. The name must start with a letter and may contain
letters, numbers, and underscores. (Spaces are converted to underscores.)

(B) Description (Optional) Enter a description of the unit.

(C) Type Select the type of I/O unit from the drop-down list. Brain model numbers are listed in
parentheses to help you determine which type to choose.

(D) Fahrenheit/Celsius (Analog and Mixed units only) Choose whether temperatures will be
handled in Fahrenheit or Celsius.

(E) Port For Ethernet-based I/O units, communication with the control engine is Ethernet, and the
default port number is 2001. If you have changed this port for security purposes, also change it
here. (See the controller’s user guide for details.)

For serial-based I/O units, the communication port and parameters are shown for you.
Binary/CRC settings on your hardware are required. If you need to change the baud rate, see
“Changing the Baud Rate for Serial I/O Units.”

(F) Primary Address For Ethernet I/O units, type the IP address of the brain attached to the I/O
unit. If the unit is local (the same SNAP Ultimate brain on which the strategy will run), use
127.0.0.1 as the IP address. This is a loopback address; it tells the brain to talk to itself, so if
you change the brain’s IP address, you don’t have to change the address for the I/O unit.

A
B

C
D

E
F
G

J

H

I

6-14 ioControl User’s Guide

WORKING WITH I/O
For serial units, type the unit’s address (valid range is 0–255).

(G) Secondary Address (Optional—ioControl Professional only—Ethernet-based I/O units only)
To designate a secondary I/O unit for communication if this I/O unit is unavailable, enter the
secondary unit’s IP address. Note that both I/O units use the same port number.

(H) Timeout Enter the length of time the control engine should wait for a response when
communicating with this I/O unit. Default is 1 second. CAUTION: For Ethernet, two retries are
built in. If the timeout is long and the I/O unit is turned off or unreachable, the control engine
could take quite a while to execute a command that talks to I/O.

(I) Watchdog Select whether you want a Watchdog on the unit (not available on remote simple
I/O units). The default is No (disabled). If you select Yes, a new field appears; enter the Watchdog
timeout value (in seconds). The default timeout is 0.5 seconds.

With a Watchdog, the I/O unit monitors activity on the port. If no communication is received for
the specified interval, the unit assumes a Watchdog state. All selected outputs will then
immediately go to a specified value, as configured in the Watchdog field of the Add Analog Point
or Add Digital Point dialog boxes. (See “Adding I/O Points” on page 6-16.)

(J) Enable Communications Select whether you want communication to the I/O unit enabled or
disabled on startup. Enabled is the default. Disabling communication to an I/O unit is the same
as disabling communication to all points on the unit.

Changing the Baud Rate for Serial I/O Units
If the default baud rate shown in the Add I/O Unit dialog box not correct, you can change it. This
baud rate is for communication through the RS-485 port to serial I/O units. It does not affect other
serial ports on the controller.

1. Make sure the strategy is open and in Configure mode.

2. From the File menu, choose Strategy Options. Click the Serial Port tab.
ioControl User’s Guide 6-15

WORKING WITH I/O
3. Choose the correct baud rate from the drop-down list and click OK.

The baud rate to serial I/O units is changed.

Changing Configured I/O Units

1. To change a configured I/O unit, make sure the strategy is open and in Configure mode.

2. Find the I/O unit’s name on the Strategy Tree. Double-click it to open the Edit I/O Unit
dialog box.

3. Make the necessary changes and click OK.

You can also change an I/O unit from the Configure I/O Units dialog box by double-clicking the
unit’s name or highlighting it and clicking Modify.

Deleting Configured I/O Units
You cannot delete an I/O unit if it has I/O points configured or if the I/O unit is referenced in an
ioControl command.

CAUTION: Be careful when deleting I/O units. You cannot undo a deletion.

1. To delete a configured I/O unit, make sure the strategy is open and in Configure mode.

2. Find the I/O unit’s name on the Strategy Tree. Right-click it and choose Delete from the
pop-up menu.

The I/O unit is deleted from the strategy.

You can also delete an I/O unit from the Configure I/O Units dialog box by highlighting the unit’s
name and clicking Delete.

Adding I/O Points
Before you add an individual I/O point, such as a sensor or a switch, you must add the I/O unit
the point is on. See “Adding an I/O Unit” on page 6-12.

Adding a Digital I/O Point
NOTE: This section applies to points on most digital modules, but not to points on SNAP
high-density digital modules. For information on high-density digital modules, see page 6-25.

1. With the strategy open and in Configure mode, double-click the I/O Units folder (not the
individual unit’s icon) on the Strategy Tree.
6-16 ioControl User’s Guide

WORKING WITH I/O
The Configure I/O Units dialog box appears.

2. Highlight the I/O unit the points are on, and click I/O Points.

The Configure I/O Points dialog box appears.

3. (ioControl Pro only) If you are using a non-SNAP I/O unit, double-click the channel you
want to use. Skip to step 8.

4. If you are using a SNAP I/O unit, notice the module icons in the dialog box.

NOTE: On an Ethernet SNAP I/O unit, you can configure all the analog and digital modules
on the rack at once. On a serial SNAP I/O unit, you must configure digital and analog modules
separately.

Module icons
ioControl User’s Guide 6-17

WORKING WITH I/O
5. Highlight the number that represents the module’s position on the rack. (See the diagrams
in “Addressing I/O Units” on page 6-6.) Click Add.

6. In the Add Module dialog box, choose the module type and then the exact module from the
lists. Click OK.

7. In the Configure I/O Points dialog box, click the plus sign next to the new module to
expand it.

Notice that the module icon is color-coded to reflect the type of module being configured:
white for digital DC input, red for digital DC output, yellow for digital AC input, and black
for digital AC output.
6-18 ioControl User’s Guide

WORKING WITH I/O
8. Highlight the point you want to configure and click Add.

9. Complete the fields as described in “Add Digital Point Dialog Box” below.

10. When you have completed the fields, click OK.

Module icon

Expand or collapse points
on the module by clicking
the + or - sign in the box.

Points

A

C

D

E

B

F

G

ioControl User’s Guide 6-19

WORKING WITH I/O
The new point appears in the list. Here is an example of how it might look on a SNAP I/O
unit:

NOTE: If you need to add several similar points, see “Copying a Configured I/O Point” on
page 6-26.

Add Digital Point Dialog Box

(A) Name Enter a name for the point. The name must start with a letter and may contain letters,
numbers, and underscores. (Spaces are converted to underscores.)

(B) Description (Optional) Enter a description of the point.

(C) Type/Module For non-SNAP I/O units, choose the module type and the exact module from the
drop-down lists.

For SNAP I/O units: Type and module are already filled in for you, as shown in the example above.

(D) Features To use a feature of the module, choose it from the drop-down list. You can configure
some input modules with a counter, totalizer, or other feature. (Inputs automatically have both
on-latches and off-latches.)

(E) Default To set a default state for the point when the strategy is run, click Yes and choose the
state (Off or On). To leave the point in the state it was before, click No.

(F) Watchdog (Output modules only) To set a Watchdog, click Yes and choose On or Off from the
drop-down list.

(G) Enable Communication Select whether you want communication to this I/O point enabled or
disabled on startup. Enabled is the default.
6-20 ioControl User’s Guide

WORKING WITH I/O
Adding an Analog I/O Point

1. With the strategy open and in Configure mode, double-click the I/O Units folder (not the
individual unit’s icon) on the Strategy Tree.

2. In the Configure I/O Units dialog box, highlight the I/O unit the points are on, and click I/O
Points.

The Configure I/O Points dialog box appears.

3. (ioControl Pro only) If you are using a non-SNAP I/O unit, double-click the channel you
want to use. Skip to step 8.

4. If you are using a SNAP I/O unit, notice the module icons in the Configure I/O Points
dialog box.

NOTE: In this example, a digital module has already been added in position zero. This
example shows an Ethernet SNAP I/O unit, so both digital and analog modules can be
configured at the same time. On a serial SNAP I/O unit, the digital module appears, but
digital and analog modules must be configured separately.
ioControl User’s Guide 6-21

WORKING WITH I/O
5. Highlight the number of the analog module’s position on the rack. (See the diagrams in
“Addressing I/O Units” on page 6-6.) Click Add.

6. In the Add Module dialog box, choose the module type and then the exact module from the
lists. Click OK.

7. In the Configure I/O Points dialog box, click the plus sign next to the new module to expand
it. Notice that the module icon is color-coded to reflect the type of module being
configured: blue for analog input, green for analog output.

Module icon

Expand or collapse points
on the module by clicking
the + or - sign in the box.

Points
6-22 ioControl User’s Guide

WORKING WITH I/O
8. Highlight the point you want to configure and click Add.

9. Complete the fields as described in “Add Analog Point Dialog Box” below.

10. When you have completed the fields, click OK.

The new point is added.

NOTE: If you need to add several similar points, see “Copying a Configured I/O Point” on
page 6-26.

Add Analog Point Dialog Box

(A) Name Enter a name for the point. The name must start with a letter and may contain letters,
numbers, and underscores. (Spaces are converted to underscores.)

(B) Description (Optional) Enter a description of the point.

(C) Type/Module For non-SNAP I/O units, choose the module type and the exact module from the
drop-down lists.

For SNAP I/O units: Type and module are already filled in for you. You may be able to choose a
different range or a scalable module from the drop-down list.

B

F

G

C

H

I

A

D

E

ioControl User’s Guide 6-23

WORKING WITH I/O
(D) Full Range Full range and units for this module. If the module is scalable, use F to change
scale.

(E) Clamping (Outputs only—optional) Enter upper and lower clamp if necessary to limit output
to the device attached to the point. If fields are left empty, no clamp is applied. To empty the
fields, click Clear.

(F) Scaling (Scalable modules only—optional) Use to assign custom units and values to the
module. For example, you could scale the readings of a -10 to +10 VDC input point to measure its
input as zero liters per second when the real-world reading is zero VDC, and 1000 liters per
second when the real-world reading is five VDC. This example would look like this:

Custom scaled values can be any floating point value as long as the upper value is higher than
the lower value. Note that inputs typically have under-range and over-range capability, which
means you can specify a lower or upper value beyond the standard value. Outputs do not have
under-range or over-range capability.

To return the units and upper/lower values to the defaults for the module, click Default.

(G) Default To set the initial values for this I/O point when the strategy is run, click Yes and define
the value. To leave the internal/external values at their last state, click No.

If communication to the point is disabled, only the internal values (IVALs) are updated by the
control engine. The real-world external values (XVALs) for inputs don’t change because they are
controlled by external devices. The IVALs for inputs are set and will be overwritten by the XVALs
unless communication to the point is disabled.

(H) Watchdog (Outputs only) To set a Watchdog on this point, click Yes, and define the value to
be assigned to the output if the Watchdog is triggered. A Watchdog is triggered if no
communication activity is detected on the bus for the amount of time specified in the Watchdog
field of this point’s I/O unit. For no Watchdog, click No.

In this example units are
changed to liters/second and
lower and upper values are
changed. Although the module
has an output of -10 to +10
volts, the device attached to
the point outputs only 0–5
volts. Scaling reflects the
device’s range.
In this case Clamping protects
the device by ensuring that
out-of-range voltage will never
be sent to it.
6-24 ioControl User’s Guide

WORKING WITH I/O
(I) Enable Select whether you want communication to this I/O point enabled or disabled on
startup. Enabled is the default.

Configuring Special-Purpose Modules

Configuring a Serial Module
Use ioManager to configure SNAP serial communication modules, including the Profibus module.
Serial modules can be used with SNAP Ethernet-based I/O units only. See the ioManager User’s
Guide (Opto 22 form #1440) for instructions.

Configuring a SNAP High-Density Digital Module
SNAP high-density digital (HDD) modules do not require configuration because the I/O unit
recognizes them automatically. Be sure to remember which module positions on the rack are
occupied by HDD modules.

HDD modules are supported by SNAP Ethernet-based I/O units only. For more information on
using these modules in your strategy, see “High-Density Digital Module Commands” on
page 10-6.

Changing Point Configuration

Moving a Configured I/O Point
You can move most configured I/O points to an empty point on the same I/O unit or on a different
unit.

1. With the strategy open in Configure mode, double-click the I/O Units folder on the Strategy
Tree.

2. In the Configure I/O Unit dialog box, highlight the unit the point is on and click I/O Points.
ioControl User’s Guide 6-25

WORKING WITH I/O
The Configure I/O Points dialog box opens. For a SNAP I/O unit, it looks something like this:

3. If necessary, expand the modules by clicking Expand All.

4. Highlight the point you want to move and click Move To.

5. In the Points area of the Move Point To dialog box, highlight the location you are moving
the point to. Then click OK.

You return to the Configure I/O Points dialog box, and the point has been moved.

Copying a Configured I/O Point
If you have several points that are the same, you can copy a configured point:

• to fill empty points on the same module

• to fill all empty points on the I/O unit.

• to another other point on the same or a different I/O unit
6-26 ioControl User’s Guide

WORKING WITH I/O
1. With the strategy open in Configure mode, double-click the I/O Units folder on the Strategy
Tree to open the Configure I/O Points dialog box.

2. Click Expand All so you can see the points.

3. Highlight the point you want to copy and click the Copy To button. From the popup menu,
choose one of the following:

To copy the point to fill empty points on the module, choose Fill In Module.

The point is copied to the other empty points on the same module.

To copy the point to fill all empty points on the I/O unit, choose Fill In I/O Unit.

Original point

Copied points
ioControl User’s Guide 6-27

WORKING WITH I/O
The point is copied to all empty points on similar modules (for example, to all empty points
on digital input modules, whether they are the same or a different part number) and to all
compatible slots without configured modules.

To copy the point to one other point, either on the same or a different I/O unit, choose
To Specific.

The Copy To dialog box opens.

In the left column, choose the same or another I/O unit. In the right column, choose the
location of the point to copy to.

This module was already
configured. The copied point filled
in all empty points, even though the
module is a different part number.

No module existed in this slot.
Both the points and the module
were copied from the original.
6-28 ioControl User’s Guide

WORKING WITH I/O
Available points are shown in black. Already configured points, points on a different type of
module (digital output instead of digital input, for example), and point numbers not on the
rack (such as point 40 on an 8-module rack) are grayed out.

If the point is copied to an empty module slot, the module part number from the copied
point is added, too.

4. After you copy a point, change the new point as needed by double-clicking its point name.
In the Edit Digital Point dialog box, type the new name and make any other changes.

Changing a Configured I/O Point

1. With the strategy open in Configure mode, expand the I/O Units folder on the Strategy Tree
until you can see the I/O point you want to change. Double-click the I/O point name.

2. In the Edit Analog Point or Edit Digital Point dialog box, make the necessary changes. Click
OK to save.

For help in making changes, see the previous sections on adding I/O points.

Deleting a Configured I/O Point
You cannot delete an I/O point that is referred to in the Strategy.

CAUTION: Be careful when deleting I/O points. You cannot undo a deletion.

1. With the strategy open in Configure mode, expand the I/O Units folder on the Strategy Tree
until you can see the I/O point you want to delete.

2. Right-click the I/O point’s name and choose Delete from the pop-up menu.

You can also delete an I/O point from the Configure I/O Points dialog box by highlighting its name
and clicking Delete.

Configuring PID Loops
PID loops (or simply PIDs) are used to drive an input (a process variable) toward a particular value
(the setpoint) and keep the input very close to that value by controlling an output. For example,
consider temperature control, where the input is a measurement of ambient temperature, the
setpoint is the desired temperature, and the output is a heater. The PID for this system will use
a mathematical formula that controls the output to maintain a desired temperature, efficiently
adjust to changes in setpoint, and compensate for changes in load, such as the influx of cold air.
In this example, a temperature sensor (analog input), a thermostat (analog input), and a heater
control (analog output) are components of one system, controlled by a PID loop.
ioControl User’s Guide 6-29

WORKING WITH I/O
This guide assumes that you are already familiar with using PIDs. PID calculations are complex
and the physical qualities of systems suitable for PID control differ greatly. This guide includes
only basic information for configuring PIDs.

An analog/digital SNAP Ethernet I/O unit supports 16 PID loops; a SNAP Ultimate I/O unit
supports 32 PID loops. If you have ioControl Professional, you can also use up to eight PID loops
on mistic I/O units.

PIDs can control isolated systems or be part of cascaded systems where one loop controls the
setpoints or input variables of others. For maximum flexibility, any PID input, setpoint, or output
can be determined by ioControl commands.

PIDs and Strategies
Because PIDs run on the I/O unit, not the control engine, PIDs run whether the ioControl Strategy
is running or not. Once running, a PID continues running until the I/O unit loses power or the PID
is set to Manual.

When you change PID configuration in ioControl, remember that changes are not written to the
I/O unit until the strategy is downloaded and run. For a SNAP Ethernet-based I/O unit, be sure to
save PID configuration to flash memory following instructions for the I/O unit.

If you subsequently download a different strategy to the control engine, you’ll receive an error
message (-700) reminding you that a PID loop is still running and that it may conflict with the new
strategy. To turn off a PID loop on a SNAP Ethernet-based I/O unit, open ioManager and use
Inspect mode to change the PID’s algorithm to None.

Each PID loop must be individually configured and tuned.

• For SNAP Ethernet-based I/O units, configuration steps start in the next section and
tuning steps are described on page 6-58. For additional information, see “PID—Ethernet
Commands” on page 10-58, and Opto 22 form #1410, PID Configuration and Tuning: SNAP
Ultimate I/O Learning Center Supplement.

• (ioControl) For serial-based mistic I/O units, skip to “Adding a PID Loop (mistic)” on
page 6-34. For additional information, see “PID—Mistic Commands” on page 10-62.

Adding a PID Loop (Ethernet)
NOTE: This section applies to SNAP Ethernet and SNAP Ultimate I/O units only.

1. With the strategy open and in Configure mode, double-click the I/O Units folder (not the
individual unit’s icon) on the Strategy Tree.
6-30 ioControl User’s Guide

WORKING WITH I/O
The Configure I/O Units dialog box opens.

2. Select the I/O unit the PID will be on, and click PID Loops.

3. Double-click the lowest unused number.
ioControl User’s Guide 6-31

WORKING WITH I/O
4. Complete the fields as described in “Add PID Loop Dialog Box” below.

5. Click OK.

The new PID appears in the Configure PID Loops dialog box.

6. When you have finished configuring PIDs, click Close.

PIDs appear in the Strategy Tree under the I/O unit.

Add PID Loop Dialog Box

(A) Name Type a unique, descriptive name for the PID. The name must start with a letter and may
contain letters, numbers, and underscores (spaces are converted to underscores).

(B) Description (Optional) Enter a description of the PID.

(C) Input Select the type of input: I/O Point, Host, or PID Output.

• If the PID’s process variable comes from an I/O point on the same unit, select I/O Point.
Choose the point from the dropdown list or type a point name to configure a new point.

A

C

E

B

H

F

G

I

K

J

D

L
M

N
O

P

6-32 ioControl User’s Guide

WORKING WITH I/O
• If the PID’s process variable comes from the ioControl strategy, select Host. Enter an initial
value for the input.

• If the PID’s process variable is the output of another PID on this brain (a cascading control
loop), select PID Output. Choose the PID from the dropdown list.

(D) Square Root (Optional) If you chose I/O Point or PID for step C, check this box if the error
should be calculated based on the square root of the process variable (applies to flow control
systems where volumetric flow is proportional to the square root of a signal from a flow
transducer).

(E) Low/High Range Set the valid range of the process variable by entering the low range and the
high range. (See Output Options for optional responses to out-of-range input.)

(F) Setpoint Choose the source for the setpoint: I/O Point, Host, or PID Output.

• To control the setpoint using a device (on the same brain) such as a potentiometer, select
I/O Point; choose an I/O point from the dropdown list or type a new point name.

• To control setpoint using ioControl or ioDisplay, select Host and enter an initial value.

• If another PID loop will control the setpoint, select PID Output and choose the PID from the
dropdown list.

(G) Output Choose the destination for the PID output: I/O Point or Host. (To use the output for
controlling the setpoint or input of another PID, choose Host.)

(H) Lower Clamp/Upper Clamp Enter upper and lower clamp values to prevent the output from
exceeding a desirable range. These values should equal the range of the output point, if used. Or
choose values to make sure that the output device doesn’t shut off (for example, keeping a
circulation pump running regardless of the PID output) or that the output never reaches a
destructively high setting (for example, keeping a motor below maximum).

(I) Min Change/Max Change (Optional) Enter minimum and maximum change values. The output
won’t respond until the minimum change is reached (for example, you may not want a heater to
turn on to correct a 1 degree error). Maximum change prevents too drastic a change in output (for
example, you could limit the increase in a pump’s output to prevent pipe breakage). The default
for both minimum and maximum is zero, which disables the feature.

(J) Output Options Choose how the PID should respond if the input goes out of range. If no boxes
are checked, the PID will freeze output at the current value. To have ioControl logic or an operator
respond, check Switch to manual mode. To force the output to a specific value, check that option
and type the output values.

NOTE: If both boxes are checked (forced output and manual mode), the output will be forced and
the PID put into manual mode; but if the PID is already in manual mode, the output will not be
forced. (You can use the command Get PID Status Flags to determine current settings.)

(K) Algorithm Choose algorithm: Velocity, ISA, Parallel, Interacting. For details on algorithms, see
“Algorithm Choices (PID—Ethernet)” on page 10-60.
ioControl User’s Guide 6-33

WORKING WITH I/O
(L) Mode Choose Mode. Auto activates the PID. Manual requires that ioControl logic or an
operator control the PID output.

(M) Scan Rate Enter a scan rate to determine how often the input is scanned and the controller
output is calculated. Minimum value is 0.001 (1 ms). Scan time should be greater than system
lag (the time it takes for the controller output to have a measurable effect on the system). Also
consider other PIDs and tasks on the brain competing for processing power.

(N) Gain Type a positive or negative value for Gain. Heating systems usually require a negative
value and cooling systems a positive value. NOTE: Gain is usually refined during the tuning
process.

(O) Fd Fwd Initial/Fd Fwd Gain (Optional) Enter Feed forward Initial and Feed forward gain values
if you need to offset the controller output in your application. These values are constants that are
multiplied and added to the controller output; often they are not used in PIDs.

(P) Tune I/Tune D (Optional) Type Integral and Derivative settings if you know the desirable
settings. However, Integral and Derivative are not essential to basic configuration and are better
determined in the tuning process.

Adding a PID Loop (mistic)
Mistic PID loops can be configured only on B3000 brains and G4A8R bricks. (For PID loops on
Ethernet-based I/O units, see page 6-30.)

1. To configure a mistic PID loop, make sure you have the strategy open in Configure mode.

2. On the Strategy Tree, double-click the I/O Units folder (not the individual unit’s icon).

3. In the Configure I/O Units dialog box, click the PID Loops button.

PID loops
6-34 ioControl User’s Guide

WORKING WITH I/O
The Configure PID Loops dialog box appears, listing all PID loops on the I/O unit.

4. If the correct I/O unit does not appear in the I/O Unit field, choose it from the drop-down
menu.

5. Double-click an unused line (or highlight it and click the Add button).

The Add PID Loop dialog box opens.

6. Complete the fields as described in “Add PID Loop Dialog Box (mistic)” below.

A
B
C
D
F
H

I

E

G

J
L

N
P

S
R
T

K

M
O

Q

ioControl User’s Guide 6-35

WORKING WITH I/O
7. If you chose Host as the Input source and I/O Point as the Setpoint source, complete the
following fields:

(A) Initial Value (If Host is selected as Input source) Specify the initial value for the input
for the PID calculation. This value must be between the low-scale and high-scale values (B
and C). By default, this value is set to zero.

(B) Low Scale (If Host is selected as Input source) Specify the lowest possible input
value. The default is -32,768.

(C) High Scale (If Host is selected as Input source) Specify the highest possible input
value. The default is 32,767.

(D) I/O point (If I/O Point is selected as Setpoint source) Select from the drop-down list the
I/O point providing the setpoint value. If the point doesn’t exist, enter a new name and add
it.

Add PID Loop Dialog Box (mistic)

(A) Name Enter a name for the PID. The name must start with a letter and may contain letters,
numbers, and underscores. (Spaces are converted to underscores.)

(B) Description (Optional) Enter a description of the PID.

(C) Mode Select whether the initial mode of the PID is automatic or manual. In Automatic mode,
the PID is automatically calculated. In Manual mode, no calculation is made.

A
C

D

B

6-36 ioControl User’s Guide

WORKING WITH I/O
(D) Options To set advanced options, click Options and see “Setting PID Loop Control Options
(mistic PIDs)” on page 6-38.

(E) Scan Rate Enter a time (in seconds) representing the interval between PID loop calculations.
The smaller the number, the more often the PID will be calculated. The default of 0.1 specifies a
PID calculation 10 times per second.

(F) Input Select whether the input for the PID calculation will be read from an I/O point or a host
device (the controller). Your choice determines the other data required in the Input section of the
dialog box. If you choose Host, see the figure in step 7 for additional fields to complete.

(G) Input drop-down list (If I/O Point is selected at F) Select from the drop-down list the I/O point
providing the input value. If the point doesn’t exist, enter a new name and add the point.

(H) Square Root (If I/O Point is selected at F) Enable or disable square root extraction and
averaging of the input value prior to the PID calculation. These options are disabled by default.

(I) Output Specify the output to be driven by the PID by selecting an I/O point from the drop-down
list. If it doesn’t exist, enter a new I/O point name and add the point.

(J) Maximum Change Rate Specify the maximum absolute difference allowed for the output
value as the result of one PID calculation. For example, a maximum change rate of 10 specifies
that even if a PID calculation suggests an output change of 20 units, the maximum change
allowed during the loop will be 10 units.

You can use a maximum change rate to avoid sudden, dramatic increases or decreases in the
output value. Note that the maximum change rate must be between one percent and 100 percent
of the range of the output itself, which is the difference between the output’s high-scale value
(L) and low-scale value (K). The value representing this full range will appear by default.

(K) Lower Clamp, Output Specify the minimum value allowable for the output. This value cannot
be less than the zero-scale value of the output module.

(L) Upper Clamp, Output Specify the maximum value allowable for the output. This value cannot
be greater than the full-scale value of the output module.

(M) Setpoint Select whether the setpoint for the PID calculation will be read from an I/O point or
a host device (the controller). The setpoint is the value to which the input will be driven. Your
choice determines the other data required in the Setpoint section of the dialog box. If you choose
I/O Point, see the figure in step 7 for additional fields to complete.

(N) Initial Value (If Host is selected at M) Specify the initial value for the setpoint. This value must
be between the lower-clamp and upper-clamp values (O and P). The default is zero.

(O) Lower Clamp, Setpoint (If Host is selected at M) Specify the lowest possible setpoint value.
Default: -32,768.

(P) Upper Clamp, Setpoint (If Host is selected at M) Specify the highest possible setpoint value.
Default: 32,767.
ioControl User’s Guide 6-37

WORKING WITH I/O
(Q) Gain Specify the gain term (P) to be used in the PID calculation. This value can range between
-32,768 and 32,767 but must not be zero. The default is one.

(R) Integral Specify the integral term (I) to be used in the PID calculation. This value can range
between zero and 32,767. The default is zero. (Note: The product of the scan rate and the integral
term must be less than or equal to 3,932,100.)

(S) Derivitive Specify the derivative term (D) to be used in the PID calculation. This value can
range between zero and 32,767. The default is zero.

(T) Enable Communication Select whether you want communication to this PID loop enabled or
disabled.

Setting PID Loop Control Options (mistic PIDs)

If you clicked the Options button in the Add PID Loop dialog box in step 6 of “Adding a PID Loop
(mistic)” on page 6-34, the PID Loop Control dialog box opens.

1. Set the options as described in “PID Loop Control Options Dialog Box” below.

NOTE: Since you can switch between automatic and manual modes through the View PID
Loop dialog box in Debug mode, you may want to configure options for both modes.

2. When you have set the options, click OK to return to the Add PID Loop dialog box.

A

B

E

C
D

6-38 ioControl User’s Guide

WORKING WITH I/O
PID Loop Control Options Dialog Box

(A) Automatic Mode If you want the PID calculation transferred to the output, click Enabled (the
default). If you do not want the PID calculation transferred to the output, click Disabled. In either
case, the PID will continue calculating and will not be reset.

(B) Manual Mode/Output If you want the PID calculation transferred to the output, click Enabled
(the default). If you do not want the PID calculation transferred to the output, click Disabled.

(C) Manual Mode/Output Track Input If you want the output to assume the input value, click Yes.
You can use this option to create a signal converter (for example, 4–20 mA input to 0–10 V
output), since the output is proportional to the input.

(D) Manual Mode/Setpoint Track Input If you want the setpoint to be set to the input value, click
Yes. You can use this option to smooth the transfer when returning to automatic mode.

(E) Manual Mode/Reset If you want to force the PID loop to reset when entering manual mode,
click Yes. This option stops all calculations, sets all process errors to zero, and resets the scan
rate timer, leaving the output unchanged. If you want the PID calculation to continue, click No.
(When you enter automatic mode, however, you cannot force a reset.)

Mistic PID Loop Configuration Example

Here’s an example of a completed mistic PID configuration for a temperature controller. The PID
modifies an output automatically every second.
ioControl User’s Guide 6-39

WORKING WITH I/O
The input is an I/O point called Oven_Temperature. Its value is averaged before being applied to
the PID calculation. The output being driven is an I/O point called Oven_Temperature_Control,
which must remain between zero and 100 units.

The sample PID would appear in the Configure PID Loops dialog box like this:

The maximum change rate has been
set to the full range (100), which
means we are allowing the output to
change as much as it needs to during
each cycle.

The setpoint is read from the host
device (the controller) and is initially
set to zero. It is clamped at 400 at the
upper end.

For the PID calculation, the gain term
is one, the integral term is 0.1, and
the derivative term is zero.
6-40 ioControl User’s Guide

WORKING WITH I/O
Changing a PID Loop (Ethernet or mistic)
You can change the PID loop’s configuration and its position in the I/O unit.

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, expand the
I/O Units folder until you see the PIDs folder for the I/O unit you want. Double-click the
PIDs folder.

The Configure PID Loops dialog box opens, listing all configured PID loops. Remember that
the number of PID loops available depends on the I/O unit.

PID loops are scanned by the I/O unit in the order that they appear in this list.

2. To move the PID loop to a different position on the I/O unit, use the up- and down-arrows in
the dialog box.

3. To change the PID loop’s configuration, double-click its name to open the Edit PID Loop
dialog box. Change the fields as necessary.

For help in completing the fields, see “Adding a PID Loop (Ethernet)” on page 6-30 or
“Adding a PID Loop (mistic)” on page 6-34.

Deleting a PID Loop (Ethernet or mistic)
Only PID loops that have a reference count of zero can be deleted. Be careful when deleting PID
loops; you cannot undo a deletion.

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, expand the
I/O units folder until you see the PID loop you want to delete.

2. Right-click the name of the PID loop and choose Delete from the pop-up menu.

The PID loop is deleted.

Up- and down- arrows
ioControl User’s Guide 6-41

WORKING WITH I/O
You can also delete a PID loop in the Configure PID Loops dialog box by highlighting it and
clicking Delete.

Configuring Event/Reactions
 Event/reactions apply to serial-based mistic I/O units only. If you are moving from
OptoControl to ioControl, note that the interrupt line is not currently supported in ioControl.

NOTE: Similar events and reactions can be configured on a SNAP Ethernet-based I/O unit using
ioManager, but they can interfere with ioControl strategy logic unless you are very careful. For
more information, see the ioManager User’s Guide (Opto 22 form #1440)

Event/reactions do exactly what their name suggests: they make something happen in response
to an event. Their advantage is that they simplify and speed the control engine’s job by offloading
certain control functions from the control engine to the I/O unit.

Examples of events are a timeout, an input or output reaching a value, or a special digital feature
(such as frequency or an on-time totalizer) reaching a value. Examples of reactions include
starting an on- or off-pulse, reading and holding a value, or activating or deactivating a mistic PID
loop.

Event/reactions can be configured on mistic digital and analog multifunction I/O units only. You
can configure up to 256 event/reactions on a single I/O unit. For more information on using
event/reactions, see “Event Reaction Commands” on page 10-22.

1. To configure an event/reaction, make sure the strategy is open in Configure mode. On the
Strategy Tree, double-click the I/O Units folder (not the individual unit’s icon).

2. In the Configure I/O Units dialog box, highlight the multifunction mistic I/O unit and click
the Event/Reactions button.

The Configure Event/Reaction dialog box appears, showing all event/reactions contained
on the I/O unit (in this example, none).
6-42 ioControl User’s Guide

WORKING WITH I/O
3. If the correct I/O unit is not shown, select the unit from the drop-down list.

Since only multifunction units support event/reactions, they are the only units listed.

4. Highlight an unused line and click Add, or double-click an unused line.

The Add Event/Reaction dialog box appears.

5. Complete the fields as described in “Add Event/Reaction Dialog Box” below.

6. Click OK.

The event/reaction appears in the Configure Event/Reaction dialog box.

Add Event/Reaction Dialog Box

(A) Name Enter a name for the event/reaction. The name must start with a letter and may contain
letters, numbers, and underscores (spaces are converted to underscores).

(B) Description (Optional) Enter a description of the event/reaction.

(C) Scan on Run If you want the I/O unit to begin scanning for the event automatically as soon
as the strategy is run, click Yes. If you want scanning to wait until it is started by a command in
the strategy, click No.

(D) Event Type From the drop-down list, select an event to scan for. Complete additional fields
that appear as described in the following tables.

This figure shows the fields in the
dialog box when you first open it.

Depending on the type of event or
reaction you select, other fields may
appear.

A
B
C

D

E

F

ioControl User’s Guide 6-43

WORKING WITH I/O
For digital I/O units:

For analog I/O units:

(E) Reaction Type From the drop-down list, select the reaction to take in response to the event.
Complete additional fields that appear as described in the following tables.

For digital I/O units:

For this type of event Enter this information

Watchdog Timeout No information required.

Counter >= Value
Quadrature >= Value
Totalize On >= Value
Totalize Off >= Value
On-Pulse >= Value
Off-Pulse >= Value
Period >= Value
Frequency >= Value
Quadrature <= Value
Frequency <= Value
Counter <= Value

Specify the I/O point to be monitored and the value to compare the
I/O point against.
Select the I/O point from the drop-down list or specify a new name
for the point and configure it.

MOMO Match See “Adding a MOMO Event or Reaction (mistic I/O Units Only)”
on page 6-46.

For this type of event Enter this information

Watchdog Timeout No information required.

Analog Input >= Value
Analog Input <= Value
Analog Output >= Value
Analog Output <= Value

Specify the I/O point to be monitored, the value to compare the
I/O point against, and the type of comparison value (current,
average, maximum, minimum, or total).
Select the I/O point from the drop-down list or specify a new name
for the point and configure it.

For this type of reaction Enter this information

None (no reaction) None

Enable Scan for Event
Disable Scan for Event

Select the event from the drop-down list.

Enable Scan for E/R Group
Disable Scan for E/R Group

Select the group from the drop-down list.

Disable Scan for All Events None

Set MOMO Outputs See “Adding a MOMO Event or Reaction (mistic I/O
Units Only)” on page 6-46.
6-44 ioControl User’s Guide

WORKING WITH I/O
For analog I/O units:

Start On-Pulse
Start Off-Pulse

Specify the I/O point to be pulsed and the length of
the pulse in seconds. Select the I/O point from a
drop-down list or specify a new name for the point and
configure it.

Start Counter
Stop Counter
Start Quadrature Counter
Stop Quadrature Counter
Clear Counter
Clear Quadrature Counter
Clear On-Pulse
Clear Off-Pulse
Clear Period
Clear Totalize On
Clear Totalize Off
Read and Hold Counter Value
Read and Hold Quadrature Value
Read and Hold Totalize On Value
Read and Hold Totalize Off Value
Read and Hold On-Pulse Value
Read and Hold Off-Pulse Value
Read and Hold Period Value
Read and Hold Frequency Value

Specify the I/O point to be affected. Select the I/O
point from a drop-down list or specify a new name for
the point and configure it.

For this type of reaction Enter this information

None (no reaction) None

Enable Scan for Event
Disable Scan for Event

Select the event from the drop-down list.

Enable Scan for E/R Group
Disable Scan for E/R Group

Select the group from the drop-down list.

Disable Scan for All Events None

Read and Hold Analog Input Data
Read and Hold Analog Output Data

Specify the I/O point and type of data (current,
average, maximum, minimum or total) to be read.
Select the I/O point from a drop-down list or specify
a new name for the point and configure it.

Activate PID Loop
Deactivate PID Loop

Specify the PID loop to be affected. Select the PID
from a drop-down list or specify a new name for the
PID and configure it.

Set PID Loop Setpoint Specify the PID loop to be affected and the setpoint
value. Select the PID from a drop-down list or
specify a new name for the PID and configure it.

For this type of reaction Enter this information
ioControl User’s Guide 6-45

WORKING WITH I/O
(F) Enable Communication To enable communication to this event/reaction, check to enable
communication to this event/reaction, or uncheck to disable communication.

Adding a MOMO Event or Reaction (mistic I/O Units Only)
 On a digital multifunction I/O unit, a special type of event or reaction you can configure is called
MOMO (must-on, must-off). A MOMO Match event monitors several inputs and/or outputs on an
I/O unit for a match to a specific pattern. A Set MOMO Outputs reaction defines a set of values
for outputs on an I/O unit. You can use just a MOMO event, just a MOMO reaction, or both.

The following figure shows the additional fields and buttons that appear if you select the MOMO
Match event or the Set MOMO Outputs reaction:

1. To set up or change the must-on pattern or must-off pattern (called the mask), click
Configure Mask in the Event or Reaction sections.

Set Analog Output Specify the I/O point and the value to set it to. Select
the I/O point from a drop-down list or specify a new
name for the point and configure it.

Ramp Analog Output to Setpoint Specify the I/O point, the ramping speed in units per
second, and the end point value to ramp to. Select
the I/O point from a drop-down list or specify a new
name for the point and configure it.

For this type of reaction Enter this information

Reaction
section

The gray Must On
Mask and Must Off
Mask fields show any
current mask

Event
section
6-46 ioControl User’s Guide

WORKING WITH I/O
The Configure MOMO dialog box appears, listing all I/O points you can set in the mask.

2. For each I/O point, click the scroll arrows to indicate that the point is On, Off, or X (ignored).
When you have finished the mask, click OK.

You return to the Add Event/Reaction dialog box, and the numerical equivalent of the mask
you have set appears in the Must On Mask and Must Off Mask fields.

3. In the Event and Reaction sections, choose whether to display the mask in decimal,
hexadecimal, or binary form. The default is decimal.

4. When the event/reaction is configured, click OK.

The new event/reaction appears in the Configure Event/Reaction dialog box.
ioControl User’s Guide 6-47

WORKING WITH I/O
Event/Reaction Configuration Example
NOTE: Event/reactions are available on serial mistic I/O units only.

Here’s an example of an Add Event/Reaction dialog box for an event/reaction involving a counter:

This event/reaction would appear in the Configure Event/Reactions dialog box like this:
6-48 ioControl User’s Guide

WORKING WITH I/O
Using Event/Reaction Groups (mistic I/O Units Only)
Since you can configure up to 256 event/reactions on an I/O unit, it’s useful to be able to divide
them into groups of 16. By grouping related event/reactions, you can also take advantage of
commands that start or stop scanning of all event/reactions in a group.

Creating Groups

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, expand the
I/O Units folder until you see the E/Rs folder for the I/O unit you want. Double-click the
E/Rs folder.

The Configure Event/Reaction dialog box opens, listing all configured event/reactions.

2. To create a group, click the Name Groups button.

3. Highlight a physical group of E/Rs. Click in the Group Name field and type a name.

Group names must start with a letter and may contain letters, numbers, and underscores.
(Spaces are converted to underscores.)

Group
buttons
ioControl User’s Guide 6-49

WORKING WITH I/O
4. When you have finished naming groups, click Close. The names appear in the Group Name
column of the Configure Event/Reaction dialog box.

Deleting Groups

When you delete a group, you’re deleting only the group name, not the event/reactions that were
assigned to the group.

To delete a group name, in the Configure Event/Reaction dialog box, select any event/reaction in
the group and click the Delete Group button.

The group name is removed from all 16 event/reactions in the group, and the selected
event/reaction appears at the top of the list box.

Changing Configured Event/Reactions (mistic I/O Units
Only)
 You can change an event/reaction’s configuration and its position in the I/O unit.

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, expand the
I/O Units folder until you see the E/Rs folder for the I/O unit you want. Double-click the
E/Rs folder.
6-50 ioControl User’s Guide

WORKING WITH I/O
The Configure Event/Reaction dialog box opens, listing all configured event/reactions.

Event/reactions are scanned by the I/O unit in the order that they appear in this list.

2. To move an event/reaction to a different position on the I/O unit, use the up- and
down-arrows in the dialog box.

3. To change an event/reaction’s configuration, double-click its name to open the Edit
Event/Reaction dialog box. Change the fields as necessary.

For help in completing the fields, see “Configuring Event/Reactions” on page 6-42.

Deleting Event/Reactions (mistic I/O Units Only)
You can delete only event/reactions with a reference count of zero. Be careful when you delete;
you cannot undo a deletion.

1. Make sure the strategy is open and in Configure mode. On the Strategy Tree, expand the
I/O units folder until you see the event/reaction you want to delete.

2. Right-click the name of the event/reaction and choose Delete from the pop-up menu.

The event/reaction is deleted.

You can also delete an event/reaction in the Configure Event/Reaction dialog box by
highlighting it and clicking Delete.

Inspecting I/O in Debug Mode
You may want to inspect or change I/O while you are running your Strategy in Debug mode. This
section shows how to view information about I/O and make changes while the strategy is
running.

To monitor several I/O elements at once in a window you can save with your strategy, see “Using
Watch Windows for Monitoring” on page 6-73.

Up- and
down-
arrows
ioControl User’s Guide 6-51

WORKING WITH I/O
Inspecting I/O Units

1. With the strategy running in Debug mode, double-click an I/O unit in the Strategy Tree.

The View I/O Unit dialog box appears, showing information about the unit and its points.
The title bar shows the name of the I/O unit and whether scanning is occurring.

NOTE: Scanning stops whenever you click a changeable field. It resumes once you click
Apply, another button, or an unchangeable field. If scanning resumes before you click Apply,
any changes you made are lost.

2. To save the current configuration of the I/O unit to its EEPROM (flash memory), click the
SET button.

The following parameters are saved:

Saving to flash memory this way is the same as saving to flash by other methods, such as
using ioManager (see the ioManager User’s Guide), and is preferable to using the
command Write I/O Unit Configuration to EEPROM.

3. To reset saved parameters to their powerup default values, click the Clear button.

4. To change the I/O unit’s current status, click an arrow in the Enable field. Then click Apply.

Analog Digital

• I/O module configuration
• Initial output settings
• Comm link watchdog time
• Temperature conversion type
• Input offset and gain settings

• I/O module configuration
• Comm link watchdog time
6-52 ioControl User’s Guide

WORKING WITH I/O
Yes on a green background means enabled; No on a red background means disabled. If you
change it, the background turns magenta until you click Apply.

5. To view an individual I/O point, highlight its name in the list.

• To add an I/O element to a watch window, click Add Watch. See page 6-73.
• To open an inspection window to change an I/O point, click View. Then see “Inspecting

Digital I/O Points” below for the I/O point you are changing (analog or digital).

6. When you have finished inspecting the I/O unit, click Close.

Inspecting Digital I/O Points
You can inspect a Digital Point’s data, change its status, or set its Internal Values or External
Values in Debug mode. To monitor the point in a watch window, see page 6-73. To change the
point, follow these steps.

1. With the strategy running in Debug mode, double-click the I/O point on the Strategy Tree,
or double-click the point in the View I/O Unit dialog box.

The small dialog box that appears shows the IVAL and XVAL.

• The XVAL, or external value, is the “real” or hardware value as seen by the I/O unit.
This value is external to the control engine.

• The IVAL, or internal value, is a logical or software copy of the XVAL that is in the
control engine. The IVAL may or may not be current, since it is updated to match the
XVAL only when a strategy in the control engine reads or writes to an I/O point.

If the digital point is configured with a counter, the counter values appear instead of the
point’s status.

2. To change the value or to view more information, click the Maximize button.

Maximize button
Minimize button
ioControl User’s Guide 6-53

WORKING WITH I/O
The title bar shows the name of the digital point and whether scanning is occurring.

Scanning stops whenever you click a changeable field. It resumes once you click Apply,
another button, or an unchangeable field. If scanning resumes before you click Apply, any
changes you made are lost.

Asterisks in a field indicate an out-of-range value. Dashes in an XVAL field indicate a
communication error.

3. Change the fields as necessary:

(A) State The point’s current internal value. Switch between On and Off; then click Apply.

(B) XVAL The point’s current external value. Switch between On and Off; then click Apply.

(C) On-Latch/Off Latch The state of the point’s on and off latches.

(D) Counter Internal and external feature values if the point has been configured with any
special features, such as a counter.

(E) Enable comm Current point status: Yes on a green background means enabled, No on
a red background means disabled. To change the status, click one of the arrows; then click
Apply.

4. To add the point to a watch window, click Add Watch and see page 6-73.

Inspecting Analog I/O Points
You can review an Analog Point’s data, modify its status, or set its Internal Values or External
Values in Debug mode. To monitor the point in a watch window, see page 6-73. To change the
point, follow these steps.

1. With the strategy running in Debug mode, double-click the I/O point on the Strategy Tree,
or double-click the point in the View I/O Unit dialog box.

The small dialog box that appears shows the IVAL and XVAL, as well as the units.

• The XVAL, or external value, is the “real” or hardware value as seen by the I/O unit.
This value is external to the control engine.

A

D

B

C

E

6-54 ioControl User’s Guide

WORKING WITH I/O
• The IVAL, or internal value, is a logical or software copy of the XVAL that is in the
control engine. The IVAL may or may not be current, since it is updated to match the
XVAL only when a strategy in the control engine reads or writes to an I/O point.

2. To change the value or to view more information, click the Maximize button.

The title bar shows the name of the analog point and whether scanning is occurring.

Scanning stops whenever you click a changeable field. It resumes once you click Apply,
another button, or an unchangeable field. If scanning resumes before you click Apply, any
changes you made are lost.

Asterisks in a field indicate an out-of-range value. Dashes in an XVAL field indicate a
communication error.

3. Change the fields as necessary:

(A) IVAL The point’s current internal value. You can change it to any value within the valid
range of the analog point. For an input, the valid range may exceed the apparent range;
that is, you may be able to enter a value lower than the zero-scale value or higher than the
full-scale value. For an output however, you cannot enter a value outside of the range
defined by the zero-scale and full-scale values. After you change it, click Apply.

(B) XVAL The point’s current external value. You can change it to any value within the
valid range of the analog point; then click Apply.

(C) Enable comm Current point status: Yes on a green background means enabled, No on
a red background means disabled. To change the status, click one of the arrows; then click
Apply.

4. To add the point to a watch window, click Add Watch and see page 6-73.

Maximize button
Minimize button

A
B
C

ioControl User’s Guide 6-55

WORKING WITH I/O
Inspecting Event/Reactions
 You can review an event/reaction’s current state, modify its status, or set its Internal Values or
External Values in Debug mode. To monitor the event/reaction in a watch window, see page 6-73.
To change the event/reaction, follow these steps.

1. With the strategy running in Debug mode, double-click the event/reaction on the Strategy
Tree, or double-click it in the View I/O Unit dialog box.

The Event/Reaction dialog box appears, showing the configuration parameters for the
event/reaction. The title bar shows the name of the event/reaction and whether scanning
is occurring.

Scanning stops whenever you click a changeable field. It resumes once you click Apply,
another button, or an unchangeable field. If scanning resumes before you click Apply, any
changes you made are lost.

Asterisks in a field indicate an out-of-range value. Dashes in an XVAL field indicate a
communication error.

2. Change the fields as described in “View Event/Reaction Dialog Box” below.

3. To add the event/reaction to a watch window, click Add Watch and see page 6-73.

E

G

B

F

A
C D
6-56 ioControl User’s Guide

WORKING WITH I/O
View Event/Reaction Dialog Box

(A) Name Name of the event/reaction

(B) Enabled Current status: Yes on a green background means enabled, No on a red background
means disabled. To change status, click one of the arrows; then click Apply.

(C) Unit The I/O unit on which the event/reaction is configured

(D) Error Any communication error appears here with a red background.

(E) Event Occurring / Event Occurred / Scan Status Internal and external values for whether the
event occurred or is occurring, whether scanning is occurring, and whether an interrupt is to be
generated when the event occurs. If the reaction type involves a read-and-hold operation, a Read
& Hold Value field also appears in this area, together with its internal and external values. You
can change any of the internal or external values. If you do, click Apply.

(F) Event Parameters Parameters of the event, together with their internal and external values.
(This example shows an I/O point being monitored for the event. For a MOMO Match event,
MOMO data will appear instead. See “MOMO Event/Reactions” on page 6-57.) You can change
the internal or external values. If you do, click Apply.

(G) Reaction Parameters Parameters of the reaction, together with their internal and external
values. (This example shows the PID to be activated and the sources of its input, output, and
setpoint values. We also see the internal and external values of the input, output, and setpoint.)
Depending on the reaction type, other parameters that can appear here include an I/O point, an
event to be triggered, or MOMO data. You can change any of the internal or external values. If
you do, click Apply.

MOMO Event/Reactions

 When a MOMO (must-on, must-off) event or reaction is involved, the bottom of the
event/reaction dialog box displays the following:

On and Off Masks Shows On and Off Masks for the MOMO event and reaction.

Unit Status Shows LEDs representing the external value of the digital I/O unit on which the
event/reaction is configured. Green represents one (on), red represents zero (off), and gray
represents no value reported. If there is no MOMO reaction, this set of LEDs appears below the
event’s on and off masks.

Momo Display Base Shows the display base for the MOMO event or reaction. You can switch
among binary, hex, and decimal values.
ioControl User’s Guide 6-57

WORKING WITH I/O
You cannot change the Internal Values or External Values of the MOMO masks or of the I/O unit
status. However, other fields are the same as for other event/reactions.

The example above shows on and off masks for both the MOMO Match event and the Set MOMO
Outputs reaction.

Inspecting and Tuning PID Loops
In Debug mode, you can view PID loops and tune them. This section gives you basic steps for
inspecting PIDs, determining system lag, and tuning PIDs. For PIDs on Ethernet-based I/O units,
we highly recommend Opto 22 form #1410, PID Configuration and Tuning: SNAP Ultimate I/O
Learning Center Supplement, which contains more detailed information. Form #1410 is available
for download from our Web site at www.opto22.com.

Inspecting a PID (Ethernet)
This section applies to SNAP Ethernet and SNAP Ultimate I/O units only. For serial mistic I/O
units, see page 6-71.

On and Off Masks

Unit Status
MOMO Display Base
6-58 ioControl User’s Guide

WORKING WITH I/O
1. With the strategy running in Debug mode, double-click the PID on the Strategy Tree.

2. View or change PID parameters as necessary. Click the other tabs to see additional data. To
tune the PID, see page 6-64.

3. To add the PID to a watch window, click Add Watch and see page 6-73.

4. To save, copy, or print the current plot, click the Data button and choose from the popup
menu.

5. To save changes to any of the PID configuration parameters, click Save Tuning.

Determining System Lag
You can directly control the PID output to determine system lag, which is essential to setting the
PID scan rate. Also see Opto 22 form #1410, PID Configuration and Tuning: SNAP Ultimate I/O
Learning Center Supplement, available for download from our Web site at www.opto22.com.

1. Determine two significantly different output settings that are within the capabilities of
your system.

Click a tab to see or change
additional data.

Setpoint and Input plot.
Adjust resolution using the
Input Axis button below the
plot. Click and drag on the
scale to move the line.

Output plot.
Adjust resolution using the
Output Axis button. Click
and drag on the scale to
move the line.

Time axis. Adjust resolution
using the Time Axis button.
Click and drag left or right
to see other times.
ioControl User’s Guide 6-59

WORKING WITH I/O
2. With the strategy running in Debug mode, double-click the PID on the Strategy Tree.

3. Set the Mode to Manual (if not set already) and click Apply.

4. In the Output field, type one of your two output settings and click Apply.

Use an output value typical of your system but low enough to allow you to change output
by 20%.

5. Reset your time axis, if necessary, by clicking the Time Axis and choosing from the popup
menu. Then choose Reset Scale Tracking from the same menu.

The span setting varies according to your system; a 3-minute span is often suitable. Until
you are familiar with the PID plot, it is recommended that you avoid using the shortest
settings (10-seconds or 1-second). After you’ve observed a change in the input, you can
zoom in on the graph, which is described later.

6. Wait for your system to stabilize.
6-60 ioControl User’s Guide

WORKING WITH I/O
The system is stable when the Input value does not vary significantly (some drift can be
expected). Stabilization may take several minutes, depending on the system.

7. Increase the resolution of the Input Axis by clicking the Input Axis menu and choosing a
span setting of 1 or 5 percent.

8. Center the Input Axis, if necessary, by clicking the red line at its left end and dragging it up
or down until the plot is visible.

9. Under the Time Axis menu, choose Reset Scale Tracking.

This is a precautionary step, as changing settings on the plot can fix the plot at a certain
point in time. Resetting the time axis ensures that you are viewing the real-time values.

10. In the Output field, type the other of your two output settings and click Apply.

A 20% percent increase is a moderate, detectable change for most systems. Your system
may require a larger or a smaller change to stay within safety constraints.

A stable system exhibits little
change in the Input value,
which is shown numerically
and graphically.

Adjust resolution of the Input
Axis by clicking the Input
Axis button.
ioControl User’s Guide 6-61

WORKING WITH I/O
11. Wait for a discernible change in the Input axis.

12. Increase the resolution of the Time Axis by clicking the Time Axis button and choosing a
lower percentage, such as View 1 Minute Span.

13. Scroll the Time Axis to locate the point at which you changed the Output.

The Input axis (indicated by
the upper white arrow added
to this picture) begins to
respond to the change in
output (lower white arrow).
6-62 ioControl User’s Guide

WORKING WITH I/O
Both the time and input axes should display the point at which the Output changed, the lag,
and the point the input changed. If not, adjust the Input axis and Time axis, until this
information is displayed.

14. From the Data menu, select Cursor.

The data cursor, a line with a value bar attached to it, appears on the plot.

15. Right-click the data cursor and choose Delta X from the Style submenu, as shown below.
ioControl User’s Guide 6-63

WORKING WITH I/O
16. To measure the system lag (the time between the change in output and the change in
input), click and drag the first vertical red bar to just after the output change. Drag the
second bar to just before the change in input.

If you are unable to get the precision you want, you can view the plot at a lower time span,
such as 10 seconds. You will need to reposition your plot and the measurement bars of the
Delta X cursor.

The example above shows a system lag of 1.88 seconds. Generally, a suitable scan rate can be
anywhere from one-third the system lag to two times the system lag. Considerations in setting
scan rate are:

• Slower scan intervals may be easier to tune. The PID controller has time to see the effect
of the previous output before calculating a new output.

• Faster scan rates may be necessary to achieve the desired response. When scan intervals
are shorter than the system lag, tuning must compensate for any over-correction from the
controller output.

Tuning a PID Loop (Ethernet)
NOTE: This section applies to SNAP Ethernet and SNAP Ultimate I/O units only. For information
on tuning PID loops on serial-based mistic I/O units, see “PID—Mistic Commands” on
page 10-62.

Tuning a PID involves manipulating the P, I, and D constants in real time. The following steps
should be viewed as general suggestions to show you features that are available for tuning. We
highly recommend Opto 22 form #1410, PID Configuration and Tuning: SNAP Ultimate I/O

The Delta X cursor displays the
time difference between the
two vertical bars.

Drag the first bar into position
after the Output change.

Drag the second bar to a
position just before the
change in Input.
6-64 ioControl User’s Guide

WORKING WITH I/O
Learning Center Supplement, for more detailed information. Form #1410 is available for
download from our Web site at www.opto22.com.

CAUTION: Before following these procedures, make sure you know the limits of the equipment
being controlled and monitored by your PID loop. Also, make sure that these points are
configured properly. Any values suggested in these steps are for example only and must be
modified according to the capabilities and constraints of your system.

1. Make sure the following PID features have already been configured:

• Scan Rate
• Input
• Input low range and high range
• Output
• Output lower and upper clamp.
• Algorithm
• Setpoint. If your setpoint changes during normal operation, tune your PID with the

setpoint configured to host, so you can simulate setpoints from an Input Point or from
another PID.

• Gain. A final gain constant will be determined by tuning, but before you can tune your
PID, your gain constant must be either a positive or negative number according to the
type of system you have. For example, a heating system reports a negative error when
heat needs to be applied; a negative gain constant turns this error into a positive
output for the heater. Alternatively, a cooling system reports a positive error when the
input exceeds the setpoint; a positive gain constant maintains the positive output to
the chiller.

• Optional, depending on your system: Minimum and maximum changes to Output and
Output forcing when the Input is out of range.

2. Download and run your strategy.

The current PID configuration is written to the I/O unit. You can stop your strategy at this
point if you wish, as the PID will continue operating.
ioControl User’s Guide 6-65

WORKING WITH I/O
3. In Debug mode, double-click the PID on the Strategy Tree.

4. Set the PID Mode to Auto (if not set already) and click Apply.

5. Change the Setpoint, if desired, by typing a new setpoint and clicking Apply. (Setpoint must
be configured as Host.)

Depending on the type of system, your PID may maintain a setpoint or respond to changes
in setpoint. Experiment with setpoint changes again after tuning the P, I, and D constants.

6. Adjust the span of the input, output, and time axes according to how much change you
expect from your system. To set a span, click the axis button and choose from the popup
menu.

7. If desired, type a new Scan Rate and click Apply.

For most systems, you should use an appropriate scan rate based on the system lag (see
“Determining System Lag” on page 6-59). However, you can experiment with Scan Rates
before tuning the P, I, and D constants or adjust scan rate after tuning.
6-66 ioControl User’s Guide

WORKING WITH I/O
Here is an example for Scan Rate:

8. Experiment with gain settings by typing a new value in the Gain field and clicking Apply.

The easiest way to tune most PIDs is to experiment with the gain constant first. Try various
gains to see how well the system stays at setpoint and responds to setpoint changes.

The lag for this system was
determined to be about 2
seconds. The left half of the
plot reflects a 0.5-second
scan rate, while the right half
shows a 3-second scan rate.
Notice both scan rates have
the same effect on the input;
however, the 3-second scan
rate is using less of the
processor’s resources.
ioControl User’s Guide 6-67

WORKING WITH I/O
In the example below, the white arrows (added for the example), show where gain
constants of -2, -5, -10, and --20 were applied:
6-68 ioControl User’s Guide

WORKING WITH I/O
In this example, a gain setting of -30 revealed an offset error:

9. Experiment with the integral constant: in the Tune I field, type an number between 0 and 1
and click Apply. (Your PID may require larger numbers.)

In this example, an integral constant of 0.1 corrected the offset error.

With only a gain constant
applied, the input often
stabilizes at an incorrect
value. In this heating
example, a gain setting of -30
drove the input close to the
setpoint, but subsequent
increases failed to eliminate
the offset. It is time to try
integral constants to
eliminate the offset error.

The far left side of the plot
shows the offset before an
integral constant of 0.1 was
applied. This setting
eliminated the offset. In
many applications, a minor
fluctuation around the
setpoint is acceptable, and
these applications use gain
and integral only.In some
applications, however, the
fluctuations at the setpoint
indicate that the gain is too
high (too much gain makes a
system unstable) or that a
derivative constant is
required.
ioControl User’s Guide 6-69

WORKING WITH I/O
10. If derivative correction is needed, experiment with the derivative constant: in the Tune D
field, type 1 and click Apply. (Your PID loop may require a larger number.)

In this example, a derivative of 10 makes a noticeable difference in keeping the input near
the setpoint.

11. Click Save Tuning to save your tuning parameters to the strategy database.

Many PID systems are
effectively controlled with
gain and integral constants
only and no derivative
constant. In this example, the
gain and integral settings are
maintaining the temperature
at 0.06 from setpoint. To
demonstrate the effect of the
derivative constant, the
resolution of the input axis
was increased to show a 1
percent span. At this
resolution, the plot reveals
changes of 0.01 degrees F.

The left side of the plot shows
the effect of gain at -30,
integral at 0.1, and no
derivative constant. The arrow
shows when a derivative
constant of 10 was applied.
The right side of the plot
shows how the derivative
constant is keeping the input
closer to setpoint.
6-70 ioControl User’s Guide

WORKING WITH I/O
Changes are lost unless you save them. You may wish to save your tuning parameters
when you see any improvement in performance, even if they are not final.

12. Click Yes.

Values are saved to the ioControl strategy. Remember to save PID parameters to the I/O
unit’s flash memory, too (see “Inspecting I/O Units” on page 6-52).

Inspecting a PID Loop (mistic)
(ioControl) This section applies to serial mistic I/O units only. For SNAP Ethernet and SNAP
Ultimate I/O units, see page 6-58.

You can review a PID loop’s data, modify its status, or set its Internal Values or External Values
in Debug mode. To monitor the PID loop in a watch window, see page 6-73. To change the PID
loop, follow these steps.

1. With the strategy running in Debug mode, double-click the PID loop on the Strategy Tree, or
double-click it in the View I/O Unit dialog box.
ioControl User’s Guide 6-71

WORKING WITH I/O
The View PID Loop dialog box appears, showing the configuration parameters for the PID
loop and several values you can change. The title bar shows the name of the PID loop and
whether scanning is occurring.

Scanning stops whenever you click a changeable field. It resumes once you click Apply,
another button, or an unchangeable field. If scanning resumes before you click Apply, any
changes you made are lost.

Asterisks in a field indicate an out-of-range value. Dashes in an XVAL field indicate a
communication error.

2. Change the fields as necessary. See “View PID Loop (mistic) Dialog” below.

3. To add the PID loop to a watch window, click Add Watch and see page 6-73.

4. To save, copy, or print the current plot, click the Data button and choose from the popup
menu.

View PID Loop (mistic) Dialog

(A) Input, Output, and Setpoint (current internal and external values) Change each to any valid
value. If lower and upper clamps appear to the right of the value, these clamps define the range
of valid values. Otherwise, the valid range is defined by the I/O point itself. If you can change
them, click Apply.

(B) Gain, Integral, and Derivative (current internal and external values) You can change the gain
term to any value except zero in the range -32768 to 32767. You can change the integral and
derivative terms to any value in the range zero to 32767. If you change them, click Apply.

H

B

A

C
D

E

F

G

I

6-72 ioControl User’s Guide

WORKING WITH I/O
(C) Scan Rate and Maximum Change Rates (current internal and external values) You can change
the scan rate to any value in the range 0.1 to 6553.5 seconds. You can change the maximum
change rate to a value between one percent and 100 percent of the output range (defined by the
output’s zero-scale and full-scale values). If you change them, click Apply.

Asterisks in an IVAL field indicate that a valid scan rate or maximum change rate hasn’t been read
yet (usually before the strategy is run).

(D) PID execution mode A green background means Automatic, a yellow background means
Manual. Click an arrow to change the mode; then click Apply.

(E) Setpoint and Input plot Adjust resolution using the Input Axis button at right. Click and drag
on the scale to move the line.

(F) Output plot Adjust resolution using the Output Axis button. Click and drag on the scale to
move the line.

(G) Time axis Adjust resolution using the Time Axis button. Click and drag left or right to see
other times.

(H) Current status Yes on a green background means enabled; No on a red background means
disabled. To change status, click one of the arrows; then click Apply.

(I) Data and Axis buttons

 Using Watch Windows for Monitoring
While the Strategy is running, you can monitor several strategy elements at once in a watch
window: I/O units, digital and Analog Points, PID loops, variables, even charts. You cannot
monitor subroutine parameters or variables that are local to a subroutine in a watch window.

Unlike inspection windows, watch windows can be created the way you want, docked in a
position most convenient for you, and are saved with your strategy. You cannot change strategy
elements in a watch window, but you can open the inspect dialog box from the watch window
and change the element there.

Creating a Watch Window

1. With the strategy open and in Debug mode, click the New Watch Window icon in the
toolbar or choose Watch➞New.

2. In the Create New Watch Window dialog box, navigate to the location where you want the
watch window file to be kept (usually in the same folder as the strategy). Enter the watch
window file name and click Open.
ioControl User’s Guide 6-73

WORKING WITH I/O
The empty watch window appears.

3. Add elements you want to watch in this window by clicking them on the Strategy Tree and
dragging them into place in the watch window, or by right-clicking them and choosing
Watch from the pop-up menu.

You can add I/O units, digital and Analog Points, PID loops, variables, and charts. You
cannot add subroutine parameters or variables that are local to a subroutine.

Depending on which element you add and how you add it, it may appear immediately in the
window, as shown here.
6-74 ioControl User’s Guide

WORKING WITH I/O
For some elements, the Add Watch Entry dialog box appears, so you can specify what to
watch.

4. If an Add Watch Entry dialog box appears, click to place or remove the check mark next to
any item. When all the items you want to watch are checked, click OK.

The element is added to the watch window.

The watch window is automatically saved.

Opening an Existing Watch Window
If a watch window was open when you exited Debug mode, it will automatically open again
when you re-enter Debug mode. To open other watch windows, follow these steps.

1. Make sure the strategy is open and in Debug mode.

2. Click the Open Watch Window icon on the toolbar, or choose Watch➞Open.

3. Navigate to the watch window you want to open and double-click its name.

The window opens in the position you left it.

Items in this area vary depending
on the element you are watching.
This example shows a chart.
ioControl User’s Guide 6-75

WORKING WITH I/O
Working in Watch Windows
Watch windows are flexible. You can dock the window where you want it in the ioControl main
window. You can also move, delete, and inspect elements in the window.

• To dock the watch window, click the docking icon in its title bar.

The window moves to its own frame.

See “Docking Windows” on page 3-17 for more information.

• To expand or collapse watch window you have added an I/O unit, PID loop, chart, or
table to, click its plus or minus sign.

“Docked” watch window

Expand or collapse the
item by clicking the + or -
sign in the box.
6-76 ioControl User’s Guide

WORKING WITH I/O
• To rearrange elements in the watch window list, click the item you want to move and
drag it to a new location, or right-click it and choose Move Up or Move Down from the
pop-up menu.

You can also sort elements in the window by clicking on the column label. For example, to
sort by Type, click the label Type in the column heading. Click again to change the order
from ascending (A–Z) to descending (Z–A).

• To move an element from one watch window to another, open both windows and drag
the element where you want it. To copy an element to another watch window (so it will
appear in both windows), hold down the CTRL key while you drag it.

• To delete an element, right-click it and choose Delete from the pop-up menu.

• To inspect an element, double-click it.

The inspect dialog box opens. For information on using it, see “Inspecting Control Engines
and the Queue” on page 5-12.
ioControl User’s Guide 6-77

WORKING WITH I/O
6-78 ioControl User’s Guide

CHAPTER 7
7—Working with StrategiesChapter 7

Working with Strategies
Introduction
A strategy is the software program you create in ioControl. A strategy is similar to a file in any
Microsoft Windows program. You use standard Windows menu items to create a new strategy,
to open an existing strategy, or to save a strategy. The strategy includes all the definitions and
instructions necessary to control your process. This chapter is a step-by-step reference for
working with strategies in all three strategy modes: Configure, Debug, and Online.

In this Chapter
Creating a New Strategy........................ 7-1 Running a Strategy Manually 7-12
Opening a Strategy................................. 7-2 Debugging.. 7-13
Saving and Closing 7-3 Viewing and Printing.................................... 7-20
Saving a Strategy to Flash 7-4 Searching and Replacing 7-29
Compiling and Downloading 7-6

Creating a New Strategy
Each ioControl Strategy must be located in its own directory. When you create a new strategy
you must create a new directory or use an empty one. Having each strategy in its own directory
keeps all its files in one place and makes it easy to copy a strategy to another location for
modification or backup.

1. To create a new strategy, select File➞New Strategy, or press CTRL + N, or click the New
Folder button on the toolbar.

2. In the New Strategy dialog box, navigate to the directory where you want the strategy to
be placed. Create a new folder if necessary.

3. Type the strategy name.

As you can see in the Files of type field, ioControl files have an extension of .idb.
ioControl User’s Guide 7-1

WORKING WITH STRATEGIES
4. Click Open.

The new strategy is created. Its Strategy Tree and Powerup charts appear in the ioControl
main window. For information on the main window, see page 3-11. For programming
information, see Chapter 4, “Designing Your Strategy.” For steps to create charts, Chapter
8, “Working with Flowcharts.”

Opening a Strategy
Only one strategy at a time can be open in ioControl. If you currently have a strategy open, it must
be closed before another is opened. You are prompted to save changes before it closes.

Opening an Existing Strategy

1. To open an existing strategy, select File➞Open Strategy, or press CTRL + O, or click the
Open Strategy button on the toolbar.

2. In the Open Strategy dialog box, navigate to the strategy you want to open and click Open.

The strategy opens in Configure mode, with the windows in the same position they were
when the strategy was closed.

Opening a Recently Used Strategy
To open a strategy you have recently used, choose its name from the list at the bottom of the File
menu. The ten most recently opened strategies are listed.

Loading a Strategy or Mode at Startup
To have ioControl automatically start up with the strategy that was open when you exited,
choose Configure➞Options and click to put a check mark next to Load Last Strategy at Startup.

To have ioControl open strategies in the same mode as when you exited ioControl, choose
Configure➞Options and click to put a check mark next to Load Last Mode at Startup.

Opening Strategies in ioControl Basic and ioControl
Professional
A strategy saved in ioControl version 6.1 or less can be opened in either ioControl Basic or
Professional. An ioControl Basic strategy can also be opened in ioControl Professional. However,
ioControl Professional strategies cannot be opened in Basic or in any earlier version of ioControl.

CAUTION: Once a strategy is opened in ioControl Professional, it can no longer be opened in
ioControl Basic.
7-2 ioControl User’s Guide

WORKING WITH STRATEGIES
Opening an OptoControl Strategy
If you are moving a Strategy from OptoControl to ioControl Professional, ioControl will open it
and help you convert it. Although many things will convert without difficulty, planning ahead is
essential to make the job easier. Before opening an OptoControl strategy in ioControl, read
the FactoryFloor to ioProject Migration Technical Note, Opto 22 form #1596.

Saving and Closing
CAUTION: Once a strategy is opened in ioControl Professional, it can no longer be opened in
ioControl Basic.

Saving the Strategy and All Charts
To save all your work quickly, choose File➞Save All. The strategy and all modified charts and
subroutines are saved.

Saving the Strategy and Some Charts
NOTE: You cannot save changes to a subroutine this way. To save a subroutine, use File➞Save
All, or use Subroutine➞Save or Subroutine➞Save All.

1. To save changes to some charts but not others, click the Save Strategy button on the
toolbar (or choose File➞Save Strategy, or press CTRL + S).

The Save Strategy dialog box appears, highlighting all charts modified since the last save.
In this example, two charts have been modified:

2. To save some charts and not others, press CTRL and click any charts you don’t want to save.

You can also click Clear All to select none of the charts, or click Select All to select all of
the charts.
ioControl User’s Guide 7-3

WORKING WITH STRATEGIES
3. When only the charts you want to save are highlighted, click OK.

The strategy and the highlighted charts are saved.

Saving the Strategy to a New Name

1. To save the strategy and all its charts under a new name, choose File➞Save Strategy As.

2. In the Save Strategy As dialog box, navigate to where you want the new strategy to be.
Create a new folder if necessary.

Remember that each strategy must be in its own directory.

3. In the Strategy Name field, enter the new strategy name. Click Save.

The strategy and all its charts are saved under the new name in the new directory.

Saving Before Debugging
When you change to Debug mode, you are prompted to save a Strategy you have modified. If you
don’t want to be prompted to save before entering Debug mode, choose Configure➞Options and
click to remove the check box for Prompt To Save Strategy Before Running Debugger.

Closing a Strategy
To close a Strategy, click the close box in the Strategy Tree or choose File➞Close Strategy.

NOTE: Since only one strategy at a time can be open in ioControl, creating a new strategy or
opening an existing strategy automatically closes any current strategy first. If you’ve made
changes to the current strategy, you are prompted to save them.

Saving a Strategy to Flash
When you finish working on your Strategy and have downloaded it, you should save it to the
control engine’s flash memory. By default, a strategy is downloaded to the control engine’s RAM.
Saving it to flash protects the strategy in case of a power loss. You can save it to flash just once,
when needed, or save every time the strategy is downloaded.

Saving to Flash Once
You can save the strategy to flash at any time when you are in Debug mode. To do so, choose
Control Engine➞Save Strategy to Flash.
7-4 ioControl User’s Guide

WORKING WITH STRATEGIES
Saving to Flash on Every Download
CAUTION: It is possible to wear out flash memory if you save to it many, many times. Use the
following steps only when your strategy is finished.

1. When you have finished the strategy and are in Configure mode, choose File➞Strategy
Options.

2. In the Strategy Options dialog box, click the Download tab. Check Save strategy to flash
memory after download.

If a control engine loses power and then restarts, the autorun flag tells the control engine
to automatically start running the strategy that is in flash memory. If the autorun flag is not
set, the strategy must be started manually after power is restored to the control engine.

3. To have the strategy run automatically after a control engine restarts, check Set autorun
flag after download.

4. Click OK.

Archiving Strategies
Strategy archives help you track changes during development and provide a backup in case of a
failure on the control engine or on the computer where the original files are kept. Archive files
are date and time stamped, and zipped for compact storage. We recommend you archive both to
the computer (during strategy development) and to the control engine (when the strategy is
completed).

Archiving to the Computer
Archiving strategies to the computer is an excellent way to track changes over time and to
produce a zipped file you can copy to another computer or disk for backup. Archives are always
ioControl User’s Guide 7-5

WORKING WITH STRATEGIES
placed in the same folder as your strategy. Since a new archive file is created each time you
archive a strategy, remember to manually delete any old archive files you do not want to keep.

ioControl offers three ways to archive strategies to the computer:

• To make an archive at any time, choose File➞Archive Strategy. A dialog box shows you
the name and location of the archive file.

• To have an archive automatically created whenever the strategy is closed, choose
File➞Strategy Options. In the Strategy Options dialog box, click Archive strategy to disk
when strategy is closed.

• To have an archive automatically created whenever the strategy is downloaded, choose
File➞Strategy Options. In the Strategy Options dialog box, click Archive strategy to disk
when strategy is downloaded.

The archive file name will be in one of the following formats:

The date stamp (D) is in the format mm/dd/yyyy. In the examples above, the date is February 28,
2002. The time stamp (T) is in the format hh/mm/ss. In the examples above, the time is 51
seconds past 11:43 A.M.

Archiving to the Control Engine
When you archive a Strategy to the control engine, you are placing the zipped file in
battery-backed RAM. If power to the control engine is lost, the archive is still there. Archiving to
the control engine as well as the computer makes sure that an older strategy can always be
found and updated, even after personnel changes occur and years pass.

Make sure there is sufficient memory in the control engine for the archive file. Battery-backed
RAM holds 256KB total; in addition to the archived strategy, it stores persistent variables and
variables that are initialized on strategy download.

Steps for archiving to the control engine are on page 5-17.

Compiling and Downloading
Before your Strategy can be tested or run, it must be compiled and then downloaded to a control
engine. When a strategy is compiled, all the commands, OptoScript code, charts, and variable
and I/O definitions it contains are verified and converted into a format that the control engine can
understand. Then the strategy can be sent (downloaded) to a control engine. Only compiled
strategies can be downloaded.

Archive method File name format

Manual archive or archive when strategy is closed Path\Filename.Archive.D02282002.T114351.zip

Archive on download Path\Filename.Download.D02282002.T114351.zip

Archive when downloading from online mode Path\Filename.Online.D02282002.T114351.zip
7-6 ioControl User’s Guide

WORKING WITH STRATEGIES
NOTE: Before you can download your strategy, make sure you have downloaded the latest
firmware to your control engine. For instructions, see the controller’s user’s guide.

Compiling and Downloading in One Step
NOTE: If you are using Ethernet link redundancy in ioControl Professional, make sure you are
downloading through the IP address you want to use, either the primary or secondary address.
See “Using Ethernet Link Redundancy in ioControl” on page 5-6 for more information.

1. With the strategy open in ioControl, click the Debug Mode button on the toolbar, or
choose Mode➞Debug.

Changing to Debug mode automatically saves and compiles the strategy, including all code
in OptoScript Blocks.

2. If you see a Powerup Clear Expected message, click OK.

A download warning message may appear.

This message tells you that the strategy to be downloaded doesn’t match the strategy
already loaded on the control engine, either because it is a different strategy or because it
has been changed since the last download.

3. To continue the download, click Yes.

As the strategy is compiled, the Compile Progress dialog box appears (usually very briefly).
ioControl User’s Guide 7-7

WORKING WITH STRATEGIES
If no errors occur, the Download Progress dialog box appears.

When the download is complete, you are in Debug mode. (If you receive errors, see
Appendix A, “ioControl Troubleshooting.”)

Compiling without Downloading
Sometimes you may want to compile without downloading, just to see if a chart, subroutine, or
Strategy compiles correctly. You can compile the active chart or subroutine only, just the changes
you have made to the strategy, or the entire strategy.

Compiling the Active Chart or Subroutine

Whenever a chart or subroutine window is open and active, you can compile just that chart or
subroutine. To do so, in Configure mode, click the Compile Active View button on the
toolbar, or choose Compile➞Compile Chart. The menu option shows the name of the chart or
subroutine you are compiling.

As soon as you choose the menu option, the chart or subroutine is saved and compiled. You are
alerted only if errors are found.

Compiling Changes Only

To compile just the changes since the strategy was last compiled, in Configure mode, click the
Compile Changes button on the toolbar, or choose Compile➞Compile Changes. The menu
option shows the name of the strategy you are compiling.

As soon as you choose the menu option, the strategy and all modified charts and subroutines are
saved and compiled. You are alerted only if errors are found.

Compiling the Entire Strategy

To compile the entire strategy including all charts and subroutines, in Configure mode, click the
Compile All button on the toolbar, or choose Compile➞Compile All. The menu option
shows the name of the strategy you are compiling.

As soon as you choose the menu option, the entire strategy is saved and compiled. The Compile
Progress dialog box appears. You are alerted if errors are found.
7-8 ioControl User’s Guide

WORKING WITH STRATEGIES
Downloading Only
If your Strategy has been compiled, you can download it again quickly. Downloading again is
useful if you want to run your strategy from a “clean slate” by reinitializing any variables that are
set only on a strategy download.

To download a strategy that has already been compiled, you must be in Debug mode. Choose
Control Engine➞Download Strategy.

The Download Progress dialog box appears and your strategy is downloaded.

Downloading Without Using ioControl
If you are creating strategies for users who do not have ioControl on their systems (for example,
if you are an integrator or OEM), you can make a control engine download file that can be
downloaded to a SNAP Ultimate I/O brain or suitable SNAP controller using just ioTerminal or a
DOS batch file. This one download file is built for a specific control engine but can also be
downloaded to other similar control engines. It contains everything ioControl would download,
including .per, .inc, and .crn files, control engine-specific files, and initialization information.

In most cases you will want the downloaded strategy to be saved to flash memory and to start
automatically (autorun) when power is cycled to the control engine. Before you create the
download file, follow the steps in “Saving to Flash on Every Download” on page 7-5. Check the
boxes to have the strategy saved to flash memory after download and to set the autorun flag
after download. This information will become part of the download file.

Creating the Control Engine Download (.cdf) File

With the Strategy open in ioControl in Configure mode, right-click the name of the control engine
in the Strategy Tree and choose Compile Control Engine Download File from the pop-up menu.
(You can also choose Compile➞Compile Control Engine Download File.)

The file is created in the same folder as the strategy, with a .cdf extension and a filename
consisting of the strategy’s name and the control engine’s name (for example,
MyStrategy.MyEngine.cdf).

Once the control engine download file is created, it can be downloaded using either ioTerminal
or a DOS batch file you create.
ioControl User’s Guide 7-9

WORKING WITH STRATEGIES
Downloading the .cdf File using ioTerminal

1. Click the Windows Start menu and choose Programs➞Opto22➞ioProject
Software➞Tools➞ioTerminal.

2. Right-click the name of the control engine you want to download the file to.

3. In the pop-up menu, choose Download. In the submenu, choose Control Engine Download
File.

4. Enter the path and filename of the .cdf file, or click the Browse button and navigate to it.
When the filename appears in the File to Download field, click OK.

The file is downloaded to the control engine, and a dialog box shows its progress.

Downloading the .cdf File Using a DOS Batch File

If you do not want your end user to have to use ioTerminal, you can create a DOS batch file to
launch ioTerminal in the background and download the .cdf file. In addition to downloading the
.cdf file, the batch file can also run or stop the strategy or even define the control engine on the
PC that will download the file. ioTerminal must be installed on the PC where the batch file is
used.
7-10 ioControl User’s Guide

WORKING WITH STRATEGIES
The following table lists actions you may want to take within ioTerminal:

Format for lines in the batch file is as follows:
ioTerm [control_engine_name [-d filename] [-r]]

ioTerm -a control_engine_name tcp IP-address port retries timeout_ms

ioTerm -h

This example shows lines included in a batch file that will define the control engine, download
the .cdf file to it, and then run the strategy:
ioTerm -a MyCE tcp 10.20.30.40 22001 0 2000

ioTerm MyCE -d “c:\My_Project\MyStrategy.MyCE.CDF”

ioTerm MyCE -r

Changing Download Compression
If you have a very large Strategy, short timeouts, and slow connections on your network, you may
need to decrease the compression level to download the strategy successfully. When you
decrease compression, the strategy takes longer to download because it is sent in smaller
chunks. If you are having difficulty downloading your strategy, follow these steps to decrease
compression:

1. With the strategy open in Configure mode, choose File➞Strategy Options.

To do this Use this

Add a control engine -a or -addce

Download the specified file to the specified control engine -d or -download

Run the strategy in the specified control engine -r or -run

Stop the strategy in the specified control engine -s or -stop

Show help information for this function in ioTerminal -h or -help

Start ioTerminal normally <no arguments>
ioControl User’s Guide 7-11

WORKING WITH STRATEGIES
2. In the Strategy Options dialog box, click the Download tab.

3. Move the slider to the left to reduce compression, and then click OK.

You may need to experiment with the setting until the strategy downloads successfully.

Running a Strategy Manually
1. With the strategy open, choose Mode➞Debug.

2. Click the Run Strategy button (or press F5, or select Debug➞Run).

You can also run a strategy from the Inspecting dialog box. See page 5-12.

Running a Strategy Automatically (Autorun)
You can set the Strategy to run automatically (autorun) if the control engine loses power and then
restarts. In traditional Opto 22 controllers, the OptoControl autorun function was controlled by a
jumper. For ioControl, it’s controlled by the autorun flag. If the autorun flag is not set, the strategy
must be started manually after power is restored to the control engine. The strategy must be
saved in flash memory for autorun to work.

You can set the autorun flag in two ways:

• In Configure mode, save the strategy to flash memory and set the autorun flag every time
the strategy is downloaded. (Be careful you do not save to flash too often, as flash memory
eventually wears out.) See “Saving to Flash on Every Download” on page 7-5.

• In Debug mode, save the strategy to flash memory by choosing Control Engine➞Save
Strategy to Flash. Then right-click the control engine in the Strategy Tree and choose
Inspect from the pop-up menu. In the Inspect dialog box, enable Autorun. (See “Inspecting
Control Engines and the Queue” on page 5-12 for more on the Inspect dialog box.)

Slider
7-12 ioControl User’s Guide

WORKING WITH STRATEGIES
Protecting a Running Strategy
If you want a Strategy to run automatically without interruption, you can protect the strategy
by disabling all host communications to the control engine.

To protect the strategy, first make sure the strategy is saved to flash and that the autorun flag is
set. To disable host communication, open ioManager and set the Control Engine port to 0, and
then save that change to flash. For more information on setting this port, see form #1440, the
ioManager User's Guide.

NOTE: This action also disables communication between ioDisplay and the control engine.

Stopping a Strategy
To stop the strategy, click the Stop Strategy button (or press F3, or select Debug➞Stop).
You can also stop a strategy from the Inspecting dialog box; see page 5-12.

Debugging
Once the Strategy is running, if it doesn’t appear to be working correctly, you can use several
tools in Debug mode to figure out what the problem is. You can pause a chart or subroutine; step
into, over, or out of each block; watch it slowly step through the blocks; or add a breakpoint to a
block to stop the strategy just before it executes that block.

The chart’s or subroutine’s status is shown in the lower left-hand corner of its window. This
corner shows whether the chart or subroutine is running, stopped, or suspended, and whether
the debugging tools, such as stepping and breakpoints, are in effect. The chart or subroutine
must be running in order to use these tools.

Choosing Debug Level
You can choose one of two levels of debugging:

• Minimal Debug lets you step from block to block, but does not allow you to step into
blocks. Less information is downloaded to the control engine for minimal debugging, so
downloading the strategy takes less time and less control engine memory. The strategy
also runs slightly faster.

• Full Debug lets you step into blocks, so you can step through each instruction in an Action
or Condition Block and through each line of OptoScript code in an OptoScript Block. If you
are using OptoScript, you will probably want to spend the additional time to download your
strategy at the full debug level.
ioControl User’s Guide 7-13

WORKING WITH STRATEGIES
To change debug level, make sure you are in Configure mode. From the Configure menu,
choose Minimal Debug or Full Debug. The next time you enter Debug mode, the strategy will be
compiled and downloaded with the new level.

Changing Debugger Speed
Before you enter Debug mode, you may want to consider changing debugger speed. Depending
on the number of charts and windows open in ioControl, and depending on other processing your
computer is doing at the same time, you may find that running the debugger affects the
computer’s or the control engine’s performance of other tasks. If necessary, you can slow down
the debugger by increasing the time delay between debugging calls to the control engine,
therefore leaving more processing time for other tasks.

In addition, a slower setting may be useful when checking communication using
ioMessageViewer (see page A-7).

To change debugger speed, follow these steps:

1. With the strategy in Configure mode, choose Configure➞Options.

2. In the ioControl Options dialog box, click the Debugger tab.

3. Click and drag the slider to the speed you want.

The default speed is shown in the figure above. Since performance varies depending on
your hardware and software, you may need to experiment to find the most efficient speed.

Pausing a Chart or Subroutine
You can temporarily stop any running chart or subroutine by pausing it. When you pause a chart
or subroutine, it finishes the instruction it was executing, then stops at the next block (in Minimal
Debug) or the next line (in Full Debug).
7-14 ioControl User’s Guide

WORKING WITH STRATEGIES
To pause the chart or subroutine in the active window, click the Pause Chart or Pause Subroutine
button , or press F7, or select Debug➞Pause Chart or Debug➞Pause Subroutine. Here’s an
example of a paused chart:

Hatch marks and a red outline appear on the Start block, indicating that this block is to be
executed next. The status bar shows Step On, which means you can step through the chart or
subroutine if you wish.

Stepping Through a Chart or Subroutine
When you step through a chart or subroutine, you control the timing and execution of its
commands in a running Strategy. You can see what commands are being executed when, and you
can monitor the status of variables and I/O that are affected by the commands.

There are two types of stepping: single-stepping and automatic stepping. Use single stepping to
go through flowchart blocks at your own pace. Use auto stepping to watch the flowchart step
automatically.

CAUTION: Since stepping through a running chart or subroutine—even auto stepping—slows
down execution, be cautious if your strategy is running on real equipment. For example, stepping
through a strategy might leave a valve open much longer than it should be.

Single Stepping

When you are debugging a Strategy, start by using the Step Over button to go through a chart
one block at a time. The Step Over button may be all you need to find any problems. If necessary,
go back to Configure mode and change to full debug (see “Choosing Debug Level” on page 7-13)
so you can step into blocks and execute one line at a time.

1. Pause the chart or subroutine to be stepped through by pressing the Pause Chart or Pause
Subroutine button .

Status bar—Step On
ioControl User’s Guide 7-15

WORKING WITH STRATEGIES
2. To step to the next command block, click the Step Over button (or press F10, or select
Debug➞Step Over).

The commands in the highlighted block are executed, the hatch marks move to the next
command block, and the chart pauses again. Compare the chart below to the one on
page 7-15. The hatch mark has moved to the next block.

3. If you need to step inside flowchart blocks and move through them one command at a time
(or in OptoScript Blocks, one line of code at a time), make sure you have downloaded your
strategy at the full debug level. See “Choosing Debug Level” on page 7-13 for help.

4. If the chart or subroutine is not already paused, press the Pause Chart or Pause Subroutine
button .
7-16 ioControl User’s Guide

WORKING WITH STRATEGIES
5. To step inside the block you are on (the one with the hatch marks), click the Step Into
button (or press F11, or select Debug➞Step Into).

6. To move from line to line, click either the Step Into or the Step Over button.

If a command within the block calls a subroutine, Step Into takes you into the subroutine.
Step Over skips over the subroutine.

7. To step from a command inside a block and go to the next block, click Step Out .

Clicking Step Out when you are on a block, rather than inside it, unpauses the chart. In a
subroutine, clicking Step Out takes you out of the subroutine.

Auto Stepping

Autostepping lets you watch a chart’s or a subroutine’s logic in slow motion, one block at a time.
A chart or subroutine does not have to be paused before auto stepping can begin. To begin auto
stepping, click the Auto Step button , press F8, or select Debug➞Auto Step Chart.

Step Auto appears in the status bar. The hatch marks move from block to block as each block’s
commands are executed. When you reach a block whose code is currently being executed, the
highlight around the block becomes changing shades of green instead of solid red (unless the
block is executed very quickly).

A chart that contains flow-through logic stops when it has been stepped through. In a chart that
contains loop logic, the autostepping continues until you stop it by pressing the Auto Step button
again.

The Step Into button takes you inside the
current block, so you can step one
command at a time.

The red arrow indicates the command
that will be executed next.

The small gray tabs at the left of the
white tab show how you got to where
you are.

The white tab shows you where you are:
inside a chart, a block, or a subroutine
called by a chart.
ioControl User’s Guide 7-17

WORKING WITH STRATEGIES
Setting and Removing Breakpoints
Sometimes you want to see the action at one or two blocks without having to step through an
entire chart or subroutine. You can use a breakpoint to stop a running chart or subroutine just
before a block is executed.

You can set a breakpoint at any block in any chart or subroutine, whether it is running or stopped,
paused or auto stepped. The strategy does not need to be running. You can set up to 16
breakpoints in one chart or subroutine. However, you cannot set a breakpoint inside a block.

To set a breakpoint, follow these steps:

1. With the chart or subroutine open and in Debug mode, click the Breakpoint Tool button
.

The pointer turns into a hand.

2. Click the target block to mark it with the breakpoint hand.

The breakpoint hand appears on the block and Break On appears in the status bar.

3. Click other blocks to set additional breakpoints, or click blocks currently marked with a
hand to remove the breakpoint.

4. When you have finished marking or removing breakpoints, click the Breakpoint button
again or click the right mouse button within the window.

When the chart or subroutine runs, it pauses just before executing the breakpoint block.
You can inspect variables or I/O points, disable strategy elements, change values, and so
on to see the effect the block has.

Breakpoint hand

Break On in status bar
7-18 ioControl User’s Guide

WORKING WITH STRATEGIES
5. To single step past the breakpoint, click the Step Block or Step Line button. Or to run the
chart or subroutine at full speed after the breakpoint, click the Pause Chart button.

Managing Multiple Breakpoints
You can quickly set multiple breakpoints in several charts and subroutines, or you can see all the
breakpoints you have set at once.

1. Press CTRL + B or select Debug➞Breakpoints.

The Breakpoints dialog box appears, showing all the breakpoints set in the strategy.

2. To add new breakpoints, click Add.

3. From the Chart drop-down list, select the chart in this strategy in which you want to place a
breakpoint.

Every block in that chart appears in the Block list. You can click the ID, Name, or Type
column labels to sort the blocks numerically by ID or alphabetically by name or type.

4. To add a breakpoint, highlight a block and click OK.

The new breakpoint appears in the Breakpoints dialog box.
ioControl User’s Guide 7-19

WORKING WITH STRATEGIES
5. To delete a breakpoint, highlight it and click Remove. To delete all breakpoints in the
strategy at once, click Clear All.

6. When you have finished making changes, click OK.

Interpreting Elapsed Times
As you debug your Strategy, you may notice elapsed time readings appearing in a chart’s or
subroutine’s status bar, as shown below.

Elapsed time readings can help you determine how much time a chart, a subroutine, or a single
block takes to execute. The readings have slightly different meanings depending on what you did
to make them appear, as described in the table below:

When you . . . Elapsed time represents . . .

Run a chart or subroutine and
pause it

Time since the chart or subroutine started or was last paused

Single step (by line or block) Time to execute the previous block

Auto step Time to execute the most recently executed block

Hit a breakpoint Time since the last pause, or if the chart or subroutine was not
paused, elapsed time since it started running

Elapsed time
7-20 ioControl User’s Guide

WORKING WITH STRATEGIES
Viewing and Printing
You can view and print several helpful things in a Strategy as described in the following topics:

• “Viewing Strategy Filename and Path” (below)

• “Viewing an Individual Chart or Subroutine” on page 7-21

• “Viewing All Charts in a Strategy” on page 7-21

• “Printing Chart or Subroutine Graphics” on page 7-23

• “Viewing and Printing Strategy or Subroutine Commands” on page 7-25

• “Viewing and Printing Strategy or Subroutine Elements” on page 7-26

• “Viewing and Printing a Cross Reference” on page 7-28

• “View and Print a Bill of Materials” on page 7-29

For information on viewing and changing I/O units, see “Inspecting I/O in Debug Mode” on
page 6-51. For variables, see “Viewing Variables in Debug Mode” on page 9-14.

Viewing Strategy Filename and Path
To see an open Strategy’s filename and path, choose File➞Strategy Information. A dialog box
appears showing the path and filename.

Viewing an Individual Chart or Subroutine
To view an individual chart or subroutine, double-click its name on the Strategy Tree, or choose
Chart➞Open or Subroutine➞Open. You can open as many of these windows as you need. The
names of open windows appear on tabs at the bottom of the ioControl main window. Click a tab
to bring its window into view.

Viewing All Charts in a Strategy
You can see the status of all charts at once and change a chart’s status without having to open it.

1. Make sure the strategy is open and in Debug mode. On the Strategy Tree, double-click the
Charts folder.
ioControl User’s Guide 7-21

WORKING WITH STRATEGIES
The View Chart Status dialog box appears, showing every chart in the strategy:

2. To change the status of a chart, double-click the chart name.

The View Chart dialog box appears, showing the chart name, chart status, run mode, and
breakpoint status. If the chart is paused (mode is Step On), the block at which it is paused
is shown in the Paused At field. In the figure below, the chart is not paused:

The title bar shows whether scanning is occurring. Scanning stops when you click one of
the changeable fields (Status, Mode, and Breakpoints) and resumes once you click Apply,
another button, or one of the other fields. If scanning resumes before you click Apply, any
changes you made are lost.

3. To stop, run, or suspend a chart, click an arrow in the Status field to select the option. Click
Apply.

4. To turn pausing on or off, click an arrow in the Mode field to select Step On or Step Off.
Click Apply.

5. To observe or ignore any breakpoints set in the chart, click an arrow in the Breakpoints field
to select Break On or Break Off. Click Apply.

This action does not clear or set breakpoints, but just determines whether the chart stops
at breakpoints when it is running.

Chart changes occur as soon as you click Apply.

6. To add the chart to a watch window so you can monitor it with other strategy elements,
click Add Watch. In the dialog box, choose what to watch. Select an existing watch
window to add this chart to, or create a new watch window.
7-22 ioControl User’s Guide

WORKING WITH STRATEGIES
See “Using Watch Windows for Monitoring” on page 6-73 for more information on watch
windows.

7. When you have finished making changes, click Close to return to the View Chart Status
dialog box.

Printing Chart or Subroutine Graphics
You can print a chart or subroutine just as it appears on screen. You can also print all charts
within a Strategy. When printing a single chart or subroutine, you can preview the image to make
sure it’s what you want before you print it.

NOTE: If you have trouble printing graphics, set your printer for PostScript emulation.

Setting Up the Page

Before printing graphics, you should verify your page setup, which determines how each graphic
appears on a page.

1. In Configure mode, select File➞Page Setup.

The Page Setup dialog box appears.

2. In the Graphics Scaling area, choose whether you want each flowchart to print at a fixed
percentage of normal size or to span a specific number of pages.

• To print at a fixed percentage, click the Adjust To option and specify any scaling from
one percent to 1,000 percent.
You can type in a number or click the arrows to go up or down to the next increment of
25 percent. Typically, percentages between 50 percent and 200 percent work the best.

• To print to a specific number of pages, click the Fit To option and select the number of
pages wide and tall you would like each chart to print.
If you choose one for each dimension, each chart prints to a single page. For each
dimension, you can specify any integer between one and 255, but be careful. Selecting
values of five and five, for example, would cause each chart to print five pages wide
and five pages long, a total of 25 pages.
ioControl User’s Guide 7-23

WORKING WITH STRATEGIES
3. (Recommended) To print a header on each page, put a check mark in the Print Header box.

The header lists the strategy name, chart or subroutine name, date and time of printing,
page number, and column and row of the page with respect to the full chart printout.

4. Click OK to save your settings.

Previewing a Flowchart Printout

1. To see how a chart or subroutine will print before actually printing it, open the chart or
subroutine window.

2. From the Chart or Subroutine menu, select Print Preview Graphics.

The preview window appears, showing the image as it will print. The cursor becomes a
magnifying glass.

3. To zoom in at 200 percent, click where you want to see more closely. Click again to zoom in
at 400 percent. Click a third time to return to 100 percent view.

You can also use the Zoom In and Zoom Out buttons at the top of the window to zoom in or
out with respect to the top left corner of the image.

4. If the image spans more than one page, click the Next Page or Prev Page buttons to view
the next or previous page. To switch between a single-page view and a double-page view,
click the Two Page/One Page button.

Magnifying glass
cursor
7-24 ioControl User’s Guide

WORKING WITH STRATEGIES
5. To print, click the Print button to open the standard Windows Print dialog box. To change
settings before printing, click Close and see “Setting Up the Page” on page 7-23.

Printing One Chart or Subroutine

1. To print one chart or subroutine, open its window.

2. From the Chart or Subroutine menu, select Print Graphics.

3. In the standard Windows Print dialog box, do one of the following:

• To print to a printer, select the printer, page range, and number of copies. Click OK.
• To print to a file, select Print to file and click OK. In the dialog box, enter the file name

and location.

Your chart or subroutine is printed.

Printing All Charts in a Strategy

CAUTION: You can print all charts included in a strategy, but be sure that’s what you want to
do before you begin. You cannot cancel once printing has started.

1. To print all charts within a strategy, open the strategy and check the page setup.

For help, see “Setting Up the Page” on page 7-23.

2. Select File➞Print All Graphics.

Printing begins immediately; no Print dialog box appears. Messages inform you of each
chart’s printing progress. To skip printing a particular chart, click Cancel when its message
appears.

Viewing and Printing Strategy or Subroutine Commands
You must be in Configure mode to view and print commands.

1. To view all commands (instructions) in a chart or subroutine, open its window and select
View/Print Instructions from the Chart or Subroutine menu. Choose whether to sort
instructions by block name or block ID number.

2. To view all instructions in an entire strategy, select File➞View/Print➞All Chart
Instructions.

NOTE: Subroutine instructions are not included; you can print them separately.
ioControl User’s Guide 7-25

WORKING WITH STRATEGIES
ioControl processes the information and displays it in the Instructions window.

You may need to resize the window and use the scroll bar to see all the data. Blocks and
their instructions are listed in alphabetical or ID number order by type of block: Action
Blocks first, then OptoScript Blocks, then Condition Blocks, and finally Continue Blocks.

3. To print the data, click the print button on the toolbar. To save it to a text file, click the save
button. To search the data, click the search button. When finished, close the window.

Viewing and Printing Strategy or Subroutine Elements
You must be in Configure mode.

1. To view a summary of I/O elements and variables configured in a strategy, select
File➞View/Print➞Database.

2. To view the same summary for a subroutine, open the subroutine window and select
Subroutine➞View/Print➞Database.

Save Search
Print
7-26 ioControl User’s Guide

WORKING WITH STRATEGIES
The View/Print Database dialog box appears.

3. Make sure all element types you want to include are checked. Click to uncheck any
elements you do not want.

4. To include descriptive comments associated with the elements, click to put a check mark
next to Descriptions.

5. Click OK.

ioControl processes the database and puts the data in the Database window.

You may need to resize the window and use the scroll bar to see all the data. For each
element the name and reference count (that is, how many times the element is used in

Save Search
Print
ioControl User’s Guide 7-27

WORKING WITH STRATEGIES
strategy commands) are shown, plus other information depending on the element type. The
figure above shows numeric variables and communication handles.

6. To print the data, click the print button on the toolbar. To save it to a text file, click the save
button. To search the data, click the search button. When finished, close the window.

Viewing and Printing a Cross Reference
You can view and print a report of every operand in your Strategy or subroutine—charts, I/O
units, Analog Points, Digital Points, communication handles, numeric variables, string variables,
pointer variables, numeric tables, string tables, and pointer tables. The operands are
cross-referenced to the charts, blocks, and instructions in which they are used.

1. To produce a cross reference for a strategy, open it and select File➞View/Print➞Cross
Reference.

2. To view a similar report for a subroutine, open the subroutine window and select
Subroutine➞View/Print➞Cross Reference.

ioControl processes the data and puts it in the Cross Reference window.

You may need to resize the window and use the scroll bar to see all the data. Notice that
the Instruction column (at right) shows the line number the operand appears in when it is in
OptoScript code.

3. To print the data, click the print button on the toolbar. To save it to a text file, click the save
button. To search the data, click the search button. When finished, close the window.

Save Search
Print
7-28 ioControl User’s Guide

WORKING WITH STRATEGIES
View and Print a Bill of Materials
You can view and print a bill of materials (BOM) that lists all the I/O units and I/O modules
(analog and standard digital) required to run the Strategy. (Special-purpose modules, such as
serial and high-density digital modules, are not included in the BOM.)

1. To produce a BOM for a strategy, open it and select File➞View/Print➞Bill of Materials.

ioControl processes the data and puts it in the Bill of Materials window.

You may need to resize the window and use the scroll bar to see all the data.

2. To print the data, click the print button on the toolbar. To save it to a text file, click the save
button. To search the data, click the search button. When finished, close the window.

Save Search
Print
ioControl User’s Guide 7-29

WORKING WITH STRATEGIES
Searching and Replacing
You can search a chart, subroutine, or Strategy for missing connections, empty Condition Blocks,
or any command or operand. An operand is anything that can be affected by a command,
including charts, I/O units, Analog Points, Digital Points, and all kinds of variables. Searching
includes OptoScript code within OptoScript Blocks.

You can also replace instructions or operands with similar items.

Searching
You can search a a Strategy or one of its charts, or you can search a subroutine.

1. Open the strategy or subroutine and select Edit➞Find.

The Find dialog box appears.

2. Under Search Scope, to search the entire strategy, click Global. To search one chart only,
click Local and choose the chart name from the drop-down list.

If you are searching a subroutine, the search is Local and the subroutine’s name is shown.

3. Under Search For, choose one of the following:

• To search for a chart, an I/O unit or point, or a variable, click Operand. In the Type and
Name fields, choose the operand you want from the drop-down list.

• To search for an instruction, click Instruction. Click Action or Condition, and choose the
instruction you want from the drop-down list.

• To search for blocks that are not connected to other blocks, click Missing Connections.
• To search for Condition Blocks that have no instructions, click Empty Cond. Blocks.

4. Click Find.
7-30 ioControl User’s Guide

WORKING WITH STRATEGIES
The dialog box expands and the search results appear at the bottom.

For more information on any item in the search results, try double-clicking the item.

5. To save the search results to a file or to print them, click Print. In the window that opens,
click the disk button to save or the printer button to print your search results.

6. When you have finished your search, close the Find dialog box.

Replacing
You can also replace any operand or instruction with a similar item. As in searching, you can
replace items in a Strategy or one of its charts, or you can replace items in a subroutine.

1. Open the strategy or subroutine, and select Edit➞Replace.

The Find and Replace dialog box appears.

2. Under Search Scope, to search the entire strategy, click Global. To search one chart only,
click Local and choose the chart name from the drop-down list.

If you are searching a subroutine, the search is Local and the subroutine’s name is shown.

Search
results
ioControl User’s Guide 7-31

WORKING WITH STRATEGIES
3. Under Search For, choose one of the following:

• To search for a chart, an I/O unit or point, or a variable, click Operand. In the Find Type
and Name fields, choose the operand you want to replace from the drop-down list. In
the Replace With Type and Name fields, choose the operand you want to use instead.

• To search for an instruction, click Instruction. Click Action or Condition, and choose the
instruction you want to replace from the Find drop-down list. In the Replace With
drop-down list, choose the instruction you want to use instead.

4. Click Find Next.

When the first occurrence of the operand or instruction is found, the Instructions dialog box
it appears in is displayed.

5. To replace this occurrence, click Replace. To skip it and find the next one, click Find Next.

If you are replacing operands, you can replace all occurrences at once by clicking Replace
All. If you are replacing instructions, you must verify each one.

6. If the Edit Instructions dialog box appears, make any necessary changes and click OK to
save them before moving on.

7. When replacements are finished, close the Find and Replace dialog box.
7-32 ioControl User’s Guide

CHAPTER 8
8—Working with FlowchartsChapter 8

Working with Flowcharts
Introduction
This chapter shows you how to work with flowcharts, the building blocks of your strategy. When
you create a new strategy, one chart is created for you: the Powerup Chart. You must create all
the other charts to do the work of the strategy.

In this Chapter
Creating a New Chart............................. 8-1 Copying, Renaming, and Deleting Charts.... 8-14
Working with Chart Elements 8-2 Printing Charts ... 8-16
Opening, Saving, and Closing Charts ... 8-14 Exporting and Importing Charts 8-17

Creating a New Chart
1. With your strategy open and in Configure mode, select Chart➞New, or right-click the

Charts folder on the Strategy Tree and select New from the pop-up menu.

The Add New Chart dialog box appears.
ioControl User’s Guide 8-1

WORKING WITH FLOWCHARTS
2. Enter a name for the new chart.

The name must start with a letter, but may also include numbers and underscores. If you
type spaces, they are converted to underscores. All other characters are ignored.

3. (Optional) Type a description.

4. Click OK.

The new chart is listed on the Strategy Tree under the Charts folder, and the new chart
window appears. Block 0, the starting block, is shown automatically. No matter how many
other blocks you add or where you place them, block 0 is always the first block to be
executed in the chart.

NOTE: Because chart windows show a small portion of a potentially large chart, a small
movement with the scroll bar can mean a big change in what you see. If you lose your
flowchart in the window, select View➞Center on Block and choose the block you want to
see in the middle of the screen.

For information on splitting and zooming chart windows, see page 3-18.

Working with Chart Elements

What’s In a Chart?
Charts can contain four kinds of flowchart blocks, lines connecting the blocks, and text.

Action Blocks are rectangles that contain one or more commands (instructions) that do the
work of the strategy, such as turning things on or off, setting variables, and so on. See Chapter
8-2 ioControl User’s Guide

WORKING WITH FLOWCHARTS
9, “Using Variables and Commands,” for more information. Action blocks can have more than one
entrance but only one exit.

Condition Blocks are diamonds containing questions that control the logical flow of a strategy.
Condition blocks can have many entrances, but only two exits: True and False.

OptoScript Blocks are hexagons containing OptoScript code, a procedural language you may
want to use to simplify certain tasks. See Chapter 11, “Using OptoScript,” for more information.
OptoScript blocks can have more than one entrance but only one exit.

Continue Blocks are ovals that contain no commands, but simply route chart logic to a new
location, such as to the top of a chart. These blocks help keep charts neat by avoiding awkward
connections between two blocks that are far apart.

Connections are lines with arrows that connect one block to the next, directing the flow of
strategy logic.

Text explains the chart’s purpose and elements for anyone who needs to understand them later.

Using the Drawing Toolbar

The drawing toolbar includes tools for each of the elements plus a Select tool, or pointer, for
manipulating elements:

Changing the Appearance of Elements in a Chart Window
You can change the background appearance of charts or subroutines, the color and size of blocks
and text, and the color of connection lines. Depending on the scope you want to affect, you can
change these window properties at three levels:

• Across ioControl—to change the appearance of all new charts in all new strategies, and
all new subroutines.

• Across a strategy—to change the appearance of all new charts in the open strategy.

• For the open chart or subroutine—to change the appearance of all new elements in the
open chart or subroutine window.

IMPORTANT: Note that most changes affect only new charts and their elements. Existing charts,
subroutines, and elements are not changed. To avoid having to go back and change each item
individually, make sure you set the defaults the way you want them before you create new
charts. Once you have changed the defaults, see page 8-5 to change existing elements to match
the new defaults.

To change the appearance of charts and elements, follow these steps:

1. Choose one of the following, depending on the scope you want to change:

• To change all new charts in all new strategies and all new subroutines, choose
Configure➞Default Properties to open the Configure ioControl Default Properties
dialog box.
ioControl User’s Guide 8-3

WORKING WITH FLOWCHARTS
• To change all new charts in the open strategy only, choose File➞Strategy Properties to
open the Configure Strategy Properties dialog box.

• To change new elements in the open chart or subroutine only, choose
Chart➞Properties or Subroutine➞Properties to open the Configure Chart Properties or
Configure Subroutine Properties dialog box.

The dialog box that opens looks like this, except that its title may be different.

2. Complete the fields as described in “Configure Chart Properties Dialog Box” below.

3. When you have made all the changes, click OK.

Configure Chart Properties Dialog Box

(A) Flowchart Properties Specify general chart display in this area. To apply these changes to
existing charts as well as to new ones, click All charts in D.

• To change the chart background color from the default of white, click the Background Color
box. Choose a new color from the Color dialog box.

• To change the chart’s grid color from the default of black, click the Grid Color box.

• The grid and block ID numbers are displayed by default. To remove them, click Display Grid
or Display Block ID’s to remove the check mark.

• To enable or disable smooth scrolling in a flowchart, click Smooth Scrolling; this option is
disabled by default.

(B) Action Block Parameters Define the appearance of action blocks, condition blocks,
OptoScript blocks, and continue blocks in this area. These changes affect new blocks only, not
existing blocks. (To change existing blocks, see “Changing Existing Elements to Match New
Defaults” on page 8-5.)

A

B

C

D

E

8-4 ioControl User’s Guide

WORKING WITH FLOWCHARTS
• In the Width and Height fields, type the block size in pixels. For action and continue blocks,
the default width is 96 and the default height is 48; the minimum parameters are 48 (width)
and 32 (height). For condition blocks, the default height is 64. (Note that the numbers you
enter are rounded down to be evenly divisible by 16; for example, if you enter 81, click OK
and then reopen the dialog box, the parameter reads 80.)

• To change the color of the blocks from the default, click the Color box.

• To change block name text formatting, click the Font box. In the Font dialog box, change the
font, font style, size, effects, and color. The default font is black 10-point Arial bold.

• To change text alignment, right-click the Font box and choose left, center, or right from the
pop-up menu.

• To change the color of connection lines, click a Connection line at the far right. Choose the
new color from the Color dialog box.

(C) Text Define width, height, and font of text blocks that appear as comments in a chart or
subroutine. Default width is 192; default height is 128; the minimum for both is 16. The default
font is black 10-point Arial bold.

(D) Also Apply To To expand the scope of the changes you’ve made, click these boxes. Click
ioControl to apply the changes to all new strategies and subroutines in ioControl. Click Strategy
to apply the changes to all new charts in the current strategy. Click All Charts to apply the
changes to all new charts and all new graphic elements added to the current strategy.

Depending on which dialog box you are in and what is currently open, one or more of these
options may be grayed out. For example, if you are in the Configure ioControl Default Properties
dialog box, it is assumed that the changes are to be applied throughout ioControl, and that option
is therefore grayed out.

(E) Reset All To reset all parameters and options to their factory default settings, click Reset All.

Changing Existing Elements to Match New Defaults

Once you have changed the defaults for the way elements appear in a chart, you can update
existing blocks, connections, and text to match.

CAUTION: When you update existing objects to match, you cannot undo the update.

1. Right-click on an empty space in the chart whose elements you want to change. Choose
Select from the pop-up menu. From the sub-menu, choose the item type you want.

For example, to select all Action Blocks, choose Select➞Action Blocks.

2. Right-click again in the chart, and choose Properties➞Copy from Default from the pop-up
menu.

The color, size, and font of all selected items change to match the flowchart defaults.
ioControl User’s Guide 8-5

WORKING WITH FLOWCHARTS
Drawing Blocks
Action, condition, OptoScript, and continue blocks are all drawn the same way.

1. With the chart open and the strategy in Configure or Online mode, click the tool you want
to use.

 for an action block

 for a condition block

 for an OptoScript block

 for a continue block.

As you move the mouse into the window, you see an outline representing the block.

2. Click where you want to place the block.

The new block appears, as shown:

3. Click in another location to place other blocks of the same type. When you have finished
using the tool, click the right mouse button, click another tool in the toolbar, or press ESC.

Naming Blocks

1. With the chart open and the strategy in Configure or Online mode, click the Select tool
 and click the block to select it.

2. Right-click the block and choose Name from the pop-up menu.

3. In the Name Block dialog box, type the name and click OK.

Renaming Blocks

1. With the chart open and the strategy in Configure or Online mode, click the Select tool
 and click the block to select it.

2. Right-click the block and choose Name from the pop-up menu.

3. In the Name Block dialog box, change the name. Click OK.
8-6 ioControl User’s Guide

WORKING WITH FLOWCHARTS
Connecting Blocks
To connect blocks, start with the chart open and the strategy in Configure or Online mode.
Remember that Action Blocks and OptoScript Blocks have only one exit, and Condition Blocks
have two.

Action Blocks and OptoScript Blocks

1. To connect an action block or an OptoScript block to the next block in a program sequence,
click the Connect tool .

2. First click the source block and then click the destination block.

Although you can click anywhere inside the blocks to make a connection, the connection is
attached at the side closest to where you clicked. In the figure below, Block 0 is the source
block and Block 1 is the destination block:

To keep your charts neat, try to draw the most direct connections possible. To do so, after
clicking the source block, move your cursor out of the block at a point closest to its
destination.

3. To create a bend or elbow in a connection, click wherever you want the bend while drawing
the connection.
ioControl User’s Guide 8-7

WORKING WITH FLOWCHARTS
For example, to draw the connection in the following figure, we selected the Connect tool,
clicked Block 0, moved the cursor out of the block to the right, clicked at point A, clicked
again at point B, and then clicked the right side of Block 1:

4. While you’re still drawing a line, to delete an elbow you don’t want, click the right mouse
button once to undo it.

If you created several elbows, you can eliminate them in reverse order with repeated right
mouse clicks. If no more elbows remain and you right-click again, you delete the
connection. Once you have completed a connection, however, you cannot undo it this way.

Condition Blocks

1. To connect a Condition Block to the next block in a program sequence, click the Connect
tool .

2. Click the source block.

3. Indicate whether you are drawing the True connection or the False connection, and then
click OK.

A

B

8-8 ioControl User’s Guide

WORKING WITH FLOWCHARTS
4. Click the destination block you chose (True or False).

The connection is labeled T or F depending on its type.

5. Draw another connection to the second destination block.

It is labeled the opposite exit type.

For example, the following figure shows the True and False connections from the condition
block, Block 1. If the conditions in Block 1 are true, Block 2 is executed next. If the
conditions in Block 1 are false, Block 0 is executed next:

Adding Text
One of the best places to put comments about a Strategy is directly on its flowcharts. Start with
the chart open and the strategy in Configure or Online mode.

1. To add text to a chart, click the Text tool .

When you move the mouse onto the chart, a rectangle representing the text area appears.

2. Click the mouse button and type your comments.

If you type in more text than the text frame holds, it expands in length.

3. When you have finished typing, click anywhere on the chart outside the text frame.

The frame becomes invisible, and only the text appears. To change the size or shape of the
text block, see “Resizing Blocks or Text Blocks” on page 8-13.

4. Click in another location to create another text frame, or release the tool by right-clicking in
the chart or choosing another tool from the toolbar.
ioControl User’s Guide 8-9

WORKING WITH FLOWCHARTS
Editing Text

1. With the chart open and the strategy in Configure or Online mode, click the Select tool
.

2. Double-click the text block you want to change.

A blinking cursor appears at the beginning of the text.

3. Change the text as needed.

You can use any standard Windows CTRL key combinations when editing, including
CTRL+arrow keys and CTRL+HOME or END for navigation. You can also use CTRL+X (cut), CTRL+C
(copy), and CTRL+V (paste).

4. When you have finished changing text, click outside the text frame.

The text block stays the same width but changes length to accommodate additional or
deleted text. To change the size or shape of the text block, see “Resizing Blocks or Text
Blocks” on page 8-13.

Selecting Elements
Before you can manipulate most elements, you need to select them. Start with the chart open
and the Strategy in Configure or Online mode.

1. Click the Select tool .

2. To select an action, OptoScript, condition, continue, or text block, click the block.

Handles appear around the block:

3. To select a connection, click it.

Handles appear at the elbows and end points of the connection:

4. To select all connections entering or exiting a block, click the block, click the right mouse
button, and choose Select Connections from the pop-up menu.

Handles

Handles
8-10 ioControl User’s Guide

WORKING WITH FLOWCHARTS
5. To select more than one element, do one of the following:

• Select the first element, hold down the SHIFT key, and select additional elements.
• Click and drag the mouse to draw a rectangle completely around the elements you

want to select.
• To select all items of the same type, right-click anywhere in the window and choose

Select from the pop-up menu. From the sub-menu, choose the item type you want.

Moving Elements

1. With the chart open and the Strategy in Configure or Online mode, click the Select tool
.

2. To move any action, OptoScript, condition, continue, or text block, click it. Then click and
hold the mouse button anywhere on the selected item except on its handles, and drag it to
the position you want.

You can also use the arrow keys on your keyboard to move a block in any direction. Note
that when you move a block, any connections attached to it also move.

3. To move a connection, click it. Then click and drag any handle in any direction.

You can also move an end point from one block to another, as long as the result is a valid
connection. A disallowed move is ignored.

4. To move several elements at once, select them, and then click and drag them.

If elements end up stacked on top of each other, you may need to change their z-order
before you can move them. See the following section.

Moving Elements in Front of or Behind Other Elements (Changing
Z-Order)

If elements are stacked on top of each other, you can select only the one in front. To change their
position (z-order), follow these steps:

1. Click the element to select it.

2. Right-click the element. From the pop-up menu, choose Z-order. From the sub-menu,
choose the action you want to take:

• Bring Forward—moves the element one position closer to the front.
• Bring To Front—moves it all the way to the front.
• Send Backward—moves the element one position closer to the back.
• Send To Back—moves it all the way to the back.
ioControl User’s Guide 8-11

WORKING WITH FLOWCHARTS
Cutting, Copying, and Pasting Elements
You can cut, copy, and paste most chart or subroutine elements. Cut or copied elements are
placed on the Windows Clipboard, and they can be pasted in the same chart or subroutine, in a
different chart or subroutine, or in a different Strategy.

A connection can be cut or copied, but it cannot be pasted unless its original source and
destination blocks have also been pasted. Block 0 cannot be cut.

1. With the chart open and the strategy in Configure or Online mode, click the Select tool
.

2. To cut or copy element(s), click them. Press CTRL+X to cut or CTRL+C to copy.

You can also select the element(s) and then choose Edit➞Cut or Edit➞Copy, or click the
right mouse button and choose Cut or Copy from the pop-up menu.

3. To paste blocks, press CTRL+V, select Edit➞Paste, or right-click anywhere on a chart and
select Paste from the pop-up menu.

Text blocks are pasted immediately. For action, condition, or continue blocks, a message
appears asking if you want to keep the original name of the block being pasted.

If you paste to a different strategy or to a subroutine, ioControl checks the referenced
variables to make sure they match. Variables that do not exist are created. Variables that
exist but are different—for example, a table with the same name but a different table
length—are noted in a log file that appears when the paste is complete.

Deleting Elements

1. Make sure the chart is open and the strategy is in Configure or Online mode.

2. Click the Select tool . Click the element(s) to select them.

CAUTION: Make sure you have selected the element you want. You cannot undo a deletion!

3. Press DELETE.

You can also select the element(s), right-click them, and select Delete from the pop-up
menu. Block 0 cannot be deleted.

Changing Element Color and Size
You can change the colors and sizes of blocks, connections, and text in your chart. To change one
element (for example, the color of one block), use the steps in this section. To change more than
one at a time, see “Changing the Appearance of Elements in a Chart Window” on page 8-3.

Start with the chart open and the strategy in Configure or Online mode.
8-12 ioControl User’s Guide

WORKING WITH FLOWCHARTS
Resizing Blocks or Text Blocks

1. Click the Select tool and click the block to select it.

2. Click one of the handles, then drag it in the direction you want. To resize horizontally and
vertically at the same time, drag a corner handle.

Changing Block Colors

1. Click the Select tool and click the block to select it.

2. Right-click the block and choose Color from the pop-up menu.

3. Pick the color you want and click OK.

Changing Text

You can change the size, font, font style, or color of the text in any block.

1. Click the Select tool and click the block to select it.

2. Right-click the block and choose Font from the pop-up menu.

3. In the Font dialog box, make the changes you want. Click OK.

4. To change whether text appears at the left, the center, or the right of a block, select the
block and click the right mouse button. From the pop-up menu, choose Justify; from the
sub-menu, choose Left, Center, or Right.

Changing an Element Back to the Defaults

1. Select the item and click the right mouse button.

2. From the pop-up menu, choose Properties. From the sub-menu, choose Copy from Default.

To change defaults, see “Changing the Appearance of Elements in a Chart Window” on
page 8-3.
ioControl User’s Guide 8-13

WORKING WITH FLOWCHARTS
Opening, Saving, and Closing Charts

Opening a Chart
Make sure the Strategy is open. In the Strategy Tree, double-click the chart you want to open.

You can also open a chart by selecting Chart➞Open, and then double-clicking the chart name in
the Open Chart dialog box, which lists all charts that are not currently open.

If a chart is open but not visible on the screen, click the chart’s name tab at the bottom of the
window to make it visible.

Saving a Chart

1. Make sure the chart is open and is the active window.

2. From the Chart menu, choose Save.

Charts are automatically saved when you choose File➞Save All. If you choose File➞Save
Strategy or click the Save Strategy button on the toolbar, you can choose which charts to
save in the Save Strategy dialog box.

Closing a Chart
To close a chart, click the close box in the upper-right corner of the chart’s window (not the
ioControl window). You can also close a chart by pressing CTRL+F4 when the chart window is
active. If you have made changes to the chart, you are prompted to save them.

Copying, Renaming, and Deleting Charts

Copying a Chart
If an existing chart is similar to one you want to create, it is easier to copy it than to create a new
one from scratch. To copy a chart in the same Strategy, follow the steps in this section. To copy
a chart to another strategy, see “Exporting and Importing Charts” on page 8-17.

1. With the strategy open and in Configure mode, select Chart➞Copy.
8-14 ioControl User’s Guide

WORKING WITH FLOWCHARTS
The Copy Chart dialog box appears.

2. In the From field, choose the chart you want to copy from the drop-down list.

3. In the To field, enter a name for the new chart.

The name must start with a letter and include only letters, numbers, or underscores.
(Spaces are converted to underscores).

4. (Optional) Enter a description for the new chart.

5. Click OK.

The new chart is created and appears as the active window on the screen.

Renaming a Chart

1. Make sure the strategy is in Configure mode and that the chart you want to rename is the
active window.
ioControl User’s Guide 8-15

WORKING WITH FLOWCHARTS
2. From the Chart menu, choose Rename.

3. Enter a new name and description (optional). Click OK.

The chart is renamed.

Deleting a Chart
You can delete any charts except for the Powerup chart. However, you cannot delete a chart if it
is called or used by another chart in your Strategy.

1. Make sure the strategy is open and in Configure mode.

2. In the Strategy Tree, right-click the name of the chart you want to delete and choose Delete
from the pop-up menu. Or, if the chart is the active window, choose Chart➞Delete.

3. At the confirmation message, make sure you are deleting the correct chart.

CAUTION: You cannot undo a deletion!

4. Click Yes to delete the chart.

The chart window disappears (if it was open), the chart is removed from the Strategy Tree,
and the strategy is saved.

Printing Charts
You can print any flowchart. To print a chart as it appears on the screen, see “Printing Chart or
Subroutine Graphics” on page 7-23. To print commands (instructions) for the chart, see “Viewing
and Printing Strategy or Subroutine Commands” on page 7-25.
8-16 ioControl User’s Guide

WORKING WITH FLOWCHARTS
Exporting and Importing Charts
To copy a chart to another Strategy, you must export it as an ioControl chart export file (.cxf file)
and then import it into the strategy where you want it.

Exporting a Chart

1. With the strategy open and in Configure or Online mode, choose Chart➞Export.

The Export Chart dialog box appears.

2. In the From section of the dialog box, select the chart to be exported from the Name
drop-down list.

3. In the To section of the dialog box, click Select.

4. Navigate to where you want the exported chart file to be saved. In the File name field,
enter a name for the exported chart. Click Save.

You return to the Export Chart dialog box, which now shows the path and file name in the
To section.
ioControl User’s Guide 8-17

WORKING WITH FLOWCHARTS
5. (Optional) Enter a description for the new chart.

6. Click OK.

The exported chart is saved. You can import it into any ioControl strategy. See the next
section for information on importing charts.

Importing a Chart

1. With the strategy open and in Configure mode, choose Chart➞Import.

The Automatic Chart Import dialog box appears.

2. At the top of the dialog box, click Create new chart or Replace existing chart.

CAUTION: If you choose Replace existing chart, the old chart will be completely overwritten
with the chart you are importing.

3. Click Select. Navigate to the exported chart. Click OK.

4. In the To section of the dialog box, enter a name for the new chart. If you wish, enter a
description. If you are replacing an existing chart, choose the chart to be replaced.
Click OK.

The chart is imported. A Chart Import Report window shows you how the tags in the chart
match with those already in the strategy. Any tags from the chart that do not already exist
in the strategy are created and added.
8-18 ioControl User’s Guide

CHAPTER 9
9—Using Variables and CommandsChapter 9

Using Variables and Commands
Introduction
This chapter discusses the seven types of variables used in ioControl: numeric, string, pointer,
numeric table, pointer table, string table, and communication handle variables.

This chapter also shows you how to use the commands, or instructions, in ioControl and
discusses the mechanics of adding commands to your strategy flowcharts. For command
information to help you program your strategy effectively, see Chapter 10. To find out how to use
commands in OptoScript code, see Chapter 11. For a list of all standard ioControl commands and
their OptoScript equivalents, see Appendix E.

In this Chapter
About Variables ..9-1 Adding Commands.................................... 9-18
Variables in ioControl9-3 Changing a Command............................... 9-23
Adding Variables ..9-5 Deleting a Command 9-23
Adding Tables ...9-8 Cutting or Copying a Command................ 9-24
Changing a Configured Variable...............9-13 Configuring a Continue Block 9-25
Viewing Variables in Debug Mode...........9-14 Viewing and Printing Chart Instructions... 9-26

About Variables
As Chapter 2 mentions, variables store pieces of information in a Strategy. You create a variable
for each piece of information in your control process that must be acted upon. These pieces of
information might include the name of a chart, the on or off state of a switch, communication
parameters for a peer on the network, or a table that holds a series of numbers.

Each variable has a name and a value. You assign the variable’s name in plain English, so you
know what it is. The variable’s value is the current information it represents. As a strategy runs,
the variable’s name remains the same, but its value may change. For example, the name of the
ioControl User’s Guide 9-1

USING VARIABLES AND COMMANDS
variable Oven_Temperature stays the same, but its value (the temperature of the oven) may
change several times while the strategy is running.

To illustrate variables, suppose you are regulating the amount of water in a tank. You must keep
the tank filled beyond a minimum level, but you cannot let it get too full.

You’ve already configured the I/O points:

• Level_Meter is an analog Input Point that registers
the quantity of water in the tank.

• Pump_1 is a digital Output Point that turns the
pump on or off.

• Drain_1 is a digital output point that opens or
closes the drain.

Next, you configure variables as places to hold
information that these I/O points must work with:

• To avoid constantly polling Level_Meter to find out the quantity of water in the tank, you
create a variable called Tank_Level_Reading in which to store the level. The input point
Level_Meter is periodically checked and the value of Tank_Level_Reading updated.

• To establish the maximum and minimum levels, you create variables called
Tank_Max_Level and Tank_Min_Level. The value in Tank_Level_Reading can be compared
to the values in these two variables to determine whether the pump should be turned on or
off, or the drain opened or closed, to maintain the proper level. (You could create constant
values, called literals, for the minimum and maximum levels, but creating them as
variables lets you change their values in Debug mode.)

Types of Data in a Variable
A variable stores one of six types of data: floating point, integer, timer, string, pointer, or
communication handle. When you create the variable, you designate the type of data it contains.
It is always best to choose the most appropriate data type for the information you are storing.
ioControl can store an integer in a floating point variable, but it has to convert the data first.
Unnecessary data conversions take up processor time.

• Numeric data stores numbers and can be one of the following types:

– A floating point (or float) is a numeric value that contains a decimal point, such as
3.14159, 1.0, or 1,234.2. A good example of a float variable is one that stores readings
from an analog input such as a thermocouple. ioControl uses IEEE single-precision
floats with rounding errors of no more than one part per million.

– An integer is a whole number with no fractional part. Examples of integer values are
-1, 0, 1, 999, or -4,568. The state of a switch, for example, could be stored in an integer
variable as 1 (on) or 0 (off).

Most integers used in ioControl are 32-bit signed integers, which can range from
-2,147,483,648 to 2,147,483,647. These 32-bit integers should be used for general
integer use, such as status variables, mathematics, and indexes. If you are using the

Pump_1

Drain_1

Level_
Meter

(Tank)
9-2 ioControl User’s Guide

USING VARIABLES AND COMMANDS
SNAP-UP1-D64, SNAP-UP1-M64, or SNAP-ENET-D64 brains, which handle digital
modules in all 16 module positions, you can use 64-bit integers to address the entire
I/O unit at once. Integer 64 commands are slower than integer 32 commands and
should be used only for these brains.

– A timer stores elapsed time in units of seconds with resolution in milliseconds. Up
Timers count up from zero, and Down Timers start from a value you set and count down
to zero. Timers can range from 0.001 to 4.611686 x 1015.

• A string stores text and any combination of ASCII characters, including control codes and
extended characters. For instance, a string variable might be used to send information to a
display for an operator to see. A string variable is also used to set parameters for
peer-to-peer communication. When defining most string variables, you must specify the
width of the string. The width is the maximum number of characters that the variable may
hold.

A string variable can contain numeric characters, but they no longer act as numbers. To use
them in calculations, you must convert them into floating point or integer numbers.
Conversely, a numeric value to be displayed on a screen must first be converted into a
string.

• A pointer does not store the value of a variable; instead, it stores the memory address of a
variable or some other ioControl item, such as a chart or an I/O point. You can perform any
operation on the pointer that you could perform on the object the pointer points to. Pointers
are an advanced programming feature and are very powerful, but they also complicate
programming and debugging.

• A communication handle stores information used to communicate with other entities,
for example other devices on the network or files that store data. The communication
handle’s value is a string containing the parameters needed to make a connection with a
specific entity. For outgoing Ethernet communication, for example, these parameters
usually include the protocol, the IP address of the device you are communicating with, and
the port number used on the device.

After the initial connection is made, the communication handle is referenced during
communication with the entity, and then used to close communication.

Variables in ioControl
In ioControl there are seven types of variables:

• numeric

• numeric table

• string

• string table

• pointer

• pointer table

• communication handle
ioControl User’s Guide 9-3

USING VARIABLES AND COMMANDS
Numeric, string, and pointer variables contain individual pieces of data. Numeric table, string
table, and pointer table variables contain several pieces of related data in the form of a table.
Communication handle variables contain parameters used by ioControl for communicating with
other devices and files.

Table Variables

In a table variable, the variable name represents a group of values, not just one. Table variables
are one-dimensional arrays, which means that each table is like a numbered list of values. You
refer to each item in the list by its number, or index. Indexes start at 0, not at 1. Here are two
table examples:

When you define a table, you must specify its length, which is how many values the table can
store. The length of a table is NOT the value of the last index. Since indexes start at 0, a table
with a length of 100 contains indexes 0 through 99. Table length is limited only by the amount of
memory in the control engine. (For more information on the available memory, see “If You Have
Memory Problems” on page A-3.)

Numeric tables store either integer values or floating point numbers (but not both in the same
table). String tables store strings. Because pointers can point to any data type (for example, an
I/O point, a chart, or even another table), pointer tables can store an assortment of data types.

Persistent Data
Most variables can be either global or persistent in scope. Global variables are set to an initial
value (which you specify during configuration) either whenever the Strategy is run or whenever
it is downloaded.

Persistent variables, however, are initialized only when the strategy is first downloaded. The
variable’s value is saved in the controller’s memory; it does not change when the strategy is run,
stopped, or started, and it does not change if the strategy is changed and downloaded again. A
persistent variable’s value remains the same until one of the following events occurs:

• A strategy with a different name is downloaded.

• The RAM memory on the controller is cleared.

• A new firmware kernel is downloaded to the controller.

Index Value

0 82.0

1 86.1

2 85.0

3 74.8

4 72.3

5 72.7

Index Value

0 Maria

1 Tom

2 Siu

3 Andre

In a float table, In a string table,
values are floating
point numbers.

values are strings.
9-4 ioControl User’s Guide

USING VARIABLES AND COMMANDS
• The persistent object is changed in some way (for example, the length of a persistent table
changes).

Persistent data can be very useful in certain situations. For example, suppose you have a PID
setpoint that is fine-tuned as your process runs. If the setpoint is configured as persistent, its
value won’t be lost if you must re-download the strategy after making a program change.

Pointer variables, pointer tables, and timers are not allowed to be persistent; but all other
variables and tables can be. Persistent variables cannot be configured on-the-fly.

Literals
A literal is used like a variable, but it is constant data that never changes. A literal has no variable
name, only a fixed value, which may be a floating point number, an integer, or a string.

If you are using subroutines, see the information on literals in “Data Types for Subroutines” on
page 12-2.

Adding Variables
This section includes steps for adding numeric, string, pointer, and communication handle
variables. (For numeric, string, and pointer tables, see “Adding Tables” on page 9-8.)

1. With the strategy or subroutine open in Configure mode, click the Configure Variables
button on the toolbar or choose Configure➞Variables.

The Configure Variables dialog box opens.

This dialog box lists all the variables in the strategy or subroutine that are of the type
shown in the Type field.

2. In the Type drop-down list, choose the type of variable you want to configure.

3. To have data in the variable be persistent, select Persistent in the Scope drop-down list.
ioControl User’s Guide 9-5

USING VARIABLES AND COMMANDS
You must choose Persistent as the scope before creating the variable; existing variables
cannot be changed to be persistent. Pointer variables and timers cannot be persistent.
Global is the default scope. For more information, see “Persistent Data” on page 9-4.

4. If you are adding the variable to a subroutine, select Subroutine in the Scope drop-down
list.

5. To add a new variable, click Add.

The Add Variable dialog box appears.

The figure above shows the Add Variable dialog box as it appears for string variables.
Fields are slightly different for other variables.

6. Complete the fields as described in “Add Variable Dialog Box” below.

7. Click OK.

The Add Variable dialog box closes and the new variable appears in the Configure
Variables dialog box.

Add Variable Dialog Box

This dialog box varies depending on the type of variable.

(A) Name Enter a name for the variable. The name must start with a letter and may contain
letters, numbers, and underscores. (Spaces are converted to underscores.)

(B) Description (Optional) Enter a description of the variable.

(C) Type In the Type drop-down list, select the type of data for the variable. Possible types are
shown in the following table. For more information, see “Types of Data in a Variable” on
page 9-2.

A
B

D

E F

C

Field at D varies
depending on
variable type.

Variable Possible Data Types

Numeric Integer 32, integer 64, floating point, up or down timer

Numeric table Integer 32, integer 64, or floating point
9-6 ioControl User’s Guide

USING VARIABLES AND COMMANDS
(D) String Width

This field varies depending on the variable type.

(Table variables only) In the Table Length field, enter an integer between 1 and 1,000,000
representing the number of elements in the table. The greater the number, the more memory
required to store the table.

(String variables and string tables only) In the String Width field, enter the maximum number
of characters permitted in the string. The number must be an integer between one and 1024. The
greater the number, the more memory required to store the string.

(Pointer variables only) From the Pointer to Type drop-down list, select the type the pointer
points to. Note that void pointers are not allowed; a pointer must point to a specific type. Also
note that you cannot point a pointer to another pointer; ioControl has only one level of indirection
for pointers. If you try to point to a pointer, ioControl assigns to the new pointer the address of
the object being pointed to.

(E) Initialization (For all variables except up timers and down timers) To set the variable to the
initial value (F) each time the strategy is run (either manually from the debugger or automatically
via the autorun flag), click Initialize on Strategy Run.

To set the variable to the initial value (F) only when a strategy is downloaded, click Initialize on
Strategy Download. The variable retains its current value when the strategy is stopped and then
run again, either through the debugger or autorun. It also retains its value if power is cycled. Note
that this choice means the variable is stored in battery-backed RAM, which is limited in size. See
“If You Have Memory Problems” on page A-3. To keep a variable’s current value through both
power cycles and strategy download, make the variable a persistent variable (see “Persistent
Data” on page 9-4).

String String

String table String

Pointer Pointer to any data type

Pointer table Pointer to any data type, and the data type may change
over time

Communication handle Communication handle

Variable Possible Data Types
ioControl User’s Guide 9-7

USING VARIABLES AND COMMANDS
The following table shows how your choices about variable initialization and persistence affect
what happens to variables (applies to all variables and tables except up timers and down timers).

(F) Initial Value (For all variables except pointers, up timers, and down timers) Enter the value to
which the variable is to be set initially. If you leave this field blank, the initial value is set to zero.

(For pointer variables only) When you have selected the Pointer to Type, the drop-down list in
this field shows all the valid objects for that type that are currently defined in your strategy.
Choose one or leave the initial value as NULL. A NULL value means that the pointer is created
but does not initially point to anything.

(For communication handles only) Enter a string containing communication parameters in the
correct format for the type of communication handle you are using. The type (for example, tcp,
ftp, file) must be in lowercase letters, and parameters are separated by colons and commas
according to the format required. See “Communication Commands” on page 10-35 for
information and examples.

• If you are talking to a serial module, use the IP address of the brain the module is attached
to, and use the serial module’s port number according to its position on the rack, for
example: tcp:10.192.55.185:22502 See Opto 22 form #1191, the SNAP Serial
Communication Module User’s Guide, for port numbers.

• If you are talking to another SNAP Ultimate brain, be aware of port numbers that are
reserved for a specific protocol. For more infomration, see the section on Security in form
#1311, the SNAP Ultimate I/O System User’s Guide.

• For other peers on the Ethernet network, be aware of port numbers they may use for
specific purposes. Ports 22000 and 22001 are reserved for the control engine. For a list of
standard Ethernet port numbers, refer to http://www.iana.org/assignments/port-numbers.

• If you are using the Accept Incoming Communication command to listen for communication
requests, leave out the IP address and use the following format: tcp:port

For tables, each value in the table is set to the initial value. If you need to set individual table
elements to differing values intially, you can do so in the Powerup chart. If you need to use an
initialization file to set values on strategy download, contact Opto 22 Product Support.

Variable
What happens to the variable’s value when...

Strategy stops, then starts
(through debugger or autorun) Power is cycled Same strategy is

downloaded

Variable initialized
on strategy run

(default)

Set to initial value Set to initial value Set to initial value

Variable initialized
on strategy
download

Retains current value Retains current value Set to initial value

Persistent variable Retains current value Retains current value Retains current value
9-8 ioControl User’s Guide

USING VARIABLES AND COMMANDS
Adding Tables
See the following topics to add numeric, string, and pointer tables:

• “Adding Table Variables” (below)

• “Setting Initial Values in Tables During Strategy Download” on page 9-10

Adding Table Variables

1. With the strategy or subroutine open in Configure mode, click the Configure Variables
button on the toolbar or choose Configure➞Variables.

The Configure Variables dialog box opens, listing all variables of one type in the strategy.

2. In the Type drop-down list, choose the type of table variable you want to add.

3. To have data in the table be persistent, select Persistent in the Scope drop-down list.

Pointer tables cannot be persistent. Global is the default scope. For more information, see
“Persistent Data” on page 9-4.

4. If you are adding the table variable to a subroutine, select Subroutine in the Scope
drop-down list.

5. To add a new table variable, click Add.
ioControl User’s Guide 9-9

USING VARIABLES AND COMMANDS
The Add Variable dialog box appears.

The figure above shows the dialog box as it appears for string tables. Fields are slightly
different for other table variables.

6. Complete the fields as described in “Add Variable Dialog Box” on page 9-6.

NOTE: If you need to set individual table elements to differing values initially, you can do so
in the Powerup chart. If you need to use an initialization file to initialize the values on
strategy download, see the next section, “Setting Initial Values in Tables During Strategy
Download.”

7. Click OK.

The Add Variable dialog box closes and the new table variable appears in the Configure
Variables dialog box.

Setting Initial Values in Tables During Strategy Download
When you are adding table variables in ioControl, you can set all table elements to one initial
value in the Add Variables dialog box. If you want to set each individual table element to its own
value, however, you need to create an initialization file and download it with your ioControl
Strategy.

In addition to setting initial values for table elements, sometimes it is easier to initialize all
variables during strategy download using an initialization file.

This section shows you how to create an initialization file and download it with your strategy.

Creating the Initialization File

A sample initialization file, INIT.TXT, is included with ioControl. You can open this file with a text
editor to see the proper syntax for each initialization entry, and then modify it as necessary for
your strategy.

IMPORTANT: Every initialization file should include the following line near the top:

""DOWNLOAD_COMPRESSION_OFF
9-10 ioControl User’s Guide

USING VARIABLES AND COMMANDS
Download compression removes the newlines necessary for string initialization. This line tells
ioControl to turn off download compression so strings can be initialized.

IMPORTANT: Each file must end with a carriage return, and each line within the file must end
with a carriage return. If you add comments to the file, they must be preceded by a backslash (\)
and a space.

Text Examples

NOTE: Variable names are case-sensitive and can include both upper- and lower-case letters.

Variables Example To set initial values of 123 for the variable INTEGER_VARIABLE, 456.789 for
FLOAT_VARIABLE, “String Variable Test String” for STRING_VARIABLE, and to have pointer
PTR_POINTER_VARIABLE point initially to INTEGER_VARIABLE, you would include the following
text in the initialization file:
123 ^INTEGER_VARIABLE @!

456.789 ^FLOAT_VARIABLE @!

*STRING_VARIABLE $INN

String Variable Test String

^INTEGER_VARIABLE MoveToPointer PTR_POINTER_VARIABLE

Integer Table Example To set initial values of 10, 20, 30, 40, and 50 for elements zero through
four of an integer table named My_Int_Table, include the following text:
10 0 }My_Int_Table TABLE!

20 1 }My_Int_Table TABLE!

30 2 }My_Int_Table TABLE!

40 3 }My_Int_Table TABLE!

50 4 }My_Int_Table TABLE!

Float Table Example For a float table, the initial values must include a decimal point. To set
initial values of 1.1, 2.2, 3.3, 4.4, and 5.5 for elements zero through four of a float table named
My_Float_Table, include the following text:
1.1 0 }My_Float_Table TABLE!

2.2 1 }My_Float_Table TABLE!

3.3 2 }My_Float_Table TABLE!

4.4 3 }My_Float_Table TABLE!

5.5 4 }My_Float_Table TABLE!

String Table Example To set initial values of “zero”, “one”, “two”, “three”, and “four" for
elements 0–4 of a string table named My_String_Table, include the following text. Make sure
you turn off download compression and use new lines as shown:
0 {My_String_Table $TABLE@ $INN

zero

1 {My_String_Table $TABLE@ $INN

one

2 {My_String_Table $TABLE@ $INN

two
ioControl User’s Guide 9-11

USING VARIABLES AND COMMANDS
3 {My_String_Table $TABLE@ $INN

three

4 {My_String_Table $TABLE@ $INN

four

Pointer Table Example Each index in a pointer table points to another item within the strategy,
for example an I/O point, a variable, or a chart. Setting initial values for pointer tables means
designating the items the pointer table initially points to. For example, you would include the
following text to have a pointer table named My_Ptr_Table initially point to Oven_Temperature
(a variable), Alarm_Handler (a chart), Thermocouple (an analog input), Fuel_Pump (an analog
output), and Fan_1 (a digital output):
^Oven_Temperature 0 PTBL_My_Ptr_Table TABLE!

&Alarm_Handler 1 PTBL_My_Ptr_Table TABLE!

~Thermocouple 2 PTBL_My_Ptr_Table TABLE!

~Fuel_Pump 3 PTBL_My_Ptr_Table TABLE!

~Fan_1 4 PTBL_My_Ptr_Table TABLE!

Special Characters in the Initialization File Note that the initial character on each line of the
initialization file is a special character that identifies the object type. Possible characters include
the following:

Saving the Initialization File When you have finished modifying the file, save it as a text file (.txt
file extension) to your strategy directory. You can name the file anything you like. (You can also
save it to any directory you like, but it is good practice to save each initialization file to the
directory of the strategy that references it.)

Downloading the Initialization File

To use the file, you need to download it with your Strategy.

1. With the strategy open in Configure or Online mode, click the Configure Control Engines
button on the toolbar, choose Configure➞Control Engines, or double-click the control
engine’s name.

2. Highlight the control engine and click the Download Options button.

The Download Options dialog box appears. The initialization file must be downloaded
immediately after your strategy is downloaded.

Character Object Type Character Object Type
^ float, integer, or

timer
} float table or

integer table

* string { string table

PTR_ pointer variable PTBL_ pointer table

~ I/O point % I/O unit

& chart
9-12 ioControl User’s Guide

USING VARIABLES AND COMMANDS
3. Click Add.

4. Navigate to the initialization file you created. Double-click the file name.

The file appears in the Download Options dialog box.

5. Click OK.

The initialization file sets values for the variables and table elements immediately after
your next full strategy download.

IMPORTANT: When you create each variable in the strategy, you must check “Initialize on
Strategy Download” in the Add Variable dialog box.

Since download options are specific to each control engine, make sure you set the
initialization file as a download option for every control engine on which the strategy will
run. Because control engines have separate initialization files, you can use the same master
strategy for two or more control engines and configure differences in variables by
customizing the initialization files.

Changing a Configured Variable
You can change a variable, but you cannot change a variable’s type.

1. To change a configured variable, make sure the strategy or subroutine is open and in
Configure or Online mode.

2. If you are working in a strategy, on the Strategy Tree, expand the Variables folder until you
see the name of the variable you want to change. Double-click its name to open the Edit
Variable dialog box.

3. If you are working in a subroutine, click the Configure Variables button on the toolbar
or choose Configure➞Variables. In the Configure Variables dialog box, double-click the
name of the variable you want to change.

4. In the Edit Variable dialog box, make the necessary changes and click OK.
ioControl User’s Guide 9-13

USING VARIABLES AND COMMANDS
If you need help, see “Adding Variables” on page 9-5 or “Adding Tables” on page 9-8.

You can also change a variable from the Configure Variables dialog box by double-clicking the
variable’s name or by highlighting it and clicking Modify.

Deleting a Variable
You cannot delete a variable that is referenced within the Strategy or subroutine. Be careful
when deleting variables, since you cannot undo a deletion.

1. Make sure the strategy is open and in Configure mode.

2. On the Strategy Tree, expand the Variables folder until you see the name of the variable
you want to change. Right-click the name and choose Delete from the pop-up menu.

The variable is deleted.

You can also delete a variable from the Configure Variables dialog box by highlighting the
variable’s name and clicking Delete.

Viewing Variables in Debug Mode
While the Strategy is running in Debug mode, you can view its variables and modify the value of
a variable or of entries in a table. You can also view several variables at once—as well as other
strategy elements—by putting them into a watch window.

Viewing Numeric, String, and Communication Handle
Variables

1. Make sure the strategy is running in Debug mode. On the Strategy Tree, double-click the
variable you want to view.

The Inspect Variables dialog box opens. The animated icon at the upper left assures you
that the data is fresh. The title bar includes the name of the variable and indicates whether
scanning is occurring.

Maximize button
9-14 ioControl User’s Guide

USING VARIABLES AND COMMANDS
2. To view more information, click the Maximize button.

Scanning stops whenever you click a changeable field. It resumes once you click Apply,
another button, or an unchangeable field. If scanning resumes before you click Apply, any
changes you made are lost.

If you do not want to change the value of the variable, you can click the Minimize button to
shrink the dialog box back to its original size.

3. To change the value of the variable, type the new value in the Value field and click Apply.

The field turns magenta until you click Apply.

For a string variable, if your change lengthens the string beyond its maximum width, the
string is truncated to fit.

For a communication handle variable, changing the value of the variable here has the same
effect as using a Set Communication Handle Variable command. If the communication
handle is currently open, the value will be changed but will not affect the connection.

4. To monitor the variable in a watch window, click Add Watch.

If you have only one watch window and it is already open, the variable appears
immediately in the window for monitoring.

Otherwise, the Add Watch Entry dialog box appears.

5. Check the items you want to watch.

Communication handle variables
show slightly different fields.

Minimize button
ioControl User’s Guide 9-15

USING VARIABLES AND COMMANDS
Items to watch vary depending on the variable type.

6. In the Add Watch Entry dialog box, do one of the following:

• If the watch window you want to use to monitor the variable is open, choose it from the
Select Watch Window drop-down list.

• If the watch window you want is not open, click Open. Navigate to it and double-click it
to open it.

• If you want to monitor the variable in a new watch window, click New. (For help, see
“Creating a Watch Window” on page 6-73.)

7. When the Add Watch Entry dialog box shows the correct items to watch and the watch
window you want, click OK.

The variable appears in the watch window.

Viewing Pointer Variables

1. Make sure the strategy is running in Debug mode. On the Strategy Tree, double-click the
pointer variable you want to view.

The View Pointer dialog box appears, showing the pointer’s name, type, scope, and item
pointed to.

2. To view the status or value of the item pointed to, click the Inspect button.

If you need help, follow the steps in “Viewing Numeric, String, and Communication Handle
Variables” on page 9-14.

Viewing Numeric and String Tables

1. Make sure the strategy is running in Debug mode. On the Strategy Tree, double-click the
table variable you want to view.

The View Table dialog box appears, showing the table’s name, length (maximum number of
entries), width for a string table, initialization method, and security level. It also lists the
index and value of each table entry. The title bar includes the name of the variable and
indicates whether scanning is occurring.
9-16 ioControl User’s Guide

USING VARIABLES AND COMMANDS
Here’s an example for a string table.

Scanning for an individual table element stops whenever you select an element in the
table. It resumes for that element if no changes are made and another table element is
selected, or when you click Apply. A magenta background indicates that scanning is
stopped.

2. To change a table entry, click its index number, highlight the value, and type in a new
value. Click Apply.

3. To monitor the table in a watch window, click Add Watch.

The Add Watch Entry dialog box appears.

4. In the Add Watch Entry dialog box, do one of the following:

• If the watch window you want to use to monitor the table variable is open, choose it
from the Select Watch window drop-down list.

• If the watch window you want is not open, click Open. Navigate to it and double-click it
to open it.

• If you want to monitor the variable in a new watch window, click New. (For help, see
“Creating a Watch Window” on page 6-73.)

Table entries and their
current values.
Resize the dialog box to see
all entries at once.
ioControl User’s Guide 9-17

USING VARIABLES AND COMMANDS
5. Select the indexes you want to watch.

6. When the Add Watch Entry dialog box shows the correct items to watch and the watch
window you want, click OK.

The table variable appears in the watch window.

Viewing Pointer Tables

1. Make sure the strategy is running in Debug mode. On the Strategy Tree, double-click the
pointer table you want to view.

The View Table dialog box appears, showing the pointer table’s name, length, and the
items pointed to. You cannot change a pointer table entry in this dialog box.

2. To view the status or value of the item pointed to, highlight it in the table and click the
Inspect button.

If you need help, follow the steps in “Viewing Numeric and String Tables” on page 9-16.

Adding Commands
To make a block in a Strategy flowchart do the work it’s intended to do, you add one or more
commands. Commands use the I/O points and variables you’ve already configured, as well as
other elements in your strategy. A command, for example, might turn on a Digital Point, move a
value to a variable, or check to see whether a chart is running. ioControl contains more than 500
commands you can use. A command in ioControl is often called an instruction.

You can add commands to Action Blocks, Condition Blocks, and OptoScript Blocks. Continue
blocks just move flowchart logic to another block. (See page 9-25 for steps to configure a
continue block.)

To add commands to an action or condition block, follow the steps below. (To add commands to
an OptoScript block, see “OptoScript Functions and Commands” on page 11-11 and “Using the
OptoScript Editor” on page 11-25.)
9-18 ioControl User’s Guide

USING VARIABLES AND COMMANDS
1. With the strategy open in Configure or Online mode and the flowchart open, double-click
the block to which you want to add a command.

The Instructions dialog box appears. The highlighted area shows where the new command
will be added.

2. Click Add to open the Add Instruction dialog box.

3. If you know the command you want, enter its name in the Instruction field by typing it in or
by choosing it from the drop-down list. Skip to step 7.

Highlighted area

The Operator group appears in the
dialog box only for condition blocks,
not for action blocks.
ioControl User’s Guide 9-19

USING VARIABLES AND COMMANDS
4. If you don’t know the command name, click Select to open the following dialog box.

5. Click the name of a command group in the left column to display all the commands in that
group. In the right column, click the command you want.

For more information on any command, click the command name and press F1 to open
online help. You can also look up the command in the ioControl Command Reference.

6. When the command you want is highlighted, click OK to return to the Add Instruction
dialog box.

7. (Optional) Enter a comment about the purpose of the instruction.

Comments help explain the command’s purpose in this block and are helpful to anyone who
debugs or updates the strategy later.
9-20 ioControl User’s Guide

USING VARIABLES AND COMMANDS
8. Complete each argument for the command by typing in the Type and Name fields or by
choosing from the drop-down lists.

If the argument type is a literal (or constant), you must type it in.

If you type in the name of an item that doesn’t exist, for example a variable or I/O point,
you are prompted to add it to the strategy.

Each command requires a certain number of arguments, from zero to eight. For help in
completing arguments, see the ioControl Command Reference or the online help for the
specific command you’re using.

9. When the arguments are complete, click OK.

You return to the Instructions dialog box, which now shows the command you just added.
Notice that the comment you entered appears just above the command. The arguments you
entered appear as part of the instruction. The highlight shows where the next command
will be placed if you add another command to this block.

Arguments
ioControl User’s Guide 9-21

USING VARIABLES AND COMMANDS
Here is an example of an Instructions dialog box for an action block:

10. To add another command, click to place the highlight where you want the command to
appear. Click Add and repeat the steps in this section.

If you highlight a command that’s already in the dialog box, the new command will appear
just before it.

TIP: If you are adding commands to several blocks at once, you can quickly move from block
to block in the chart by clicking the Next Block or Previous Block buttons in the Instructions
dialog box.

If you’re working with a condition block, clicking Next Block opens a dialog box so you can
select which block to choose, since condition blocks have two exits. The same dialog box
appears if you click Previous Block and the block you’re working with has connections
coming from more than one block.

11. If you put more than one command in a condition block, complete the Operator group as
follows:

• If both commands must be true to exit the block true, click AND.
• If only one of the commands must be true to exit the block true, click OR.

Comment

Arguments

Highlight

Command
9-22 ioControl User’s Guide

USING VARIABLES AND COMMANDS
Here is an example of an Instructions dialog box for a condition block with two commands.
In this case, the block will exit true if either of the commands is true.

Changing a Command
1. With the strategy open in Configure or Online mode and the flowchart open, double-click

the block containing the command you want to change.

NOTE: To change commands in OptoScript Blocks, see “Using the OptoScript Editor” on
page 11-25.

2. In the Instructions dialog box, double-click any line of the command you want to change.

You can also click the command to highlight it and click Modify.

3. In the Edit Instruction dialog box, make the necessary changes.

For help, see “Adding Commands” on page 9-18.

4. Click OK to return to the Instructions dialog box, where you can see the changed command.

Deleting a Command
You can delete a command permanently, or you can comment out a command so it is temporarily
skipped, usually for debugging purposes.

Permanently Deleting a Command

1. With the strategy in Configure or Online mode and the flowchart open, double-click the
block containing the command you want to delete.

Either the first command OR the
second command can be true for
this condition block to exit true.
ioControl User’s Guide 9-23

USING VARIABLES AND COMMANDS
NOTE: To delete commands in OptoScript Blocks, see “Using the OptoScript Editor” on
page 11-25.

2. In the Instructions dialog box, click any line of the command you want to delete.

CAUTION: Make sure you select the correct command. You cannot undo a deletion!

3. Click Delete or press DELETE on the keyboard.

Commenting Out a Command
You can mark certain commands so that the Strategy temporarily ignores them. Commenting out
one or more commands can help you pinpoint problems in a strategy.

1. With the strategy in Configure or Online mode and the flowchart open, double-click the
block containing the command(s) you want to comment out.

NOTE: To comment out commands in OptoScript Blocks, see “Using the OptoScript Editor”
on page 11-25.

2. In the Instructions dialog box, click the first command you want to comment out. Click Add.

3. In the Add Instructions dialog box, choose the instruction Comment (Block). Click OK.

You return to the Instructions dialog box, and all the instructions in the block from that
point on are grayed out, indicating that they will be ignored when the strategy runs.

4. Click just beyond the last command you want to comment out. Add another Comment
(Block) instruction.

When you return to the Instructions dialog box, all commands between the two Comment
(Block) instructions are grayed out.

5. When you no longer want the strategy to ignore the command(s), delete the two Comment
(Block) instructions.

NOTE: The Comment (Block) command is used for this purpose. The Comment (Instruction)
command just places an explanatory comment in the Instructions dialog box. It does not
affect any commands.

Cutting or Copying a Command
For commands in action, condition, and continue blocks you can cut or copy commands to the
Windows clipboard and then paste them in the same block or in another block, or even in a block
of another chart within the same Strategy. For OptoScript Blocks, see “Using the OptoScript
Editor” on page 11-25.
9-24 ioControl User’s Guide

USING VARIABLES AND COMMANDS
1. With the strategy in Configure or Online mode and the flowchart open, double-click the
block containing the command you want to cut or copy.

2. In the Instructions dialog box, click any line of the command you want to cut or copy.

To cut or copy more than one command, hold down the SHIFT key while you click all the
commands to be cut or copied at once.

NOTE: To cut and paste all commands in a block, copy and paste the entire block, and then
change its name if necessary.

3. Press CTRL+X to cut the command(s) or CTRL+C to copy them.

You can also click the right mouse button and choose Cut or Copy from the pop-up menu.

The command is cut or copied to the Windows clipboard.

Pasting a Command
Once you have cut or copied a command, you can paste it into any block in the same Strategy.

Choose one of the following, and then press CTRL+V:

• To paste the command in the same block, click where you want to insert the command.

• To paste the command at the end of the instruction block, move the cursor just below the
last instruction and click to highlight the empty space.

• To paste the command to another block, click Close to exit the current Instructions dialog
box and double-click the block where you want to place the command. Click where you
want to insert the command.

Configuring a Continue Block
Continue blocks do only one thing: jump to another block. Thus, the only information you need to
provide in a continue block is the name of the block to jump to.

1. With the strategy in Configure or Online mode and the flowchart open, double-click the
continue block you want to configure.

You can also click the block, click the right mouse button, and choose Detail from the
pop-up menu.
ioControl User’s Guide 9-25

USING VARIABLES AND COMMANDS
The Select Continue Block Destination dialog box appears, listing all blocks in the chart.

2. Click the destination block and click OK.

Viewing and Printing Chart Instructions
To view or print commands in a chart, see “Viewing and Printing Strategy or Subroutine
Commands” on page 7-25.
9-26 ioControl User’s Guide

CHAPTER 10
10—Programming with CommandsChapter 10

Programming with Commands
Introduction
Commands (or instructions) in ioControl are roughly grouped by function. This chapter tells you
what you need to know about each group in order to program your ioControl strategy effectively.
For detailed information on using a command, see the ioControl Command Reference, where
commands are listed alphabetically.

In this Chapter
Digital Point Commands10-2 Mathematical Commands 10-32
High-Density Digital Module Commands.10-6 Logical Commands 10-33
Analog Point Commands10-13 Communication Commands.................... 10-35
I/O Unit Commands10-15 I/O Unit—Scratch Pad Commands 10-51
Control Engine Commands10-16 I/O Unit—Event Message Commands... 10-54
Chart Commands10-17 I/O Unit—Memory Map Commands...... 10-55
Time/Date Commands10-18 Error Handling Commands...................... 10-56
Timing Commands10-19 Pointer Commands 10-56
Miscellaneous Commands10-21 PID—Ethernet Commands 10-58
String Commands10-23 PID—Mistic Commands......................... 10-62
Event Reaction Commands.....................10-22 Simulation Commands 10-69
ioControl User’s Guide 10-1

PROGRAMMING WITH COMMANDS
Digital Point Commands
The following commands are used with standard Digital Points only. For high-density digital
points, see page 10-6.

Basic Commands
Turn On
Turn Off
On?
Off?

Latches
Get Off-Latch
Get On-Latch
Clear Off-Latch
Clear On-Latch
Clear All Latches
Get & Clear Off-Latch
Get & Clear On-Latch
Off-Latch Set?
On-Latch Set?

Totalizers*
Get Off-Time Totalizer
Get On-Time Totalizer
Get & Restart Off-Time Totalizer
Get & Restart On-Time Totalizer

Counters*
Start Counter
Stop Counter
Get Counter
Clear Counter
Get & Clear Counter

Pulses*
Generate N Pulses
Start Off-Pulse
Start On-Pulse
Get Off-Pulse Measurement
Get Off-Pulse Measurement Complete Status
Get & Restart Off-Pulse Measurement
Get On-Pulse Measurement
Get On-Pulse Measurement Complete Status
Get & Restart On-Pulse Measurement
Start Continuous Square Wave

Period and Frequency*
Get Frequency
Get Period
Get Period Measurement Complete Status
Get & Restart Period
Set TPO Percent
Set TPO Period

*Some digital point commands are available in ioControl Professional only. Some commands are available
only on some I/O units. For details, see specific information for each command in the ioControl Command
Reference or online Help.
10-2 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
States, Latches, and Counters
The following diagram illustrates states, latches, and counters. While states and latches apply
to Digital Points on all I/O units, counters depend on the capability of the brain. See the brain’s
data sheet for specifications.

Latches

Latches are an extremely high-speed digital function. Both on-latches and off-latches are
available. Latches are automatic and do not have to be configured.

When the value of a digital Input Point changes from off to on, an on-latch is automatically set.
While the value of the point may return to off, the on-latch remains set until cleared, as a record
of the change. Similarly, an off-latch is set when the value of a digital point changes from on to
off, and it remains set until cleared.

To read a latch and clear it at the same time, use the command Get & Clear On-Latch or Get &
Clear Off-Latch.

Counters

Most standard digital inputs can be used as counters, to count the number of times the input
changes from off to on. The availability of counters depends on the brain’s capabilities, and the
speed of counters depends on the module; see the brain’s and module’s data sheets for
specifications.

Before using a counter, you must configure the point as a counter. (See “Adding a Digital I/O
Point” on page 6-16 or use ioManager.) The counter begins counting as soon as it is configured.
You do not need to use the Start Counter command to start it.
ioControl User’s Guide 10-3

PROGRAMMING WITH COMMANDS
Quadrature Counters

Quadrature counters require a special module and configuration, but once they are configured,
you use the same commands (such as Start Counter and Clear Counter) for them as for regular
counters.

Be aware that quadrature counters differ on Ethernet-based and mistic I/O units. On mistic I/O
units, quadrature counters must be started with the command Start Counter, and a positive value
means that phase B leads phase A. On Ethernet-based I/O units, counters start as soon as they
are configured, the Start Counter command is only used after Stop Counter, and a positive value
means that phase A leads phase B. See additional details in the ioControl Command Reference
or online Help.

Totalizers
 Digital totalizers track the total time a specific Input Point has been on or off. For example, you
could track how long a pump, fan, or motor has been on. Digital totalizers are useful for periodic
maintenance. Before using a totalizer, you must configure the point with this feature. (See
“Adding I/O Points” on page 6-16 for help.) The availability of totalizers depends on the brain;
see the brain’s data sheet for more information.

To check total time and leave the totalizer running, use Get Off-Time Totalizer or Get On-Time
Totalizer. To check total time and reset the totalizer to zero, use Get & Restart Off-Time Totalizer
or Get & Restart On-Time Totalizer.

Pulses
Pulsing commands send on- and off-pulses to an Output Point. The availability of pulsing depends
on the brain; see the brain’s data sheet for specifications.

Generate N Pulses. The command Generate N Pulses is frequently used to flash a light or sound
an alarm. For example, you could sound a two-second alarm four times. In the arguments, you
set the number of times the on-pulse is sent, the length of the on-pulse, and the length of the
off-pulse. Generate N Pulses always starts with an off-pulse. If you resend this command, make
sure to leave sufficient time in between so it does not interfere with itself.

Start On Pulse and Start Off Pulse. The commands Start On Pulse and Start Off Pulse send a
single pulse cycle:

• Start On Pulse starts with an on-pulse of a length you determine, and ends with an
off-pulse.

• Start Off Pulse starts with an off-pulse of a length you determine, and ends with an
on-pulse.

Both of these commands can be used as time delays. For example, if a light is on and you want
to turn it off after 30 seconds, you can send a Start On Pulse command, setting the on-pulse to
be 30 seconds long. At the end of that time, the off-pulse is sent to turn off the light.
10-4 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
You can also use this type of command in a loop to turn a digital point on or off for short intervals.
For example, you could create a loop that checks the level of liquid in a tank and pulses on a drain
if the level is too high. The advantages of using a pulse command are that the point does not have
to be turned off, and if communication is lost to the point, the point does not remain on.

Pulse Measurement commands measure pulses on digital input points. For details, see the
specific command in the ioControl Command Reference or online Help.

IVAL and XVAL
All I/O points have two associated values: XVAL and IVAL. If you are using ioControl in Debug
mode to manipulate I/O values or to disable an I/O point or I/O unit, you need to understand these
values.

XVAL The external value, or XVAL, is the “real” or hardware value as seen by the I/O unit. This
value is external to the control engine.

IVAL The internal value, or IVAL, is a logical or software copy of the XVAL that is in the control
engine. The IVAL may or may not be current, since it is updated to match the XVAL only when a
strategy in the control engine reads or writes to an I/O point.

Do not be concerned if the IVAL does not match the XVAL. A mismatch just means that the
program is not reading from or writing to the I/O point in question at the moment.

Simulation and Test: The “Real” Use for XVAL and IVAL

To test output performance, you may want to force an XVAL for a specific output to a particular
value. If the program is actively writing to the output, you need to disable the output to do so. If
the program is stopped, there is no need to disable it.

To test program logic, you may want to force an IVAL for a specific input to a particular value. To
do so, you must disable the input first.

You can disable an I/O point or unit in two ways. The more common way is from within Debug
mode, by double-clicking a point on the Strategy Tree and modifying the point’s settings and
values through the Inspection dialog box. The second way is from within the strategy, using
commands such as Disable Communication to Digital Point, Disable Communication to Analog
Point, or Disable Communication to I/O Unit. (See “Simulation Commands” on page 10-69.)

Additional Commands to Use with Standard Digital Points
Although not listed under Digital Point commands, several other commands can be used for
digital operations:

• Use Move to cause an output to assume the state of another input or output. A digital
input or output that is on returns a True (non-zero). A True (non-zero) sent to a digital output
turns it on.
ioControl User’s Guide 10-5

PROGRAMMING WITH COMMANDS
• Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

• Use Get I/O Unit as Binary Value to get the state of all points at once. Then use Bit Test
to determine the state of individual points. This method is much faster than reading each
point individually.

• Use Set I/O Unit From MOMO Masks to control all outputs at once.

Standard Digital Points and OptoScript Code
In OptoScript code, a standard digital I/O point can be used directly, wherever a numeric variable
can be used. For example, you can turn a point off by assigning it a value of zero, or turn it on by
assigning it a non-zero value. You can also use standard Digital Points directly in mathematical
expressions and control structures. For more information, see “Using I/O in OptoScript” on
page 11-12.

High-Density Digital Module Commands
The following commands are used with SNAP high-density digital input and output modules:

About High-Density Digital Modules
SNAP high-density digital modules can be used on I/O units with the following brains:

High-density modules cannot be used with digital-only brains, because they communicate with
the brain as an analog or special-purpose module communicates.

States
Get HDD Module States
Get All HDD Module States
Set HDD Module from MOMO Masks
Turn On HDD Module Point
Turn Off HDD Module Point

Latches

Get HDD Module On-Latches
Get HDD Module Off-Latches
Get All HDD Module On-Latches
Get All HDD Module Off-Latches
Clear HDD Module On-Latches
Clear HDD Module Off-Latches
Get & Clear HDD Module On-Latches
Get & Clear HDD Module Off-Latches
Get & Clear All HDD Module On-Latches
Get & Clear All HDD Module Off-Latches

Counters
Get HDD Module Counters
Get & Clear HDD Module Counter
Get & Clear HDD Module Counters

SNAP-UP1-ADS
SNAP-UP1-M64

SNAP-B3000-ENET
SNAP-ENET-RTC
SNAP-ENET-S64
10-6 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Comparing SNAP High-Density and Standard Digital Modules

SNAP high-density digital modules are different in several other ways from standard SNAP
digital input and output modules:

• Standard digital modules contain four points per module; high-density digital modules
contain 32 points per module.

• The points on a standard digital input module are isolated from each other. Points on
high-density input modules are in four groups of eight points; groups are isolated from each
other, but points within a group are not isolated.

• Standard digital modules have LEDs for each point visible on the module’s top;
high-density modules do not have LEDs.

• Standard digital modules can be placed only in digital slots on the mounting rack;
high-density digital modules can be placed anywhere, even in slots marked “Analog Only.”

• The turn-on/turn-off time is faster for standard digital modules than for high-density
modules. The update time (time for data to pass from the module to the brain) is also faster
for standard digital modules and is determined by the speed of the module itself. In
high-density modules, update time depends on the brain’s analog scanner and is affected
by the number of modules on the rack and how busy the brain is with Ethernet
communication. (For more specific information on turn-on/turn-off and update times, see
the data sheets for standard and high-density modules.) You may find that inserting Delay
commands in your strategy provides more accurate results, especially with counters.

• IMPORTANT: Each point on a standard digital module is given a name when configured in
ioControl or ioManager, and your strategy refers to the point by its name. Points on
high-density modules do not have individual names. HDD modules do not require
configuration, so their points do not appear in the Configure I/O Points dialog box nor on
the Strategy Tree. Because HDD points do not have names, most ioControl commands use
bitmasks to read or write to them.

• Points on HDD modules cannot be disabled in Debug mode for simulating inputs and
outputs.

• Counting is done differently. See “Counting on High-Density Digital Modules” below for
details.

Counting on High-Density Digital Modules
On standard SNAP digital input modules, any point can be configured as a counter because
counting is done on the brain. We refer to it as “high-speed” counting because it can be very fast,
depending on the speed of the module.

On high-density SNAP digital modules, however, the module itself does the counting, so no
configuration is necessary. The module uses a 16-bit counter, but the brain used with the module
accumulates counts to 32 bits by periodically getting and clearing the module’s counts and
adding each new count to what it already has for each point. Update time varies based on the
number of modules on the rack and Ethernet communication demands on the brain. When using
ioControl User’s Guide 10-7

PROGRAMMING WITH COMMANDS
ioControl’s signed 32-bit variables, one bit of the 32 is used for the integer’s sign (+/–), so counts
over 2 billion may not be accurate.

Because counting is done in the module rather than in the brain, you can get counts for
high-density digital modules used with SNAP-UP1-M64 and SNAP-ENET-S64 brains, which do
not support high-speed counting.

Counting on HDD modules is at 0–50 Hz at a 50% duty cycle. This rate is useful for applications
that require counting but not at high speeds—for example, rotating shafts, flow meters that
generate pulses, and electrical meters tuned to slower speeds.

Using HDD Module Counters

Counters on HDD modules are always active; you do not need to configure a counter before using
it. Because counters are always active, you should clear a counter before using it to make sure
the count accurately reflects your current task.

Counters are returned as 32-bit integers, either in a variable for one point, or in an integer 32
table for all points on a module. The table must contain 32 elements beyond the starting index,
since there are 32 points on the module.

See the ioControl Command Reference or ioControl command Help for more information about
specific commands.

Using HDD Module Commands
As shown in the following table, HDD module commands work either with an individual point,
with all points on one module, or with all HDD modules on the I/O unit.

Purpose Command name
Reads or writes to:

One
point

One
module

All
modules

Reading states and
latches and clearing

latches

Clear HDD Module Off-Latches
Clear HDD Module On-Latches
Get & Clear HDD Module Off-Latches

X
X
X

Get & Clear HDD Module On-Latches
Get & Clear All HDD Module Off-latches
Get & Clear All HDD Module On-latches

X
X
X

Get All HDD Module States
Get All HDD Module Off-Latches
Get All HDD Module On-Latches

X
X
X

Get HDD Module States
Get HDD Module Off-Latches
Get HDD Module On-Latches

X
X
X

Reading and clearing
counters

Get HDD Module Counters
Get & Clear HDD Module Counters
Get & Clear HDD Module Counter X

X
X

10-8 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Individual Point

A few HDD module commands, such as Turn On HDD Module Point and Get & Clear HDD Module
Counter, address an individual point by module and point number. Remember that Opto 22
modules and points start at zero.

HDD points do not have names. If you need to refer to a specific point or a group of points by
name, however, you can create an ioControl variable and place data in it.

Creating a variable for a group of points can be very useful in a large installation with many
similar inputs or outputs. For example, suppose output modules 5 and 6 on the NE_Pump_System
I/O unit each control 32 pumps. You could use an integer 32 variable called nPump_Line for the
module number and another integer 32 variable called nPump_Number for the point number. The
variables make it easy to loop through all pumps to turn them on, as shown in the following
OptoScript example.

All Points on a Module

Several commands, such as Get HDD Module States, work with all points on a module at once
by using a bitmask. The least significant bit corresponds to point zero. A bit with a value of 1
indicates that the corresponding point is on; a bit with a value of 0 indicates the point is off.

Because HDD points on a module are represented and controlled through bitmasks, Logical
Commands such as Bit Test and Bit Clear are useful for manipulating the bits.

The following example reads the states of all points on the module in rack position 5 and places
the bitmask in an integer variable, nModuleStates. To read point 4, which corresponds to bit 4,

Writing to points
Set HDD Module from MOMO masks
Turn On HDD Module Point
Turn Off HDD Module Point

X
X

X

Purpose Command name
Reads or writes to:

One
point

One
module

All
modules
ioControl User’s Guide 10-9

PROGRAMMING WITH COMMANDS
you can use Bit Test. The result of the bit test is placed in the variable nState. If nState = 1, the
point is on; if nState = 0, the point is off.

You can place the bit’s value in a variable and test it as in the example above, or you can use the
bit to direct flowchart logic. In the example below, the Bit On? command tests the bit and exits
true if the bit is 1, false if the bit is 0.

.

Here’s another example of a command that works with all points on the module at once. Suppose
you want to reset the off-latches on a few points on the module in rack position 4—specifically,
points 1, 6, 7, 25, and 26. Using Clear HDD Module Off-Latches, you indicate the I/O unit, the
module number (4), and then use a bitmask to determine the off-latches to clear. The bitmask
would be:

00000110000000000000000011000010
10-10 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
As you can see in the illustration below, the 1 bits in the mask will affect their respective points,
so off-latches for point numbers 1, 6, 7, 25, and 26 will be cleared. (To save space, only the first
8 and last 8 off-latches are shown.)

Here is this example shown in OptoScript code:

NOTE: In standard ioControl commands, you can enter the bitmask in binary or in hex, depending
on the integer display you’ve chosen under the View menu. In OptoScript code, use hex. In either
case, don’t use decimal to represent masks, since ioControl’s 32-bit integers use the most
significant digits as the sign (+/–).

As a final example of working with all points on a module at once, here is a rewritten version of
the pump control script shown on page 10-9. In this example, the pumps controlled by HDD
Output modules 5 and 6 on the I/O unit NE_Pump_System are turned on by the Set HDD Module
From MOMO Masks command. Notice that this command turns on all the pumps controlled by a
single module simultaneously, rather than one after the other.

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit Mask
Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2
ioControl User’s Guide 10-11

PROGRAMMING WITH COMMANDS
All HDD Modules on the I/O Unit

Commands with the word “All” in their title—such as Get All HDD Module States—work with
all HDD modules on one I/O unit at once. They do so using a table; each element in the table
contains a bitmask representing the data for one module.
For example, to read the states of all points on all HDD modules on one I/O unit, you would use
the command Get All HDD Module States. If the I/O unit consists of an 8-module rack filled with
HDD modules, the table would contain data such as the following.

Returned data is only for HDD modules. If the rack contained a standard digital module in position
3 and a serial module in position 4, elements 3 and 4 in the table would be zero-filled.

To use the data in the table, you can manipulate the table using commands such as Shift Numeric
Table Elements and Numeric Table Element Bit Set.

For example, the first command in the block shown below places data for all modules on the rack
in the table nHDDInputs, starting at table element zero. The second command tests bit 4 in table

Index Value (Bitmask)

0 00000001000101000000000110010000 Each index contains the status data for the HDD
module in the corresponding position on the rack. A
value of 1 indicates that the point is on; a value of 0
indicates that it is off. The least significant bit in the
mask corresponds to point zero on the module.

1 01100001010001110000001010110010

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001 In this example, index 2, which contains the status of
all points on the module in slot 2, shows that points 0,
1, 2, 10, 14, and 19 are on. All other points on the
module are off.

6 10000000110000011100000000100100

7 00110000011100001111100000000001

8 00000000000000000000000000000000

The remainder of the table is zero-filled, since there
are no more modules.15 00000000000000000000000000000000
10-12 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
element 7 (which corresponds to point 4 on the module in position 7) and puts the result of the
test into the variable nState.

If you need to work with the data for only one module in the table, you can use the command
Move From Numeric Table Element to move the module’s data from the table into an integer
variable. Then you can use bit commands within the integer.

Analog Point Commands
The following commands are used with Analog Points:

Offset and Gain
Set Analog Offset
Calculate & Set Analog Offset
Set Analog Gain
Calculate & Set Analog Gain

Others
Ramp Analog Output1

Set Analog TPO Period
Set Analog Load Cell Fast Settle Level
Set Analog Load Cell Filter Weight
Set Analog Filter Weight
Set Analog Totalizer Rate1,2

Get Analog Totalizer Value1,2

Get & Clear Analog Totalizer Value1,2

Get Analog Square Root Value1,2

Get Analog Square Root Filtered Value1,2

Get Analog Filtered Value1,2

Get & Clear Analog Filtered Value1,2

Minimum/Maximum Values
Get Analog Minimum Value
Get & Clear Analog Minimum Value
Get Analog Maximum Value
Get & Clear Analog Maximum Value

1 Applies to ioControl Professional only
2 Applies to mistic I/O units only
ioControl User’s Guide 10-13

PROGRAMMING WITH COMMANDS
Offset and Gain Commands
The easiest way to set offset and gain is to do so when you configure Analog Points in
ioManager, using the Calibrate button in the Configure I/O Points dialog box.

You can also set offset and gain in ioControl. If you already know the offset and gain for a point,
you can use the commands Set Analog Offset and Set Analog Gain. If you do not know the offset
and gain, you can use the commands Calculate & Set Analog Offset and Calculate & Set Analog
Gain to have the brain calculate them. Calculate offset first, and then calculate gain.

By setting offset and gain, you make sure that values read are accurate.

Offset is the difference between the minimum input of an analog Input Point and the actual
minimum signal received from a field device. For example, if a 4–20 mA input receives a
minimum signal that is slightly off (not exactly 4 mA), the difference between the two minimums
is the offset. Reading ± Offset = Actual Value. For example:

Gain is the difference in the full-scale reading, but expressed differently.
Measured Value ∗ Gain = Actual Value. For example:

Minimum/Maximum Values
The Opto 22 brain automatically keeps track of minimum and maximum values for analog Input
Points. Min/max values are often used to monitor pressure or temperature.

To read the minimum or maximum value and leave it as is, use Get Analog Minimum Value or Get
Analog Maximum Value. To read the minimum or maximum value and clear it—for example, to
record the minimum pressure in each 24-hour period—use Get & Clear Analog Minimum Value
or Get & Clear Analog Maximum Value.

Analog Totalizers
Analog totalizers are available on mistic I/O units only.

Analog totalizers are used to track total volume or quantity. For example, if an Analog Point
measures gallons per minute, you could use an analog totalizer to determine the total number of
gallons moved over a period of time.

If minimum input = 4.000 mA

and zero-scale reading = 4.003 mA

then offset = -0.003 mA

If maximum input = 20.00 mA

and measured value = 20.50 mA

then gain = 0.9756097560976
10-14 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
To read the value and leave the totalizer running, use the command Get Analog Totalizer Value.
To read the value and set the totalizer back to zero, use the command Get & Clear Analog
Totalizer Value.

Analog Points and OptoScript Code
In OptoScript code, an analog I/O point can be used directly, wherever a float variable can be
used. For example, you can assign an Analog Point a value, or use points directly in mathematical
expressions and control structures. For more information, see “Using I/O in OptoScript” on
page 11-12.

I/O Unit Commands
The following commands are used to communicate with an I/O unit, which controls a group of
I/O points:

CAUTION: Write I/O Unit Configuration to EEPROM is not the recommended method for saving
configuration to flash memory. If it is used too often or is in a loop within a strategy, flash
memory can literally wear out. Instead of using this command in the strategy, it is better to store
configurations to flash using ioManager (see the ioManager User’s Guide for instructions) or
using ioControl in Debug mode (see page 6-52).

Commands for Ethernet Link Redundancy
 The three target address commands (Get Target Address State, Set Target Address State, and
Set All Target Address States) are used to manually change the path of communication between
the controller and the I/O unit(s), based on the IP address used for the I/O unit. These commands
let you switch communication from a primary to a secondary IP address (or vice versa) or enable
or disable the primary or secondary address.

Ethernet link redundancy to I/O units is available only in ioControl Professional, only from a SNAP
PAC controller, and only to Ethernet-based I/O units. The secondary IP address for an I/O unit may
be for the second Ethernet network interface on a SNAP PAC R-series controller, or it may be for

I/O Unit Ready?
Set I/O Unit from MOMO Masks1,2

Get I/O Unit as Binary Value
IVAL Move Numeric Table to I/O Unit
Move I/O Unit to Numeric Table
Move Numeric Table to I/O Unit
Write I/O Unit Configuration to EEPROM
Get Target Address State1

Set Target Address State1

Set All Target Address States1

1 ioControl Professional only
2 mistic I/O units only
ioControl User’s Guide 10-15

PROGRAMMING WITH COMMANDS
a separate I/O unit. If it is a separate unit, the primary and secondary I/O units must be the same
type (for example, SNAP-ENET-S64) and have exactly the same points, because they are
configured together under one name.

One or both target addresses (primary and secondary) can be enabled, but only one of them is
active at any time. For link redundancy, both must be enabled. When an I/O unit is configured
with two IP addresses, the default is for both to be enabled and the primary address to be active.
If communication fails through the primary address, the control engine automatically switches to
the secondary address. It continues to use the secondary address until communication fails
through the secondary address or until you change the active address using Set Target Address
State (for one I/O unit) or Set All Target Address States (for all I/O units on the control engine).

You may also want to use these commands to disable one address, for example if you are doing
maintenance or repair on a network segment and need to switch communication to another
segment temporarily. Disabling one address, of course, means that you no longer have link
redundancy. If both addresses are disabled or unavailable, then communication is not possible
and the I/O unit becomes disabled.

You can find out which addresses are enabled for an I/O unit and which address is currently
active by using Get Target Address State.

To use these commands, you must have already designated primary and secondary IP addresses
when configuring I/O units. See page 6-12 for steps. For additional information about link
redundancy, see “Using Ethernet Link Redundancy in ioControl” on page 5-6.

Table Commands
The table commands for I/O units affect the states or values of all points on the I/O unit at once.
For example, you can use the command Move I/O Unit to Numeric Table to read the states of all
Digital Points and the values of all Analog Points on one I/O unit and place them into a table for
easy retrieval. Table commands move data very quickly for faster throughput.

Other commands relating to tables can be found in “Miscellaneous Commands” on page 10-21,
“Logical Commands” on page 10-33, “Mathematical Commands” on page 10-32, “Pointer
Commands” on page 10-56, and “String Commands” on page 10-23.

Control Engine Commands
The following commands refer to the control engine:

Get Control Engine Address
Get Control Engine Type
Get Available File Space
Calculate Strategy CRC
Retrieve Strategy CRC

Get Firmware Version
Save Files To Permanent Storage
Erase Files In Permanent Storage
Load Files From Permanent Storage
10-16 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Commands Relating to Permanent Storage
The term “Permanent Storage” in the last three commands listed above refers to the control
engine’s flash memory. Files that are saved to flash memory remain in the control engine even
when power to it is turned off.

These commands do NOT affect firmware files, configuration data, or strategy files saved to
flash; they affect only files at the root of the control engine’s file system. For more information
on the file system, see “Using the Control Engine’s File System” on page 10-42. For the specifics
on individual commands, see online help or the ioControl Command Reference.

CAUTION: Since these commands write to flash memory, use them sparingly within your
strategy and make sure they do not end up in a loop. You can literally wear out flash memory if
you save to it or erase it too many times.

Chart Commands
The following commands control charts in the strategy:

For information about charts in an ioControl strategy, see “ioControl Terminology” on page 3-6.

About the Task Queue

How do subroutines fit into the task queue? Whenever a chart calls a subroutine, the subroutine
temporarily inherits the task in use by the calling chart along with its priority.

Does a task always use all of its allocated time? Not always. If a chart or subroutine runs in a
loop, all allocated time is used. If a chart or subroutine does not need all of its allocated time to
complete its job, all remaining time (including any portion of a time slice) is given up.

The following conditions cause a chart to use less than a full time slice:

• The chart or subroutine stops.

• The chart or subroutine is suspended.

• A Delay command is used.

Using the command Delay (mSec) with a value of 1 millisecond is a handy way to give up the time
slice while waiting in a loop for a condition to become True. For more information, see
“Increasing Efficiencies in Your Strategy” on page 4-22.

Chart Running?
Chart Stopped?
Chart Suspended?
Get Chart Status

Calling Chart Running?
Calling Chart Stopped?
Calling Chart Suspended?
Continue Calling Chart
ioControl User’s Guide 10-17

PROGRAMMING WITH COMMANDS
When does the requested change to a chart or task status take effect? Not immediately. In any
multitasking system, timing and synchronization issues are always a concern. The time required
for a particular request to be implemented depends on the number of tasks currently running and
the specified chart’s location in the task queue. We recommend using commands such as Calling
Chart Suspended? and Chart Running? to determine the status of a chart.

Time/Date Commands
The following commands refer to time, dates, and days:

These commands can be used for timing a process or for making sure things happen according
to a set schedule. For example, you could use the command Get Seconds Since Midnight at the
beginning of a process and again at the end of the process, and then subtract the two numbers
to find out how long the process took.

You can set the time and date on the control engine by synchronizing it with the PC; in ioControl
Debug mode, choose this option while viewing the control engine (Control Engine➞Inspect). You
can also use these commands to set the time and date on the control engine.

Dates and Days
Get Year
Set Year
Get Month
Set Month
Get Day
Set Day
Get Day of Week
Get Julian Day
Set Date
Copy Date to String (MM/DD/YYYY)
Copy Date to String (DD/MM/YYYY)

Time
Get Hours
Set Hours
Get Minutes
Set Minutes
Get Seconds
Get Seconds Since Midnight
Set Seconds
Set Time
Get System Time
Copy Time to String
10-18 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Timing Commands
The following commands are used for timers and delays in a strategy.

Delay Commands
Delay commands are used frequently in strategies to pause the logic. Here are two reasons to
use Delay (mSec) or Delay (Sec):

• To allow time for the state of an input to change before it is checked again. For example, a
delay could give an operator time to release a button before the state of the button is
rechecked, or allow time for an alarm state to change before rechecking.

• To let a chart give up the remainder of its time slice, when its logic does not need to run
constantly. For more information on using delays in this way, see , see “Increasing
Efficiencies in Your Strategy” on page 4-22..

Using Timers
Timers are a special type of numeric variable. An ioControl timer stores elapsed time in units of
seconds with resolution of milliseconds. Down timers continuously count down to zero, and up
timers continuously count up from zero. Timers can be paused and continued.

To create a timer in ioControl, configure a numeric variable and select the type Up Timer or Down
Timer. You can use any ioControl command (for example, Move) that references a numeric
variable to access a timer. You can view the current value of a timer at any time in ioControl
Debug mode.

Since the timer is independent from the control engine’s clock, over thousands of seconds, the
timer and the control engine’s clock will not match. Timers do not place any additional load on
the CPU.

Timers
Start Timer
Stop Timer
Pause Timer
Continue Timer
Timer Expired?
Set Down Timer Preset Value
Down Timer Expired?
Set Up Timer Target Value
Up Timer Target Time Reached?

Delays
Delay (mSec)
Delay (Sec)
ioControl User’s Guide 10-19

PROGRAMMING WITH COMMANDS
Down Timer Operation

The Set Down Timer Preset Value command sets the time the down timer will start from, but
does not start the timer. Use the Start Timer command to start the timer counting down to zero.
(Since the default preset value for a down timer is zero, nothing will happen if you use the Start
Timer command before setting a value.)

Alternatively, you can use the Move command to set the time the down timer will start from. If
you use Move, the down timer begins counting down immediately. If program execution speed
is a priority, use the Move command and put an integer value rather than a float into the timer.
This action eliminates the float-to-integer conversion time.

Note that if you use the Move command, any value you set using Set Down Timer Preset Value
is overwritten, and subsequent Start Timer commands start the timer from the value last sent by
the Move command.

To determine if the timer is finished, use the condition Down Timer Expired? This condition is true
any time the down timer has a value of zero. Down Timer Expired? is much faster than using the
condition Equal? to compare the timer to a value of zero.

The Stop Timer command forces the timer to stop and puts its value at zero. If you want to halt
the timer and have it maintain its value at the time it was stopped, use the Pause Timer command
instead. When you use Pause Timer, you can move the timer’s value at the time it was stopped
to a variable. You can also use the Continue Timer command to resume the timer where it left off.

Up Timer Operation

The Set Up Timer Target Value command sets the time for the Up Timer Target Time Reached?
condition. It does not start the timer, however, and the timer does not stop when it reaches the
target value. You must start the up timer from zero by using the Start Timer command.

If you use the Move command to move a value to an up timer, the value you moved becomes the
target value and the up timer starts timing immediately. (Note that the timer does not start from
the value you moved; it always starts at zero.)

The up timer does not stop when it reaches the target value. To determine if the timer has
reached its target value, use the condition Up Timer Target Time Reached? This condition tests
the timer to see if it is greater than or equal to the target time.

The Stop Timer command forces the timer to stop and resets it to zero. If you want to halt the
timer and have it maintain its value at the time it was stopped, use the Pause Timer command
instead. After you use Pause Timer, you can then move the timer’s value at the time it was
stopped to a variable. You can also use the Continue Timer command to resume the timer where
it left off.
10-20 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Miscellaneous Commands
The following commands are used with tables and for other purposes. Many of them are
commonly used.

Comment Commands
The comment commands listed above are used with standard ioControl commands in Action
Blocks and Condition Blocks. For information on using comments in OptoScript Blocks, see
page 11-28.

Comment (Single Line) and Comment (Block) commands are used in two entirely different ways:

• Comment (Single Line) enters a comment to help explain a block or an instruction within
a block. Usually block names and comments within instructions are sufficient, but you can
use Comment (Single Line) if you need more room for explanations.

• Comment (Block) comments out instructions. In other words, it tells the strategy to
temporarily ignore certain instructions within a block. It can be useful in debugging or for
saving work when a strategy is temporarily changed.

To use it, place one Comment (Block) command at the beginning of the area you want to
ignore, and place another Comment (Block) command at the end of the area. If you do not
place the second Comment (Block) command, all the remaining instructions in that block
are ignored. Areas that are commented out appear in the Instructions dialog box as gray.

Comment (Block)
Comment (Single Line)
Float Valid?
Move
Move to Numeric Table Element
Move to Numeric Table Elements
Move from Numeric Table Element

Move Numeric Table Element to Numeric Table
Move Numeric Table to Numeric Table
Get Length of Table
Shift Numeric Table Elements
Generate Reverse CRC-16 on Table (32 bit)
Get Type From Name
Get Value From Name
ioControl User’s Guide 10-21

PROGRAMMING WITH COMMANDS
Event Reaction Commands
 The following commands are used with event/reactions on mistic I/O units only. They cannot be
used with Ethernet-based I/O units.

NOTE: Similar events and reactions can be configured on a SNAP Ethernet-based I/O unit using
ioManager, but they can interfere with ioControl strategy logic unless you are very careful. For
more information, see the ioManager User’s Guide (Opto 22 form #1440).

Understanding Event/Reactions (mistic I/O Units Only)
An event/reaction lets you distribute control logic to an I/O unit, so that some of the logic in a
strategy can be run on the I/O unit independently of the controller. Event/reactions are supported
by most mistic protocol brains. To verify, check the data sheet for the brain you are using.

As the name suggests, an event/reaction consists of an event and a corresponding reaction. The
event is a state you define that the I/O unit can recognize. The defined state can be a combination
of values, inputs, and outputs. Each time the event becomes true, its corresponding reaction is
executed once.

On a digital multifunction I/O unit, for example, any pattern of input and output states (on and
off) can constitute an event. On an analog I/O unit, an event could occur when an input channel
attains a reading greater than a selected value. Examples of reactions include turning on or off
a set of outputs, ramping an analog output, or enabling or disabling other event/reactions.

Event/reactions are stored in each I/O unit. As soon as power is applied to the I/O unit, all
event/reactions for which scanning is enabled are scanned continuously in the same order in
which they were configured in ioControl. Since each mistic I/O unit can be configured with up to
256 event/reactions, complex tasks and sequences can be performed on an I/O unit.

For step-by-step instructions on configuring event/reactions, see page 6-42.

Why Use Event/Reactions?

• To reduce communication overhead between the I/O unit and the controller.

• To distribute control logic sequences to the I/O unit rather than concentrating them in the
controller.

• To handle high-speed logic functions more efficiently by distributing them to an I/O unit.

• To increase the execution speed of a strategy in the controller.

Event Occurred?
Event Occurring?
Get Event Latches
Get & Clear Event Latches
Clear Event Latch
Clear All Event Latches
Read Event/Reaction Hold Buffer

Disable Scanning for Event
Enable Scanning for Event
Disable Scanning for All Events
Enable Scanning for All Events
Disable Scanning of Event/Reaction Group
Enable Scanning of Event/Reaction Group
Event Scanning Disabled?
Event Scanning Enabled?
10-22 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Typical Applications for Event/Reactions

• Motor-starting logic

• Drum sequencers

• Alarms

• Analog biasing

• Power-up sequencing

String Commands
The following commands are used with strings:

Using Strings
NOTE: All numbers in this discussion of strings are decimal unless otherwise stated.

An ioControl string is a sequence of characters that can be grouped together. Characteristics of
strings include the following:

• Strings are always referred to by name (and, if in a table, by index).

Move String
Move to String Table Element
Move to String Table Elements
Move from String Table Element
Compare Strings
String Equal?
String Equal to String Table Element?
Test Equal Strings
Get String Length
Append Character to String
Append String to String
Convert Float to String
Convert Number to String
Convert Number to String Field
Convert Hex String to Number
Convert Mistic I/O Hex to Float*
Convert IEEE Hex String to Number
Convert Number to Hex String
Convert Number to Mistic I/O Hex*
Convert Number to Formatted Hex String
Convert Integer 32 to IP Address String

Convert IP Address String to Integer 32
Convert String to Float
Convert String to Integer 32
Convert String to Integer 64
Convert String to Lower Case
Convert String to Upper Case
Find Character in String
Get Nth Character
Set Nth Character
Find Substring in String
Get Substring
Generate Checksum on String
Verify Checksum on String
Generate Forward CCITT on String
Verify Forward CCITT on String
Generate Reverse CCITT on String
Verify Reverse CCITT on String
Generate Forward CRC-16 on String
Verify Forward CRC-16 on String
Generate Reverse CRC-16 on String
Verify Reverse CRC-16 on String

* mistic I/O units only
ioControl User’s Guide 10-23

PROGRAMMING WITH COMMANDS
• Each character is represented by one byte.

• Each character is represented by its ASCII code (0 to 255).

• A string containing no characters is referred to as an empty string.

• Strings are frequently used in serial communication as a container for moving numeric
characters from one device to another.

• Although a string may appear to contain numeric values, it does not. Digits “0” through “9”
are characters just as much as “A” through “Z”; they do not represent numeric values.

To illustrate, let’s look at the number 22. This is a decimal number representing a quantity
of 22. The number 22 can be represented in a string in several ways; here are two of them:

– As “22”: two character 50’s (The ASCII code for 2 is 50.)

– As “16”: a character 49 (“1”) and a character 54 (“6”) (The hex value of 22 is 16.)

Note that the string representation of the number 22 is no longer a number. It is simply one
or two ASCII characters. The string representation of a number must be converted to a
numeric value if it is to be used in calculations. Several Convert commands are available
for this purpose.

• In standard ioControl commands, do not use double quotes around string literals. You can
use single quotes, but they are not required.

• In OptoScript code, you must use double quotes for string literals. See Chapter 11, “Using
OptoScript” for more information.

String Length and Width
The width of a string is the maximum length a string can be; length is the actual number of
characters contained in the string. A string with a width of 100 may currently be empty, which
means its length is zero. A string with a width of 10 containing the characters “Hello ” has a
length of six (five for “Hello” and one for the space after the “o”). Although a string’s length may
change dynamically as the string is modified by the program, its width remains constant.

When you configure a string variable or string table, you set the width of the string. All the strings
in an ioControl string table must be of the same width.

ioControl supports a maximum string width of 1024. For applications requiring wider strings, you
can use several strings to hold the data, use string tables, or use numeric tables, as described in
the next section.

Using Numeric Tables as an Alternative to Strings
Since a string is nothing more than a sequence of characters, you can store a string in a numeric
table, with each table element holding a character. The advantage of using numeric tables for
strings is that a numeric table can store strings of any size. The disadvantages are:

• Memory usage is much greater.
10-24 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
• No string conversion functions are available for numeric tables. An intermediate temporary
string would be required to use string commands for these tables.

Strings in ioControl can have a width of up to 1024.

Strings and Multitasking
Although string commands are completed before the current task loses its time slice, it is
important to note that a string that is constructed in more than one step may require more than
one time slice to complete.

For example, if a string is being constructed in two steps (such as Move String “Hello” and
Append String to String “ World”), after the first step a task switch could occur, and another chart
looking at the resulting string might see “Hello” rather than “Hello World.”

If another chart is relying on a completed string, you can use a temporary string for building the
string, and then move it to the final string. This idea is illustrated in the following example, where
a string variable named MSG_String is built in two steps using a temporary string:

1. Move the string literal “The pressure is “ to a temporary variable named sTemp.

2. Append a string variable, sPressure, to sTemp.

3. With the complete string now built, move sTemp to MSG_String.

Adding Control Characters to a String
You can input most control characters in a string by typing a backslash (\) followed by the
two-character hex value of the character. For example, to add an ACK (CTRL+F) character, enter
\06 as part of the string.

This technique works for all control characters except null (\00), carriage return (\0D), line feed
(\0A), backspace (\08), and CTRL+Z (\1A). To add these characters to a string, you must use the
Append Character command.

To input a single backslash in a string, type in a double backslash (\\).

Sample String Variable
• Declared Name: String_1

• Declared Width: 22

• Maximum Possible Width: 1024

• Bytes of Memory Required: Declared Width + 4 = 22 + 4 = 26

String_1
Length is 0

Width is
ioControl User’s Guide 10-25

PROGRAMMING WITH COMMANDS
A string is referred to by its name. Initially the previous string is empty, giving it a length of zero.
Later, during program execution, seven characters are added to String_1, increasing its length to
seven:

Sample String Table
• Declared Name: Promo_Messages

• Declared Width: 26

• Maximum Possible Width: 1024

• Declared Length (Number of indexes, or items, in table): 5

• Maximum Possible Length (Size): 1,000,000

• Bytes of Memory Required: (Declared Width + 4) x Declared Length = (26 + 4) x 5 = 150

A string table is a collection of strings. Each string is referred to by the name of the table it is in
and the index where it can be found. The length of the table is the number of strings it can hold.
Because string table indexes start with zero, indexes can range from zero to the table length
minus one.

The width of each string in the table is the same. The length of each string can vary from zero to
the configured width of the table.

String Data Extraction Examples
To extract various pieces of information from a string, use the command Find Substring in String.
Consider the following example:

One way to get two separate pieces of information from this string is to get characters 0–3 and
then get characters 5 and 6, as shown in the following examples.

String_1 O P T O 2 2

Index 0 O P T O 2 2 U L T I M A T E I / O
Index 1 I n n o v a t i v e I / O
Index 2 D e l i v e r s c o n t r o l ,
Index 3 p r o g r a m m a b i l i t y , a n d
Index 4 e n t e r p r i s e c o n n e c t i v i t y !

0 1 2 3 4 5 6

String_1 O P T O 2 2

Width is

Length is

Width is
10-26 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Find Substring in String: Example 1

String_1 string variable
Start At 0 integer literal

Number Of 4 integer literal
Move To Sub_String1 string variable (width = 5)

Results in:

Find Substring in String: Example 2

String_1 string variable
Start At 5 integer literal

Number Of 2 integer literal
Move To Sub_String2 string variable (width = 5)

Results in:

String Building Example
Strings are assembled using commands Move String, Append Character to String, and Append
String to String. Consider the following original string and the examples that follow:

Move String

From OPTO string literal
To String_1 string variable

Results in (note that Move String erased the previous contents of the string):

0 1 2 3 4

Sub_String1 O P T O

0 1 2 3 4

Sub_String2 2 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

String_1 U L T I M A T E I / O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

String_1 O P T O

Length is
ioControl User’s Guide 10-27

PROGRAMMING WITH COMMANDS
Append Character to String

From 32 integer literal (represents a space)
To String_1 string variable

Results in (note the space character in position 4):

Append String to String

From 22 string literal
To String_1 string variable

Results in:

Append Character to String

From 13 integer literal (carriage return)
To String_1 string variable

Results in:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

String_1 O P T O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

String_1 O P T O 2 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

String_1 O P T O 2 2 ¶

Length is

Length is

Length is
10-28 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Comparison to Visual Basic and C
The following table lists ioControl string commands and their equivalents in Microsoft Visual
Basic® and C. If you are using OptoScript, see Appendix F, “OptoScript Language Reference” for
additional comparisons.

ioControl Command Visual Basic C

Append Character to String S$ = S$ + Chr$(MyChar%) i = strlen(str);
str[i] = MyChar;

str[i + 1] = 0;

Append String to String S$ = S$ + “Hello” strcat(str, “Hello”);

Convert Hex String Number 1% = “&h” + S$ sscanf(str,“%x”,&iNum);

Convert Number to
Formatted Hex String

S$ = Hex$(1%) sprintf(str,“%x”,iNum);

Convert Number to String S$ = CStr(1%) sprintf(str,“%d”,iNum);
sprintf(str,“%f”,fNum);

Convert String to Float F = CSng(S$) sscanf(str,“%f”,&fNum);
fNum = atof(str);

Convert String to Integer 32 I% = Clnt(S$) sscanf(str,“%d”,&iNum);
iNum = atoi(str);

Get Nth Character MyByte% =
ASC(MID$(Str$,n%,1))

MyByte = str[n];

Get String Length MyLENGTH% = LEN(Str$) iLEN = strlen(str);

Get Substring SubStr$ = MID$(Str$,i,n) strncpy(subStr,&str[i],n);
subStr[n] = ‘\0’;

Move String STR$ = “Hello” strcpy(strDest,“Hello”);

Test Equal Strings Equal% = (STR$ = “Hello”) i = strcmp(str1,“Hello”);

String Equal? if STR$ = “Hi” then... if(!strcmp(str1,“Hi”))

String Equal to
String Table Element?

if STR$(n%) = “Hi” then... if(!strcmp(str1[n],“Hi”))
ioControl User’s Guide 10-29

PROGRAMMING WITH COMMANDS
Convert-to-String Commands
The five convert-to-string commands are typically used when printing a number to a port. The
ASCII table on the following page shows how various parameters affect the string as it is
converted. Note the following:

• Some commands add leading spaces to achieve the specified length. These spaces are
indicated with underscores (_).

• Floats (if used) are automatically rounded to integers before conversion except when using
the command Convert Number to Formatted Hex String.

Command
Parameters

Convert-to-String Commands

Nu
m

er
ic

 v
al

ue

to
 b

e
co

nv
er

te
d

Nu
m

be
r o

f d
ig

its

rig
ht

 o
f d

ec
im

al
 p

oi
nt

Le
ng

th

Co
nv

er
t N

um
be

r t
o

Fo
rm

at
te

d
H

ex
 S

tri
ng

(L

en
gt

h
8

re
qu

ire
d

fo
r f

lo
at

s)

Co
nv

er
t F

lo
at

to

 S
tri

ng

Co
nv

er
t N

um
be

r
to

 H
ex

 S
tri

ng

Co
nv

er
t N

um
be

r
to

 S
tri

ng
 F

ie
ld

Co
nv

er
t N

um
be

r
to

 S
tri

ng

Fl
oa

ts

16.0 1 4 41800000 16.0 10 1.6e+01 1.6e+01

16.0 2 4 41800000 **** 10 1.6e+01 1.6e+01

-16.0 1 4 C1800000 **** FFFFFFF0 -1.6e+01 -1.6e+01

1.23 1 4 3F9D70A4 _1.2 1 1.23e+00 1.23e+00

12.3 1 4 4144CCCD 12.3 C 1.23e+01 1.23e+01

0.0 1 4 00000000 _0.0 0 0.0e+00 0.0e+00

In
te

ge
rs

16 1 4 0010 16.0 10 _ _16 16

16 2 4 0010 **** 10 _ _16 16

-16 1 4 FFF0 **** FFFFFFF0 _-16 -16

0 1 4 0000 0.0 0 _ _ _0 0

1000 1 2 ** ** 3E8 1000 1000

**** Indicates an overflow. The whole-number portion of the resulting
string is too long for its space.
10-30 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
ASCII Table
The following table shows ASCII characters with their decimal and hex values. For characters
0–31, equivalent control codes are also listed; for example, a carriage return (character 13) is
equivalent to a CTRL+M (shown in the table as ^M).

Dec Hex CC Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 ^@ NUL 32 20 Space 64 40 @ 96 60 ‘i

1 01 ^A SOH 33 21 ! 65 41 A 97 61 a

2 02 ^B STX 34 22 “ 66 42 B 98 62 b

3 03 ^C ETX 35 23 # 67 43 C 99 63 c

4 04 ^D EOT 36 24 $ 68 44 D 100 64 d

5 05 ^E ENQ 37 25 % 69 45 E 101 65 e

6 06 ^F ACK 38 26 & 70 46 F 102 66 f

7 07 ^G BEL 39 27 i’ 71 47 G 103 67 g

8 08 ^H BS 40 28 (72 48 H 104 68 h

9 09 ^I HT 41 29) 73 49 I 105 69 i

10 0A ^J LF 42 2A * 74 4A J 106 6A j

11 0B ^K VT 43 2B + 75 4B K 107 6B k

12 0C ^L FF 44 2C , 76 4C L 108 6C l

13 0D ^M CR 45 2D - 77 4D M 109 6D m

14 0E ^N SO 46 2E . 78 4E N 110 6E n

15 0F ^O SI 47 2F / 79 4F O 111 6F o

16 10 ^P DLE 48 30 0 80 50 P 112 70 p

17 11 ^Q DC1 49 31 1 81 51 Q 113 71 q

18 12 ^R DC2 50 32 2 82 52 R 114 72 r

19 13 ^S DC3 51 33 3 83 53 S 115 73 s

20 14 ^T DC4 52 34 4 84 54 T 116 74 t

21 15 ^U NAK 53 35 5 85 55 U 117 75 u

22 16 ^V SYN 54 36 6 86 56 V 118 76 v

23 17 ^W ETB 55 37 7 87 57 W 119 77 w

24 18 ^X CAN 56 38 8 88 58 X 120 78 x

25 19 ^Y EM 57 39 9 89 59 Y 121 79 y

26 1A ^Z SUB 58 3A : 90 5A Z 122 7A z

27 1B ^[ESC 59 3B ; 91 5B [123 7B {

28 1C ^\ FS 60 3C < 92 5C \ 124 7C |

29 1D ^] GS 61 3D = 93 5D] 125 7D }

30 1E ^^ RS 62 3E > 94 5E ^ 126 7E ~

31 1F ^_ US 63 3F ? 95 5F _ 127 7F DEL
ioControl User’s Guide 10-31

PROGRAMMING WITH COMMANDS
Mathematical Commands
The following commands perform mathematical functions:

Using Integers
In ioControl, an integer 32 is a 32-bit signed number ranging from -2,147,483,648 to
2,147,483,647 (±2 billion). An integer 64 ranges from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

An integer can only be a whole number (-1, 0, 1, 2, 3, etc.). In other words, integers do not include
a decimal point. The result of an integer operation is always an integer, even if it is placed in a
float variable. For example, if 9 is divided by 10, the result is zero (0.9 truncated to an integer).
To receive a float result, at least one of the operators would have to be a float.

Using Floats
All analog values read from an I/O unit are floating point numbers (floats).

In ioControl, a float is a 32-bit IEEE single-precision number ranging from ±3.402824 x 10-38 to
±3.402824 x 1038.

Note that this format guarantees only about six and a half digits of significance in the mantissa.
Therefore, mathematical actions involving floats with seven or more significant digits may incur
errors after the sixth significant digit. For example, a float-to-integer conversion of 555444333.0
yields 555444416 (note the error in the last three digits).

Add
Subtract
Multiply
Divide
Modulo
Decrement Variable
Increment Variable
Maximum
Minimum
Round
Truncate
Generate Random Number
Seed Random Number
Absolute Value
Complement
Square Root
Raise to Power
Raise e to Power

Natural Log
Clamp Float Variable
Clamp Float Table Element
Clamp Integer 32 Variable
Clamp Integer 32 Table Element

Trigonometry
Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
10-32 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Controlling Rounding

Use the Round command to control rounding. Note that 1.5 rounds up to 2, 1.49 rounds down to
1. To round down only, divide an integer by an integer (5/3 = 1).

Mixing and Converting Integers and Floats
An analog value read from an I/O unit and put into an integer is converted from float to integer
automatically.

To maintain the integrity and accuracy of a numeric type (float or integer), keep all item types the
same. For example, use the Move command to copy an integer value to a variable float when you
want float calculations.

Logical Commands
The following commands perform logical functions:

Equal?
Equal to Numeric Table Element?
Not Equal?
Not Equal to Numeric Table Element?
Greater?
Greater Than or Equal?
Greater Than Numeric Table Element?
Greater Than or Equal to Numeric Table Element?
Less?
Less Than or Equal?
Less Than Numeric Table Element?
Less Than or Equal to Numeric Table Element?
Within Limits?
Variable False?
Variable True?
Set Variable False
Set Variable True
Get High Bits of Integer 64
Get Low Bits of Integer 64
Make Integer 64
Move 32 bits
Numeric Table Element Bit Clear
Numeric Table Element Bit Set
Numeric Table Element Bit Test

AND
AND?
NOT
NOT?
OR
OR?
XOR
XOR?
Bit Off?
Bit On?
Bit Clear
Bit Set
Bit Rotate
Bit Shift
Bit Test

Bit AND
Bit AND?
Bit NOT
Bit NOT?
Bit OR
Bit OR?
Bit XOR
Bit XOR?
Test Equal
Test Not Equal
Test Greater
Test Greater or Equal
Test Less
Test Less or Equal
Test Within Limits
ioControl User’s Guide 10-33

PROGRAMMING WITH COMMANDS
Understanding Logical Commands
For Condition Blocks, the Instructions dialog box provides options to designate AND or OR for
multiple commands. If you have more than one command in the same condition block and you
choose the AND option, all of the commands must evaluate true for the block to exit true. If you
have more than one command in a condition block and choose the OR option, the block exits true
if any of its commands evaluates true.

Logical actions and conditions work with integers, individual bits within an integer, a single
digital I/O point, or a digital I/O unit. These values are treated as Boolean; that is, they are either
True or False.

For complex logical operations, you may find OptoScript code easier to use than standard
ioControl commands. See “Using Logical Operators” on page 11-20 for more information.

Logical True and Logical False

ioControl always returns a value of +1 to indicate True in an integer variable.

A digital input or output that is on also returns a True (+1). Any non-zero value sent to a digital
output turns it on. False is defined as zero (0).

For individual bits within an integer variable, bits that are set (1) indicate on. Bits that are cleared
(0) indicate off.

While floats can be used in logic, integers are strongly recommended whenever any bits are
referenced. Since ioControl does not permit bits in a float value to be altered, float values must
be converted to integers before bits can be evaluated. See “Mathematical Commands” on
page 10-32 for further information on integers and floats.
10-34 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Communication Commands
The following commands refer to moving data among entities that store and transfer data:

Communication Handles
A communication handle is a variable in ioControl that stores the parameters needed to connect
to a specific entity; the entity may be another device on the network, a file located on the control
engine, or some other thing that stores or transfers data. The value of the communication handle
variable is a string consisting of the communication parameters separated by colons.

Typically, a communication handle is used to open communication, to transmit and receive data,
and to close communication. For example, you might use the TCP communication handle to
communicate with another device on the network via TCP/IP, or the FTP communication handle
to send data from the brain to a file on a PC.

In many cases you’ll define a communication handle variable and never change it, because the
same parameters are always needed. However, in some cases it might be useful to change it. For
example, if you use the same process to send serial data through two different serial
communication modules, you can use Set Communication Handle Value to switch to the other
module. Advanced users may also want to use pointers.

Several types of communication handles are available:

Communication Open?
Open Outgoing Communication
Listen for Incoming Communication
Accept Incoming Communication
Close Communication
Clear Communication Receive Buffer
Get Communication Handle Value
Set Communication Handle Value
Send Communication Handle Command
Get Available File Space
Get Number of Characters Waiting
Transfer N Characters
Get End-Of-Message Terminator
Set End-Of-Message Terminator

Receive Character
Receive N Characters
Receive String
Receive Numeric Table
Receive String Table
Receive Pointer Table
Transmit Character
Transmit NewLine
Transmit String
Transmit/Receive String
Transmit/Receive Mistic I/O Hex String*
Transmit Numeric Table
Transmit String Table
Transmit Pointer Table

* ioControl Professional only; mistic I/O units only

TCP For Ethernet communication
For communication with serial modules

See page 10-36.
See page 10-38.

File For creating a file to be stored on the control engine, and
reading or writing to a file stored on the control engine

See page 10-42.
ioControl User’s Guide 10-35

PROGRAMMING WITH COMMANDS
Using TCP Communication Handles
The TCP communication handle is used for most Ethernet communication. Any device on the
network accessible via TCP/IP can be communicated with using communication commands. For
example, data from a serial device can be received through a serial communication module, or
communication can be established with a PC on the network.

NOTE: If the two devices that are sharing data are both control engines, it may be easier to use
the Scratch Pad areas on each to transfer data, rather than using communication commands. See
“I/O Unit—Scratch Pad Commands” on page 10-51 for more information.

Incoming and Outgoing Communication

TCP communication is normally requested by the device that needs the data. For example, an
ioControl strategy running on SNAP Ultimate I/O unit A might need the value of a set of variables
from another strategy running on Ultimate I/O unit B. Unit A would request communication using
the command Open Outgoing Communication. Unit B would Listen for Incoming Communication
and then Accept Incoming Communication to establish the connection. Once connected, data
could be transmitted and received in both directions.

This scenario is similar to the way we use the telephone. If Joe Wong needs information from
Saul Garcia, he requests communication by calling Saul on the phone (opening outgoing
communication). If Saul is there (listening for incoming communication), he answers the phone
(accepts incoming communication), and the connection is completed. Once connected, both Joe
and Saul can talk and listen to transmit and receive information.

Depending on the situation, you may want to have both peers request communication and
establish two connections between them. That way if one peer goes offline and then comes
online, you can have the flowchart logic set up to immediately open communication again.

In some cases, however, one of the devices may be incapable of requesting communication. A
serial device such as a barcode reader attached to a serial communication module on a SNAP
Ultimate, SNAP Ethernet, or SNAP Simple I/O unit is an example. The serial device is incapable
of requesting Ethernet communication; essentially it acts as a slave device and can only wait
until it is asked for data. For serial devices attached to serial communication modules, the control
engine needing the serial data must request communication using Open Outgoing
Communication. (For serial devices attached directly to a serial port on a SNAP-LCE controller or
SNAP Ultimate brain, see “Using Serial Communication Handles to Communicate with Serial
Devices” on page 10-50.)

FTP For accessing files on the local file system or another
FTP server, including transferring files between the two
servers

See page 10-48.

Serial For using the RS-232 connectors on a SNAP
Ethernet-based controller to communicate with serial
devices. (Not used for serial communication modules or
serial-based I/O units.)

See page 10-50.
10-36 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Outgoing Communication For outgoing communication (communication you request), the
communication handle’s value is in the format tcp:<IP address>:<port>. Note that tcp
is all lowercase letters. The following table shows examples of communication handles for
outgoing communication.

Port Numbers If you are talking to other control engines or other peers on the network, you can
use any port number that is not used by another device on the network. For example, do not use
the following port numbers, which are used by Opto 22 devices for the purposes shown:

Note that port numbers on the SNAP Ultimate brains, SNAP-LCE controllers, and SNAP PAC
controllers are the default ports; some may have been changed for security reasons. (See the
section on Security in form #1440, the ioManager User’s Guide.)

If you do not know what port number to use, ask your network administrator or check the list of
standard reserved Ethernet port numbers at http://www.iana.org/assignments/port-numbers to
see ports that may apply to your devices on your network.

Incoming Communication For incoming communication (communication requested by another
device), the communication handle value includes just the protocol and the port number:
Protocol:Port. TCP automatically tracks senders so there is no mixup in the data sent and
received. Here are a couple of examples of communication handles for incoming communication:

Outgoing Communication
Communication Handle Value

Protocol:IP Address:Port

Ethernet/TCP - to another control engine tcp:10.192.56.185:22004

Ethernet/TCP - to a serial communication module on another
rack

tcp:10.192.54.10:22506

Ethernet/TCP - to a serial communication module on the same
rack (uses SNAP Ultimate brain’s IP address or loopback IP
address)

tcp:10.192.55.90:22511
or

tcp:127.0.0.1:22511

Port # Purpose

21 FTP (file transfer protocol)

20 FTP (file transfer protocol) for get, send, and dir
functions

502 Modbus/TCP hardware and software

2001 Main command processor, OptoMMP-based (also
used by SNAP Ethernet I/O and E1/E2 brains)

161 SNMP-based enterprise management systems

22000
22001

Host port (for information on configuring the host port,
see form #1440, the ioManager User’s Guide)

Incoming Communication
Communication Handle Value

Protocol:Port

Ethernet/TCP - from another control engine tcp:22004

Ethernet/TCP - from another control engine tcp:22005
ioControl User’s Guide 10-37

PROGRAMMING WITH COMMANDS
To add a communication handle, see the steps starting on page 9-5.

TCP Communication Handle Examples

The following diagram shows an example of a communication handle value for outgoing
communication:

For incoming communication, the communication handle value could be:

Communication Handles for Serial Communication Modules For communication with serial
devices through a serial communication module, the communication handle value consists of the
IP address of the brain the module is attached to, plus the serial module’s port number according
to its position on the rack. For port number information, see Opto 22 form #1191, the SNAP Serial
Communication Module User’s Guide.

SNAP Ultimate I/O
IP address: 10.192.59.45

Device A
IP address: 10.192.59.31

Receives communication
on port 22004

Communication Handle value:
tcp:10.192.59.31:22004

Outgoing Communication

Request communication

Communicate

SNAP Ultimate I/O
IP address: 10.192.59.45

Device A
IP address: 10.192.59.31

Sends communication to
10.192.59.45 on port 22004

Communication Handle value:
tcp:22004

Incoming Communication

Communicate

Request communication
10-38 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Here are two examples of communication handles for communicating with serial modules, the
first showing communication through a module on the same rack as a SNAP Ultimate I/O brain,
and the second showing communication through a module on a different rack.

Using Flowcharts to Control TCP/IP Communication

When a control engine is communicating with another device using TCP/IP, it runs an ioControl
flowchart or charts to control communication.

• For outgoing communication, the flowchart uses the command Open Outgoing
Communication to request a connection.

• For incoming communication, which is requested by another device, the flowchart must
first use Listen for Incoming Communication and then use Accept Incoming Communication
to establish a connection.

The control engine’s TCP/IP flowcharts should open communication once and then continue to
transmit or receive using the communication handle. Constantly opening and closing
communication for each transaction wastes time and is inefficient.

SNAP Ultimate I/O
IP address: 10.192.59.45 Serial Device

Communication Handle value:
tcp:127.0.0.1:22507

or tcp:10.192.59.45:22507

To a Serial Module on the Same Rack

SNAP-SCM
port 22507

For a serial module on the same rack,
use the loopback IP address 127.0.0.1,
which tells the brain to talk to its own
rack. You can also use the brain’s own IP
address (in this example, 10.192.59.45),
but the loopback address allows you to
change the IP address of the brain
without having to change the
communication handle.

SNAP Ultimate I/O
IP address: 10.192.59.45

Communication Handle value:
tcp:10.192.59.62:22507

To a Serial Module on a Different Rack

Serial Device
Ethernet network

SNAP-SCM
port 22507

SNAP Ethernet I/O
IP address: 10.192.59.62
ioControl User’s Guide 10-39

PROGRAMMING WITH COMMANDS
As a simple example, the flowchart at
right is designed to receive data from a
serial device, such as a barcode reader,
through a serial communication module
on the same rack as a SNAP Ultimate I/O
unit.

Communication with serial modules is
done via TCP/IP. It can be done from the
SNAP Ultimate I/O system itself, as in this
example, or from another TCP/IP device
on the network.

In this example, the Ultimate I/O unit
listens for and accepts communication
from the serial module using the
communication handle:
tcp:127.0.0.1:22507
The loopback IP address is used, since the
serial module is on the same rack.

When characters are detected in the
receive buffer, the I/O unit receives the
string and processes it, and then after a
short delay checks for another message. Communication remains open for additional messages.

This simple flowchart illustrates the basics of handling communication, without any error
checking. However, while receiving and transmitting, TCP/IP control charts should also monitor
the status value returned by commands such as Transmit Numeric Table and Receive Numeric
Table, and close communication if there are errors. If your ioControl application opens sessions
but does not close unused or bad sessions, the maximum number of sessions could be used up.
Note that communication should not be closed for timeout errors from Receive commands (error
numbers –37 and –39), however, because these errors simply mean that there was no data
waiting in the receive buffer for the specified session.

To save time, before using a Receive command (such as Receive String or Receive Numeric
Table), TCP/IP charts should use the command Get Number of Characters Waiting. If there are
zero characters waiting, then there is no reason to use the Receive command. It is also a good
idea to start a down timer, and then loop on the Get Number of Characters Waiting command
until either there are more than zero characters waiting, or the timer expires.

The following chart is also an example of TCP/IP communication, but with three differences: in
this case another device is requesting communication, the peer will both transmit and receive,
and error checking is shown for the commands Get Number of Characters Waiting and Receive
Numeric Table. Similar error checking should be used for transmit commands, which in this
strategy are in another chart.
10-40 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
If the devices communicating with each other are all SNAP Ultimate I/O systems, be careful not
to have one of them send information to another faster than the receiving system can pull it out
of its receive buffer. When a control engine receives data from the Ethernet network, it holds the
data in memory (the buffer) until the ioControl flowchart removes it with a Receive command. If
the data is not removed fast enough, the receive buffer will fill up. You can prevent this problem
by transmitting the information less frequently. If the same chart is transmitting and receiving,
you can alter the chart so that it receives more often than it transmits.

Ethernet Connections and Ports

The number of Ethernet connections available varies by hardware, type, and in some cases
firmware version, such as 64 on current SNAP Ultimate I/O systems.

The host connection is on port 22000 or 22001 and is used to communicate with the PC that runs
ioControl. These port numbers are reserved for this purpose, but they can be configured. For
information see Opto 22 form #1440, the ioManager User’s Guide.

Peer-to-peer connections can be on any other port number that is not already used on the
network; these connections are used to communicate with other control engines or other devices
on the network. When you assign port numbers for peer-to-peer connections, make sure you do
not assign port numbers that devices on your network may use for specific purposes. For a list of
standard Ethernet port numbers, refer to: http://www.iana.org/assignments/port-numbers

IMPORTANT: If you are using TCP/IP connections, consult commercially available texts on TCP/IP
that discuss client/server architectures, so you’ll understand how the protocol works and what
to expect during communication.
ioControl User’s Guide 10-41

PROGRAMMING WITH COMMANDS
Using the Control Engine’s File System
The memory in SNAP PAC and SNAP-LCE controllers and in SNAP Ultimate controller/brains
includes a substantial area (about 4 MB on a SNAP-PAC-S1, 2 MB on a SNAP PAC R-series
controller or SNAP Ultimate brain, and 1 MB on a SNAP-LCE) available for file storage. Any types
of files can be stored there, and files can be sorted into directories or folders just as they can on
a PC. These stored files are then available for use; for example, the control engine can read them,
add data to them, and even send data from them via FTP to another device on the network.

Note: Certain FTP commands may also be useful when dealing with files, even if the files are all
local. For example, the dir command is available with comm handles.

The file communication handle is used to create, write to, and read from stored files on the
control engine. The format for the handle’s value is: file:<open mode>,<filename>

Note that file is all lowercase. Open modes are:

Here are some examples of file communication handle values:

Open mode Description

r Opens a file for reading. If the file does not exist or cannot be
found, the open call fails.

w Creates a new file and opens it for writing. If the file already exists,
its contents are destroyed.

a Opens a file for writing at the end of the file (appending). If the file
doesn’t exist, it is created.

Creates the file myfile.txt and opens it for
writing.

file:w,myfile.txt

Opens the existing file myfile.txt so data can
be appended to it.

file:a,myfile.txt

Creates the file Temperature data. txt in the
directory Data_files and opens it for writing. If
the directory doesn’t exist, it is created.

file:w,/Data_files/Temperature
data.txt

Opens the file Temperature data.txt in the
directory Data_files for reading.

file:r,/Data_files/Temperature
data.txt
10-42 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Keep the following limitations in mind as you use the file communication handle:

If power to the control engine is turned off, files are destroyed unless they have been saved to
flash memory. See “Commands Relating to Permanent Storage” on page 10-17 for information
on saving files to flash using ioControl commands.

Working with Files in Your Strategy

The commands you use with a communication handle vary according to the action (the open
mode) defined in the handle’s value. To change actions—from read to write, for example—you
can use Set Communication Handle Value to change the handle’s value.

To work with files in your strategy, first use the command Open Outgoing Communication.

Writing to a File For example, suppose you have data in your strategy in a string table
(Product_Table) that you want to write to a file (Products.txt) in a directory (Company Data) on
the control engine. Here’s how you would do it:

Maximum length for filenames and directory names 127 characters

Filename characters allowed All ASCII characters except *, ?, null, and /

Path name component separator /

Maximum number of files and directories that can
be open simultaneously

16

Maximum directory depth Limited only by available memory

Maximum number of files Limited only by available memory. Each file uses
516 bytes of overhead plus its number of bytes
rounded up to the nearest multiple of 516 bytes.

Maximum number of directories Limited only by available memory. Each directory
uses 516 bytes.

Maximum amount of memory available in the control
engine’s file system

Approximately 4 MB on a SNAP-PAC-S1, 2 MB on a
SNAP PAC R-series controller or SNAP Ultimate
brain, or 1 MB on a SNAP-LCE controller (varies
slightly depending on the control engine firmware
version)

Commands to use with any file
communication handle

Commands to use with file
comm handles in Read mode

Commands to use with
file comm handles in

Write or Append mode

Open Outgoing Communication
Communication Open?
Send Communication Handle Command

(delete, getpos, or setpos)
Set Communication Handle Value
Set End-of-Message Terminator
Get Available File Space
Get Number of Characters Waiting
Close Communication

Receive Numeric Table
Receive Pointer Table
Receive String
Receive String Table
Send Communication Handle

Command (find)

Transmit Character
Transfer N Characters
Transmit NewLine
Transmit Numeric Table
Transmit Pointer Table
Transmit String
Transmit String Table
ioControl User’s Guide 10-43

PROGRAMMING WITH COMMANDS
1. Use Open Outgoing Communication to open a file communication handle. The value of the
handle would be: file:w,/Company Data/Products.txt

2. Use the condition Communication Open? to make sure the communication handle opened.

3. To put the data from the string table into a comma-delimited file (which is easy to open in
database software), use the command Set End-Of-Message Terminator to indicate that a
comma should be used as the delimiting character.

4. Use the command Transmit String Table to transmit data from Product_Table directly into
the Products.txt file. Items from the string table are separated by commas in the file.

5. Use the command Close Communication to close the communication handle.

Reading a File As another example, suppose you have a file on the control engine that was
placed there via FTP. (See the next section for details on using the FTP communication handle.)
You want to read this file (New_Data.txt) and place the data in it into a string table (Data_Table)
in your strategy.

1. Use Open Outgoing Communication to open a file communication handle. The value of the
handle would be: file:r,New_Data.txt

2. Use the condition Communication Open? to make sure the handle opened.

3. Use the command Set End-Of-Message Terminator to indicate what character in the
New_Data.txt file should be read as the delimiting character. (In the example shown
below, it’s a slash.)

Product_Table

0 Bats

1 Baseballs

2 Batting gloves

3 Catcher’s mitts

Strategy
Control Engine File System

Company Data/ Products.txt

Bats,Baseballs,
Batting gloves,
Catcher’s mitts
10-44 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
4. Use the command Receive String Table to receive the data from New_Data.txt directly into
Data_Table.

Notice the numbers used in this example. These are numbers represented as strings. For
the purpose of storing and sending data, this is the simplest way to represent them. If you
need to use them in calculations, however, you must first convert them to numeric values.
You can do so in your ioControl strategy by using a command such as Convert String to
Float or Convert String to Integer 32. (See “String Commands” on page 10-23 for more
information.)

5. Finally, close the communication handle by using the command Close Communication.

A More Complex Example. Here’s a more complex example which shows the actual OptoScript
code. In this example, someone on the network needs the value of several variables in the
ioControl strategy running on the control engine. This person has sent to the control engine via
FTP a comma-delimited text file (ProductRequest.txt) containing the names of the variables. (See
page 10-48 for information on FTP.)

This section of the ioControl strategy reads the variable names from the text file in the control
engine’s file system and places the names in a string table (Product_Names). Next, the strategy
uses the command Get Value From Name to place the values of the variables into another table
(Product_Info). The data from this table is then written to another text file (ProductInfo.txt) on the
control engine, which can later be sent via FTP to the person who requested the data.

Data_Table

0 485

1 622

2 35

3 56

4 7841

5 20

StrategyControl Engine File System

New_Data.txt

485/622/35/56/
7841/20
ioControl User’s Guide 10-45

PROGRAMMING WITH COMMANDS
The whole operation (including the FTP portions, which are not covered in this code example),
might look like this:

Requestor Control Engine
File System

ioControl Strategy

ProductRequest.txt

ProductSales.txt

Num_Widgets,
Num_Gadgets,
Num_Thingies,
Num_Whatnots

9556, 10867, 5432,
23

ProductRequest.txt

Num_Widgets,
Num_Gadgets,
Num_Thingies,
Num_Whatnots

ProductInfo.txt

1

Product_Info String Table

0 9556

1 10867

2 5432

3 23

Product_Names String Table

0 Num_Widgets

1 Num_Gadgets

2 Num_Thingies

3 Num_Whatnots

2

3

45

FTP

FTP

Get Value
From Name

9556, 10867, 5432,
23
10-46 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
The OptoScript code in this example also makes use of the command Set Communication Handle
Value to change the value of a specific communication handle during the operation.

Deleting Files and Moving Within Them Another command you’ll find useful with file
communication handles is Send Communication Handle Command. Using these commands, you
can delete files, find a position within the file, and jump to a specific position within the file. See
the ioControl Command Reference or online Help for details.

Sets the value for the
communication handle
chAFile.

SetCommunicationHandleValue("file:r,ProductRequest.txt",chAFile);

Opens the communication
handle and checks to make
sure it opened.

status = OpenOutgoingCommunication(chAFile);
if (status == 0) then

Sets the end-of-message
terminator to a comma
because the file to be read is
comma-delimited.

SetEndOfMessageTerminator(chAFile, ',');

Reads the contents of the file
Product_Names into a string
table.

status = ReceiveStrTable(4,0,Product_Names,chAFile);

Loops through the items in
Product_Names table and
places the values they
represent into another string
table, Product_Info. (Note that
the “numbers” in the
Product_Info table are not true
numbers, but string
representations of numbers.)

index = 0;
while ((index < 4) and (status == 0))

 status = GetValueFromName(Product_Names[index], Product_Info[index]);
 index = index + 1;

wend

Closes communication. status = CloseCommunication(chAFile);

Changes the value of the
communication handle; it is
now set to write to the file
ProductInfo.txt on the control
engine.

SetCommunicationHandleValue("file:w,ProductInfo.txt",chAFile);

Opens the communication
handle and checks to make
sure it opened.

status = OpenOutgoingCommunication(chAFile);
if (status == 0) then

Makes the ProductInfo.txt file
comma-delimited, too.

SetEndOfMessageTerminator(chAFile, ',');

Writes the data from the
Product_Info string table into
the ProductInfo.txt file on the
control engine.

status = TransmitStrTable(4,0,Product_Info,chAFile);
endif

endif
ioControl User’s Guide 10-47

PROGRAMMING WITH COMMANDS
Moving Files via FTP
As explained in the previous section (“Using the Control Engine’s File System,” starting on
page 10-42) the control engine’s memory includes a substantial area available for file storage.
You can move files to and from file storage using the File Transfer Protocol (FTP):

• To move files to and from file storage using another device such as a PC, use any
standard FTP software. See instructions in Opto 22 form #1440, the ioManager User’s
Guide. A maximum of five devices can FTP files to a control engine simultaneously.

• To move data to and from file storage programmatically, a strategy can request or
send a file using an FTP communication handle, explained in this section. A maximum of 16
communication handles can be used simultaneously to move data via FTP.

FTP also allows you to get a directory listing of files on a remote server or in the local file storage
area.

FTP Communication Handle Examples

The value for the FTP communication handle is in the format:

ftp:<IP address>:<port>,<username>,<password>,<optional timeout>

Here are two examples of FTP communication handle values:

ftp:10.22.55.35:21,jsmith,2towers,60 (timeout increased to 60 seconds)

ftp:10.192.54.195:21,m,m (no timeout specified)

Using FTP Communication Handles in Your Strategy

Suppose you have data you need to send via FTP to a device on the network whose IP address is
10.192.56.45. Your username on this device is JoeG and your password is hello. You expect the
default timeout of 30 seconds to be adequate.

There are two ways you can send the data: all at once, or in pieces over time. If your data file is
less than 1 MB in size, you can send it all at once. If it is larger, or if you want to append
additional data to a file that already exists, you send it in pieces.

ftp Use all lowercase letters.

IP address IP address of the destination device (where the file will go).

port Default port is 21, with 20 for the data port.

username
password

Enter the username and password set up for the destination
device. If the destination device is another control engine or
the local server, use anything except an empty string.

optional
timeout

Specify a communication timeout value in seconds, or leave
this parameter out to use the default of 30 seconds.
10-48 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Sending the Data All At Once This method is better for small data files; files larger than 1MB may
take a long time to transfer, and the control engine may become unresponsive during the process.

Suppose you want to place the data into a file (HunkoData.txt) on the device; the data is currently
in the file UseThisData.txt on the control engine. Here’s how you would send the data in your
ioControl strategy:

1. Use the command Open Outgoing Communication to open an FTP communication handle.
The value of the handle would be: ftp:10.192.56.45:21,JoeG,hello

2. Use the condition Communication Open? to make sure the communication handle opened.

3. Use the command Send Communication Handle Command to specify the filename and send
the file in one step. The communication handle you send is:

send:UseThisData.txt,HunkoData.txt

If the remote filename already exists, it is overwritten.

4. When you have finished sending data from the file, use the command Close
Communication to close the communication handle.

Sending the Data in Pieces To append data to an existing file, or to send a very large file (larger
than 1 MB), you can send data in pieces.

Suppose you want to append data from a strategy variable or table to an existing file named
HunkoData.txt on the device. Here’s how you would send the data:

1. Use the command Open Outgoing Communication to open an FTP communication handle.
The value of the handle would be: ftp:10.192.56.45:21,JoeG,hello

2. Use the condition Communication Open? to make sure the communication handle opened.

3. To specify the filename on the remote server, use the command Send Communication
Handle Command. The communication handle command you send is:

dest:HunkoData.txt

4. Use a Transmit command (such as Transmit String or Transmit Numeric Table) to send the
data. In the command, use the name of the FTP communication handle you just opened.

The data is appended to the file. (If the remote filename is new, the file is created and the
data placed in it.)

5. When you have finished sending data, use the command Close Communication to close the
communication handle.

If you are sending a large file from the control engine to the device, you would need to open up
two communication handles: an FTP handle just like the one in the example above, and a File
handle for the file on the control engine. Then use the Transfer N Characters command to send
the file in chunks.

For another example, see the diagram in “A More Complex Example.” on page 10-45, which
shows how FTP communication handles and file communication handles might be used together.
See the ioControl Command Reference or online Help for detailed information on commands.
ioControl User’s Guide 10-49

PROGRAMMING WITH COMMANDS
Retrieving a Directory Listing

The OptoScript code in this example makes use of the command Set Communication Handle
Value and the dir option to retrieve a directory listing.

Using Serial Communication Handles to Communicate with
Serial Devices
RS-232 serial connectors are located on the top of SNAP PAC controllers, SNAP-LCE controllers,
and SNAP Ultimate controller brains. These ports can be used for maintenance, such as loading
new firmware, or for Point-to-Point Protocol (PPP) communication via modem, but they can also
be used to send or receive data directly from a serial device, such as barcode readers, weigh
scales, or any intelligent device with a serial port. Serial communication handles are used to
communicate with these devices.

You must configure the ports specifically for this use. See the ioManager User’s Guide for
instructions. On a SNAP-LCE or SNAP Ultimate brain, firmware version 5.1c or newer is required.

Sets the value for the
communication handle chAFile.

// Configure the chFTP comm handle to log into itself. The username and
// password don't matter--they just can't be left empty. We'll use the
// loopback address of 127.0.0.1 so this code is more portable.
SetCommunicationHandleValue("ftp:127.0.0.1:21,noimporta,whocares", chFTP);

Opens the communication handle
and checks to make sure it opened.

// Open the communication handle (log in to the local server)
nStatus = OpenOutgoingCommunication(chFTP);
if (nStatus == 0) then

Requests directory listing, returns
number of listings.

nStatus = SendCommunicationHandleCommand(chFTP, "dir");

Makes sure "dir" worked—firmware
must be version 7.1 or greater.

if (nStatus >= 0) then
nFileCount = nStatus;

Reads in listings to stList.

Note: Each listing from an Opto 22
device server ends with these three
hex bytes: 0D 0A 00

// Set the EOM character to the last byte of the listing: 00
SetEndOfMessageTerminator(chFTP, 0x00);
nStatus = ReceiveStrTable(nStatus, 0, stList, chFTP);

if (nStatus == 0) then

Optional: parses each listing into
separated tables for:
1. date/time stamp (first 17
characters)
2. file size (next 23 characters)
3. filename (remaining characters)
and removes the 0D 0A left over on
the end of the filename.

for nIndex = 0 to (nFileCount - 1) step 1
GetSubstring(stList[nIndex], 0, 17, stDateTimeStamps[nIndex]);
GetSubstring(stList[nIndex], 18, 23, sTemp);
ntSizes[nIndex] = StringToInt32(sTemp);
GetSubstring(stList[nIndex], 39, 1000, stFilenames[nIndex]);

nLength = GetStringLength(stFilenames[nIndex]);
GetSubstring(stFilenames[nIndex], 0, nLength - 2,

 stFilenames[nIndex]);
next

Further parsing could be done on the
date/time stamps, depending on
how those values will be used.

endif
endif

endif
CloseCommunication(chFTP);
10-50 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
IMPORTANT: Serial communication handles are used only for direct connection to serial
devices. If you are connecting to serial devices through serial communication modules on the I/O
unit, use a TCP communication handle instead. See page 10-36.

NOTE: Serial I/O units are wired to the RS-485 port on the controller and do not require serial
communication handles. Communication is defined when the I/O unit is configured.

Serial Communication Handle Examples

The value for the serial communication handle is in the format:

ser:<port number>,<baud rate>,<parity>,<data bits>,<stop bits>

Here is an example of a serial communication handle value:

ser:0,115200,n,8,1 (port 0, baud rate of 115,200, no parity, 8 data bits, and 1 stop bit)

Using Serial Communication Handles in Your Strategy

To use a serial communication handle in your strategy, first use the command Open Outgoing
Communication. Verify that the communication handle opened by using the condition
Communication Open? Then use Transmit, Transfer, and Receive commands to send or receive
data as necessary. Remember to check for any errors. When you have finished sending and
receiving data, use the command Close Communication to close the communication handle.

Make sure your strategy receives data promptly. Incoming serial communication is buffered up
to 127 characters. If more than 127 characters come in before the strategy receives them, the
additional characters are lost.

See the ioControl Command Reference or online Help for details on using specific commands.

port number 0 or 1.

baud rate 115200, 76800, 57600, 38400, 19200, 9600, 4800, 2400,
1200, or 300

parity n, o, or e (none, odd, or even)

data bits 8 or 7

stop bits 1 or 2
ioControl User’s Guide 10-51

PROGRAMMING WITH COMMANDS
I/O Unit—Scratch Pad Commands
The following commands are used for peer-to-peer communication for sharing strategy data with
other Opto 22 memory-mapped controllers on the network. These commands are used by
ioControl to read or write to the Scratch Pad area in the memory map of a SNAP Ultimate I/O unit
or a SNAP PAC or SNAP-LCE controller.

Since each read (get) or write (set) command is completed before another occurs, commands
cannot interfere with each other. For example, a get command won’t read a partial string while
a set command is writing the string.

Since these are I/O unit commands, when they are used for a SNAP PAC or SNAP-LCE controller,
you must have already configured an I/O unit to represent the controller. Configure the controller
as a SNAP-UP1-M64 with the IP address of the control engine.

Also because these are I/O unit commands, remember to check all return values and errors to
make sure the command was successful. If a command variable contains a value that is obviously
wrong—for example, a memory map address in an incorrect format—communication to the I/O
unit will be automatically disabled.

Each controller or SNAP Ultimate I/O unit running an ioControl strategy can place data in its own
or another’s Scratch Pad area, and each can retrieve data that has been placed in the Scratch Pad
area by other devices using other applications. Using these commands eliminates the need to
open communication handles (see “Communication Commands” on page 10-35), thus speeding
up peer-to-peer communication.

The memory map Scratch Pad area supports four data types: bits, integer 32s, floats, and strings.

• For details on the Scratch Pad area, see Opto 22 form 1440, the ioManager User’s Guide.

• For the complete memory map, see form 1465, the OptoMMP Protocol Guide.

• For details on using the Scratch Pad for peer-to-peer communication with a controller, see
the controller’s user’s guide.

The following page shows a simple example of how Scratch Pad area data exchange would work
between two SNAP Ultimate I/O systems.

Set I/O Unit Scratch Pad Bits from MOMO Mask
Get I/O Unit Scratch Pad Bits
Set I/O Unit Scratch Pad Integer 32 Element
Get I/O Unit Scratch Pad Integer 32 Element
Set I/O Unit Scratch Pad Integer 32 Table
Get I/O Unit Scratch Pad Integer 32 Table
Set I/O Unit Scratch Pad Float Element
Get I/O Unit Scratch Pad Float Element

Set I/O Unit Scratch Pad Float Table
Get I/O Unit Scratch Pad Float Table
Set I/O Unit Scratch Pad String Element
Get I/O Unit Scratch Pad String Element
Set I/O Unit Scratch Pad String Table
Get I/O Unit Scratch Pad String Table
10-52 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Create two tables for SNAP_UIO_A, one for its own data that will be shared (A_Shared_Data)
and another for data it will read from SNAP_UIO_B (B_Data). Also create two tables for
SNAP_UIO_B, one for its own data (B_Shared_Data) and one for SNAP_UIO_A’s data (A_Data).

This portion of the flowchart in SNAP_UIO_A (without error checking) might look like this:

SNAP_UIO_A

SNAP_UIO_B

ioControl Tables: Memory Map Scratch Pad:

A_Shared_Data
(Indexes 0–599)

Integer elements
0–599

B_Data

ioControl Tables: Memory Map Scratch Pad:

B_Shared_Data
(Indexes 0–599)

Integer elements
0–599

A_Data

Suppose SNAP_UIO_A and
SNAP_UIO_B are sharing 600 integer
elements of the 3072 integer elements
available in the Scratch Pad.

SNAP_UIO_A writes data from its own
ioControl strategy table to its own
Scratch Pad area, which SNAP_UIO_B
can then read.

Meanwhile, SNAP_UIO_B writes data
from its B_Shared_Data table to its
Scratch Pad area, which SNAP_UIO_A
reads.

NOTE: When the SNAP Ultimate I/O
unit is writing to its own Scratch Pad,
use the loopback IP address, 127.0.0.1

As you can see, SNAP_UIO_A uses the Set I/O
Unit Scratch Pad command to write the data
from its own table to its own memory map.
SNAP_UIO_A also reads data from
SNAP_UIO_B’s memory map and places it in
table B_Data.

A similar flowchart would be in
SNAP_UIO_B’s strategy, to handle writing to
its own Scratch Pad area and reading from
SNAP_UIO_A.
ioControl User’s Guide 10-53

PROGRAMMING WITH COMMANDS
I/O Unit—Event Message Commands
The following commands refer to event messages sent from SNAP PAC R-series, SNAP Ultimate
or SNAP Ethernet I/O units: They do not apply to mistic event/reactions.

A SNAP Ultimate or Ethernet I/O system can send a message as a response to an event that
occurs within strategy logic. For example, if pressure in a pipe reaches a certain level, the system
can send a warning email message to a technician. Or data about a process can be streamed to
a computer every 30 seconds for monitoring.

CAUTION: Events and reactions, including event messages, that are processed separately from
your strategy can conflict with strategy logic. If you are using ioControl, use strategy logic instead
of local events and reactions on the I/O unit, or be very careful that local events and reactions do
not conflict.

Use ioManager to configure event messages, following the steps in Opto 22 form 1440, the
ioManager User’s Guide. You can configure the following types of event messages:

• Email or paging messages sent to a person

• Simple Network Management Protocol (SNMP) traps sent to an enterprise management
system

• Serial messages sent through a serial communication module to a serial device

• Streamed data sent to a device for processing by a software application.

I/O Unit—Event Message commands are commonly used to find out the state or text of an event
message, or to set its state. Event messages can be in the following states:

• Active—The message has been triggered by the event. If it was configured to be sent just
once, it has been sent. If it was configured to be sent at intervals, it is continuing to be
sent.

• Inactive—The message is not currently triggered by the event.

• Acknowledged—The message has been triggered by the event but has been
acknowledged by the receiver so it will not be sent again. (Acknowledgments occur only if
the receiving application writes them to the brain’s memory map.) Acknowledged is
functionally equivalent to Inactive, but can be useful in some cases to determine whether
the receiver has received the message.

The command Set I/O Unit Event Message Text is used to dynamically change a message or to
“recycle” a message if you run out of event messages on an I/O unit (128 event messages are
available for each I/O unit). For more information, see individual commands in the ioControl
Command Reference or online help.

Get I/O Unit Event Message State
Get I/O Unit Event Message Text

Set I/O Unit Event Message State
Set I/O Unit Event Message Text
10-54 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
I/O Unit—Memory Map Commands
The following commands refer to the memory map in an Opto 22 memory-mapped device, either
a controller or an I/O unit. In the case of a controller/brain, they can refer to the device’s own
memory map or a memory map on another device.

Memory map commands make it possible for advanced users to read from or write to any Opto 22
memory-mapped device, such as a SNAP PAC controller or a SNAP Ultimate or Ethernet I/O unit.
You can use these commands to read or write to any address within the memory map. The
commands are especially useful for reading data from a SNAP device using newer features that
may be available in the memory map but are not yet incorporated into ioControl.

NOTE: If you are reading or writing to the device’s Scratch Pad area, use the I/O Unit—Scratch
Pad commands instead (see page 10-51). If you are changing event messages, use the I/O
Unit—Event Message commands instead (page 10-54).

Before you use these commands with a SNAP PAC or SNAP-LCE controller, you must have
already configured an I/O unit to represent the controller. Configure it as a SNAP-UP1-M64 with
the controller’s IP address.

When you use these commands, make sure that you read or write the correct type of data
(integer, float, string) to match the specified memory map address. The control engine doesn’t
know what type of data is in any particular address, so it cannot convert the data type.

Since these are I/O unit commands, remember to check all return values and errors to make sure
the command was successful. If a command variable contains a value that is obviously
wrong—for example, a memory map address in an incorrect format—communication to the I/O
unit will be automatically disabled.

See the OptoMMP Protocol Guide (Opto 22 form 1465) to determine the memory map addresses
and data types you need to use.

Read Number from I/O Memory Map
Read Numeric Table from I/O Memory Map
Read String from I/O Memory Map
Read String Table from I/O Memory Map

Write Number to I/O Memory Map
Write Numeric Table to I/O Memory Map
Write String to I/O Memory Map
Write String Table to I/O Memory Map
ioControl User’s Guide 10-55

PROGRAMMING WITH COMMANDS
Error Handling Commands
The following commands refer to handling errors:

All good programmers must deal with errors. These error handling commands are used to monitor
errors, figure out which I/O unit caused an error, disable or re-enable the unit, and clear errors
and other messages from the message queue. For a simple example of an error handler chart,
see page 4-13. For more on the message queue, see “Queue Messages” on page B-2.

You can use the command Add User Error to Queue to add your own information, warning, or error
message to the queue. This command can be helpful in troubleshooting.

Pointer Commands
The following commands are used with pointers:

See also:

“Understanding Pointers”

“Advantages of Using Pointers”

“Referencing Objects with Pointers”

Error?
Error on I/O Unit?
Copy Current Error to String
Remove Current Error and Point to Next Error
Clear All Errors
Caused a Chart Error?
Caused an I/O Unit Error?
Add User Error to Queue
Add User I/O Unit Error to Queue
Add Message to Queue

Get Error Count
Get Error Code of Current Error
Get Severity of Current Error
Get ID of Block Causing Current Error
Get Line Causing Current Error
Get Name of Chart Causing Current Error
Get Name of I/O Unit Causing Current Error
Disable I/O Unit Causing Current Error
Enable I/O Unit Causing Current Error
Stop Chart on Error
Suspend Chart on Error

Move to Pointer
Move to Pointer Table
Move from Pointer Table Element
Get Pointer From Name

Clear Pointer
Clear Pointer Table Element
Pointer Equal to NULL?
Pointer Table Element Equal to NULL?
10-56 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Understanding Pointers
Like integer and float variables, a pointer variable stores a specific number. However, the number
is not data—it is the memory location (address) of data. The pointer “points” to data rather than
containing the data.

A pointer in ioControl can point to many different types of objects:

• Another variable

• A Digital Point or object

• An Analog Point or object

• An I/O unit

• A chart.

Pointers cannot point to other pointers, however. If you try to move a pointer to a pointer,
ioControl just duplicates the existing pointer.

The following table lists the objects that pointers can point to:

Advantages of Using Pointers
For certain types of operations, pointers can speed up programming and make the strategy more
efficient. Pointers are usually recommended only for experienced programmers, however,
because their misuse can result in unpredictable behavior. They also complicate strategy
debugging. If you use too many pointers, it’s easy to lose track of what’s pointing to what.

If you choose to use pointers, be sure you use the text tool to document your charts in detail.

Referencing Objects with Pointers
There are two types of pointers—pointer variables and pointer tables.

Pointer Variables A pointer variable contains a single pointer to a single object. You can set the
initial value for a pointer variable when you configure it, or you can set it later by using the
command Move to Pointer.

Digital Objects Analog
Objects

I/O Units Variables Other
Objects

Digital Input
Digital Output
Counter
Quadrature

Counter

Analog Input
Analog Output

SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,

SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64

Integer Variable
Float Variable
String Variable
Pointer Variable
Down Timer Variable
Up Timer Variable
Integer Table
Float Table
String Table
Communication Handle

Chart
ioControl User’s Guide 10-57

PROGRAMMING WITH COMMANDS
Once the initial value is set, you can reference it using any command you would use for that type
of object. For example, if the pointer points to a string variable, you can use any command for the
pointer that you would normally use for a string variable, such as Append String to String or
Convert String to Float.

Pointer Tables A pointer table contains a list of objects of different types, each of which can be
pointed to. For example, the object at index 0 could be a chart, the object at index 1 a Digital
Point, and the object at index 2 a string variable. An example of using a pointer table for indexing
is shown on page 4-19.

When you create a pointer table, no initial values are set. You can use the Move to Pointer Table
command to set individual values in the table.

A pointer table element cannot be directly referenced. It must be copied to a pointer variable
first, using the command Move From Pointer Table Element. Once it is in the pointer variable, you
can reference it as you would any object of that type. For example, if index 3 in a pointer table
points to a counter input, use Move From Pointer Table Element to put the counter input address
in a pointer variable. Then you can use any command for the pointer variable that you would
normally use with a counter input, such as Start Counter or Clear Counter.

PID—Ethernet Commands
The following commands are used with PID loops on SNAP Ethernet-based I/O units. For mistic
I/O units, see “PID—Mistic Commands” on page 10-62. Since PID loops are configured and
tuned in Configure Mode while creating your ioControl strategy, you may not need to use these
commands. PID commands are typically used to change input or output location (for example, if
the input is on another I/O unit) or to change tuning parameters based on a change that occurs
while the strategy is running (such as a recipe change).
10-58 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
For steps to configure and tune PIDs, see page 6-29. For more information about PID loops on
Ethernet-based I/O units, how to tune them, and how to use them in ioControl, see Opto 22 form
#1410, Tutorial: PID with SNAP Ultimate I/O Systems.

What is a PID?
A proportional integral derivative (PID) control system (often referred to as a PID loop) monitors
a process variable, compares the variable’s current value to a desired value (a setpoint), and
calculates an output to correct error between the setpoint and the variable. Because the
calculation is complex, it is done by a mathematical formula that is adjusted (tuned) for each PID
loop. The mathematical formulas vary, but all PID systems share these fundamental concepts:

• They evaluate a process variable against its setpoint.

• They control an output to correct the process variable.

• The output comprises proportional, integral, and derivative calculations.

• The effect of proportional, integral, and derivative calculations is modified by
user-determined P, I, and D constants.

• The P, I, and D constants need to be tuned for each system.

PID Loops on I/O Units
Analog/digital SNAP Ultimate I/O units provide 32 PID loops per I/O unit; SNAP Ethernet I/O units
provide 16 PID loops per unit. Because PIDs run on the I/O side of the SNAP Ultimate brain, not

Get PID Gain
Set PID Gain
Get PID Tune Derivative
Set PID Tune Derivative
Get PID Tune Integral
Set PID Tune Integral
Get PID Input
Get PID Current Input
Set PID Input
Get PID Input Low Range
Set PID Input Low Range
Get PID Input High Range
Set PID Input High Range
Get PID Scan Time
Set PID Scan Time
Get PID Setpoint
Get PID Current Setpoint
Set PID Setpoint
Get PID Output
Set PID Output

Get PID Output High Clamp
Set PID Output High Clamp
Get PID Output Low Clamp
Set PID Output Low Clamp
Get PID Max Output Change
Set PID Max Output Change
Get PID Min Output Change
Set PID Min Output Change
Get PID Mode
Set PID Mode
Get PID Configuration Flags
Set PID Configuration Flags
Get PID Status Flags
Get PID Feed Forward
Set PID Feed Forward
Get PID Feed Forward Gain
Set PID Feed Forward Gain
Get PID Forced Output When Input Over Range
Set PID Forced Output When Input Over Range
Get PID Forced Output When Input Under Range
Set PID Forced Output When Input Under Range
ioControl User’s Guide 10-59

PROGRAMMING WITH COMMANDS
on the control side, these PIDs will keep running on the Ultimate I/O unit even if the ioControl
strategy stops.

In ioControl, you can configure each of the PID loops with unique settings for a large number of
parameters. For a simple PID loop, you must configure at least the following:

• Input (the process variable being monitored)

• Setpoint (the desired value)

• Output (the I/O point that effects change in the system)

• Scan time (how often the input is sampled)

• PID algorithm used (four algorithms are available; see “Algorithm Choices (PID—Ethernet)”
on page 10-60.

• Valid range for input

• Upper and lower clamps for output

• Minimum and maximum change for output

You can also configure the following parameters if necessary:

• Forced output value or use of manual mode if input goes out of range

• Feed forward gain

• Square root of input

In the SNAP Ultimate and SNAP Ethernet PIDs, the derivative is applied only to the process
variable (the input) and not to the setpoint. This means you can change the setpoint without
causing spikes in the derivative term. These PIDs also prevent integral windup by back
calculating the integral without the derivative term. The feed forward term (“bias”) is added
before output clamping and has a tuning factor.

If desired, you can cascade PIDs by simply using the Output Point of one PID loop as the Input
Point for another.

Algorithm Choices (PID—Ethernet)
When you configure a PID loop in ioControl, choose one of the following algorithms:

• Velocity

• ISA

• Parallel

• Interacting

The ISA, Parallel and Interacting algorithms are functionally equivalent; the only difference is the
way the tuning constants are factored. The identical and differing equations for all algorithms
are shown in the following sections.
10-60 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Key to Terms Used in Equations

Equations Common to All Algorithms
Err = PV - SP
Span = (OutHi - OutLo) / (InHi - InLo)
Output = Output + FeedForward * TuneFF

Velocity Algorithm

The velocity algorithm is similar to the algorithm used in OptoControl for Mistic I/O except that
the derivative does not act on setpoint changes.
TermP = (Err - Err_1)
TermI = TuneI * ScanTime * Err
TermD = TuneD / ScanTime * (PvIn - 2 * PvIn_1 + PvIn_2)
∆Output = Span * Gain * (∆TermP + ∆TermI + ∆TermD)

Non-velocity Algorithms

These equations were derived from the article “A Comparison of PID Control Algorithms” by John
P. Gerry in Control Engineering (March 1987). These three equations are the same except for the
tuning coefficients; converting from one equation to another is merely a matter of converting the
tuning coefficients.

Equations common to all but the velocity algorithm:
Integral += Err
TermP = Err
TermI = TuneI * ScanTime * Integral
TermD = TuneD / ScanTime * (PvIn - PvIn_1)

“Ideal” or ISA Algorithm:
Output = Span * Gain * (TermP + TermI + TermD)

PV Process variable; the input to the
PID

TuneD Derivative tuning parameter. In units
of seconds. Increasing magnitude
increases influence on output.

SP Setpoint Output Output from the PID

InLo,
InHi

Range of the input Err_1 The Error (PV – SP) from the
previous scan

OutLo,
OutHi

Range of the output Integral Integrator. Anti-windup is applied
after the output is determined to be
within bounds.

Gain Proportional tuning parameter.
Unitless. May be negative.

PvIn_1,
PvIn_2

PV from the previous scan and the
scan before that.

TuneI Integral tuning parameter. In
units of 1 seconds. Increasing
magnitude increases influence
on output.

ScanTime Actual scan time (time since
previous scan)
ioControl User’s Guide 10-61

PROGRAMMING WITH COMMANDS
“Parallel” Algorithm:
Output = Span * (Gain * TermP + TermI + TermD)

“Interacting” Algorithm:
Output = Span * Gain * (TermP + TermI) * (1 + TermD)

PID—Mistic Commands
 The following commands are used for PID loops running on mistic I/O units only. For PID loops
on Ethernet-based I/O units, see “PID—Ethernet Commands” on page 10-58.

What is a PID?
A proportional integral derivative (PID) control system (often referred to as a PID loop) monitors
a process variable, compares the variable’s current value to a desired value (a setpoint), and
calculates an output to correct error between the setpoint and the variable. Because the
calculation is complex, it is done by a mathematical formula that is adjusted (tuned) for each PID
loop. The mathematical formulas vary, but all PID systems share these fundamental concepts:

• They evaluate a process variable against its setpoint.

• They control an output to correct the process variable.

• The output comprises proportional, integral, and derivative calculations.

• The effect of proportional, integral, and derivative calculations is modified by
user-determined P, I, and D constants.

• The P, I, and D constants need to be tuned for each system.

Get Mistic PID P Term
Set Mistic PID P Term
Get Mistic PID I Term
Set Mistic PID I Term
Get Mistic PID D Term
Set Mistic PID D Term
Get Mistic PID Input
Set Mistic PID Input
Get Mistic PID Setpoint
Set Mistic PID Setpoint
Get Mistic PID Output
Get Mistic PID Output Rate of Change
Set Mistic PID Output Rate of Change
Get Mistic PID Scan Rate
Set Mistic PID Scan Rate

Get Mistic PID Mode
Set Mistic PID Mode to Auto
Set Mistic PID Mode to Manual
Get Mistic PID Control Word
Set Mistic PID Control Word
Clamp Mistic PID Output
Clamp Mistic PID Setpoint
Disable Mistic PID Output
Disable Mistic PID Output Tracking in Manual Mode
Disable Mistic PID Setpoint Tracking in Manual Mode
Enable Mistic PID Output
Enable Mistic PID Output Tracking in Manual Mode
Enable Mistic PID Setpoint Tracking in Manual Mode
10-62 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Using PIDs on mistic I/O Units
Eight PID loops are available per I/O unit. The PID algorithm used with mistic protocol brains,
such as the serial B3000 and the G4A8R, is the velocity PID algorithm. It is an interacting type
with a reverse output.

• Interacting means that the gain is distributed to each term in the equation. Therefore, if
you double the gain, you also double the integral and derivative terms.

• Reverse output means that the output increases as the input decreases. The reverse output
mode is used for “pump-up” control, such as maintaining level, pressure, and flow as well
as heating.

For cooling or “pump-down” control, direct output is required. To switch to direct, simply reverse
the sign of the gain. For example, a gain of 1.28 would become -1.28. Note that this is not
negative gain. The minus sign only serves to change the type of PID output from reverse to direct.

This velocity PID algorithm (also referred to as the incremental PID algorithm) is inherently
“anti-windup” since it has no summation in the integral term to saturate. The algorithm is
described on pages 160–162 of the book Microprocessors in Instruments and Control by Robert
J. Bibbero, published by John Wiley and Sons.

Velocity PID Equation (PID—mistic)
Change in output = Gain *
[(Error – Last Error) +
(Integral * Time * Error) +
{(Derivative/Time) * (Error – (2 * Last Error) + Oldest Error)}]

where:

• Error is (Setpoint – Input) in Engineering Units

• Time is (Scan Rate/60), which results in time in minutes

All values are in Engineering Units.

The change in output calculated by this formula is added to the existing PID output. If the input
span and the output span are different, the change is normalized and then added to the output.
This is accomplished by converting the change to a percentage of the input span. The same
percentage of output span is then added to the output.

Gain (P)

For those familiar with the term “proportional band,” gain is simply the inverse. Gain acts directly
on the change in error since the last scan. (Error is the setpoint minus the input value in
engineering units.) Therefore, in the case of steady-state error (that is, change in error = 0), gain
alone has no effect on the output. For this reason, gain cannot be used alone. Gain is also used
as a multiplier on the integral and derivative.
ioControl User’s Guide 10-63

PROGRAMMING WITH COMMANDS
The velocity PID algorithm uses gain much as it is used in the Honeywell “type A” PID and the
Bailey “error input” type PID. Higher gain results in increased output change. Too much gain
results in output oscillation. Too little gain results in very slow performance.

Integral (I)

This term acts only on the current error. It is used to reduce the current error to zero. Note that
during steady-state conditions, integral multiplied by current error multiplied by gain is the only
thing affecting the output. The larger the integral value, the larger the change in output.

A positive integral value is required. Integral that is too low will result in undershoot. Integral
that is too high will result in overshoot.

Derivative (D)

This term acts only on the change in slope of the input signal. Its purpose is to anticipate where
the input will be on the next scan based on a change in the rate of change of the input value. In
other words, it changes the output as the input gets near the setpoint to prevent overshooting or
undershooting.

Derivative is used in “feed forward” applications and in systems where the loop dead time is
long. Its action type is unlimited (that is, it has no filtering). If the input signal is noisy and the
derivative value is greater than zero, the input value must be filtered. See “Input Filtering” on
page 10-65 for details. If the slope of the input signal has remained unchanged for the last two
scans, the derivative has no effect.

Judging by the change in direction of the input, the derivative contributes an appropriate value
to the output that is consistent with where the input will be at the next scan if it continues at its
current rate of change.

The derivative is very useful in loops with a long dead time and long time constants. To disable
it, set it to zero.

Integral-Derivative Interaction

Integral and derivative can try to move the output in opposite directions. When this is the case,
the derivative should be large enough to overcome the integral. Since the derivative is “looking
ahead” based on the change in slope, it has a bigger picture than the integral does.

This interaction can be observed when the input is below the setpoint and is rising fast. The
integral tries to increase the output (which only makes things worse), while the derivative tries
to decrease the output. The derivative does this because at the current rate of change of the
input, there will be an input overshoot if the output is increased. Therefore, the derivative needs
to be large enough to counteract the integral when necessary.
10-64 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Configuration Tips (PID—mistic)

Gain The gain value must not be zero. If input engineering units are negative, the output may
move in the direction opposite from the one desired. If so, reverse the sign of the gain.

Integral The integral is required and must be greater than zero.

Input The input must not be bipolar. An input range of -10 to +10, for example, will not work.
Values such as -300 to -100, -100 to 0, and 0 to 100 are acceptable. If an application has a bipolar
input range, it will have to be rescaled to a generic range, such as 0 to 100. The setpoint range
will then have to match this generic input range.

Setting the output lower and upper clamps Setting clamps is particularly important if the device
controlled by the output signal has “dead areas” at either end. For example, say the output is
scaled 0–10. It is connected to a valve that begins to open at 1.25 and is “effectively” fully open
at 5.75 (even though it may only be 70% open). Set Lower Clamp to 1.2 (valve closed) and Upper
Clamp to 5.75 (valve effectively fully open). This prevents reset windup, potentially resulting in
dramatically improved control when the output value has reached either limit and has to
suddenly reverse direction.

Setting the maximum change rate of the output The Max Change Rate can be ignored, since it
defaults to 100% per scan.To limit the output rate of change, set Max Change Rate to 10%to
start. This setting would limit the output rate of change to 100% in 10 scan-rate periods.

Output The output can be preset or changed at any time by an operator or by the program. For
example, if the output should start at 40% whenever the system is activated, simply set the PID
output (or the analog channel output) to this value under program control.

Manual Mode The factory default causes the setpoint to track the input when the PID is in manual
mode, which means that the setpoint will be altered when in manual mode. If you don’t want the
setpoint to be altered when in manual mode, disable the setpoint track output feature so that
when the PID is in manual mode, the setpoint will not be changed.

Input Filtering If the input signal is noisy, you may want to filter it. To do so, follow these steps:

1. Use the command Set Analog Filter Weight, specifying the appropriate analog input
channel. Use a filter weight value of less than 10 times the scan rate. Otherwise, the loop
cannot be tuned.

2. Configure the PID loop to use the average/filtered value.

3. You can store the configuration to EEPROM or Flash memory to save the filter weight and
the input type (current or average). This can be helpful when reenabling an I/O unit after a
loss of communication.
ioControl User’s Guide 10-65

PROGRAMMING WITH COMMANDS
Tuning Guidelines (PID—mistic)

Setting the Scan Rate

The scan rate should be set as fast as possible or as fast as the controlled equipment will allow,
unless there are rare and unusual circumstances. Setting the scan rate to be longer than the dead
time will result in a PID controller that is so sluggish that it cannot adequately respond to
disturbances, and setpoint changes will be extremely slow.

There are, however, exceptions to this rule. If the output of the PID is implemented on equipment
that cannot handle fast scan changes, set the PID scan loop to as fast as the equipment can
handle. Most control valves, which are very commonly controlled by PID loops, can handle 0.1
second scan rates just fine. However, there are definitely types of equipment that can't handle
this. One example would be big gates at big dams. Moving one of these gates is a major event
that takes a long time, so one of the control goals is to minimize gate movement. For the flow
controllers on these gates, it may be necessary to set the scan time several times longer than the
dead time. This allows reaching the setpoint with fewer moves of the gate.

The terms “aggressive” and “conservative” are extremely subjective and depend on the process.
“Aggressive” tuning can be thought of as tuning where the speed of reaching the setpoint is the
primary concern, and overshoot is tolerated to gain fast response. “Conservative” tuning can be
thought of as tuning required in a system where overshoot is not tolerated, and speed of
response is sacrificed to prevent overshoot.

The tuning suggestions given here are to achieve the fastest response with no overshoot. This
would be on the “aggressive” side of “conservative” tuning. Tuning rules found in control
textbooks such as Ziegler-Nichols typically advocate “quarter amplitude decay,” which means an
overshoot that results in an undershoot that is 1/4 the amplitude of the overshoot and then an
overshoot that is 1/4 the amplitude of the undershoot, etc. until it stabilizes on the setpoint. This
kind of tuning could be considered “very aggressive.”

Determining the Loop Dead Time

To determine the dead time, put the PID output in manual mode, then set the output somewhere
around midrange. After the loop has achieved a steady state, change the output by at least 10%
of its span. Measure the time (in seconds) that it takes the input to start responding to the
change. This is the dead time.

Tuning

The tuning guidelines below are followed by a series of graphs showing the effects of
implementing various multiples of the “optimal” gain and integral. The “optimal” gain and
integral are multiplied by 2 (too high) and 0.5 (too low), and every combination of these tuning
parameters is shown on the graphs. Comparing actual PID loop performance with these graphs
can usually identify what adjustments are necessary to improve the tuning of the actual PID loop.
It is important to use a graphical tool, like ioDisplay, to assist in the tuning process. (Note that
the graphical PID tuner in ioControl cannot be used for tuning mistic PID loops.)
10-66 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
These graphs and guidelines are just generalizations. They won’t be valid in all possible cases;
they are just a guide to help.

These tuning guidelines can be used both to solve tuning problems in an existing loop or as a
help to start tuning a new loop.

IMPORTANT NOTE: Textbook tuning rules, such as Ziegler-Nichols tuning methods, DO NOT
work for tuning the velocity PID algorithm.

Solving Tuning Problems

Oscillations Oscillations can be caused either by gain that is too high or integral that is too high.
If the process variable oscillates below the setpoint, it is probably caused by the gain being too
high. If it oscillates at the setpoint, it is not possible to know by looking at the graphs which
tuning parameter is causing the problem. Try cutting either the gain or integral, but not both at
the same time, to find out which one is causing the problem.

Overshoot Overshoot is usually caused by the integral being too high. Gain that is too high can
also cause overshoot, but that is usually in conjunction with the integral being too high.

Any PID loop can be made to not overshoot and not oscillate if the gain and integral are set low
enough, but the response will be slow.

Performance There is a limit on how fast a good, stable response can be. The middle chart is the
best that can be done with no overshoot and no oscillation. The ones with the gain and integral
too high move toward the setpoint faster, but they overshoot and oscillate. There will be a point
that is the best the PID loop can be tuned, and it will not be possible to get a faster stable
response. There are trade-offs between having a fast response and having a stable PID loop that
does not overshoot the setpoint.

Starting the Tuning Process for a New PID Loop

A simple and safe method is to start out at a very low gain and integral (lower left chart—see
page 10-68). Increase the gain without changing the integral until the fastest response is
achieved without oscillation. It still won’t reach the setpoint, but the key here is getting a fast
response that doesn’t oscillate (middle left graph). Now leave the gain alone and increase the
integral until it reaches the setpoint without oscillating (middle graph). This completes the
tuning.

When increasing the gain and integral, it is fastest to just keep doubling them. When the process
variable starts oscillating, then make smaller gain and integral changes.

For example, start out with a gain of 0.1 and an integral of 0.1. Next try a gain of 0.2 while
keeping the integral at 0.1; then a gain of 0.4, then 0.8, then 1.6, then 3.2. If the PID loop starts
oscillating with a gain of 3.2, then try a gain of 2.0 or something in the middle between 1.6 and
3.2. Then make smaller changes until the best gain is found. Suppose the best gain was 2.3; the
next step is to keep the gain at 2.3, and then change the integral to 0.2, to 0.4, and then to 0.8,
and so on, until the best integral is found.
ioControl User’s Guide 10-67

PROGRAMMING WITH COMMANDS
Derivative

Tuning the derivative term is not addressed in these graphs because most PID loops are fine
without it. Derivative in the Opto 22 implementation of the velocity PID algorithm works fine for
disturbance rejection; the derivative should be kept very, very low. However, using derivative
does not work well for setpoint changes because it will cause spikes in the output. This is
because the derivative term of the velocity PID algorithm is calculated based on the error, which
is the difference between the setpoint and the process variable. If the setpoint changes, then
instantly a jump in error occurs and results in a jump in output. Therefore, it is best to use a
derivative term of 0 when cascading PID loops.

Tuning Graphs (PID—mistic)
10-68 ioControl User’s Guide

PROGRAMMING WITH COMMANDS
Simulation Commands
The following commands are used for simulation and program testing:

The Disable commands disconnect the strategy from the real-world device, so that it can be
tested without affecting field devices. While the real-world devices are disabled (or if they don’t
exist) the IVAL commands can be used for testing and simulation. For details on individual
commands, see the ioControl Command Reference or online Help.

Communication to All I/O Points Enabled?
Communication to All I/O Units Enabled?
Disable Communication to Point
Disable Communication to All I/O Points
Disable Communication to I/O Unit
Disable Communication to All I/O Units
Disable Communication to PID Loop
Enable Communication to Point
Enable Communication to All I/O Points
Enable Communication to I/O Unit
Enable Communication to All I/O Units
Enable Communication to PID Loop
I/O Point Communication Enabled?
I/O Unit Communication Enabled?
PID Loop Communication Enabled?
IVAL Turn Off
IVAL Turn On
IVAL Set Analog Point
IVAL Set Counter
IVAL Set Off-Latch
IVAL Set On-Latch

Disable Communication to Mistic PID Loop1,2

Enable Communication to Mistic PID Loop1,2

Mistic PID Loop Communication Enabled?1,2

Disable Communication to Event/Reaction1,2

Disable Event/Reaction Group1,2

Enable Communication to Event/Reaction1,2

Enable Event/Reaction Group1,2

Event/Reaction Communication Enabled?1,2

Event/Reaction Group Communication Enabled?1,2

IVAL Set I/O Unit from MOMO Masks
IVAL Set Off-Pulse1

IVAL Set On-Pulse1

IVAL Set Off-Totalizer1,2

IVAL Set On-Totalizer1,2

IVAL Set TPO Percent1

IVAL Set TPO Period1

IVAL Set Period1,2

IVAL Set Frequency1,2

IVAL Set Mistic PID Control Word1,2

IVAL Set Mistic PID Process Term1,2

1 ioControl Professional only
2 mistic I/O units only
ioControl User’s Guide 10-69

PROGRAMMING WITH COMMANDS
10-70 ioControl User’s Guide

CHAPTER 11
11—Using OptoScriptChapter 11

Using OptoScript
Introduction
This chapter shows you how to create and use OptoScript, an optional programming language
that can simplify certain types of operations in ioControl. Modeled after computer languages
such as C and Pascal, OptoScript code gives you an alternative to using standard ioControl
commands.

You will find OptoScript easy to use if you already have computer programming experience.
Beginning programmers may also want to try it for control operations involving extensive math
calculations, string handling, or complex loops and conditions.

This chapter assumes that you have some programming experience. Experienced programmers
may want to see “Notes to Experienced Programmers” on page F-6.

In this Chapter
About OptoScript 11-1 OptoScript Expressions and Operators...... 11-19
When To Use OptoScript 11-2 OptoScript Control Structures.................... 11-22
OptoScript Functions and Commands 11-11 Using the OptoScript Editor 11-25
OptoScript Syntax............................... 11-13 Troubleshooting “Unable To Find” Errors... 11-29
Troubleshooting Syntax Errors............ 11-29 OptoScript Data Types and Variables 11-14
Debugging Strategies with OptoScript11-30

About OptoScript
OptoScript is a procedural type of computer language similar to Pascal, C, or BASIC. It can be
used within any ioControl strategy or subroutine to replace or supplement standard ioControl
commands. It does not add new functions, but offers an alternative method within ioControl’s
flowcharting environment to simplify some common programming tasks.

OptoScript code cannot be mixed with commands in action or Condition Blocks; it is used in its
own hexagonal flowchart block.
ioControl User’s Guide 11-1

USING OPTOSCRIPT
The following figure shows an example of an OptoScript flowchart block and its contents:

When To Use OptoScript
You’ll want to use OptoScript for some common programming tasks that can be more difficult to
do using standard ioControl commands than using a procedural language. Extensive math
calculations or complex loops, for example, can be done with standard commands but take up a
lot of space on a flowchart.

When you use OptoScript, however, be aware that it is not self-documenting. Make sure you
frequently use comments to explain what the code does, so that when you come back to it a year
later—or when someone who is not as familiar with the code or the strategy must change it—it
can be easily interpreted.

This section shows examples of using OptoScript:

• for math expressions

• for string handling

• for complex loops

• for case statements

• for conditions

• for combining math expressions, loops, and conditions.

OptoScript code

OptoScript block

OptoScript editor
11-2 ioControl User’s Guide

USING OPTOSCRIPT
For Math Expressions
OptoScript is especially useful for mathematical computations. Math expressions are simpler
and easier, and many of them are built right into the language, instead of requiring commands
such as Add or Multiply. OptoScript has no limitations on the number of parentheses you can use
in math expressions.

Here’s an example of a mathematical expression in OptoScript:

integer1 = (integer2 + 2) * (float1 / (float2 - 2) - 3);

To accomplish the same computation using standard ioControl commands, you would need to
create at least two intermediate variables and use five instructions, as shown below.

As you can see, the OptoScript version of this math expression is not only simpler to create, but
also easier to understand once created.
ioControl User’s Guide 11-3

USING OPTOSCRIPT
For String Handling
If your strategy transmits and receives serial data, you will want to try using OptoScript code. In
standard ioControl, forming and parsing (decoding) serial data can take several blocks. In
OptoScript, string handling can be easier.

The following figure shows a flowchart designed to send the string request, “What type of
plane?” and parse the response, “F14,” into a classification (F) and a model number (14).
Compare these blocks and instructions with the ones on the following page, done in OptoScript.

Building a string using
standard ioControl can
require several
commands.

If substrings or individual
characters within a string
must be handled, a standard
ioControl block can become
quite large.
11-4 ioControl User’s Guide

USING OPTOSCRIPT
The OptoScript version of the String_Handler flowchart is more compact. The string request can
be built more easily, and parsing the response takes up much less space. If you handle more
complex serial data than in the String_Handler example, you will find OptoScript code even more
useful.

In OptoScript code, several strings and
variables can be combined to build the
request in one line.

In OptoScript code, the commands used to
parse the response take up less space, so
they all can be seen at once.
ioControl User’s Guide 11-5

USING OPTOSCRIPT
For Complex Loops
Strategies that use complex loops—for example, to repeat an operation while a condition
remains true—are easier to create and take up less space in a flowchart when done in
OptoScript. While loops, repeat loops, and for loops are all available.

• While loops repeat a process while a test is true (the test comes at the beginning of the
process).

• Repeat loops repeat a process until a test is false (the test comes at the end of the
process). This kind of loop is guaranteed to execute at least once.

• For loops repeat a process for a specified number of times.

Below is an example of a while loop as it would appear in standard flowchart commands,
contrasted with the way it could be handled in an OptoScript Block.

In OptoScript, the loop is in a single block that contains
one condensed instruction.

In standard ioControl commands, the loop takes several
blocks, each containing one or more instructions.
11-6 ioControl User’s Guide

USING OPTOSCRIPT
For Case Statements
Case or switch statements create multiple decision points. They can also be easier to do using
OptoScript. Here is an example of a case statement:

Using OptoScript for case statements saves space in the flowchart and lets you see all the
possible cases in one dialog box.

In OptoScript, the code is
all in one block.

In standard ioControl commands, the case
statement requires several sets of condition
and action blocks, each containing commands.
ioControl User’s Guide 11-7

USING OPTOSCRIPT
For Conditions
Like loops and case statements, conditions can be simpler when done in OptoScript code. If/then,
if/then/else, and if/then/elseif statements can all be mixed and nested as needed. Here’s an
example of a simple if/then/else statement as it could be done in standard ioControl commands
and in OptoScript:

OptoScript is even more useful for more complex conditions, such as the following:

In OptoScript, a single block contains
the statement.

In standard ioControl commands, even a simple
if/then/else statement requires three blocks.

In OptoScript, all the condition and
action blocks and their commands
are consolidated into one block.
11-8 ioControl User’s Guide

USING OPTOSCRIPT
For Combining Expressions, Operators, and Conditions
The real power of OptoScript can be seen in complex operations.

Generally speaking, the more complex the combination of math expressions, logical and
comparison operators, loops, and conditions, the more convenient it is to use OptoScript code
rather than standard blocks and commands.

This portion of a sprinkler
control system uses standard
ioControl blocks and
commands to control
watering of grass and trees.

The OptoScript version of
Grass/Trees Control handles the
loops, conditions, and operators
easily in a single block.
ioControl User’s Guide 11-9

USING OPTOSCRIPT
OptoScript Functions and Commands
Since functions in OptoScript are provided by commands almost identical to the standard
commands in ioControl, you have the same complete range of functions. There are no additional
functions for OptoScript code, and you cannot make your own functions.

Standard and OptoScript Commands
In many cases you can easily recognize OptoScript commands, because they are almost the same
as standard ioControl commands. All spaces are removed from the OptoScript commands,
however, and in some cases words in the command are abbreviated or left out. Commands are
case sensitive. Here are some examples of the same commands in ioControl and in OptoScript:

Some commands are built into OptoScript functionality. Some of these have OptoScript
commands and some do not; you can use either the built-in functionality or the OptoScript
command, if it exists. Here are some examples:

See Appendix E for a table of all ioControl commands and their OptoScript equivalents. In
addition, OptoScript equivalents for each command are shown in the ioControl Command
Reference and in the online command help.

ioControl Command OptoScript Command

Get Counter GetCounter

Set Down Timer Preset Value SetDownTimerPreset

Delay (mSec) DelayMsec

Convert Float to String FloatToString

Get Number of Characters Waiting GetNumCharsWaiting

ioControl Command OptoScript Command Built-In Equivalent Example

Move = item1 = value

Add + 1 + 2

Less? < value1 < value2

Turn On TurnOn = [non-zero] digital3 = 1

Turn Off TurnOff = 0 digital3 = 0

Comment (Single Line) // // comment

Set Nth Character SetNthCharacter s1[5] = 'c'
11-10 ioControl User’s Guide

USING OPTOSCRIPT
Using I/O in OptoScript
One advantage of OptoScript is that any named I/O point can be used directly, wherever a
numeric variable can be used, rather than requiring a variable. Digital points behave like integer
variables that have only two possible states: zero (off) or non-zero (on). Analog points behave like
float variables.

For example, you can turn a Digital Point off by simply assigning it a value of zero:
Light_Switch = 0;

You can turn a digital point on by assigning it any value other than zero:
Light_Switch = 1;
Light_Switch = -1;
Light_Switch = 486;

You can use I/O points directly in mathematical expressions:
fLimit = Pressure_Input + 50;

Or use them directly in control structures, for example to turn off the light if the door is closed:
if (not Door) then

Light_Switch = 0;
endif

You can set an output based on the value of an input or a variable:
LED01 = Switch_A;
Proportional_Valve = fPressure_Control

You can use a point directly with a command:
fRange = GetAnalogMaxValue(Temp_Input) - GetAnalogMinValue(Temp_Input);
TurnOn(Fan_A);
IsOn(Fan_A);
ioControl User’s Guide 11-11

USING OPTOSCRIPT
OptoScript Syntax
Here is a sample section of OptoScript code to illustrate syntax. Indentation is not required, but
is used for clarity.

NOTE: Each block has only one exit point. It is not possible to use return to jump out of the
current block.

More About Syntax with Commands
As noted in the previous sample, arguments for a command are listed in the parentheses
following the command. Arguments are listed in order beginning with argument 1. To find out the
arguments for any command, see the ioControl Command Reference or online command help.

.

Commands in OptoScript can be broken into two categories: procedure commands and function
commands.

SetDownTimerPresetValue (60.0, Minute_Timer)

command (argument 1, argument 2)

EnableIOUnitCausingCurrentError ()

command (no arguments)

fPressure = 300.0;

nTotal = ntTable[0] + ntTable[1] + ntTable[2];

while ((GetHours() >= 8) and (GetHours() < 17))
 Fan_A = 1;
 wend

// Send alarm if oven temperature too hot.
if (Oven_Temperature >= 450) then

 Oven_Alarm = 1; // Set the oven alarm
 else
 Oven_Alarm = 0; // Clear the oven alarm
 endif

nCheck = GenerateChecksumOnString (0, sMessage);
nError_Block = GetIdOfBlockCausingCurrentError();
RemoveCurrentError();

sGreeting = “Hello, world!”;
nPos = FindCharacterInString('!', 0, sGreeting);

Each statement is followed by a
semicolon.

Parentheses are used as
separators for expressions and
operators. You can use an
unlimited number of parentheses.

An individual character can be in
single quotes or in double
quotes, depending on its type. A
string must be in double quotes.

Parameters (arguments) for a
command are listed in order
within parentheses following the
command. Commands that have
no arguments must still include
the parentheses.

Table elements are put in square
brackets next to the table name.

Line comments appear on a
separate line or after a
statement. They are preceded by
two slashes and a space.
Block comments (not illustrated)
are preceded by /* and
followed by */.
11-12 ioControl User’s Guide

USING OPTOSCRIPT
Procedure commands accomplish an action and return no value. Here are some examples:
RemoveCurrentError();
ClampInt32TableElement(10, 0, 5, x1);

Function commands return a value from their action, so the value can be placed somewhere.
In the following examples, the value is placed in the variable at the beginning of the statement:
nMonth = GetMonth();
fSquare_Root = SquareRoot(99);
nPosition = FindCharacterInString('S', 0, sName);

When you compare these examples to the identical commands in standard ioControl, you’ll
notice that the returned value for the standard ioControl command is an argument. In OptoScript
the returned value is not an argument, thus reducing the number of arguments by one. In the first
example, the standard command Get Month has one argument, which is where the result is
placed. The OptoScript command equivalent, GetMonth, has no arguments and places the result
in the variable.

In most cases you will use the value a function command returns by placing it in a variable, a
control structure, or a mathematical expression. Occasionally, however, you may not need to use
the result. For example, the command StartChart returns a status. If you do not need to track the
status, you can ignore it by not placing the result anywhere, as shown below:
StartChart(Fan_Control);

OptoScript Data Types and Variables
Unlike most procedural languages, ioControl maintains a database of all declared variables,
which is shared with ioDisplay. Variables are not declared in OptoScript code, but are created
(declared) within ioControl. (See Chapter 9, “Using Variables and Commands.”) Variables are not
declared in OptoScript because local variables are not allowed. All variables are global for the
strategy (or global within a subroutine).

If you use a variable in OptoScript code that does not currently exist in the strategy, you’ll receive
an error message when you test compile the code and can add the variable then.

Variable Name Conventions
With OptoScript and in ioControl generally, it’s a good idea to get into the habit of indicating the
variable type in each variable’s name. Some variable types may be obvious in the name itself, but
others are not. For example, a variable named Month might be either a string or an integer.

An easy way to avoid this confusion is to use Hungarian notation—that is, to place letters
indicating variable type at the beginning of the name. For example, sMonth would indicate a
ioControl User’s Guide 11-13

USING OPTOSCRIPT
string; nMonth would indicate an integer. The following table shows suggested notation for use
in ioControl:

Using Numeric Literals
Here are examples of how to use numeric literals in OptoScript. Formats are automatically
converted if they don’t match the variable type. For example, if a value of 300.2 were assigned
to an integer 32, the value would be converted to 300.

Variable type Letter Variable type Letter

integer 32 variable n pointer variable p

integer 32 variable used as Boolean b pointer table pt

integer 32 table nt digital I/O unit dio

integer 64 variable nn mixed I/O unit mio

integer 64 table nnt analog input point ai

float variable f analog output point ao

float table ft digital input point di

down timer dt digital output point do

up timer ut chart cht

string variable s communication handle cmh

string table st

Decimal Integer 32 Literals assigned to variables:
nVariable1 = 0;
nVariable2 = 10;
nVariable3 = -123;

Decimal Integer 64 Literals assigned to variables.
Integer 64s have an i64 at the end:
dVariable1 = 0i64;
dVariable2 = 10i64;
dVariable3 = -123i64;

Hexadecimal Integer 32 Literals assigned to
variables. Hex notation starts with 0x. Digits A–F
may be upper or lower case:
nVariable1 = 0x0;
nVariable2 = 0x10;
nVariable3 = 0x12AB34CD;
nVariable3 = 0x12ab34cd;

Hexadecimal Integer 64 Literals assigned
to variables:
dVariable1 = 0x0i64;
dVariable2 = 0x10i64;
dVariable3 =
0x1234567890ABCDEFi64;

Float Literals assigned to variables (Float literals may use scientific notation):
fVariable1 = 0.0;
fVariable2 = 12.3;
fVariable3 = -123.456;
fVariable3 = -1.23456e2;
fVariable3 = -12345.6e-2;
11-14 ioControl User’s Guide

USING OPTOSCRIPT
Making Assignments to Numeric Variables
Values are easily assigned to variables.

Using Strings
As noted in the section on syntax, a string in OptoScript must be in double quotes. An individual
character can be used either as a string (in double quotes) or as an integer value representing
that character in ASCII (in single quotes). When you assign a single character to a string, use
double quotes to avoid a syntax error:

sString = "a";

To change a single-character integer into a string, use the Chr() keyword as shown below:

Strings can be used in the following ways.

Simple Integer 32 assignments:
n1 = 1;
n2 = n1;

Simple Integer 64 assignments:
nn1 = 2i64;
nn2 = nn1;

Simple Float assignments:
f1 = 3.0;
f2 = f1

Simple assignments between different data types
(Types will be automatically converted to match):
n1 = 4.0;
nn1 = n1;
f1 = n1;

sString = Chr('a');
sString = Chr(97);

n = 97;
sString = Chr(97)

String literals (must be all on one line):
sGreeting = "Hello, world!"

String variables:
sOutgoing = sIncoming;

When you use the Chr() keyword to assign a
character value to a string variable, you can
either quote a character or give its ASCII value.
For example, the following two statements are
equivalent

sString1 = Chr('A');
sString1 = Chr(65);

A string can be thought of as a table of
characters. The number in square
brackets is the character’s index.
(Note that the index starts with the
number zero.) The following code would
result in sGreeting equaling “Hello!!!”
sGreeting = "Hello...";
sGreeting[5] = '!';
sGreeting[6] = '!';
sGreeting[7] = sGreeting[6];

A character element of a string variable may be treated like
an Integer 32 value:
nNumber = sString2[1] * sString2[2];

Clear a string using empty quotation marks:
sString1 = "";
ioControl User’s Guide 11-15

USING OPTOSCRIPT
Working with Pointers
Pointers can be tricky, but they are powerful tools. For more information on using pointers, see
“Pointer Commands” on page 10-56.

The + operator is used to paste strings together. There is no limit to the number of + operators you can use on
a line. The + operator must be used in an assignment statement:
sString1 = "Hello ";
sString2 = "world";
sString3 = "!";
After the three lines above, the following two lines would produce the
same result:
sString4 = sString1 + sString2 + sString3;
sString4 = sString1 + "world" + sString3;

Use the += operator to append one string to another and change the value of one of them into the result. In the
following example, the value of sName would change to “Smith, John”:
sName = "Smith, ";
sFirstName = "John";
sName += sFirstName;

The Chr() keyword can be used to convert a numeric value into a one-element string:
sString5 = sString1 + sString2 + Chr('!');
sString5 = sString1 + sString2 + Chr(33);

For the following examples, assume that:
n1 = 5;
f1 = 9.2;
s1 = "test 123";

Set the pointer. The types must match
or the control engine will generate an error.
pn1 = null;
pn1 = &n1;
pf1 = &f1;
ps1 = &s1;
pcht1 = &Powerup;

To see if a pointer is pointing to something, use the
comparison operator == (see page 11-20) to compare it to
null. This use is similar to standard ioControl condition
commands such as Pointer Equal to NULL? For example:
n2 = pn1 == null;
n2 = null == pn1;
if (pt1[0] == null) then

Use * to de-reference a pointer; it will then
behave just like the variable to which it is
pointing. The following two statements are
equivalent:
n2 = *pn1 + *pf1
n2 = n1 + f1;

To move a value from a pointer to another pointer:
pVariable0 = &*pVariable1;

To move a value from a pointer to a pointer table:
ptTable[0] = &*pVariable4;
11-16 ioControl User’s Guide

USING OPTOSCRIPT
Working with Tables
Following are some examples for using numeric, string, and pointer tables.

Pointers are very useful when you don't know what variables need to be used until runtime. For instance, the
next example uses a switch statement (see page 11-23) to determine which variable to use based on the day
of the week. It then uses a pointer to perform a calculation using the correct variable.
switch (GetDayOfWeek())

case 0: // Sunday
pn1 = n2;
break

case 6: // Saturday
pn1 = n3;
break

default: // Monday-Friday
pn1 =5 n4;
break

endswitch

Use the pointer to set the chosen variable.
*pn1 = n5 * f1 - 5;

Numeric tables:
ntTable1[0] = 1;
ntTable1[1] = 2.0;
ntTable1[2] = nVar1;
ntTable1[3] = ntTable1[2];
ntTable1[4] = ntTable1[ntTable1[0]];
ntTable1[5] = nVar1 + ntTable1[2] * 3.1;
nVar1 = ntTable1[0];
nVar1 = (ntTable1[0] + ntTable1[1]) * ntTable1[2];

String tables:
stStrT1[0] = "Hello, ";
stStrT1[1] = "world";
stStrT1[2] = stStrT1[0] + " " + stStrT1[1] + Chr('!');
sString1 = stStrT1[2];

Pointer tables:
ptTable6[0] = &*pVariable2;
ptTable6[1] = nVar1;
ptTable6[2] = stStrT1[0];
stStrT1[0] = *ptTable6[2];
ioControl User’s Guide 11-17

USING OPTOSCRIPT
OptoScript Expressions and Operators
OptoScript includes mathematical expressions as well as comparison, logical, and bitwise
operators. Because expressions and operators are built into the OptoScript language, several
standard ioControl commands such as Multiply, Bit Shift, and Greater Than or Equal? are not
used.

Using Mathematical Expressions

Pointer tables. Note that types are not checked when putting pointers into a pointer table. However, when a
pointer is moved from a pointer table element into a pointer variable, the types are checked at runtime by the
control engine and must match. For example, assume that the following elements have been placed in table
ptPointT:
ptPointT[0] = null;
ptPointT[1] = &nLED_A;
ptPointT[2] = &fTemp;
ptPointT[3] = &sString1;
ptPointT[4] = &Powerup;
Based on this information, the first two of the following statements are good. The third one is bad and will
cause a control engine error, because the element at ptPointT[3] is a string and therefore does not match the
variable pntl, which is defined as an integer 32:
pn1 = ptPointT[1];
pf1 = ptPointT[2];
pn1 = ptPointT[3];

Addition
nCount = nLast_Count + 2;
fPressure = 1.5 + fReading;
nTotal = nMonday + nTuesday + 10;

Subtraction
nNumber_A = nNumber_B - 250;
fRange = fMax_Temp -
fMin_Temp;

Multiplication
nQuantity = nBoxes * 12;
nHours = nSeconds * 60 * 60;
fMax_Speed = fSpeed * 16.52;

Division
nBoxes = nCount / 6;
fConversion = fLimit / 2.0;

Modulo division. If any argument is a float, it is
rounded to an integer before the division occurs.
nVar1 = nVar2 % 2;
nVar1 = 2 % nVar2 % nVar3;
fFloat1 = fFloat2 % 2.5;

Mixture of operators.
nAvg = (nHrs_A + nHrs_B) / 2;
nVar1 = fFloat2 + nVar3 * 4;

Use parentheses to clarify groupings and meaning. You can use an unlimited number of parentheses.
nVar1 = nVar2 * (fFloat2 - 2.0);
nVar1 = (nVar2 + 2) * (nVar3 + (fFloat1 / (fFloat2 - 2)) - 3);

The *, /, and % operators have greater precedence than + and -. (See page F-9 for the order of precedence.)
In the following lines, line #1 is equivalent to line #3, not to #2.
n1 = n2 + n3 * n4;
n1 = (n2 + n3) * n4;
n1 = n2 + (n3 * n4);
11-18 ioControl User’s Guide

USING OPTOSCRIPT
Using Comparison Operators

Using Logical Operators

All OptoScript comparison operators return an Integer 32 value of zero (false) or of non-zero (true). OptoScript
supports the following comparison operators for comparing two numeric values:

Operator and Meaning Example
==
<>
<
<=
>
>=

equal
not equal
less than
less than or equal
greater than
greater than or equal

nVar1 = nVar2 == fFloat3;
nVar1 = nVar2 <> fFloat3;
nVar1 = nVar2 < fFloat3;
nVar1 = nVar2 <= fFloat3;
nVar1 = nVar2 > fFloat3;
nVar1 = nVar2 >= fFloat3;

More complex examples:
nVar1 = (nVar2 * 2) == (fFloat3 / 9.5);
nVar1 = (nVar2 * 2) < (fFloat3 / 9.5);

You can also use a comparison operator to test whether two strings are equal. For example:
nVar1 = sString1 == sString2;
nVar1 = sString1 == "abc";
nVar1 = sString1 == stStrT1[0];
nVar1 = stStrT1[0] == stStrT1[1];

When you use a comparison operator in an if statement, it isn’t necessary to put the result in a variable
because the result is used (consumed) by the if:
if (fICTD_Input <= Avg_Temp) then

Fan_A = 0;
endif

All OptoScript logical operators return an Integer 32 value of zero (false) or of non-zero (true). OptoScript
supports the following logical operators for numeric values:

Operator and Meaning Example
and
or
xor
not

Result is true if both values are true
Result is true if at least one value is true
Result is true if only one value is true
invert the logical value

nVar1 = nVar2 and nVar3;
nVar1 = nVar2 or nVar3;
nVar1 = nVar2 xor nVar3;
nVar1 = not nVar2;

Any number of logical operators can be
chained together:
nVar1 = nVar2 and nVar3 and nVar4;
nVar1 = nVar2 and nVar3 or nVar4;

Logical operators are left-associative. For
example, these two lines are equivalent:
nVar1 = nVar2 and nVar3 or
nVar4;
nVar1 = (nVar2 and nVar3) or
nVar4;

The not operator precedes a value (it only takes a
value on its right-hand side):
nVar1 = not nVar2;

The following two lines are equivalent:
nVar1 = not nVar1 and not
nVar2;
nVar1 = (not nVar1) and (not
nVar2);
ioControl User’s Guide 11-19

USING OPTOSCRIPT
Using Bitwise Operators

Precedence
For a list of operators from highest to lowest precedence, see “Operators” on page F-9.

Logical operators can be combined with comparison operators to create complex logical expressions:
nVar1 = (nVar2 < 1) and (nVar3 == 6.5);
nVar1 = (nVar2 < 1) and (sString1 == "abc");
nVar1 = ((nVar2 < 1) and (nVar4 xor nVar5) or (not (fFloat1 ==
fFloat2));
nVar1 = not (nVar2 < 5); // same as "nVar1 = nVar2 >= 5;"

When you use a logical operator in an if statement, it isn’t necessary to put the result in a variable because the
result is used (consumed) by the if:
if (Motor_1 or Motor_2) then

Motor_3 = 0;
endif

All OptoScript bitwise operators operate on integer values. OptoScript supports the following
bitwise operators:

bitand
bitor
bitxor
bitnot
<<
>>

(bitwise and)
(bitwise or)
(bitwise xor)
(bitwise not)
(left shift)
(right shift)

Use the bitwise and operator to and together the
two values bit by bit:
n1 = n2 bitand 2;
n1 = n2 bitand n3;

Hex literals can be convenient:
n1 = n2 bitand 0x0002;

Use the bitwise or operator to or together the two values
bit by bit:
n1 = n2 bitor 2;
n1 = n2 bitor 0x0002;
n1 = n2 bitor n3;

Use the bitwise xor operator to xor together the two
values bit by bit:
n1 = n2 bitxor 2;
n1 = n2 bitxor 0x0002;
n1 = n2 bitxor n3;

The left-shift operator shifts the left value's bits to the left by the right value:
n1 = n2 << 2; // left shift n2's value by 2
n1 = n2 << n3; // left shift n2's value by n3
The right-shift operator shifts the left value's bits to the right by the right value:
n1 = n2 >> 2; // right shift n2's value by 2
n1 = n2 >> n3; // right shift n2's value by n3
11-20 ioControl User’s Guide

USING OPTOSCRIPT
OptoScript Control Structures
OptoScript provides the following structures to control the flow of logic in the code:

• “If Statements” (below)

• “Switch or Case Statements” on page 11-23

• “While Loops” on page 11-23

• “For Loops” on page 11-24

• “Repeat Loops” on page 11-24

If Statements
If statements offer branching in logic: if statement A is true, then one action is taken; if statement
A is false (or statement B is true), a different action is taken. If statements are very flexible; here
are several examples of ways you can use them.

Any numeric value can be tested by the if statement:
if (n1) then

f1 = 2.0;
endif

Since a comparison operator returns an
Integer 32 value, it can be used as the
test value:

if (n1 > 3) then
f1 = 2.0;
f2 = 6.5;

endif

Complex logical operations can also be used:
if ((n1 > 3) and (not n1 == 6)) then

f1 = 2.0;
f2 = 6.5;

endif

An optional else statement can be
added:

if (n1 > 3) then
f1 = 2.0;
f2 = 6.5;

else
f3 = 8.8;

endif

Multiple elseif statements can be used to chain together
several tests. The else statement is still allowed at the end.

if (n1 > 3) then
f1 = 2.0;
f2 = 6.5;

elseif (n1 < -3) then
f3 = 8.8;

elseif (n1 == 0) then
f3 = f1 * f2;

else
f1 = 0;
f2 = 0;
f3 = 0;

endif

If statements can be nested. Each if
requires an endif:

if (n1 > 3) then
f1 = 2.0;
f2 = 6.5;

if (n1 % 10) then
f1 = f1 * 2;
f2 = f2 * 3;

else
f3 = 0;

endif
endif
ioControl User’s Guide 11-21

USING OPTOSCRIPT
Switch or Case Statements
A switch or case statement also offers branching logic and can be used in place of if statements
when the expression can match one of a number of numeric values. The value for each case can
be a numeric constant or a mathematical expression only. Comparisons and logical operators
cannot be used in cases, nor can strings. If a case involves a float, the float is converted to an
integer before use. Notice that only one case can be tested at a time.

Here’s an example of a switch statement.

While Loops
The while loop is used to execute a list of statements while a given condition is true. The
condition is tested at the beginning of each loop.

For example, this loop sets the first five elements (elements 0 through 4) of a table (ntTable) to a
value of 10:

The value of the expression in parentheses, nNumber, is compared to each
of the cases. If the case matches the value of nNumber, the action is taken.

switch (nNumber)
 case 1:
 f1 = 10;
 break
 case 2:
 f1 = 15;
 break
 case (n2 * 2):
 f1 = 20;
 break
 default:
 f1 = 0;
 f2 = -1;
 break
 endswitch

If a case matches the value of nNumber, the break statement after the
action immediately exits the switch. Notice that a semicolon is not used
after break.

If no case matches, the default action is taken. Using a default is
optional; if you use it, it must be at the end of the list.

You can use a mathematical expression as a case.

A switch statement must be followed by endswitch.

Make sure you use a colon (:) after each case.

Initialize the counter.nIndex = 0;
while (nIndex < 5)

 ntTable[nIndex] = 10;
 nIndex = nIndex + 1;
 wend

Set the table element.
Increment the counter.

Execute loop if condition is true.
11-22 ioControl User’s Guide

USING OPTOSCRIPT
While loops can be nested and can contain other kinds of program statements. Each while
needs a matching wend at the end. For example:

Repeat Loops
Repeat loops, in contrast to while loops, are used to execute a list of statements until a given
condition is true. Because the condition is tested at the end of each loop, the content of the loop
will always be executed at least once.

This example sets the first five elements of ntTable to 10. Compare this example to the example
for while loops to see the difference.

Repeat loops can be nested and can contain other kinds of program statements. Each repeat
statement needs a matching until statement at the end.

For Loops
For loops can be used to execute a list of statements a certain number of times.

The for line sets up a predefined initial value and a predefined final value for the counter that
counts the repetitions. The line also includes the steps by which the counter gets from its initial
value to its final value (step 1 counts by ones; step 2 counts by twos, and so on). The step is
required. The counter can be any numeric variable or I/O point, but its value will always be a
whole number. The initial value, final value, and step can be any numeric expression; they are
converted to integer 32s.

CAUTION: A step value of zero creates an infinite loop. A float step value between –0.5 and 0.5
also creates an infinite loop, since it is rounded to zero when converted to an integer 32.

 n1 = 0;
 while (n1 < 100)
 while ((n1 > 50) and (n1 < 60))

nt1[n1] = n1 * 100;
 n1 = n1 + 1;
 wend

nt1[n1] = n1;
 n1 = n1 + 1;
 wend

Initialize the counter. nIndex = 0;
 repeat
 ntTable[nIndex] = 10;
 nIndex = nIndex + 1;
 until (nIndex >= 5);

Set the table element.
Increment the counter.

Execute loop until condition is true.
ioControl User’s Guide 11-23

USING OPTOSCRIPT
This example results in nVariable equaling 6:

For loops can be nested and can contain other types of statements. Each for requires a next at
the end.

Using the OptoScript Editor
1. To use the editor, create an OptoScript Block in the flowchart where you want the code to

appear. (For more information on creating charts and blocks, see Chapter 8, “Working with
Flowcharts.”) Double-click the OptoScript block to open the editor.

The for loop counter can be used in the loop.
This example sets the first five elements of
table ntTable to 10:

for nIndex = 0 to 4 step 1
ntTable[nIndex] = 10;

next

Other step amounts can be used, including negative
steps. Do not use a zero step, which creates an
infinite loop. This example sets elements 0, 2, and 4
of ntTable to 20:
for nIndex = 0 to 4 step 2

ntTable[nIndex] = 20;
next

Predefined values can be a numeric expression, but they are evaluated only at the beginning of the loop. For
instance, the following example will loop 0 to 15 because the upper limit of nSide*3 is evaluated only at the
beginning of the loop, not each time through the loop:

nSide = 5;
for nLength = 0 to (nSide * 3) step 1

nSide = 1;
next

 nVariable = 1;
 for nCounter = 0 to 4 step 1
 nVariable = nVariable + 1;
 next

The counter starts at zero, and its final value is 4.
It will count up one step at a time.

The for loop must end with next.
11-24 ioControl User’s Guide

USING OPTOSCRIPT
The editor is similar to the editor for Microsoft Visual Basic®. You can resize the editor
window as needed to see the code.

The toolbar includes the following buttons:

2. Begin typing OptoScript code in the top area.

You’ll notice that what you type is automatically color-coded to help you:

• Blue—operators and control structures
• Purple—values
• Green—comments
• Black—commands and names of variables, I/O points, charts, and other items
• Red—string literals.

If you want to see white-space marks to help line up code, click the Toggle Whitespace
button in the toolbar. To hide the marks, click the button again.

Column
and line
numbers

Toolbar

Type OptoScript code
in this area.

See results of test
compile in this area.

Cut

Copy

Paste

Undo

Redo

Find

Replace

Set/clear bookmark

Clear all bookmarks

Go to next
bookmark

Toggle
whitespace

Increase
indent

Insert condition command

Insert variable

Test compile

Go to previous
bookmark

Insert action command

Decrease indent
ioControl User’s Guide 11-25

USING OPTOSCRIPT
3. To use a command, place your cursor in the OptoScript code where you want the command
to appear. Click the Insert Action Command or Insert Condition Command
button in the toolbar.

4. In the Select Instruction dialog box, select the command group from the left-hand column,
and then select the command name from the right-hand column.

For information on any command, highlight it and click Command Help, or just double-click
the command name.

NOTE: If you know the command name, you can just type it into the OptoScript code.
Remember that OptoScript command names may be different from standard ioControl
commands. See Appendix E, “OptoScript Command Equivalents” for more information.

5. Click OK.

The command appears in the OptoScript code.

6. To use a variable, table, I/O unit or point, chart, counter, timer, or similar item, place your
cursor where you want the item to appear in the code. If you know the item’s exact name,
enter it and skip to step 8. If you’re not sure of the item’s name, click the Insert Variable
button in the toolbar.

7. From the Type drop-down list in the Select Variable dialog box, choose the type of item you
want to use. From the Name drop-down list, choose the item. Click OK.
11-26 ioControl User’s Guide

USING OPTOSCRIPT
The item appears in the code.

8. Use the TAB key on the keyboard as you type to indent lines as needed. To increase or
decrease indentation for a line of code you’ve already typed, highlight the line and click the
Increase Indent or Decrease Indent button in the toolbar.

9. Enter comments to document what the code does, so anyone who must debug or maintain
the code can clearly see your intentions.

Comments appear in green. Line comments must be preceded by two slashes, for example:
// This is a line comment.

Block comments must be preceded by one slash and an asterisk, and be followed by the
same two elements in reverse. For example:

/* This is a block comment that goes
beyond one line. */

10. Use the Bookmark buttons in the toolbar as needed to set or clear temporary bookmarks
within the code and to move between them.

Bookmarks mark lines of code so you can easily find them and jump from one bookmark to
the next. Bookmarks remain only while the editor is open; they are not saved when the
dialog box is closed.

11. When you have finished entering all the code for an OptoScript block, click the Test
Compile button in the toolbar to compile the code for this block.

The code is compiled, and the results appear in the bottom part of the OptoScript window:

NOTE: The next time the chart is compiled, all OptoScript code within the chart will be
compiled again.

If errors are found, you can fix them now or later. Begin with the first one (the one on the
lowest-numbered line), since later errors are often a result of earlier errors. To check a

Results after code
is compiled
ioControl User’s Guide 11-27

USING OPTOSCRIPT
command, place the cursor anywhere in the command name and click the Command Help
button. If you need to add variables or other items that don’t exist in the strategy, do so
after step 12.

12. When you have finished with the code in this OptoScript block, click OK to save your work
and close the editor.

You return to the flowchart.

Troubleshooting “Unable To Find” Errors
See also, “Troubleshooting Syntax Errors” below.

If you test compile an OptoScript Block and receive “unable to find” errors, try the following
suggestions.

For Commands

Check the exact spelling of the command, including upper and lower case. OptoScript commands
are similar to standard ioControl commands, but contain no spaces and some abbreviations.

Also check that the command is necessary in OptoScript. Some common commands, including
comparison commands such as Less? and mathematical commands such as Add, are replaced
with operators built into the OptoScript language. Check Appendix E, “OptoScript Command
Equivalents” for equivalent OptoScript commands.

The easiest way to make sure the command you enter is valid is to enter it by clicking one of the
Insert Command buttons in the OptoScript Editor and choosing the command from the Select
Instruction dialog box.

For Variables or Other Configured Items

Variables, I/O units and points, counters, and other configured items in your strategy—as well
as charts—have usually been created before you use them in OptoScript code. Check their exact
spelling, including underscores and upper and lower case, to make sure they are correct in the
code. The easiest way to make sure spelling is correct is to enter the variable or other item by
clicking the Insert Variable button in the OptoScript Editor and choosing the item from the
drop-down lists.

If the item has not yet been configured or created, use the normal ioControl methods to do so.
For help, see the topicschapters in this guide on configuring I/O and using variables.
11-28 ioControl User’s Guide

USING OPTOSCRIPT
Troubleshooting Syntax Errors
Check for the following common syntax errors:

Missing Code

Check for obvious errors first. For example, make sure nothing essential has been left out of (or
unnecessarily added to) a statement:

Check to make sure operators are used correctly. You may want to review “OptoScript
Expressions and Operators” on page 11-19.

If you are using control structures such as loops or if statements, especially if they are nested,
make sure all required elements are present. For example, every if must have a then and an
endif. See “OptoScript Control Structures” on page 11-22 for more information.

Type Conflicts

Type conflicts are caused when different data types are incorrectly mixed. For example, you
cannot assign an integer to a string. Make sure data types are correct. It is easier to keep track
of data types if you use Hungarian notation when naming variables. See “Variable Name
Conventions” on page 11-14 for help.

Debugging Strategies with OptoScript
Before trying to debug strategies containing OptoScript code, make sure the code has been
compiled within each block, or choose Compile All to do all blocks at once.

When you begin debugging the strategy, start by stepping through whole blocks. If you run across
a problem, then step within that block. Stepping within the block is discussed in “Choosing
Debug Level” on page 7-13.

Sample Statement Should Be Missing Code

iTotal = x + y + ; iTotal = x + y + z; Last operator missing a variable

iTotal = x + y + z iTotal = x + y + z; Semicolon missing

sGreeting =
Hello!"

sGreeting =
"Hello!"

First quotation mark missing on the string

iTime = Get Hours; iTime = GetHours(); Extra space in command name;
parentheses missing after the command

x = (1 + (x - y); x = (1 + (x - y)); Parentheses mismatched (last half
missing)
ioControl User’s Guide 11-29

USING OPTOSCRIPT
11-30 ioControl User’s Guide

CHAPTER 12
12—Using SubroutinesChapter 12

Using Subroutines
Introduction
This chapter shows you how to create and use subroutines.

In this Chapter
About Subroutines................................ 12-1 Using Subroutines.. 12-9
Creating Subroutines............................ 12-3 Viewing and Printing Subroutines 12-12

About Subroutines
A subroutine is a custom command that represents a series of commands. Subroutines are useful
anytime you have a group of commands that is repeated in a Strategy or used in more than one
strategy. Subroutines are built using the same tools and logic used to create charts. Once built,
you can call them at any time from any chart in any strategy. (You cannot call a subroutine from
another subroutine, however.)

Like charts, subroutines start at one block and proceed sequentially through command blocks to
the end. They use variables, inputs, and outputs. They can use OptoScript code. Each subroutine
is displayed in its own window, and you can open and view several subroutine windows at the
same time.

Unlike charts, however, subroutines are independent from a strategy. You don’t need to have a
strategy open to create or change a subroutine. And if you do have a strategy open, creating a
subroutine has no effect on the open strategy unless you specifically link them together.
(Debugging a subroutine, however, requires that it be called from a strategy.)

A second important difference between subroutines and charts is that subroutines offer two
ways to work with variables and other logical elements: they can be passed in or they can be
local to the subroutine.

• Passed-in items are passed into the subroutine by the strategy. They are referenced
when the subroutine is executed, and (if they are variables) they are permanently affected
ioControl User’s Guide 12-1

USING SUBROUTINES
by the subroutine. For example, you could create a subroutine to add 3.0 to a passed-in
float variable. When the subroutine ends, the float variable will contain a new value.
Passed-in items are called subroutine parameters, and you can use up to 12 of them in a
subroutine.

• Local items are created when a subroutine begins, and they are destroyed when it ends.
For example, a subroutine could take a passed-in item, copy it to a local variable, and add
3.0 to that local variable for use within the subroutine. The local variable is created when
the subroutine is called, and it disappears when the subroutine ends.

Data Types for Subroutines
The following data types may be used in subroutines for both passed-in items and local items:

• Numeric variables (integers, floats, and timers)

• Numeric literals (integers and floats). Other types can be passed into the subroutine
through literals, however; see below for more information.

• Numeric tables

• String variables

• String literals

• String tables

• Communication handles

In ioControl Professional, the following data types are also supported:

• For passed-in items: I/O points, I/O units, and pointer tables

• For local items: pointer variables

The following data types are not supported in subroutines: PID loops, event/reactions, and
charts.

Although most variables passed in and out of a subroutine must be of a specific type, literals that
are passed into subroutines can take several types. Using a string literal, you can pass in either
a string literal or a string variable. Using a numeric literal, you can pass in an Analog Point, a
Digital Point, an integer variable, a float variable, or a timer variable. If you are familiar with other
programming languages, literals are similar to “passed by value” parameters, while variables are
like “passed by reference” parameters.

This flexibility in using literals makes it easier to use a subroutine in multiple strategies. For
example, a literal passed into a subroutine from two strategies might be a float value in one
strategy and an analog point in the other.
12-2 ioControl User’s Guide

USING SUBROUTINES
Creating Subroutines

Tips for Subroutines
As a general rule, keep subroutines as small as possible to do the job they’re intended for. Extra
variables and unnecessarily large table sizes can affect the memory available for running
subroutines.

A Put Status In parameter appears automatically in every subroutine. This parameter is used to
let you know whether the subroutine was called successfully, in the same way that function
commands return a status. Make sure that you always check the status code after calling a
subroutine. Subroutine status codes are:

Drawing the Flowchart

1. In the ioControl main window (with or without a strategy open), choose Subroutine➞New.

The Create New Subroutine dialog box appears.

2. Enter a subroutine name.

The subroutine name will become a command (instruction) in ioControl. It’s a good idea to
make it a descriptive name indicating the purpose of the subroutine, for example, “Variable
Increase Notification.” You cannot use the name of any existing command (for example,
“Add”).

0 Success

-67 Out of memory

-69 Null object error. Make sure you are not passing a pointer that points to
null.

-72 Nesting too deep (future use)
ioControl User’s Guide 12-3

USING SUBROUTINES
3. Navigate to the directory where you want to store the subroutine and click Open.

Unlike strategies, multiple subroutines can be saved to the same directory.

A new subroutine window is created.

4. Add blocks and connections and name the blocks as you would in a chart, as shown in the
example below.

You can also copy existing flowchart blocks from another subroutine or chart and paste
them into the new subroutine. See “Cutting, Copying, and Pasting Elements” on page 8-12.

5. Save the subroutine by selecting Subroutine➞Save.
12-4 ioControl User’s Guide

USING SUBROUTINES
Configuring Subroutine Parameters
Before you can call a subroutine from a Strategy, you must configure the variables and other
logical items that are passed into it. These passed-in items, called subroutine parameters, are
the only information that is shared between a subroutine and the calling strategy. Twelve
parameters can be passed into a subroutine, and since a table can be a parameter, those 12
parameters can include a large amount of data.

An item passed into a subroutine may be called by one name in the strategy and by another name
in the subroutine. In fact, if a subroutine is used for more than one strategy, it is good practice to
select generic names in the subroutine. For example, if you create a subroutine to average values
in any float table, the table might be named Float_Table in the subroutine. You could use this
subroutine to average pressures in a table named Pressure_Values from a strategy, and
Pressure_Values would be referred to as Float_Table in the subroutine.

1. With the subroutine open, select Subroutine➞Configure Parameters.

The Configure Subroutine Parameters dialog box appears.

In this dialog box you determine the way the subroutine is called from the strategy.

2. From the Group drop-down list, choose the command group you want the subroutine to
appear in.

For example, If you create a subroutine to find the average value of several variables, for
example, you could choose Mathematical as the command group. The default group is
Subroutines.

3. (Optional) Enter a comment to explain the purpose of the subroutine.

4. Notice that one parameter, Put Status In, has been automatically entered for you.
ioControl User’s Guide 12-5

USING SUBROUTINES
This parameter is used to return status information on the subroutine, and it always
appears at the bottom of the parameter list. A subroutine essentially becomes a command
within a chart; subroutines are similar to function commands that return a status. Since the
system itself returns this status parameter, the name of the status parameter is not
available in the subroutine. When you add the subroutine to a strategy, you choose the
variable the status will be placed in.

IMPORTANT: Make sure you always check returned status codes for all subroutines.
Subroutine status codes and their meanings are:

5. For each parameter you add, do the following steps.

NOTE: What you enter here appears in the Add Instruction dialog box when the subroutine
is called from within the strategy. See page 12-8 for an example.

a. Highlight the first empty line (below the Put Status In parameter) and click Add to open
the Add Subroutine Parameter dialog box.

b. In the Prompt field, enter the prompt text you want to show in the Add Instruction
dialog box in the strategy.

c. In the Name field, enter the name of the parameter (the argument) as it will be referred
to in the subroutine. This name is used within the subroutine only.

d. From the Type drop-down list, choose the type of item to be passed into the subroutine.
Use variables for values the subroutine changes (passed by reference); use literals for
values the subroutine uses but does not change (read-only or passed by value).

e. Click OK.

0 Success

-67 Out of memory

-69 Null object error. Make sure you are not passing a pointer that points to
null.

-72 Nesting too deep (future use)
12-6 ioControl User’s Guide

USING SUBROUTINES
The parameter appears in the Configure Subroutine Parameters dialog box, above the
Put Status In parameter.

6. Repeat step 5 for each parameter. To change a parameter, highlight it and click Modify. To
change the order of a parameter in the list, highlight it and click the up- or down-arrow
button in the dialog box. To delete a parameter, highlight it and click Delete.

NOTE: You cannot delete the Put Status In parameter or change its order in the list, and you
cannot delete a parameter that has a reference count greater than zero (indicating that it is
used in the subroutine). Also, if you add or delete parameters after including a subroutine in
a strategy, you may receive an error and will need to add the subroutine to the strategy
again.

7. When the parameters appear the way you want them in the list, click OK.

The parameters you have named can now be used in the subroutine’s commands.

Up- and
down-arrow
buttons

Reference
count
ioControl User’s Guide 12-7

USING SUBROUTINES
Configured Parameters Example

Here’s an example of a completed Configure Subroutine Parameters dialog box, showing three
parameters to be passed into the subroutine. When the subroutine is called from the strategy,
these parameters appear in the Add Instruction dialog box:

Adding Commands and Local Variables
Adding commands (instructions) to subroutines is exactly like adding instructions to charts. For
help, see “Adding Commands” on page 9-18. If you are using OptoScript code within a
subroutine, see Chapter 11 for help on creating code. You can copy and paste instructions from
one block to another within the same subroutine; if you have trouble copying and pasting
instructions from one chart or subroutine into another, simply paste the entire block and then
modify it.

You may also need to add local items to be used in the subroutine only and discarded when the
subroutine is finished. Adding variables to subroutines is also like adding variables to charts. For
help, see “Adding Variables” on page 9-5.

Subroutine
file name

Names used in the
subroutine may differ from
those used in the strategy.

Add/Edit Instruction
dialog box in the
strategy

Prompt and Type
parameters from the
subroutine define the
instruction in the
strategy.
12-8 ioControl User’s Guide

USING SUBROUTINES
Remember that the subroutine is separate from any strategy and can be called by any strategy.
I/O units and points are specific to a strategy, so they cannot be added to a subroutine. Also, note
that commands and OptoScript code within a subroutine can use only the passed-in and local
items in the subroutine, not items in the strategy that calls the subroutine.

Compiling and Saving the Subroutine

1. With the subroutine open, select Compile➞Compile Subroutine.

When the subroutine has finished compiling, the cursor returns to its normal form.

2. Select Subroutine➞Save.

Using Subroutines
To use a subroutine in a Strategy, you include it in the strategy and then add it as a command
(instruction) so it can be called from a chart.

Including a Subroutine in a Strategy
Since subroutines are independent of strategies, you must include the subroutine in the strategy
before you can use it.

1. With the strategy open in Configure mode, double-click the Subroutines Included folder on
the Strategy Tree (or click the Include Subroutines button on the toolbar, or select
Configure➞Subroutine Included).

The Subroutine Files dialog box appears, listing all subroutines currently included in the
strategy. The example below shows no subroutines currently included.
ioControl User’s Guide 12-9

USING SUBROUTINES
2. Click Add.

3. Navigate to the directory containing the subroutine you want to add and double-click the
subroutine.

4. When the full path to the subroutine appears in the Subroutine Files dialog box, click OK.

The new subroutine appears in the Strategy Tree in the Subroutines Included folder.

Adding a Subroutine Instruction
You use a subroutine just like an ioControl command: by adding the subroutine instruction to a
block in the chart.

1. With the strategy open in Configure mode, open the chart that will use the subroutine.

2. Double-click the block that will call the subroutine.

If it is an OptoScript Block, see “Using the OptoScript Editor” on page 11-25 for how to
enter a command (instruction). For action or condition blocks, continue with step 3.

3. In the Instructions dialog box, click where you want the instruction to be placed, and then
click Add.
12-10 ioControl User’s Guide

USING SUBROUTINES
The Add Instruction dialog box appears.

4. In the highlighted Instruction field, enter the subroutine name (or choose it using the
drop-down list, or click the Select button and locate it in the command group you chose).

The subroutine command appears in the dialog box, just as any command would, and the
prompts you entered when you configured the parameters appear also.

5. Choose the Type and Name for each prompt from the drop-down lists.

You can configure variables on the fly as you would with any command. Remember that the
Type was chosen when the parameters for the command were configured, so your Type
choices may be limited.

6. When the Add Instruction dialog box is completed, click OK.

Prompts
ioControl User’s Guide 12-11

USING SUBROUTINES
7. Click Close to close the Instructions dialog box and return to the chart.

The chart is now set up to call the subroutine.

Debugging Subroutines
Debugging a subroutine is just like debugging a flowchart. When you are debugging a strategy
that calls the subroutine, make sure the debug level is Full Debug (see page 7-13). Then use the
Step Into button to step inside the block that calls the subroutine. The subroutine window
automatically opens, and you can continue to step through blocks or lines inside the subroutine.
As you step through blocks, subroutines, and charts, the tabs at the bottom of the window let you
know where you are (see “Using Tabs to View Open Windows” on page 3-15).

You can also set breakpoints on any subroutine block as needed. See “Setting and Removing
Breakpoints” on page 7-18 for more information.

Viewing Subroutines
Since subroutines appear on the Strategy Tree, it is easy to view information about them. A
subroutine appears in two places on the Strategy Tree: in the Subroutines Included folder and in
the folder for the chart that calls it.

You can view, add, and change variables in a subroutine from the Strategy Tree, just as you would
for a chart.

In the Subroutines Included folder

In the calling chart folder
12-12 ioControl User’s Guide

USING SUBROUTINES
Viewing All Subroutines in a Strategy
To see all the subroutines in a Strategy, double-click the Subroutines Included folder on the
Strategy Tree. All subroutines associated with the strategy are listed in the Subroutine Files
dialog box. Click and drag the right side of the box to see all the information. The path, filename,
and reference count (how many times the strategy refers to the subroutine) are shown for each
subroutine.

Printing Subroutines
For steps to print a subroutine’s graphics, see “Printing Chart or Subroutine Graphics” on
page 7-23. To view and print instructions in the subroutine’s blocks, see “Viewing and Printing
Strategy or Subroutine Elements” on page 7-26.
ioControl User’s Guide 12-13

USING SUBROUTINES
12-14 ioControl User’s Guide

APPENDIX A
A—ioControl TroubleshootingAppendix A

ioControl Troubleshooting
This appendix provides general tips for resolving problems you may encounter while running
ioControl or communicating with your hardware. If you are running Windows NT or Windows
2000 and encounter problems with permissions, see page A-9.

For information about types of errors and lists of error codes, see Appendix B, “ioControl Errors
and Messages.”

Also check troubleshooting information in your controller’s user guide and the troubleshooting
appendix in Opto 22 form 1460, the SNAP Ethernet-Based I/O Units User’s Guide.

How to Begin Troubleshooting
You’ve built your strategy, but now you get errors when you try to download it, or it won’t run
properly. How do you begin to figure out what’s wrong? The problem may be in communication
with the control engine, in communication between the control engine and I/O, in a command, or
in the strategy logic. Following are some steps to help you discover the cause.

1. Read Any Error Message Box
If an error message box appears on the computer running ioControl, it’s probably an ioControl
error. Here’s an example of an ioControl error message:
ioControl User’s Guide A-1

2. Check Communication with the Control Engine
If there is no error message box, or the error indicates that there may be a communication
problem, check whether the PC running ioControl is communicating with the control engine. See
“Checking Communication with the Control Engine” on page A-4.

3. Check the Message Queue
If communication with the control engine is OK, check the message queue. To open the queue,
see “Inspecting Control Engines and the Queue” on page 5-12. In the “List of Common
Messages” on page B-3, look up any errors you find in the queue. Errors are listed in numerical
order. Queue errors may indicate problems with a command or with communication to I/O. Check
the possible causes for help in fixing problems.

• For help with a command, look up details about the command in the ioControl Command
Reference or online help.

• For help with communication to I/O, see “Resolving Communication Problems” on
page A-5. Many of these suggestions apply to I/O as well as to control engines.

4. Check Status Codes in Your Strategy
If all is well up to this point, double-check Status Codes in your strategy. Status Codes are
responses to a command that appear in a variable within your ioControl strategy or as returned
values in OptoScript. Your strategy should routinely check status codes and adjust logic as
necessary to respond.

Status codes may indicate problems with a command or communication to I/O, or they may
indicate a problem in the strategy logic. See “List of Common Messages” on page B-3 for more
information. Again, look at the possible causes for help in fixing problems.

5. Call Product Support
If you cannot find the help you need in this book, the ioControl Command Reference, or the SNAP
Ethernet-Based I/O Units User’s Guide, call Opto 22 Product Support. See “Product Support” on
page 1-4 for contact information.

Strategy Problems

If You Cannot Delete an Item
Sometimes when you try to delete an item in a strategy—a variable, a chart, an I/O unit or
point—you receive a message saying “You cannot delete an item with a reference count greater
than zero.” This message means you cannot delete the item because other elements in the
strategy use it.
A-2 ioControl User’s Guide

You can use Find to locate all references to the item you want to delete. For help in using Find,
see “Searching” on page 7-30.

Sometimes the reference counts can become incorrect due to cutting and pasting variables or
importing charts into a strategy. If a reference count appears to be incorrect, you can rebuild the
strategy database by following these steps:

1. Click in the Strategy Tree to make it the active window.

2. Press CTRL+R.

3. Choose Compile➞Compile All.

4. Choose File➞Save All.

The strategy database is rebuilt and the reference counts should be correct.

If You Have Memory Problems
Control engine memory is allocated as shown in the following table. You can see the total
amount of RAM and the amount of battery-backed RAM available for use by inspecting the
control engine in Debug mode (see page 5-12).

In general, if you experience memory problems, you can reduce the amount of memory needed
by checking strings and tables for lengths and widths that are longer than necessary.

If you are using subroutines, use the minimum number of variables and size of tables that the
process requires. Also, less memory is used if only one chart in the strategy calls subroutines
than if multiple charts call subroutines.

Since the battery-backed RAM contains variables initialized on download, if you have a large
number of these on a smaller controller, you can run out of persistent RAM. To avoid this problem,
use as few persistent variables as possible and initialize all other variables on strategy run.

SNAP-PAC-S1 SNAP PAC
R-series

SNAP-LCE SNAP Ultimate I/O

Total memory (RAM) 32 MB 16 MB 16 MB 16 MB

Memory used for control 32 MB 10 MB 16 MB 8 MB

Memory available for strategy
and variables

16 MB 5 MB 8 MB 5 MB

Total battery-backed RAM 8 MB 2 MB 512 KB 512 KB

Battery-backed RAM for control* 8 MB 1 MB 512 KB 288 KB

* Stores persistent variables, variables initialized on download, autorun flag, and strategy archive. Note that
strategies are not automatically saved in battery-backed RAM. Save your strategy to flash memory so it will
be available if power is lost to the control engine. See “Saving a Strategy to Flash” on page 7-4.
ioControl User’s Guide A-3

Although you can archive the strategy, the currently running strategy is not stored in
battery-backed RAM. To make sure the strategy will run after a power loss, save the strategy to
flash memory after downloading it. See page 7-4 for information on saving to flash.

Archiving Strategies

Strategies are archived to battery-backed RAM, which is limited to 256KB. In addition to an
archived strategy, battery-backed RAM holds persistent variables and variables that are initiated
on download. If you have an unusually large strategy or large numbers of persistent variables or
variables that are initialized on download, you may not have sufficient space for an archived
strategy. See page 7-5 for more information on archiving.

Do You Use Online Mode?

If you frequently use Online mode to change your strategy, you may find you are having memory
problems. When you change a chart in Online mode, a new copy of that chart is downloaded to
the control engine, but the old one is not deleted. After you have made a few online changes,
these additional chart copies begin to take up memory.

To avoid memory problems, stop the strategy after making several online changes. Completely
compile and download the strategy, and old chart copies will be cleared from memory.

Checking Communication with the Control Engine
You can test communication with the control engine by using the ioTerminal utility.

1. From the Start menu, choose Programs➞Opto 22➞ioProject
Software➞Tools➞ioTerminal.

The ioTerminal window appears, showing all control engines configured on your system:

2. If no control engine is listed, configure one by choosing Configure➞Control Engine and
following directions on the screen. See “Configuring Control Engines” on page 5-1 for help.
A-4 ioControl User’s Guide

3. To verify that a control engine in the list is communicating, double-click the control engine’s
name.

The Comm. Loop Time (communication time) in the Inspect Control Engine dialog box
indicates how long it takes to gather the information in the dialog box and is a good
relative indicator of communication time.

This dialog box also shows the status of the current strategy and any errors in
communication with the control engine. For further explanation, see “Inspecting Control
Engines and the Queue” on page 5-12.

4. If you receive an error indicating a communication problem, go on to the next section.

Resolving Communication Problems

Matching ioControl Configuration to the Real World
I/O unit and point configuration in ioControl must match actual I/O units and points with which
the control engine is communicating. See brain and I/O module data sheets for specifications and
information, and see page 6-4 for help configuring I/O in ioControl.

Resolving TCP/IP Cannot Connect Errors (-412)
Many problems with Ethernet connections return a TCP/IP Cannot Connect error. Cannot connect
errors are probably the most common communication problem with control engines. They
indicate that a TCP/IP connection could not be made to the control engine within the specified
time interval.

If you receive this error, first check the following:

• Make sure the control engine has been turned on.

• Verify that the correct IP address appears for the control engine.

• Make sure your control engine has been assigned a valid IP address. These controllers and
brains come from the factory with a default IP address of 0.0.0.0, which is invalid. For help
in assigning an IP address, see the ioManager User’s Guide.

• Make sure you have up-to-date drivers installed on your computer’s Network Interface Card
(NIC). Contact your system administrator or the manufacturer of the card for help.

• If problems persist, you can increase the length of time before a timeout occurs. Choose
Configure➞Control Engines and change the Timeout (mSec) field to a larger number.

Pinging the Control Engine

If you still cannot communicate with the control engine after you have checked these items, try
to reach it using the PING protocol.

Choose Start➞Programs➞MS-DOS Prompt. At the prompt, type:
ioControl User’s Guide A-5

ping [control engine’s IP address]

(For example, type ping 10.192.54.40.)

If data is returned from the control engine, it can be found on the network.

If the PING command cannot be found—Verify that the PC has TCP/IP bound to and
configured on the network adapter.

If you are running Windows 95 or Windows 98, follow these steps:
a. Choose Start➞Settings➞Control Panel and double-click Network.
b. Highlight the adapter in the list. Make sure both NetBEUI and TCP/IP appear just below

the name of the adapter. Click Properties.
c. Highlight TCP/IP and click Properties. Verify that the IP address and subnet mask are

appropriate for your network.

If you are running Windows NT, follow these steps:
a. Choose Start➞Settings➞Control Panel and double-click Network.
b. Click the Protocols tab. Make sure both NetBEUI and TCP/IP are listed. Highlight TCP/IP

and click Properties.
c. Highlight the adapter name in the list. Verify that the IP address and subnet mask are

appropriate for your network.

If you are running Windows 2000, follow these steps:
a. Choose Start➞Settings➞Control Panel and double-click Network and Dialup

Connections.
b. Right-click your network card and choose Properties from the pop-up menu. Make sure

that TCP/IP is present and checked.
c. Highlight TCP/IP and click Properties. Verify that the IP address and subnet mask are

appropriate for your network.

If you see the message “Destination host route not defined,” the control engine probably
has an IP address and subnet mask that are incompatible with those on the computer.
Subnetwork numbers and netmasks must be identical on the control engine and the computer.

If you see the message “No response from host,” check the following:

• Are the computer and control engine correctly connected? Is the control engine turned on?

• Are the IP address and subnet mask on the control engine compatible with those on the
computer?

If your host computer has more than one Ethernet card, check your route table to make sure
packets are routed to the correct adapter card.

If all else fails, connect the PC and the control engine using an Ethernet crossover cable, and
retest the connection.

If you still cannot ping the control engine, contact Product Support. (See page 1-4.)
A-6 ioControl User’s Guide

Other Troubleshooting Tools

Checking Detailed Communication Information Using
ioMessage Viewer
For detailed information about each communication transaction, use the ioMessage Viewer
utility.

1. In the Start menu, choose Programs➞Opto 22➞ioProject
Software➞Tools➞ioMessageViewer.

You can also start ioMessage Viewer from ioTerminal by choosing Tools➞Start
ioMessage Viewer, or from ioControl in Debug mode by choosing Debug➞Sniff
Communication.

The ioMessage Viewer window appears.

In most cases the main window is blank, indicating that no messages are being monitored
between the PC and the active control engine. In some cases, for example when ioControl
launches ioMessage Viewer, messages should appear immediately.

2. To start monitoring or change the level of monitoring, choose View➞Monitor Levels.
ioControl User’s Guide A-7

The Monitor Levels dialog box lists all the possible levels to monitor. You can click Refresh
to make sure the list is up to date.

3. Highlight one or more of the monitor levels in the list, and click Close.

You return to the ioMessage Viewer window, where the changes you made are reflected at
once. To stop monitoring, click Pause. To start monitoring again, click Resume. To erase all
messages from the window, click Clear.

By default, communication messages in ioMessage Viewer are automatically saved to a
log file named IOSNIF.LOG. You can toggle saving on and off by choosing File➞Log to File.

Also by default, messages are temporarily stored in system cache memory before being
saved to the log file. If you are having trouble with system crashes and need to capture
messages just before a crash, however, you can choose File➞Flush File Always to send
messages directly to the log file.

4. To view or edit the log file, choose File➞Edit Log File.

The file opens in a text editor. Logging is turned off when you open the file.

5. View or edit the file as needed, and then close it.

You return to the ioMessage Viewer window.

6. To resume logging, choose File➞Log to File.

7. To rename the log file or change its location, choose File➞Select Log File. Navigate to the
location where you want to save the file and enter a name. Click OK.

8. When you have finished monitoring communication, close the ioMessage Viewer window.

If you leave it open, it will normally appear on top of other running programs. If you don’t
want it to appear on top of other programs, choose View➞Always on Top to toggle that
option.
A-8 ioControl User’s Guide

Checking File Versions for Opto 22 Software
Sometimes problems may be caused by older or misplaced files. Product Support may ask you to
run OptoVersion to check the versions and paths of your Opto 22 .dll and .exe files. Here’s how:

1. From the Start menu, choose Programs➞Opto 22➞ioProject
Software➞Tools➞OptoVersion.

2. In the OptoVersion window, click Find.

The utility searches your hard drive and prints a list of Opto-related files found.

3. To see more information on any file, double-click its name. To sort the list in a different
order, click any column heading.

4. To email the information to Opto 22 Product Support, click E-mail.

The utility saves the list to a file named Version.bd in the same directory that contains
OptoVersion.exe. If you use Microsoft Outlook as your email program, a new message
automatically appears addressed to Product Support, with the version file attached.

5. If you use Microsoft Outlook, add comments to the new message and click Send.

6. If you use another email program, attach the Version.bd file to an email message and
address the message to support@opto22.com, along with an explanation of the problem
you’re experiencing.

7. To save the file, click Save As. Give the file a name and save it in the location you want.

OptoVersion also creates a tab-delimited file with the same file extension and in the same
directory. This file has the same name you gave it but with _Delimited added. For
example, if you name the saved file Opto_software.txt, the tab-delimited file is named
Opto_software_Delimited.txt. This file can be opened in Microsoft Excel or other
programs to easily sort and view its contents.
ioControl User’s Guide A-9

Problems with Permissions in Windows 2000
When you set up controllers on a computer running the Microsoft Windows 2000 operating
system, typically you are using the computer with top-level “administrator” privileges. If
someone later uses this same computer to run ioControl or ioDisplay, but logs in to the computer
with lower-level, non-administrator privileges, the application may not recognize control engines
that have been previously configured.

If this problem occurs, you can modify the permissions to let specific users access previously
configured control engines without having administrator access. This is done using the Registry
Editor utility. Follow the steps below.

WARNING: Use the Windows Registry Editor carefully. It is strongly recommended that you
make a backup copy of your Windows Registry before continuing with this procedure. Without a
backup copy, if you delete the wrong properties and cannot return the Registry to its original
state, application and system files can become unusable and will have to be reinstalled.

1. From the Windows Start menu, select Run.

The Run dialog box appears.

2. Enter the following command in the Open field and press ENTER:
regedt32

NOTE: This is NOT regedit.exe, which is a similar tool.

The Registry Editor main window appears with several open windows inside it.

3. Select the HKEY_LOCAL_MACHINE window to make it active.

4. Double-click the Software folder in the HKEY_LOCAL_MACHINE window.

5. Select the Opto22 folder.

6. In the Security menu, choose Permissions.

The Registry Key Permissions dialog box opens. Make sure that “Opto22” appears next to
Registry Key at the top of the window.

7. Click Add.

8. In the Select Users, Computers, or Groups dialog box, select the name of the appropriate
group or domain from the Look In drop-down list.

9. In the Name list, select the name of the user or group that should have control engine
access and then click Add.

10. If it is not already selected, check “Full Control” in the Permission area. Make sure “Allow
inheritable permissions from parent to propagate to this object” is checked.

11. Click OK.
A-10 ioControl User’s Guide

12. Select Registry➞Exit to close the Registry Editor.

13. Restart the computer.

The user or group you added can now use control engines without having administrator access.
ioControl User’s Guide A-11

A-12 ioControl User’s Guide

APPENDIX B
B—ioControl Errors and MessagesAppendix B

ioControl Errors and Messages
Introduction
This appendix discusses errors and messages you may see in ioControl and their possible causes.
Errors and messages may appear with text only or with a negative number and text. The more
common errors and messages are listed in this chapter in numeric order, starting on page B-3.

See “ioControl Troubleshooting” on page A-1 for additional help in resolving errors.

Types of Errors
As you work in ioControl, you may see three types of errors:

• ioControl Errors appear in dialog boxes on the computer screen.

• Queue Messages (both errors and other messages) appear in the control engine’s message
queue.

• Status Codes appear in variables or as returned values in OptoScript.

ioControl Errors
ioControl errors indicate a problem within ioControl that may have been reported by the control
engine or may have occurred before control engine communication.

ioControl errors appear in dialog boxes on the computer running ioControl. Some of these errors
appear as numbers, some as text, and some show both numbers and text. An example of an
ioControl error is “Timeout. No response from device.” Another example is “TCP/IP: Cannot
connect error” with an error code of -412.
ioControl User’s Guide B-1

Queue Messages
Queue messages indicate an error or other message during Strategy operation, and they appear
in the ioControl message queue. (For information on viewing the queue, see “Inspecting Control
Engines and the Queue” on page 5-12.) Here’s an example of a message queue:

This queue shows several types of messages that you might see. To see all the information in a
column, drag the edge of the column heading to the right.

Code Queue errors generated by the system are shown as negative numbers in the Code column.
For example, if you specify a table index that is greater than the number of elements in the table,
an error -12, “Invalid table index,” appears, as in message #3 above. Common queue errors for
each command are listed in the ioControl Command Reference and in online help.

If the Code column indicates User, the error is one you have placed in the queue using the
command Add Message to Queue. User messages can help with troubleshooting. Message #2
above is an example of a message the user placed in the Temperature_Control chart.

Severity The Severity column indicates the type of message: information, warning, or error.

Chart, Block, Line, Object If an ioControl command in the strategy caused an error, the chart
name, block number, and line number (if you are in Full Debug mode) where the command
appears are listed. Message #3 above is an example: an invalid table index was used in block 19
of the Temperature_Control chart. The Object column shows the table name.

If an error did not occur in a strategy chart, the Chart column shows <system>. Messages 1 and
2 occurred when the strategy was unable to initialize an I/O unit, so the Chart column shows
<system: _INIT_IO>. Block and Line do not apply, but the Object column shows the name and IP
address of the I/O unit.

If an error was caused by a subroutine, the Chart column shows the name of the chart that calls
the subroutine, and the Block column shows the name of the subroutine and the block number
where the error occurred, in the format <subroutine name>.<block number>. Messages 4,
5, and 6 are examples; these errors occurred in block 1 of the subroutine
Variable_Increase_Notification, which was called by the Temperature_Control chart.
B-2 ioControl User’s Guide

Using Queue Messages

If a block number is listed for the error, look in that block in the Strategy to find the ioControl
command that caused the error. The easiest way to find a block is to open the chart or subroutine,
then choose Center on Block from the View menu. You can click the Block column to sort the
blocks by number and locate the one with the problem.

To see which line within a block is causing the error, in ioControl Configure mode, choose
Configure➞Full Debug. When the error appears in the queue, it will include the line number of
the command as well as the block ID.

Status Codes
Status Codes indicate the success or failure of an ioControl command (instruction), and they are
reported by the control engine to a variable in your ioControl Strategy or as a returned value in
OptoScript. The status code is either zero (indicating a successful command) or a negative
number (indicating an error).

For example, suppose you use the command Transmit Numeric Table. You create a variable
named Transmit_Status to put the status of the command in. In Transmit_Status you receive
either a zero, indicating that the table was successfully transmitted, or you receive a negative
number such as -37 or -42.

Status codes that may be returned are listed for each command in the ioControl Command
Reference and in online help.

List of Common Messages
The following messages may appear in ioControl. They are listed in numeric order.

If an X appears in the Q? column, the code number appears in the message queue. If an X appears in the I/O? column,
the message is an I/O unit error and may appear either in the message queue, as a status code in a variable, or both.
For more information on handling I/O unit errors, see “Error Handling Commands” on page 10-56 and “Handling I/O
Errors Efficiently” on page 4-23.

Description Possible Cause Q? I/O?

0 Operation performed successfully. NOT AN ERROR. Indicates the command was successful.

-1 Undefined command. An unknown command was sent to the ioControl engine.

-2 Checksum or CRC mismatch. When comparing DVFs (Data Verification Fields), a
mismatch occurred. Examples of DVFs include checksum
and CRC.

-3 Buffer overrun or invalid length error. In string manipulations, a string was requested that is
longer than the string it will be put into, or the destination
string length <= 0.

X X
ioControl User’s Guide B-3

-4 Device has powered up. ('Powerup clear
expected' message received.)

NOT AN ERROR. The device has been turned off and then
on again since the last communication, and is now ready.

X

-5 Operation failed. An attempt to store the strategy to flash failed, or an attempt
to do something with a chart failed (like call, continue,
suspend, start, initialize threads).

-6 Data field error. Invalid year entered (must be between 2000 and 2099), or
invalid data read from memory when attempting to read the
strategy from flash memory.

X

-7 Watchdog timeout has occurred. See “Add I/O Unit Dialog Box” on page 6-13.

-8 Invalid data. Invalid data read when attempting to read a strategy from
flash, or an invalid character number was passed to a string
function.

-10 Invalid port number. Valid range for Ethernet is 0–65535. For a communication
handle, serial port format may be incorrect.

X

-11 Could not send data. A Transmit or Transfer command fails when using a comm
handle. For example, an attempt is made to send a file to a
remote ftp server that has gone off-line.

-12 Invalid table index. Used an index greater than the number of elements in the
table.

X X

-13 Overflow error. Typically, a math result too big to fit in the value passed,
while doing number conversion functions such as
converting a float value to engineering units, a float to an
unsigned integer, a float to an integer, a 64-bit integer to a
32-bit integer, a floating point value to a 64-bit integer, a
floating point value to an unsigned 64-bit integer, an ASCII
value to a float.

Also math functions such as multiply, exponentiation,
hyperbolic sine, hyperbolic cosine, function x to the y, add,
subtract, modulo, negate, move/assign.

Time/date functions: setting a month not in the range
1–12, a day not in the range 1–31, hours not in 0–23,
minutes 0–59, seconds 0–59.

Number entered on host port (for example, through ioTerm)
was too big for data types.

X

-14 Invalid number. Math resulted in an invalid number (like infinity or an
imaginary number): natural log of the floating point number,
square root, arc sine, arc cosine of float, function x to the y
(with negative x).

X

-15 Cannot divide by zero. Attempted to divide a number by zero. X

-16 Bus error. Contact Product Support. See page 1-4.

-17 Port already locked on ioControl engine. Attempted to lock a connection that’s already locked. X

-20 Device busy. May be in use by another user
or another application.

A resource is already acquired by another task or process. X

-21 Had to relock host port in 'QUIT'. Host port needed relocking.

Description Possible Cause Q? I/O?
B-4 ioControl User’s Guide

-23 Destination string too short. In string manipulations, a string was requested that is
longer than the string it will be put into, or destination string
length <= 0.

X X

-25 Port not locked. Attempted to transmit or receive on a connection that
wasn’t locked, or to unlock a connection that wasn’t locked.

X

-26 Unknown response from device. OptoMMP-based protocol packet returned by the device
was invalid.

X

-29 Wrong object type. Most likely caused by
moving a pointer table element to a pointer
of the wrong type.

An object was passed to a command that doesn’t handle
that object type.

-34 Invalid I/O command or invalid memory
location.

Contact Product Support. See page 1-4. X

-35 Point mismatch An analog point is incorrectly configured (for example, an
output point is configured as an input point).

X X

-36 Invalid command or feature not
implemented.

Feature not yet implemented for this hardware/command
combination, or command may not apply to the type of
communication handle you are using.

X

-37 Timeout on lock. Unable to lock a resource (such as a variable) for exclusive
writing within the timeout period.

X

-38 Timeout on send. Unable to send communication in the timeout period.

-39 Timeout on receive. Unable to receive communication in the timeout period.

-42 Invalid limit (on string index, task state,
priority, etc.).

A character number greater than the length of the string
was used (or the string had a zero length), or an invalid
value was passed when setting the state of a chart
(running, etc.)

-44 String too short. String less than 8 characters used to read time
(“hh:mm:ss”), or not 8 or 10 characters for a date, or zero
length on a string function.

X

-45 Null string. Attempted to use an uninitialized string.

-46 Invalid string. String not 8 characters long when setting time, or invalid
format when setting date, or invalid communication handle
string or comm handle command (such as a missing colon).

X

-47 Invalid connection. Device drivers might be
missing or not loaded/running.

Attempted to open an already open connection. X

-49 No more connections are available.
Maximum number of connections already in
use.

No more sessions available for Ethernet (maximum is 32). X

-50 Open connection timeout. Could not
establish connection within the timeout
period.

Unable to open a connection in time. X

-52 Invalid connection—not opened. Attempted to close a connection that wasn’t opened.
Communication handle may have been closed by a
previous command that failed.

X

-57 String not found. Substring not found in the string being searched.

Description Possible Cause Q? I/O?
ioControl User’s Guide B-5

-58 No data received.
or
Character not found.

Attempted to read an empty buffer (or a connection with no
characters waiting); or the I/O unit may be turned off or
unreachable; or when searching a string for a particular
character, the character wasn’t found.

X

-59 Could not receive data. Command may not apply to the type of communication
handle you are using; for example, Receive commands
cannot be used with ftp comm handles. (Use the get option
with Send Communication Handle Command instead.)

-60 Empty stack error. ioControl engine
attempted to perform an operation that
expected data on the ioControl engine stack.

Contact Product Support. See page 1-4.

-61 Dictionary full error. ioControl engine
dictionary is full and no more 'words' can be
defined. Clear ioDisplay words using
ioDisplay or ioTerminal, if appropriate.

Attempted to create a variable, command, or similar item
when there’s no room left. Or large string or numeric tables
are being created in the strategy.

-62 Stack full error. ioControl engine stack has
grown too big.

The ioControl engine stack is full.

-64 Execute-only error. A command or 'word'
was encountered that cannot be used when
compiling.

Contact Product Support. See page 1-4.

-66 Requested item in protected dictionary Attempted to remove a strategy when there was no strategy
in the control engine.

-67 Out of memory. To minimize the size of your
strategy, reduce the number and size of
variables (especially tables). You can also
shrink your strategy by using subroutines to
perform common tasks

No room left to create any variables or save any data on the
stack. Or an attempt was made to save the strategy to
flash, without enough room in flash to save it.

X

-69 Invalid parameter (null pointer) passed to
command.

Attempted to use an uninitialized pointer, or a null pointer
was received by a command.

X

-70 Not enough data supplied. Table index given is larger than the size of the table. X

-71 Out of persistent memory. If applicable,
check length of tables.

Too many persistent variables, variables initialized on
download, or too large a strategy archive to fit in
battery-backed RAM.

-93 I/O unit not enabled. Previous
communication failure may have disabled
the unit automatically. Reenable it and try
again.

I/O unit may have been disabled by a communication failure
that happened earlier.

X

-103 Port could not be unlocked. Task attempting
to unlock the port does not match the task
with the current lock on that port.

Attempted to unlock a connection that was locked by a
different task.

X

-203 Driver could not be found or loaded. Communication command didn’t find the driver described in
the communication handle. Make sure driver name is not
misspelled (for example, tcp must be lower case).

X

-407 File not found. Attempted to save a strategy to flash, but there was no
strategy in RAM to save.

-412 TCP/IP: Cannot connect error Ethernet “connect” failed. See page A-5. X

Description Possible Cause Q? I/O?
B-6 ioControl User’s Guide

-417 Cannot open file File does not exist or filename may be incorrect.

-430 Invalid data range. Verify high value is
greater than low value.

Invalid data passed to driver (for example, a point number
larger than the maximum number of points on the rack).

X

-433 Object/device already locked. Couldn’t set the state of a chart (running, suspended, etc.)
because it’s already locked by something else.

-437 No acceptable socket interface found. Ethernet “accept” attempted, but no more sessions are
available (32 total).

X

-438 Could not create socket. Attempt to create a new Ethernet socket failed. X

-442 Could not accept on socket. Ethernet “accept” failed. X

-443 Could not receive on socket. Ethernet “receive” failed. X

-444 Could not send on socket. Ethernet “send” failed. X

-531 Buffer full. Attempted to write to a full buffer. For a serial
communication handle, data is being sent faster than the
serial port can send and buffer it. Use a faster baud rate or
a delay between Transfer/Transmit commands.

X

-534 Attempts to communicate with I/O unit failed. I/O unit may have lost power or network connection. X X

-700 PID Loop has been configured outside of
this strategy and could conflict with this
strategy’s logic.

You are trying to download a new strategy, but a PID loop is
currently running on the brain. Open ioManager and turn off
the loop in Inspect mode by changing its algorithm to None.

-8607 Invalid protocol. Attempted to set a port to an unknown mode. X

-8608 Port initialization failed. While starting up a chart or task, the default host port could
not be created.

X

All -10,000
and -11,000

errors

[Various descriptions] Socket or network problems. Check cables and
connections to control engine; cycle power to control
engine.

Description Possible Cause Q? I/O?
ioControl User’s Guide B-7

B-8 ioControl User’s Guide

APPENDIX C
C—ioControl FilesAppendix C

ioControl Files
Introduction
This appendix lists all of the ioControl file types and special files. You can use this information
as a reference to determine what types of files are present in your ioControl project directory
when you’re looking through your ioControl or project directory.

Files Related to a Strategy
<strategy>.idb ioControl strategy database

<strategy>.crn Run file (compiled file that is sent to the control engine)

<strategy>.crn1 Intermediate run file (component of the run file)

<strategy>.crn2 Intermediate run file (component of the run file)

<strategy>.crn3 Intermediate run file (component of the run file)

<strategy>.inc Initialization data for variables with “Init on Download”
option (component of the run file)

<strategy>.inf Strategy configuration information

<strategy>.$idb Temporary ioControl strategy database file

<strategy>.lidb ioControl strategy database lock file

<strategy>.per Persistent variable definitions

<strategy>.<control engine>.cdf Control engine download file for special circumstances
(see page 7-9)

<chart name>.cht Chart

<chart name>.ccd Compiled chart code (component of the run file)

<chart name>.con Online compiled chart code
ioControl User’s Guide C-1

<chart name>.cxf Exported chart file

<filename>.wth Watch window file (you name the file)

<filename>.otg Exported I/O configuration file (you name the file)

<strategy.date.time>.zip Strategy archive file (automatically named; see “Archiving
Strategies” on page 7-5 for file name formats)

Files Associated with a Subroutine
<subroutine name>.isb Subroutine

<subroutine name>.ini Subroutine configuration information

<subroutine name>.isc Compiled subroutine (component of the run file)

<subroutine name>.lisb Subroutine lock file

Files in the ioControl Directory
<xxx>.io.def Object definition files (commands, I/O points, and I/O units).

You must not modify these files.

ioCtrl.exe ioControl executable file

ioControl.cnt ioControl help contents file

ioControl.GID ioControl help support file (created when you launch the
help file)

ioControl.hlp ioControl help file

ioControlCommands.cnt Commands help contents file

ioControlCommands.GID Commands help support file (created when you launch the
help file)

ioControlCommands.hlp Commands help file

ioCtrlTools.dat File that lists software applications you’ve configured in the
Tools menu to launch from ioControl

ioSnif.log ioMessage Viewer log file

OptoScriptTemp.txt A temporary file

Readme.txt README text file containing information about ioControl
C-2 ioControl User’s Guide

APPENDIX D
D—Sample StrategyAppendix D

Sample Strategy
Introduction
Chapter 2, “ioControl Tutorial” introduced the Cookies strategy, a sample project used to
illustrate how ioControl works. Although this strategy is based on a mythical factory, you may
want to know more about the factory, its process, and its hardware. This appendix gives you that
information.

Factory Schematic
The following schematic drawing summarizes the cookie factory:
ioControl User’s Guide D-1

Description of the Process

Dough Vessel
The first station in our process is the dough vessel. This tank contains a pre-made cookie dough
mix.

Dough is dispensed onto the conveyor belt through a valve (SV-100B) at the bottom of the vessel.
The dough, being somewhat viscous, must be kept under low pressure to dispense properly. To
monitor the pressure, we have included a pressure transmitter (PT-100) in the vessel. Our control
engine (a SNAP Ultimate I/O system) maintains the vessel pressure through a plant air valve
(SV-100A).

The vessel also includes a level switch (LAL-100) to tell us when the dough level is low. When it
is, the process is halted so that an operator can refill the vessel.

Chip Hopper
The chip hopper supplies chocolate chips. A chip dispenser valve (SV-101) controls the number
of chips dropped on each cookie. Like the dough vessel, this tank also includes a level switch
(LAL-101) to stop the system when the chip hopper needs refilling.

Oven
After the dough and chips have been dropped onto the conveyor, the conveyor sends the cookie
into the oven, and the oven bakes it.

Inspection Station
Our freshly baked cookies then move to the inspection station, where someone inspects them. If
the cookie does not fall within normal tolerances— for example, it doesn’t have enough chips or
is shaped oddly—the inspector closes a switch (XS-103), signalling the bad cookie. A valve
(SV-103) then opens to allow plant air to blow the reject cookie into a waste bin.

If the cookie passes the inspection, it moves on to packaging and shipping.

Conveyor
The conveyor and its motor continuously move the cookies from the dough vessel to the
inspection station. The conveyor speed is controlled through an analog output (SY-104) from a
speed controller (SC-104).
D-2 ioControl User’s Guide

Emergency Stops
Wired at key locations around our bakery are emergency-stop buttons. If something goes wrong
with the process, an operator can press any of these E-STOP buttons.

The buttons are wired in series and are normally closed, so pressing any E-STOP button breaks
the circuit. One digital input can monitor all the buttons. The system can be restarted by resetting
the button.

Required I/O
Here’s the list of analog and digital I/O modules required for the cookie factory:

Analog I/O

Digital I/O

Name Description Type Module Range

PT-100 Dough Vessel Pressure Input SNAP-AIV (–10 to +10 VDC) 0–15 psig

TT-102 Oven Temperature Input SNAP-AICTD (ICTD) -50–350°C

TY-102 Oven Temperature Control Output SNAP-AOV-27 (–10 to +10 VDC) 0–100%

SY-104 Conveyor Speed Control Output SNAP-AOV-27 (–10 to +10 VDC) 0–100%

Name Description Type Module States

SV-100A Pressure Control Valve Output SNAP-ODC5SRC (5–60 VDC) 0=Closed
1=Open

SV-100B Dough Dispense Valve Output SNAP-ODC5SRC (5–60 VDC) 0=Closed
1=Open

LAL-100 Dough Level Alarm Input SNAP-IDC5D (2.5–28 VDC) 0=OK
1=Low

SV-101 Chip Dispense Valve Output SNAP-ODC5SRC (5–60 VDC) 0=Closed
1=Open

LAL-101 Chip Level Alarm Input SNAP-IDC5D (2.5–28 VDC) 0=OK
1=Low

XS-103 Inspection Signal Input SNAP-IDC5D (2.5–28 VDC) 0=OK
1=Reject

SV-103 Reject Valve Output SNAP-ODC5SRC (5–60 VDC) 0=Closed
1=Open

XS-105 Emergency Stop Input SNAP-IDC5D (2.5–28 VDC) 0=Stop
1=OK
ioControl User’s Guide D-3

D-4 ioControl User’s Guide

APPENDIX E
E—OptoScript Command EquivalentsAppendix E

OptoScript Command Equivalents
Introduction
This appendix compares standard ioControl commands to their equivalents in OptoScript code. See Chapter 11, “Using
OptoScript” and Appendix F, “OptoScript Language Reference” for more information on OptoScript.

The following table lists both action and condition commands in alphabetical order. The Type column shows whether
the OptoScript command is a function command (F) or a procedure command (P). Function commands return a value
from their action; procedure commands do not. For more information on command type, see “More About Syntax with
Commands” on page 11-12.

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe

Absolute Value AbsoluteValue(Of) F

Accept Incoming
Communication

AcceptIncomingCommunication(Communication
Handle)

F

Add x + y F

Add Message to Queue AddMessageToQueue(Severity, Message) P

Add User Error to Queue AddUserErrorToQueue(Error Number) P

Add User I/O Unit Error to
Queue

AddUserIoUnitErrorToQueue(Error Number,
I/O Unit)

P

AND x and y F

AND? See AND F

Append Character to String s1 += 'a'; P

Append String to String s1 += s2; P

Arccosine Arccosine(Of) F

Arcsine Arcsine(Of) F

Arctangent Arctangent(Of) F

Bit AND x bitand y F

Bit AND? See Bit AND F
ioControl User’s Guide E-1

OPTOSCRIPT COMMAND EQUIVALENTS
Bit Clear BitClear(Item, Bit to Clear) x bitand (bitnot (1 <<
nBitToClear))

F

Bit NOT bitnot x F

Bit NOT? See Bit NOT F

Bit Off? IsBitOff(In, Bit) not (x bitand (1 <<
nBitToTest))

F

Bit On? IsBitOn(In, Bit) See Bit Test F

Bit OR x bitor y F

Bit OR? See Bit OR F

Bit Rotate BitRotate(Item, Count) F

Bit Set BitSet(Item, Bit to Set) x bitor (1 <<
nBitToSet)

F

Bit Shift x << nBitsToShift F

Bit Test BitTest(Item, Bit to Test) x bitand (1 <<
nBitToTest)

F

Bit XOR x bitxor y F

Bit XOR? See Bit XOR F

Calculate & Set Analog Gain CalcSetAnalogGain(On Point) F

Calculate & Set Analog Offset CalcSetAnalogOffset(On Point) F

Calculate Strategy CRC CalcStrategyCrc() F

Calling Chart Running? IsCallingChartRunning() F

Calling Chart Stopped? IsCallingChartStopped() F

Calling Chart Suspended? IsCallingChartSuspended() F

Caused a Chart Error? HasChartCausedError(Chart) F

Caused an I/O Unit Error? HasIoUnitCausedError(I/O Unit) F

Chart Running? IsChartRunning(Chart) F

Chart Stopped? IsChartStopped(Chart) F

Chart Suspended? IsChartSuspended(Chart) F

Clamp Float Table Element ClampFloatTableElement(High Limit, Low
Limit, Element Index, Of Float Table)

P

Clamp Float Variable ClampFloatVariable(High Limit, Low Limit,
Float Variable)

P

Clamp Integer 32 Table
Element

ClampInt32TableElement(High Limit, Low
Limit, Element Index, Of Integer 32 Table)

P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-2 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Clamp Integer 32 Variable ClampInt32Variable(High Limit, Low Limit,
Integer 32 Variable)

P

Clamp Mistic PID Output ClampMisticPidOutput(High Clamp, Low
Clamp, On PID Loop)

P

Clamp Mistic PID Setpoint ClampMisticPidSetpoint(High Clamp, Low
Clamp, On PID Loop)

P

Clear All Errors ClearAllErrors() P

Clear All Event Latches ClearAllEventLatches(On I/O Unit) P

Clear All Latches ClearAllLatches(On I/O Unit) P

Clear Communication
Receive Buffer

ClearCommunicationReceiveBuffer
(Communication Handle)

P

Clear Counter ClearCounter(On Point) P

Clear Event Latch ClearEventLatch(On Event/Reaction) P

Clear HDD Module
Off-Latches

ClearHddModuleOffLatches(I/O Unit, Module
Number, Clear Mask)

F

Clear HDD Module
On-Latches

ClearHddModuleOnLatches(I/O Unit, Module
Number, Clear Mask)

F

Clear Off-Latch ClearOffLatch(On Point) P

Clear On-Latch ClearOnLatch(On Point) P

Clear Pointer pn1 = null; F

Clear Pointer Table Element pt[0] = null; P

Close Communication CloseCommunication(Communication Handle) F

Comment (Block) /* block comment */ P

Comment (Single Line) // single line comment F

Communication Open? IsCommunicationOpen(Communication Handle) F

Communication to All I/O
Points Enabled?

IsCommToAllIoPointsEnabled() F

Communication To All I/O
Units Enabled?

IsCommToAllIoUnitsEnabled() F

Compare Strings CompareStrings(String 1, String 2) F

Complement -x P

Continue Calling Chart ContinueCallingChart() F

Continue Timer ContinueTimer(Timer) P

Convert Float to String FloatToString(Convert, Length, Decimals,
Put Result in)

P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-3

OPTOSCRIPT COMMAND EQUIVALENTS
Convert Hex String to
Number

HexStringToNumber(Convert) F

Convert IEEE Hex String to
Number

IEEEHexStringToNumber(Convert) F

Convert Integer 32 to IP
Address String

Int32ToIpAddressString(Convert, Put Result
In)

F

Convert IP Address String to
Integer 32

IpAddressStringToInt32(Convert) F

Convert Mistic I/O Hex to
Float

MisticIoHexToFloat(Convert) F

Convert Number to
Formatted Hex String

NumberToFormattedHexString(Convert,
Length, Put Result in)

P

Convert Number to Hex
String

NumberToHexString(Convert, Put Result in) P

Convert Number to Mistic I/O
Hex

NumberToMisticIoHex(Convert, Put Result
in)

P

Convert Number to String NumberToString(Convert, Put Result in) P

Convert Number to String
Field

NumberToStringField(Convert, Length, Put
Result in)

P

Convert String to Float StringToFloat(Convert) F

Convert String to Integer 32 StringToInt32(Convert) F

Convert String to Integer 64 StringToInt64(Convert) F

Convert String to Lower Case StringToLowerCase(Convert) P

Convert String to Upper Case StringToUpperCase(Convert) P

Copy Current Error to String CurrentErrorToString(Delimiter, String) P

Copy Date to String
(DD/MM/YYYY)

DateToStringDDMMYYYY(String) P

Copy Date to String
(MM/DD/YYYY)

DateToStringMMDDYYYY(String) P

Copy Time to String TimeToString(String) P

Cosine Cosine(Of) F

Decrement Variable DecrementVariable(Variable) x = x - 1; P

Delay (mSec) DelayMsec(Milliseconds) P

Delay (Sec) DelaySec(Seconds) P

Disable Communication to All
I/O Points

DisableCommuncationToAllIoPoints() P

Disable Communication to All
I/O Units

DisableCommunicationToAllIoUnits() P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-4 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Disable Communication to
Event/Reaction

DisableCommunicationToEventReaction(Event/
Reaction)

P

Disable Communication to
I/O Unit

DisableCommunicationToIoUnit(I/O Unit) P

Disable Communication to
Mistic PID Loop

DisableCommunicationToMisticPidLoop(PID
Loop)

P

Disable Communication to
PID Loop

DisableCommunicationToPidLoop(PID Loop) P

Disable Communication to
Point

DisableCommunicationToPoint(Point) P

Disable Event/Reaction
Group

DisableEventReactionGroup(E/R Group) P

Disable I/O Unit Causing
Current Error

DisableIoUnitCausingCurrentError() P

Disable Mistic PID Output DisableMisticPidOutput(Of PID Loop) P

Disable Mistic PID Output
Tracking in Manual Mode

DisableMisticPidOutputTrackingInManualMode
(On PID Loop)

P

Disable Mistic PID Setpoint
Tracking in Manual Mode

DisableMisticPidSetpointTrackingInManual
Mode(On PID Loop)

P

Disable Scanning for All
Events

DisableScanningForAllEvents(On I/O Unit) P

Disable Scanning for Event DisableScanningForEvent(Event/Reaction) P

Disable Scanning of
Event/Reaction Group

DisableScanningOfEventReactionGroup(E/R
Group)

P

Divide x / y F

Down Timer Expired? HasDownTimerExpired(Down Timer) F

Enable Communication to All
I/O Points

EnableCommunicationToAllIoPoints() P

Enable Communication to All
I/O Units

EnableCommunicationToAllIoUnits() P

Enable Communication to
Event/Reaction

EnableCommunicationToEventReaction
(Event/Reaction)

P

Enable Communication to I/O
Unit

EnableCommunicationToIoUnit(I/O Unit) P

Enable Communication to
Mistic PID Loop

EnableCommunicationToMisticPidLoop(PID
Loop)

P

Enable Communication to
PID Loop

EnableCommunicationToPidLoop(PID Loop) P

Enable Communication to
Point

EnableCommunicationToPoint(Point) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-5

OPTOSCRIPT COMMAND EQUIVALENTS
Enable Event/Reaction
Group

EnableEventReactionGroup(E/R Group) P

Enable I/O Unit Causing
Current Error

EnableIoUnitCausingCurrentError() P

Enable Mistic PID Output EnableMisticPidOutput(On PID Loop) P

Enable Mistic PID Output
Tracking in Manual Mode

EnableMisticPidOutputTrackingInManualMode
(On PID Loop)

P

Enable Mistic PID Setpoint
Tracking in Manual Mode

EnableMisticPidSetpointTrackingInManual
Mode(On PID Loop)

P

Enable Scanning for All
Events

EnableScanningForAllEvents(On I/O Unit) P

Enable Scanning for Event EnableScanningForEvent(Event/Reaction) P

Enable Scanning of
Event/Reaction Group

EnableScanningOfEventReactionGroup() P

Equal to Numeric Table
Element?

 n == nt[0] F

Equal? x == y F

Erase Files in Permanent
Storage

EraseFilesInPermanentStorage() F

Error on I/O Unit? IsErrorOnIoUnit() F

Error? IsErrorPresent() F

Event Occurred? HasEventOccurred(Event/Reaction) F

Event Occurring? IsEventOccurring(Event/Reaction) F

Event Scanning Disabled? IsEventScanningDisabled(Event/Reaction) F

Event Scanning Enabled? IsEventScanningEnabled(Event/Reaction) F

Event/Reaction
Communication Enabled?

IsEventReactionCommEnabled(Event/Reaction) F

Event/Reaction Group
Communication Enabled?

IsEventReactionGroupEnabled(E/R Group) F

Find Character in String FindCharacterInString(Find, Start at
Index, Of String)

F

Find Substring in String FindSubstringInString(Find, Start at
Index, Of String)

F

Float Valid? IsFloatValid(Float) F

Generate Checksum on
String

GenerateChecksumOnString(Start Value, On
String)

F

Generate Forward CCITT on
String

GenerateForwardCcittOnString(Start Value,
On String)

F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-6 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Generate Forward CRC-16
on String

GenerateForwardCrc16OnString(Start Value,
On String)

F

Generate N Pulses GenerateNPulses(On Time (Seconds), Off
Time (Seconds), Number of Pulses, On
Point)

P

Generate Random Number GenerateRandomNumber() F

Generate Reverse CCITT on
String

GenerateReverseCcittOnString(Start Value,
On String)

F

Generate Reverse CRC-16
on String

GenerateReverseCrc16OnString(Start Value,
On String)

F

Generate Reverse CRC-16
on Table (32 bit)

GenerateReverseCrc16OnTable32(Start Value,
Table, Starting Element, Number of
Elements)

F

Get & Clear All HDD Module
Off-Latches

GetClearAllHddModuleOnLatches(I/O Unit,
Start Index, Put Result In)

F

Get & Clear All HDD Module
On-Latches

GetClearHddModuleCounter(I/O Unit, Module
Number, Point Number, Put Result In)

F

Get & Clear Analog Filtered
Value

GetClearAnalogFilteredValue(From) F

Get & Clear Analog Maximum
Value

GetClearAnalogMaxValue(From) F

Get & Clear Analog Minimum
Value

GetClearAnalogMinValue(From) F

Get & Clear Analog Totalizer
Value

GetClearAnalogTotalizerValue(From) F

Get & Clear Counter GetClearCounter(From Point) F

Get & Clear Event Latches GetClearEventLatches(E/R Group)

Get & Clear HDD Module
Counter

GetClearHddModuleCounters(I/O Unit, Module
Number, Start Table Index, Put Result
In)

F

Get & Clear HDD Module
Counters

GetClearHddModuleOffLatches(I/O Unit,
Module Number, Put Result In)

F

Get & Clear HDD Module
Off-Latches

GetClearHddModuleOnLatches(I/O Unit,
Module Number, Put Result In)

F

Get & Clear HDD Module
On-Latches

GetAllHddModuleOffLatches(I/O Unit, Start
Index, Put Result In)

F

Get & Clear Off-Latch GetClearOffLatch(From Point) F

Get & Clear On-Latch GetClearOnLatch(From Point) F

Get & Restart Off-Pulse
Measurement

GetRestartOffPulseMeasurement(From Point) F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-7

OPTOSCRIPT COMMAND EQUIVALENTS
Get & Restart Off-Time
Totalizer

GetRestartOffTimeTotalizer(From Point) F

Get & Restart On-Pulse
Measurement

GetRestartOnPulseMeasurement(From Point) F

Get & Restart On-Time
Totalizer

GetRestartOnTimeTotalizer(From Point) F

Get & Restart Period GetRestartPeriod(From Point) F

Get All HDD Module
Off-Latches

GetAllHddModuleOnLatches(I/O Unit, Start
Index, Put Result In)

F

Get All HDD Module
On-Latches

GetAllHddModuleStates(I/O Unit, Start
Index, Put Result In)

F

Get All HDD Module States GetHddModuleCounters(I/O Unit, Module
Number, Start Table Index, Put Result
In)

F

Get Analog Filtered Value GetAnalogFilteredValue(From) F

Get Analog Maximum Value GetAnalogMaxValue(From) F

Get Analog Minimum Value GetAnalogMinValue(From) F

Get Analog Square Root
Filtered Value

GetAnalogSquareRootFilteredValue(From) F

Get Analog Square Root
Value

GetAnalogSquareRootValue(From) F

Get Analog Totalizer Value GetAnalogTotalizerValue(From) F

Get Available File Space GetAvailableFileSpace(File System Type) F

Get Chart Status GetChartStatus(Chart) F

Get Communication Handle
Value

GetCommunicationHandleValue(From, To) P

Get Control Engine Address GetControlEngineAddress() F

Get Control Engine Type GetEngineType() F

Get Counter GetCounter(From Point) F

Get Day GetDay() F

Get Day of Week GetDayOfWeek() F

Get End-Of-Message
Terminator

GetEndOfMessageTerminator(Communication
Handle)

F

Get Error Code of Current
Error

GetErrorCodeOfCurrentError() F

Get Error Count GetErrorCount() F

Get Event Latches GetEventLatches(E/R Group) F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-8 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Get Firmware Version GetFirmwareVersion(Put in) P

Get Frequency GetFrequency(From Point) F

Get HDD Module Counters GetHddModuleOffLatches(I/O Unit, Module
Number, Put Result In)

F

Get HDD Module Off-Latches GetHddModuleOnLatches(I/O Unit, Module
Number, Put Result In)

F

Get HDD Module On-Latches GetHddModuleStates(I/O Unit, Module
Number, Put Result In)

F

Get HDD Module States GetClearAllHddModuleOffLatches(I/O Unit,
Start Index, Put Result In)

F

Get High Bits of Integer 64 GetHighBitsOfInt64(High Bits From) F

Get Hours GetHours() F

Get I/O Unit as Binary Value GetIoUnitAsBinaryValue(I/O Unit) F

Get I/O Unit Event Message
State

GetIoUnitEventMsgState(I/O Unit, Event
Message #, Put Result in);

F

Get I/O Unit Event Message
Text

GetIoUnitEventMsgText(I/O Unit, Event
Message #, Put Result in);

F

Get I/O Unit Scratch Pad Bits GetIoUnitScratchPadBits(I/O Unit, Put
Result in);

F

Get I/O Unit Scratch Pad
Float Element

GetIoUnitScratchPadFloatElement(I/O Unit,
Index, Put Result in);

F

Get I/O Unit Scratch Pad
Float Table

GetIoUnitScratchPadFloatTable(I/O Unit,
Length, From Index, To Index, To Table);

F

Get I/O Unit Scratch Pad
Integer 32 Element

GetIoUnitScratchPadInt32Element(I/O Unit,
Index, Put Result in);

F

Get I/O Unit Scratch Pad
Integer 32 Table

GetIoUnitScratchPadInt32Table(I/O Unit,
Length, From Index, To Index, To Table);

F

Get I/O Unit Scratch Pad
String Element

GetIoUnitScratchPadStringElement(I/O Unit,
Index, Put Result in);

F

Get I/O Unit Scratch Pad
String Table

GetIoUnitScratchPadStringTable(I/O Unit,
Length, From Index, To Index, To Table);

F

Get ID of Block Causing
Current Error

GetIdOfBlockCausingCurrentError() F

Get Julian Day GetJulianDay() F

Get Length of Table GetLengthOfTable(Table) F

Get Line Causing Current
Error

GetLineCausingCurrentError() F

Get Low Bits of Integer 64 GetLowBitsOfInt64(Integer 64) F

Get Minutes GetMinutes() F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-9

OPTOSCRIPT COMMAND EQUIVALENTS
Get Mistic PID Control Word GetMisticPidControlWord(From PID Loop) F

Get Mistic PID D Term GetMisticPidDTerm(From PID Loop) F

Get Mistic PID I Term GetMisticPidITerm(From PID Loop) F

Get Mistic PID Input GetMisticPidInput(PID Loop) F

Get Mistic PID Mode GetMisticPidMode(PID Loop) F

Get Mistic PID Output GetMisticPidOutput(PID Loop) F

Get Mistic PID Output Rate of
Change

GetMisticPidOutputRateOfChange(From PID
Loop)

F

Get Mistic PID P Term GetMisticPidPTerm(From PID Loop) F

Get Mistic PID Scan Rate GetMisticPidScanRate(From PID Loop) F

Get Mistic PID Setpoint GetMisticPidSetpoint(PID Loop) F

Get Month GetMonth() F

Get Name of Chart Causing
Current Error

GetNameOfChartCausingCurrentError(Put in) P

Get Name of I/O Unit
Causing Current Error

GetNameOfIoUnitCausingCurrentError(Put in) P

Get Nth Character GetNthCharacter(From String, Index) x = s[n]; F

Get Number of Characters
Waiting

GetNumCharsWaiting(On Communication
Handle)

F

Get Off-Latch See Off-Latch Set? F

Get Off-Pulse Measurement GetOffPulseMeasurement(From Point) F

Get Off-Pulse Measurement
Complete Status

GetOffPulseMeasurementCompleteStatus(From
Point)

F

Get Off-Time Totalizer GetOffTimeTotalizer(From Point) F

Get On-Latch GetOnLatch(On Point) See On-Latch Set? F

Get On-Pulse Measurement GetOnPulseMeasurement(From Point) F

Get On-Pulse Measurement
Complete Status

GetOnPulseMeasurementCompleteStatus(From
Point)

F

Get On-Time Totalizer GetOnTimeTotalizer(From Point) F

Get Period GetPeriod(From Point) F

Get Period Measurement
Complete Status

GetPeriodMeasurementCompleteStatus(From
Point)

F

Get PID Configuration Flags GetPidConfigFlags(PID Loop) F

Get PID Current Input GetPidCurrentInput(PID Loop) F

Get PID Current Setpoint GetPidCurrentSetpoint(PID Loop) F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-10 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Get PID Feed Forward GetPidFeedForward(PID Loop) F

Get PID Feed Forward Gain GetPidFeedForwardGain(PID Loop) F

Get PID Forced Output When
Input Over Range

GetPidForcedOutputWhenInputOverRange(PID
Loop)

F

Get PID Forced Output When
Input Under Range

GetPidForcedOutputWhenInputUnderRange(PID
Loop)

F

Get PID Gain GetPidGain(PID Loop) F

Get PID Input GetPidInput(PID Loop) F

Get PID Input High Range GetPidInputHighRange(PID Loop) F

Get PID Input Low Range GetPidInputLowRange(PID Loop) F

Get PID Max Output Change GetPidMaxOutputChange(PID Loop) F

Get PID Min Output Change GetPidMinOutputChange(PID Loop) F

Get PID Mode GetPidMode(PID Loop) F

Get PID Output GetPidOutput(PID Loop) F

Get PID Output High Clamp GetPidOutputHighClamp(PID Loop) F

Get PID Output Low Clamp GetPidOutputLowClamp(PID Loop) F

Get PID Scan Time GetPidScanTime(PID Loop) F

Get PID Setpoint GetPidSetpoint(PID Loop) F

Get PID Status Flags GetPidStatusFlags(PID Loop) F

Get PID Tune Derivative GetPidTuneDerivative(PID Loop) F

Get PID Tune Integral GetPidTuneIntegral(PID Loop) F

Get Pointer From Name GetPointerFromName(Name, Pointer) P

Get Seconds GetSeconds() F

Get Seconds Since Midnight GetSecondsSinceMidnight() F

Get Severity of Current Error GetSeverityOfCurrentError() F

Get String Length GetStringLength(Of String) F

Get Substring GetSubstring(From String, Start at Index,
Num. Characters, Put Result in)

P

Get System Time GetSystemTime() F

Get Target Address State GetTargetAddressState(Enable Mask, Active
Mask, I/O Unit)

P

Get Type From Name GetTypeFromName(Name) F

Get Value From Name GetValueFromName(Name) F

Get Year GetYear() F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-11

OPTOSCRIPT COMMAND EQUIVALENTS
Greater Than Numeric Table
Element?

 x > nt[0] F

Greater Than or Equal to
Numeric Table Element?

 x >= nt[0] F

Greater Than or Equal? x >= y F

Greater? x > y F

Hyperbolic Cosine HyperbolicCosine(Of) F

Hyperbolic Sine HyperbolicSine(Of) F

Hyperbolic Tangent HyperbolicTangent(Of) F

I/O Point Communication
Enabled?

IsIoPointCommEnabled(I/O Point) F

I/O Unit Communication
Enabled?

IsIoUnitCommEnabled(I/O Unit) F

I/O Unit Ready? IsIoUnitReady(I/O Unit) F

Increment Variable IncrementVariable(Variable) x = x + 1; P

IVAL Move Numeric Table to
I/O Unit

IvalMoveNumTableToIoUnit(Start at Index,
Of Table, Move to)

P

IVAL Set Analog Point IvalSetAnalogPoint(To, On Point) P

IVAL Set Counter IvalSetCounter(To, On Point) P

IVAL Set Frequency IvalSetFrequency(To, On Point) P

IVAL Set I/O Unit from
MOMO Masks

IvalSetIoUnitFromMomo(On Mask, Off Mask,
On I/O Unit)

P

IVAL Set Mistic PID Control
Word

IvalSetMisticPidControlWord(On Mask, Off
Mask, For PID Loop)

P

IVAL Set Mistic PID Process
Term

IvalSetMisticPidProcessTerm(To, On PID
Loop)

P

IVAL Set Off-Latch IvalSetOffLatch(To, On Point) P

IVAL Set Off-Pulse IvalSetOffPulse(To, On Point) P

IVAL Set Off-Totalizer IvalSetOffTotalizer(To, On Point) P

IVAL Set On-Latch IvalSetOnLatch(To, On Point) P

IVAL Set On-Pulse IvalSetOnPulse(To, On Point) P

IVAL Set On-Totalizer IvalSetOnTotalizer(To, On Point) P

IVAL Set Period IvalSetPeriod(To, On Point) P

IVAL Set TPO Percent IvalSetTpoPercent(To, On Point) P

IVAL Set TPO Period IvalSetTpoPeriod(Value, On Point) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-12 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
IVAL Turn Off IvalTurnOff(Point) P

IVAL Turn On IvalTurnOn(Point) P

Less Than Numeric Table
Element?

 x < nt[0] F

Less Than or Equal to
Numeric Table Element?

 x <= nt[0] F

Less Than or Equal? x <= y F

Less? x < y F

Listen for Incoming
Communication

ListenForIncomingCommunication
(Communication Handle);

F

Load Files From Permanent
Storage

LoadFilesFromPermanentStorage F

Make Integer 64 MakeInt64(High Integer, Low Integer) F

Maximum Max(Compare, With) F

Minimum Min(Compare, With) F

Modulo x % y F

Move x = y; P

Move 32 Bits Move32Bits(From, To) P

Move from Numeric Table
Element

 x = nt[0]; F

Move from Pointer Table
Element

 pn = pt[0]; F

Move from String Table
Element

 s = st[0]; P

Move I/O Unit to Numeric
Table

MoveIoUnitToNumTable(I/O Unit, Starting
Index, Of Table)

P

Move Numeric Table Element
to Numeric Table

 nt1[0] = nt2[5]; P

Move Numeric Table to I/O
Unit

MoveNumTableToIoUnit(Start at Index, Of
Table, Move to)

P

Move Numeric Table to
Numeric Table

MoveNumTableToNumTable(From Table, From
Index, To Table, To Index, Length)

P

Move String s1 = s2; P

Move to Numeric Table
Element

 nt[0] = x; P

Move to Numeric Table
Elements

MoveToNumTableElements(From, Start Index,
End Index, Of Table)

P

Move to Pointer pn = &n; F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-13

OPTOSCRIPT COMMAND EQUIVALENTS
Move to Pointer Table
Element

 pt[0] = &n; F

Move to String Table Element st[0] = s; P

Move to String Table
Elements

MoveToStrTableElements(From, Start Index,
End Index, Of Table)

P

Multiply x * y F

Natural Log NaturalLog(Of) F

NOT not x F

Not Equal to Numeric Table
Element?

 n <> nt[0] F

Not Equal? x <> y F

NOT? not x F

Numeric Table Element Bit
Clear

NumTableElementBitClear(Element Index, Of
Integer Table, Bit to Clear)

P

Numeric Table Element Bit
Set

NumTableElementBitSet(Element Index, Of
Integer Table, Bit to Set)

P

Numeric Table Element Bit
Test

NumTableElementBitTest(Element Index, Of
Integer Table, Bit to Test)

F

Off? IsOff(Point) di == 0 F

Off-Latch Set? IsOffLatchSet(On Point) F

On? IsOn(Point) di == 1 F

On-Latch Set? IsOnLatchSet(On Point) F

Open Outgoing
Communication

OpenOutgoingCommunication(Communication
Handle)

F

OR x or y F

OR? See OR F

Pause Timer PauseTimer(Timer) P

PID Loop Communication
Enabled?

IsPidLoopCommEnabled(PID Loop) F

Pointer Equal to Null? pn == null F

Pointer Table Element Equal
to Null?

 pt[0] == null F

Raise e to Power RaiseEToPower(Exponent) F

Raise to Power Power(Raise, To the) F

Ramp Analog Output RampAnalogOutput(Ramp Endpoint, Units/Sec,
Point to Ramp)

P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-14 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Read Event/Reaction Hold
Buffer

ReadEventReactionHoldBuffer
(Event/Reaction)

F

Read Number from I/O Unit
Memory Map

ReadNumFromIoUnitMemMap(I/O Unit, Mem
address, To)

F

Read Numeric Table from I/O
Unit Memory Map

ReadNumTableFromIoUnitMemMap(Length, Start
Index, I/O Unit, Mem address, To)

F

Read String from I/O Unit
Memory Map

ReadStrFromIoUnitMemMap(Length, I/O Unit,
Mem address, To)

F

Read String Table from I/O
Unit Memory Map

ReadStrTableFromIoUnitMemMap(Length, Start
Index, I/O Unit, Mem address, To)

F

Receive Character ReceiveChar(Communication Handle) F

Receive N Characters ReceiveNChars(Put In, Number of
Characters, Communication Handle)

F

Receive Numeric Table ReceiveNumTable(Length, Start at Index, Of
Table, Communication Handle)

F

Receive String ReceiveString(Put In, Communication
Handle)

F

Remove Current Error and
Point to Next Error

RemoveCurrentError() P

Retrieve Strategy CRC RetrieveStrategyCrc() F

Round Round(Value) F

Save Files To Permanent
Storage

SaveFilesToPermanentStorage() F

Seed Random Number SeedRandomNumber() P

Send Communication Handle
Command

SendCommunicationHandleCommand
(Communication Handle, Command)

F

Set All Target Address States SetAllTargetAddressStates(Must-On Mask,
Must-Off Mask, Active Mask)

P

Set Analog Filter Weight SetAnalogFilterWeight(To, On Point) P

Set Analog Gain SetAnalogGain(To, On Point) P

Set Analog Load Cell Fast
Settle Level

SetAnalogLoadCellFastSettleLevel(To, On
Point)

P

Set Analog Load Cell Filter
Weight

SetAnalogLoadCellFilterWeight(To, On
Point)

P

Set Analog Offset SetAnalogOffset(To, On Point) P

Set Analog Totalizer Rate SetAnalogTotalizerRate(To Seconds, On
Point)

P

Set Analog TPO Period SetAnalogTpoPeriod(To, On Point) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-15

OPTOSCRIPT COMMAND EQUIVALENTS
Set Communication Handle
Value

SetCommunicationHandleValue(From, To) P

Set Date SetDate(To) P

Set Day SetDay(To) P

Set Down Timer Preset Value SetDownTimerPreset(Target Value, Down
Timer)

P

Set End-Of-Message
Terminator

SetEndOfMessageTerminator(Communication
Handle, To Character)

P

Set HDD Module from
MOMO Masks

SetHddModulefromMOMOMasks(I/O Unit, Module
Number, Must-On Mask, Must-Off Mask)

F

Set Hours SetHours(To) P

Set I/O Unit Event Message
State

SetIoUnitEventMessageState(I/O Unit, Event
Message #, State);

F

Set I/O Unit Event Message
Text

SetIoUnitEventMessageText(I/O Unit, Event
Message #, Message Text);

F

Set I/O Unit from MOMO
Masks

SetIoUnitFromMomo(Must-On Mask, Must-Off
Mask, Digital I/O Unit)

P

Set I/O Unit Scratch Pad Bits
from MOMO Mask

SetIoUnitScratchPadBitsFromMomoMask(I/O
Unit, Must-on Mask, Must-off Mask);

F

Set I/O Unit Scratch Pad
Float Element

SetIoUnitScratchPadFloatElement(I/O Unit,
Index, From);

F

Set I/O Unit Scratch Pad
Float Table

SetIoUnitScratchPadFloatTable(I/O Unit,
Length, To Index, From Index, From Table);

F

Set I/O Unit Scratch Pad
Integer 32 Element

SetIoUnitScratchPadInt32Element(I/O Unit,
Index, From);

F

Set I/O Unit Scratch Pad
Integer 32 Table

SetIoUnitScratchPadInt32Table(I/O Unit,
Length, To Index, From Index, From Table);

F

Set I/O Unit Scratch Pad
String Element

SetIoUnitScratchPadStringElement(I/O Unit,
Index, From);

F

Set I/O Unit Scratch Pad
String Table

SetIoUnitScratchPadStringTable(I/O Unit,
Length, To Index, From Index, From Table);

F

Set Minutes SetMinutes(To) P

Set Mistic PID Control Word SetMisticPidControlWord(On-Mask, Off-Mask,
For PID Loop)

P

Set Mistic PID D Term SetMisticPidDTerm(To, On PID Loop) P

Set Mistic PID I Term SetMisticPidITerm(To, On PID Loop) P

Set Mistic PID Input SetMisticPidInput(PID Loop, Input) P

Set Mistic PID Mode to Auto SetMisticPidModeToAuto(On PID Loop) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-16 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Set Mistic PID Mode to
Manual

SetMisticPidModeToManual(On PID Loop) P

Set Mistic PID Output Rate of
Change

SetMisticPidOutputRateOfChange(To, On PID
Loop)

P

Set Mistic PID P Term SetMisticPidPTerm(To, On PID Loop) P

Set Mistic PID Scan Rate SetMisticPidScanRate(To, On PID Loop) P

Set Mistic PID Setpoint SetMisticPidSetpoint(PID Loop, Setpoint) P

Set Month SetMonth(To) P

Set Nth Character SetNthCharacter(To, In String, At Index) s[n] = x; F

Set PID Configuration Flags SetPidConfigFlags(PID Loop, Configuration
Flags)

P

Set PID Feed Forward SetPidFeedForward(PID Loop, Feed Forward) P

Set PID Feed Forward Gain SetPidFeedForwardGain(PID Loop, Feed Fwd
Gain)

P

Set PID Forced Output When
Input Over Range

SetPidForcedOutputWhenInputOverRange(PID
Loop, Forced Output)

P

Set PID Forced Output When
Input Under Range

SetPidForcedOutputWhenInputUnderRange(PID
Loop, Forced Output)

P

Set PID Gain SetPidGain(PID Loop, Gain) P

Set PID Input SetPidInput(PID Loop, Input) P

Set PID Input High Range SetPidInputHighRange(PID Loop, High Range) P

Set PID Input Low Range SetPidInputLowRange(PID Loop, Low Range) P

Set PID Max Output Change SetPidMaxOutputChange(PID Loop, Max
Change)

P

Set PID Min Output Change SetPidMinOutputChange(PID Loop, Min
Change)

P

Set PID Mode SetPidMode(PID Loop, Mode) P

Set PID Output SetPidOutput(PID Loop, Output) P

Set PID Output High Clamp SetPidOutputHighClamp(PID Loop, High
Clamp)

P

Set PID Output Low Clamp SetPidOutputLowClamp(PID Loop, Low Clamp) P

Set PID Scan Time SetPidScanTime(PID Loop, Scan Time) P

Set PID Setpoint SetPidSetpoint(PID Loop, Setpoint) P

Set PID Tune Derivative SetPidTuneDerivative(PID Loop, Derivative) P

Set PID Tune Integral SetPidTuneIntegral(PID Loop, Integral) P

Set Seconds SetSeconds(To) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-17

OPTOSCRIPT COMMAND EQUIVALENTS
Set Target Address State SetTargetAddressState(Must-On Mask,
Must-Off Mask, Active Mask, I/O Unit)

P

Set Time SetTime(To) P

Set TPO Percent SetTpoPercent(To Percent, On Point) P

Set TPO Period SetTpoPeriod(To Seconds, On Point) P

Set Up Timer Target Value SetUpTimerTarget(Target Value, Up Timer) P

Set Variable False SetVariableFalse(Variable) P

Set Variable True SetVariableTrue(Variable) P

Set Year SetYear(To) P

Shift Numeric Table Elements ShiftNumTableElements(Shift Count, Table) P

Sine Sine(Of) F

Square Root SquareRoot(Of) F

Start Continuous Square
Wave

StartContinuousSquareWave(On Time
(Seconds), Off Time (Seconds), On Point)

P

Start Counter StartCounter(On Point) P

Start Off-Pulse StartOffPulse(Off Time (Seconds), On
Point)

P

Start On-Pulse StartOnPulse(On Time (Seconds), On Point) P

Start Timer StartTimer(Timer) P

Stop Chart on Error StopChartOnError() P

Stop Counter StopCounter(On Point) P

Stop Timer StopTimer(Timer) P

String Equal to String Table
Element?

 s == st[0] F

String Equal? s1 == s2 F

Subtract x - y F

Suspend Chart on Error SuspendChartOnError() F

Tangent Tangent(Of) F

Test Equal See Equal? F

Test Equal Strings See String Equal? F

Test Greater See Greater? F

Test Greater or Equal See Greater Than or Equal? F

Test Less See Less? F

Test Less or Equal See Less Than or Equal? F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-18 ioControl User’s Guide

OPTOSCRIPT COMMAND EQUIVALENTS
Test Not Equal See Not Equal? F

Test Within Limits See Within Limits? F

Timer Expired? HasTimerExpired(Timer) F

Transfer N Characters TransferNChars(Destination Handle, Source
Handle, Num Chars)

F

Transmit Character TransmitChar(Character, Communication
Handle)

F

Transmit NewLine TransmitNewLine(Communication Handle) F

Transmit Numeric Table TransmitNumTable(Length, Start at Index,
Of Table, Communication Handle)

F

Transmit String TransmitString(String, Communication
Handle)

F

Transmit/Receive String TransmitReceiveString(String,
Communication Handle, Put Result in)

F

Truncate Truncate(Value) F

Turn Off TurnOff(Output) doOutput = 0; P

Turn Off HDD Module Point TurnOffHDDModulePoint(I/O Unit, Module
Number, Point Number)

F

Turn On TurnOn(Output) doOutput = 1; P

Turn On HDD Module Point TurnOnHddModulePoint(I/O Unit, Module
Number, Point Number)

F

Up Timer Target Time
Reached?

HasUpTimerReachedTargetTime(Up Timer) F

Variable False? IsVariableFalse(Variable) not x F

Variable True? IsVariableTrue(Variable) x F

Verify Checksum on String VerifyChecksumOnString(Start Value, On
String)

F

Verify Forward CCITT on
String

VerifyForwardCcittOnString(Start Value, On
String)

F

Verify Forward CRC-16 on
String

VerifyForwardCrc16OnString(Start Value, On
String)

F

Verify Reverse CCITT on
String

VerifyReverseCcittOnString(Start Value, On
String)

F

Verify Reverse CRC-16 on
String

VerifyReverseCrc16OnString(Start Value, On
String)

F

Within Limits? IsWithinLimits(Value, Low Limit, High
Limit)

(x >= nLoLimit) and (x
<= nHiLimit)

F

Write I/O Unit Configuration
to EEPROM

WriteIoUnitConfigToEeprom(On I/O Unit) P

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
ioControl User’s Guide E-19

OPTOSCRIPT COMMAND EQUIVALENTS
Write Number to I/O Unit
Memory Map

WriteNumToIoUnitMemMap(I/O Unit, Mem
address, Variable)

F

Write Numeric Table to I/O
Unit Memory Map

WriteNumTableToIoUnitMemMap(Length, Start
Index, I/O Unit, Mem address, Table)

F

Write String Table to I/O Unit
Memory Map

WriteStrTableToIoUnitMemMap(Length, Start
Index, I/O Unit, Mem address, Table)

F

Write String to I/O Unit
Memory Map

WriteStrToIoUnitMemMap(I/O Unit, Mem
address, Variable)

F

XOR x xor y F

XOR? See XOR F

Action/Condition
Command Name

OptoScript Command (with Arguments) OptoScript Equivalent Example

Ty
pe
E-20 ioControl User’s Guide

APPENDIX F
F—OptoScript Language ReferenceAppendix F

OptoScript Language Reference
Introduction
This appendix includes the following reference information about the OptoScript language:

OptoScript Comparison with Standard Programming
Languages

The tables on the following pages compare OptoScript functions and variables to those available
in Pascal, BASIC, and C. For more information on using OptoScript, see Chapter 11 and
Appendix E.

General Notes:

1. The BASIC column is based on Microsoft's Visual Basic language.

2. The Pascal column is based on Borland's ObjectPascal language.

3. The use of logical statements in BASIC and Pascal is significantly different than in
OptoScript and C. BASIC and Pascal have a Boolean data type; OptoScript and C use
integers. OptoScript and C treat a zero value as false and a non-zero value as true.

4. In OptoScript, you cannot use a break type of command in a loop.

5. OptoScript can test only one case in a switch at a time; other languages can test more than
one.

OptoScript Comparison with Standard Programming Languages F-1

Notes to Experienced Programmers F-6

OptoScript Lexical Reference F-8

OptoScript Grammar Syntax Reference F-11
ioControl User’s Guide F-1

O
PTO

SCRIPT LAN
G

U
AG

E REFEREN
CE

F-2
ioControl U

ser’s G
uide

Pascal2

123

&123ABC

123

&123ABC

12.34

12.34E+17

'hello'

'A'

{ }

//

n := 3;

t[0] := 1;
t[i] := 2;
t[i + 1] := 3;

i := (f * 2.0) + t[3];
t[4] := n + ((x – y) *
z);

s := 'hello';
s := s2;

st[0] := s;
st[1] := 'hello';
st[1+i] := st[5];

s[0] := 'A';
Function Comparison

OptoScript BASIC1 C

integer 32 (decimal) 123 123 123

integer 32 (hexadecimal) 0x123ABC &H123ABC 0x123ABC

integer 64 (decimal) 123i64 Not available 123LL or 123i64

integer 64 (hexadecimal) 0x123ABCi64 Not available 0x123ABCLL or 0x123ABCi64

float (standard) 12.34 12.34 12.34

float (scientific) 12.34E+17 1.234E+18 1.234E+17

string "hello" "hello" "hello"

character 65
'A'

Not available 65
'A'

block comment /* */ Not available /* */

line comment // ' //

numeric assignment n = 3; n = 3 n = 3;

numeric table assignment t[0] = 1;
t[i] = 2;
t[i+1] = 3;

t(0) = 1
t(i) = 2
t(i + 1) = 3

t[0] = 1;
t[i] = 2;
t[i+1] = 3;

numeric expressions i = (f * 2.0) + t[3];
t[4] = n + ((x – y) *
z);

i = (f * 2.0) + t(3)
t(4) = n + ((x – y) *
z)

i = (f * 2.0) + t[3];
t[4] = n + ((x – y) * z);

string assignment s = "hello";
s = s2;

s = "hello"
s = s2

strcpy(s, "hello");
strcpy(s, s2);

string table assignment st[0] = s;
st[1] = "hello";
st[1+i] = st[5];

st(0) = s
st(1) = "hello"
st(1 + i) = st(5)

strcpy(st[0], s);
strcpy(st[1],"hello");
strcpy(st[1+i], st[5]);

string characters n = s[0];
s[0] = 'A';

Not available n = s[0];
s[0] = 'A';

O
PTO

SCRIPT LAN
G

U
AG

E REFEREN
CE

ioControl U
ser’s G

uide
F-3

s := 'hello' + s2 + s3;

s := 'hello' + Chr(n);

x = y

x <> y

x < y

x <= y

x > y

x <= y

(x <> 0) Or (y <> 0)
a Or b (booleans only)

(x <> 0) And (y <> 0)
a And b (booleans only)

(x <> 0) Xor (y <> 0)
a Xor b (booleans only)

Not (x <> 0)
Not b (booleans only)

(x >= 0) and (y = 3)
not((x > 0) or (y <> 3))

not x

x or y

x and y

x xor y

x shl y

x shr y

1 Pascal2
string expressions s = "hello" + s2 + s3;

s = "hello" + Chr(n);

s = "hello" + s2 + s3;

s = "hello" + Chr(n)

strcpy(s, "hello");
strcat(s, s2);

sprintf(s, "hello%c", n);

equal x == y x = y x == y

not equal x <> y x <> y x != y

less than x < y x < y x < y

less than or equal x <= y x <= y x <= y

greater than x > y x > y x > y

greater than or equal x >= y x <= y x >= y

logical OR (See Note 3) x or y (x <> 0) Or (y <> 0)
a Or b (booleans only)

x || y

logical AND x and y (x <> 0) And (y <> 0)
x And y (booleans
only)

x && y

logical XOR x xor y (x <> 0) Xor (y <> 0)
x Xor y (booleans
only)

Not available

logical NOT not x Not (x <> 0)
Not b (booleans only)

!x

logical expressions (x >= 0) and (y == 3)
not ((x>0)or(not
y==3))

(x >= 0) And (y = 3)
Not((x > 0) Or (y <>
3))

(x >= 0) && (y == 3)
!((x > 0) || (y != 3)

bitwise NOT bitnot x Not x ~x

bitwise OR (See Note 3) x bitor y x Or y x | y

bitwise AND x bitand y x And y x & y

bitwise XOR x bitxor y x Xor y x ^ y

bitwise shift left x << y Not available x << y

bitwise shift right x >> y Not available x >> y

OptoScript BASIC C

O
PTO

SCRIPT LAN
G

U
AG

E REFEREN
CE

F-4
ioControl U

ser’s G
uide

i := x and &0000FFFF;
i := x shl (i * 2);

if (i = 2) then
begin
 // do something
end

if (i = 2) then
 begin
 // do something
 end
else
 begin
 // do something else
 end

if (i = 2)
 begin
 // do something
 end
else if (i >= 5)
 begin
 // do something else
 end
else
 begin
 // do something else
 end

for i := 0 to 5 do
begin
 MyTable[i] := i * 2;
end

while (i < 5) do
begin
 MyTable[i] := i * 2;
 i := i + 1;
end

Pascal2
bitwise expressions i = x bitand
0x0000FFFF;
i = x << (i * 2);

i = x And &H0000FFFF
Not available

i = x & 0x0000FFFF;
i = x << (i * 2);

if statement if (i == 2) then
 // do something
endif

If (i == 2) Then
 // do something
End If

if (i == 2)
{
 // do something
}

if/else statement if (i == 2) then
 // do something
else
 // do something else
endif

If (i == 2) Then
 // do something
Else
 // do something else
End If

if (i == 2)
{
 // do something
}
else
{
 // do something else
}

if/else if statement if (i == 2) then
 // do something
elseif (i >= 5) then
 // do something else
else
 // do something else
endif

If (i = 2)
 // do something
ElseIf (i >= 5) Then
 // do something else
Else
 // do something else
End If

if (i == 2)
{
 // do something
}
else if (i >= 5)
{
 // do something else
}
else
{
 // do something else
}

for loop (See Note 4) for i = 0 to 5 step 1
 MyTable[i] = i * 2;
next

For i = 0 To 5 Step 1
 MyTable(i) = i * 2
Next

for (i = 0; i < 5 ; i++)
{
 MyTable[i] = i * 2;
}

while loop (See Note 4) while (i < 5)
 MyTable[i] = i * 2;
 i = i + 1;
wend

While (i < 5)
 MyTable(i) = i * 2
 i = i + 1
Wend

while (i < 5)
{
 MyTable[i] = i * 2;
 i = i + 1;
}

OptoScript BASIC1 C

O
PTO

SCRIPT LAN
G

U
AG

E REFEREN
CE

ioControl U
ser’s G

uide
F-5

ptoScript and C. BASIC and
at a zero value as false and a

lanuages.

repeat
 MyTable[i] := i * 2;
 i = i + 1;
until (i > 5);

case i of
 1:
 f := 2.0 * x;
 2:
 f := 2.0 * y;
 else
 f := 2.0 * z;
end;

1 Pascal2
Notes:

1. Based on Microsoft's Visual Basic language.

2. Based on Borland's ObjectPascal language.

3. The use of logical statements in BASIC and Pascal is significantly different than in O
Pascal have a Boolean data type; OptoScript and C use integers. OptoScript and C tre
non-zero value as true.

4. OptoScript cannot have a break type of command in a loop as is common with other

5. OptoScript can test only one case at a time.

repeat loop (See Note 4) repeat
 MyTable[i] = i * 2;
 i = i + 1;
until (i > 5);

Do
 MyTable(i) = i * 2
 i = i + 1
Loop Until (i > 5)

do
{
 MyTable[i] = i * 2;
 i = i + 1;
} while !(i > 5);

case (See Note 5) switch (i)
 case 1:
 f = 2.0 * x;
 break
 case z:
 f = 2.0 * y;
 break
 default:
 f = 2.0 * z;
 break
endswitch

Select Case (i)
 Case 1
 f = 2.0 * x
 Case z
 f = 2.0 * y
 Case Else
 f = 2.0 * z;
End Select

switch (i)
{
 case 1:
 f = 2.0 * x;
 break;
//case z: NOT ALLOWED IN C
// f = 2.0 * y;
// break;
 default:
 f = 2.0 * z;
 break;
}

OptoScript BASIC C

OPTOSCRIPT LANGUAGE REFERENCE
Variable Comparison

Notes to Experienced Programmers
Experienced programmers, especially those who are new to ioControl, may be interested in the
following notes.

Variable Database and Other Surprises
ioControl maintains a database of all declared variables—a notable difference from common
procedural languages. Variables are not declared in the programming code, but in the ioControl
tag database. This is a basic concept of ioControl and how it ties in with ioDisplay, but may seem
odd to experienced programmers using ioControl for the first time. Also, all variables and objects
are global. Local variables do not exist in ioControl in the way they do in most procedural
languages. Subroutines in ioControl contain “local” variables, but those local variables apply
throughout that subroutine.

Most languages allow you to return from a function before it ends, but OptoScript does not. The
same effect can be achieved in other ways, however, such as introducing tests into the code.
(Some people argue that this limitation produces better programming, because each function has
only one exit point.)

ioControl's Target Audience
Because ioControl is based on OptoControl, which was conceived as a simple programming tool
for non-programmers, it is designed to be relatively foolproof. Even though OptoScript provides
advanced functionality, this philosophy also influenced the design of OptoScript. OptoScript
exists only inside OptoScript blocks, which can only exist inside a flowchart. Flowcharts are the
basis of ioControl.

Variable
Name

ioControl Type BASIC Example C Example Pascal Example

n integer 32 Dim n as Long long n; n: Integer;

nn integer 64 Not available LONGLONG d; d: Int64;

f float Dim f as Single float f; f: Single;

s string Dim as String char s[128]; s: ShortString;

p pointer not available long * pn; pn: ^Integer;

nt integer 32 table Dim nt(10) as Long long i[10]; nt: array[0..9] of Integer;

ft float 32 table Dim ft(10) as Single float f[10]; ft: array[0..9] of Single

st string table Dim st(10) as String char s[10][128]; st: array[0..9] of ShortString;

pt pointer table not available void * pt[10]; pt: array[0..9] of ^Integer;
F-6 ioControl User’s Guide

OPTOSCRIPT LANGUAGE REFERENCE
Even an experienced programmer may want to think twice before using OptoScript blocks
extensively. Many programmers like ioControl's simplicity not for themselves but for the field
technicians and maintenance personnel who will use it in the field. While you could write an
entire chart (or conceivably an entire strategy) in one block, doing so would eliminate most of the
advantages of using ioControl. Consider limiting your use of OptoScript to math operations,
complex string manipulation, and other logic most suited to scripting, so you retain ioControl’s
advantages for non-programmers.

Language Syntax
In the same way, OptoScript syntax is meant to be simple enough for a beginner to understand
but also easy for an experienced programmer to learn quickly.

Some programmers may wonder why OptoScript is not modeled after just one existing language,
such as BASIC or C. Instead, one can clearly see influences from Pascal, BASIC, and C. ioControl's
target audience is one reason; internal consistency with ioControl commands and the
capabilities and limitations of Opto 22 control engines are another.

Some aspects of OptoScript were designed to be consistent with ioControl commands. For
instance, the bitwise and operator was named bitand in OptoScript because there is a command
in ioControl named Bit AND.

OptoScript provides all the functionality of Opto 22 control engines but is subject to their
limitations. For instance, OptoScript provides some convenient ways of working with strings, but
only to a certain point.

For example, in an assignment statement, strings can be added together like this:
strDate = strMonth + "/" + strDay + "/" + strYear;

It would certainly be nice to use the same kind of string addition in a procedure call:
TransmitString(strMonth + "/" + strDay + "/" + strYear, nPort);

However, due to the current abilities of control engines, this type of string addition inside a
function call is not possible.
ioControl User’s Guide F-7

OPTOSCRIPT LANGUAGE REFERENCE
OptoScript Lexical Reference

Token Syntax Legend
Tokens are the smallest units that the OptoScript compiler processes.

Literals and Names

bold character:
(parenthesis):
[brackets]:
opt subscript:
no subscript:
0+ subscript:
1 subscript:
1+ subscript:

specific character
content is treated as a unit
set of possible items
item is optional
item is not allowed
0 or more items may be chosen
one item must be chosen
one or more items must be chosen

*:
letter:

digit:
non-zero-digit
hex-digit:

any character
any character a through z,
upper or lower case
one of [0 1 2 3 4 5 6 7 8 9]
one of [1 2 3 4 5 6 7 8 9]
one of [0 1 2 3 4 5 6 7 8 9 A B
C D E F a b c d e f]

Token Name Token Syntax Comments

Int32Literal

0[xX]1hex-digit1+ Hexadecimal Integer 32-bit
Good examples: 0x12AB, 0X12aB,
0x0
Bad examples: x123ABC, 0123ABC

0
non-zero-digit1
digit0+

Decimal Integer 32-bit
Good examples: 0, 123, 7890
Bad examples: 123ABC

'[*'no]1' Single Character
Good examples:'A', '1', ' '
Bad examples: '''

Int64Literal

0[xX]1hex-digit1+L Hexadecimal Integer 64
Good examples: 0x12ABL,
0X12aBL, 0x0L
Bad examples: x123ABCL,
0123ABCL

0
digit1
non-zero-digit0+L

Decimal Integer 64
Good examples: 0L, 123L, 7890L
Bad examples: 123ABCL

FloatLiteral digit0+ . digit1+
([Ee]1 [+-]opt
digit1+)opt

Float Literal
Good examples: 1.0, 2.3,
1.2e6, 1.2e-6, .1, .2e6
Bad examples: 1., 1.e7, 1e7

StringLiteral "[*"no]0+" String Literal. Confined to single line.
Good examples: "abc def"
Bad examples: "abc"def"
F-8 ioControl User’s Guide

OPTOSCRIPT LANGUAGE REFERENCE
Keywords (Reserved Words)

Operators
The following table lists operators in order of highest to lowest precedence:

NumericVariable
StringVariable
ChartVariable
DigIoUnitVariable
MixedIoUnitVariable
PointerVariable
NumericTable
StringTable
PointerTable
CommunicationHandle

[letter]1 [letter
digit _]0+

A letter followed by mix of letters, digits,
and underscores. The name must be
found in the ioControl database.

Good examples: MyInt, MyInt2,
My_Int_3
Bad examples: _MyInt, 0MyInt

CommandProcedure
CommandProcedureNoArgs
CommandFunction
CommandFunctionNoArgs

[letter]1 [letter
digit _]0+

A letter followed by mix of letters, digits,
and underscores. The name must be a
built-in command or subroutine.

Good examples: Sine, Sine2,
Sine_3
Bad examples: _Sine, 0Sine

if
then
else
elseif
endif

for
to
step
next

switch
endswitch
case
break
default

while
do
wend

repeat
until

Chr

null

Operator Name/Meaning Comments

- negation

not logical not

bitnot bitwise not

* multiplication

/ division

% modulo division

- subtraction

+ addition

+= string append assignment

<< bitwise left shift

Token Name Token Syntax Comments
ioControl User’s Guide F-9

OPTOSCRIPT LANGUAGE REFERENCE
Comments
OptoScript has two kinds of comments: single line and block.

Single line comments are indicated by two slashes, followed by any sequence of characters,
until the end of the line.

Examples:

i = a + b; // this is a comment

i = a + b; //determine i by adding a and b together

// i = a + b; // This whole line is commented out

Block comments are indicated by a slash and an asterisk (/*), followed by any sequence of
characters, and ending with an asterisk and a slash (*/). This type of comment may span multiple
lines. Block comments may not be nested.

>> bitwise right shift

== equality

<> non-equality

< less than

<= less than or equal to

> greater than

>= greater than or equal to

bitand bitwise and

bitor bitwise or

bitxor bitwise exclusive or

and logical and

or logical or

xor logical exclusive or

not logical not

() parentheses no precedence

[] brackets no precedence

: colon no precedence

; semi-colon no precedence

, comma separator no precedence

= assignment no precedence

& address of no precedence

Operator Name/Meaning Comments
F-10 ioControl User’s Guide

OPTOSCRIPT LANGUAGE REFERENCE
Examples:

i = a + b; /*determine i by adding a and b together*/

i = a + b; /* determine i by adding

a and b together */

/* i = a + b; // determine i by adding a and b together */

OptoScript Grammar Syntax Reference
Tokens are in regular type.
Keywords and operators are in bold type.
Syntax Rules are in italic type.

Program
➞ StatementList

StatementList
➞ Statement
➞ StatementList Statement

Statement
➞ AssignmentStatement
➞ StrAssignmentStatement
➞ PtrAssignmentStatement
➞ ProcedureCommand
➞ FunctionCommand ;
➞ ConditionStatement
➞ ForStatement
➞ WhileStatement
➞ RepeatStatement
➞ SwitchStatement

ProcedureCommand
➞ CommandProcedureNoArgs () ;
➞ CommandProcedure (ArgumentList) ;

FunctionCommand
➞ CommandFunctionNoArgs ()
➞ CommandFunction (ArgumentList)

ArgumentList
➞ NumericExp
➞ ArgumentList , NumericExp
➞ StrIdentifier
➞ ArgumentList , StrIdentifier
➞ ObjVarIdentifier
➞ ArgumentList , ObjVarIdentifier
ioControl User’s Guide F-11

OPTOSCRIPT LANGUAGE REFERENCE
NumericExp
➞ (NumericExp)
➞ NumericExp
➞ LogicalExp
➞ LogicalUnaryExp
➞ AdditiveExp
➞ MultiplicativeExp
➞ BitwiseExp
➞ NumIdentifier
➞ NumericLiteral
➞ FunctionCommand

LogicalExp
➞ NumericExp and NumericExp
➞ NumericExp or NumericExp
➞ NumericExp xor NumericExp
➞ NumericExp == NumericExp
➞ NumericExp <> NumericExp
➞ NumericExp < NumericExp
➞ NumericExp <= NumericExp
➞ NumericExp > NumericExp
➞ NumericExp >= NumericExp
➞ StrIdentifier == StrIdentifier
➞ PointerVariable == null
➞ null == PointerVariable
➞ null == PointerTable [NumericExp]
➞ PointerTable [NumericExp] == null

AdditiveExp
➞ NumericExp + NumericExp
➞ NumericExp - NumericExp

MultiplicativeExp
➞ NumericExp * NumericExp
➞ NumericExp / NumericExp
➞ NumericExp % NumericExp

NotNumExp
➞ ObjVarIdentifier
➞ StrIdentifier

BitwiseExp
➞ bitnot NumericExp
➞ NumericExp bitand NumericExp
➞ NumericExp bitor NumericExp
➞ NumericExp bitxor NumericExp
➞ NumericExp << NumericExp
➞ NumericExp >> NumericExp
F-12 ioControl User’s Guide

OPTOSCRIPT LANGUAGE REFERENCE
AssignmentStatement
➞ NumericVariable = NumericExp ;
➞ NumericTable [NumericExp] = NumericExp ;
➞ StringVariable [NumericExp] = NumericExp ;

PtrAssignmentStatement
➞ PointerVariable = PointableIdentifier ;
➞ PointerVariable = PointerTable [NumericExp] ;
➞ PointerTable [NumericExp] = PointableIdentifier ;

PointableIdentifier
➞ null
➞ & StringVariable
➞ & NumVarIdentifier
➞ & ObjVarIdentifier

StrAssignmentStatement
➞ StringVariable = StrExp ;
➞ StringTable [NumericExp] = StrExp ;
➞ StringVariable += StrIdentifier ;
➞ StringVariable += Chr (NumericExp) ;

StrExp
➞ StrAdditiveExp
➞ StrIdentifier
➞ Chr (NumericExp)

StrAdditiveExp
➞ StrExp + StrExp

StrIdentifier
➞ StringVariable
➞ StringLiteral
➞ StringTable [NumericExp]

NumIdentifier
➞ NumVarIdentifier
➞ NumTableIdentifier
➞ StringCharIdentifier

NumVarIdentifier
➞ NumericVariable

ObjVarIdentifier
➞ ChartVariable
➞ DigIoUnitVariable
➞ MixedIoUnitVariable
➞ TableIdentifier
➞ CommunicationHandle
ioControl User’s Guide F-13

OPTOSCRIPT LANGUAGE REFERENCE
NumTableIdentifier
➞ NumericTable [NumericExp]

TableIdentifier
➞ NumericTable
➞ StringTable

StringCharIdentifier
➞ StringVariable [NumericExp]

NumericLiteral
➞ Integer32Literal
➞ Integer64Literal
➞ FloatLiteral

LogicalUnaryExp
➞ not NumericExp

ConditionStatement
➞ IfStatement

StatementListOrEmpty
EndifStatement

➞ IfStatement
StatementListOrEmpty

ElseStatement
StatementListOrEmpty

EndifStatement
➞ IfStatement

StatementListOrEmpty
ElseIfList
EndifStatement

➞ IfStatement
StatementListOrEmpty

ElseIfList
ElseStatement

StatementListOrEmpty
EndifStatement

IfStatement
➞ if (NumericExp) then

ElseStatement
➞ else

ElseIfStatement
➞ elseif (NumericExp) then

StatementListOrEmpty

ElseIfList
➞ ElseIfStatement
➞ ElseIfList ElseIfStatement
F-14 ioControl User’s Guide

OPTOSCRIPT LANGUAGE REFERENCE
EndifStatement
➞ endif

CaseList
➞ CaseStatement
➞ CaseStatement DefaultStatement
➞ CaseList CaseStatement
➞ CaseList CaseStatement DefaultStatement

DefaultStatement
➞ default :

StatementListOrEmpty
break

CaseStatement
➞ case NumericExp :

StatementListOrEmpty
break

SwitchStatement
➞ switch (NumericExp)

CaseList
endswitch

ForStatement
➞ for NumericVariable = NumericExp to NumericExp step NumericExp

StatementListOrEmpty
next

WhileStatement
➞ while (NumericExp)

StatementListOrEmpty
wend

RepeatStatement
➞ repeat

StatementListOrEmpty
until NumericExp ;
ioControl User’s Guide F-15

OPTOSCRIPT LANGUAGE REFERENCE
F-16 ioControl User’s Guide

Index
A
action block

definition, 8-2
action command

definition, 3-8
adding

analog point, 6-21
command, 9-18

in OptoScript, 11-27
digital point, 6-16
event/reaction, 6-42
I/O unit, 6-12
mistic PID loop, 6-34
PID loop, 6-30
pointer variable to watch window, 9-16
table variable, 9-8
table variable to watch window, 9-16, 9-17
text to chart, 8-9
variable, 9-5
variable to watch window, 9-14

alarm enunciation, 10-23
algorithms for PID loops, 10-60
analog

adding I/O point, 6-21
biasing, 10-23
changing I/O while strategy is running, 6-54
copying I/O point, 6-26
I/O unit commands, 10-15
minimum/maximum value, 10-13, 10-14
offset and gain commands (instructions),

10-13, 10-14
point commands, 10-13, 11-12
point, definition, 3-4
totalizer, 10-14

TPO, 10-13
applications

launching from ioControl, 3-29
archiving strategies

restoring archives, 5-18
to computer, 7-5
to the control engine, 5-17, 7-6

argument, 4-7, 9-21
in OptoScript, 11-13

ASCII, decimal and hex values of characters,
10-31

auto stepping through a chart, 7-15, 7-17
automation, 3-3
autorun, 7-12

B
batch file, 7-10
baud rate for serial I/O units, 6-14
bill of materials, 7-29
bit commands, 10-33
bitwise operator, in OptoScript, 11-21
block

block 0, 8-2
changing color or size, 8-3, 8-12
connecting blocks, 8-7
definition, 8-2
deleting, 8-12
drawing, 8-6
finding in a chart, 3-21
guidelines for use, 4-10
moving, 8-11
naming, 4-10, 8-6
OptoScript, 11-2
selecting, 8-10
ioControl User’s Guide Index-1

stepping through, 7-15
BOM, 7-29
bookmark, 11-28
breakpoints in a chart, 7-18

C
calling a subroutine, 12-10
case statement, 11-7, 11-23

programming example, 4-16
changing

active control engine, 5-11
analog I/O while strategy is running, 6-54
baud rate for serial I/O units, 6-14
block color or size, 8-3, 8-12
chart background, 8-3
chart name or description, 8-15
column width in a dialog box, 3-22
command (instruction), 9-23
connection line color or size, 8-12
control engine definition, 5-10
debug level, 7-13
debugger speed, 7-14
digital I/O while strategy is running, 6-53
event/reaction, 6-50
I/O points, 6-29
I/O unit configuration, 6-16
I/O while strategy is running, 6-51
numeric variable, 9-14
PID loop, 6-40
pointer table, 9-17
pointer variable, 9-16
scale of a chart, 3-20
strategy download compression, 7-11
string table, 9-16
string variable, 9-14
text color or size, 8-3, 8-12
text in chart, 8-10
variable, 9-13

chart
adding text to, 8-9
auto stepping, 7-15, 7-17
breakpoints, 7-18
calling a subroutine, 12-10
changing background, 8-3
changing name or description, 8-15
changing scale, 3-20

closing, 8-14
commands, 10-17
contents, 8-2
copying, 8-14
creating, 8-1
definition, 3-7
deleting, 8-16
designing, 4-6
exporting, 8-17
finding a block, 3-21
flow-through logic, 4-9
guidelines for design, 4-9
importing, 8-18
loop logic, 4-9
looping, 11-6
monitoring in watch window, 6-73
naming, 4-10, 8-15
opening, 8-14
pausing, 7-14
printing commands (instructions), 7-25
printing graphics, 7-23
replacing elements, 7-31
saving, 7-3, 8-14
searching, 7-29
status, 3-7, 7-21
stepping through, 7-15
viewing, 3-15, 7-21
zooming in or out, 3-20

chart element
changing color or size, 8-12
cutting, copying, and pasting, 8-12
moving, 8-11
selecting, 8-10

closing
chart, 8-14
strategy, 7-3, 7-4

command
adding, 9-18
adding in OptoScript, 11-27
arguments, 4-7
changing, 9-23
commenting out, 9-24
cutting, copying, and pasting, 9-24, 9-25
definition, 3-8
deleting, 9-23
deleting temporarily, 9-24
for continue block, 9-25
Index-2 ioControl User’s Guide

groups
analog point commands, 10-13
chart commands, 10-17
communication commands, 10-35
control engine commands, 10-16
error handling commands, 10-56
event/reaction commands, 10-22
high density digital module commands,

10-6
I/O unit—event message commands,

10-54
I/O unit—scratch pad commands, 10-51
I/Ounit—memory map commands,

10-55
logical commands, 10-33
mathematical commands, 10-32
miscellaneous commands, 10-21
PID—Ethernet commands, 10-58
PID—mistic, 10-62
pointer commands, 10-56
simulation commands, 10-69
string commands, 10-23
time/date commands, 10-18
timing commands, 10-19

in OptoScript, 11-11, E-1
function, 11-14
procedure, 11-13

printing, 7-25
comment, 9-24, 10-21

in OptoScript, 11-28, F-10
communication

Ethernet link redundancy, 5-6
I/O memory map commands (instructions),

10-55
I/O unit—event message commands

(instructions), 10-54
I/O unit—scratch pad commands, 10-51
incoming, 10-37
link redundancy, 10-15
optimizing throughput, 4-21
outgoing, 10-37
overhead, reducing by using

event/reactions, 10-22
PC and control engine, 5-1
peer-to-peer, 10-36, 10-51
TCP/IP, 10-35, 10-36
with serial communication module, 10-36,

10-38, 10-40
communication commands, 10-35
communication handle

definition, 3-8, 9-3, 10-35
examples

File, 10-43
FTP, 10-48
serial, 10-51
TCP, 10-38, 10-39

File, 10-42
FTP, 10-48
port numbers, 10-37
serial, 10-50
serial communication modules, 10-38
TCP, 10-35, 10-36
types, 10-35
viewing, 9-14

comparison operators, 11-20
Compile toolbar, 3-13
compiling

strategy, 2-20, 7-6
strategy without downloading, 7-8
subroutine, 12-9

condition block
definition, 8-3
increasing efficiency in loops, 4-22

condition command, definition, 3-8
condition in OptoScript, 11-8
Configure mode, definition, 3-11
Configure toolbar, 3-12
configuring

continue block, 9-25
control engine, 5-1
event/reaction, 6-42
high-density digital module, 6-25
I/O points, 6-16
I/O unit, 6-1
mistic I/O units, 6-2
mistic PID loop, 6-34, 10-62
PID loop, 6-29, 10-59
serial module, 6-25
subroutine parameters, 12-5
table variables, 9-8
variables, 9-5

connection line
changing color or size, 8-3, 8-12
definition, 8-3
ioControl User’s Guide Index-3

deleting, 8-12
drawing, 8-7
moving, 8-11
selecting, 8-10

constant, See literal
continue block

command (instruction), 9-25
configuring, 9-25
definition, 8-3

control characters, adding to string, 10-25
control concepts, 3-3
control engine

active control engine, 5-11
archiving strategies, 5-17
changing definition, 5-10
changing the active control engine, 5-11
commands (instructions), 10-16
configuring, 5-1

in ioTerminal, 7-10
definition, 3-3
deleting from strategy, 5-12
download file, creating, 7-9
inspecting, 5-12
primary and secondary addresses, 5-6
removing association with strategy, 5-11
restoring archived strategies, 5-18
testing communication, A-4
viewing message queue, 5-14

control network
segmenting from company network, 5-5

control structures, in OptoScript, 11-22
control system example, 3-2
controller, See control engine
copying

block, 8-12
chart, 8-14
command (instruction), 9-24, 9-25
configured I/O point, 6-26
connection line, 8-12
I/O configuration, 6-3
text block, 8-12

count variable programming example, 4-15
counter

commands (instructions), 10-3
programming example, 4-14

CRC commands, 10-16
creating

flowchart, 8-1
mistic PID loop, 6-34
PID loop, 6-29
strategy, 7-1
subroutine, 12-3
toolbar, 3-28
watch window, 6-73
See also changing

cross reference window, 7-28
customizing toolbars, 3-25
cutting

block, 8-12
command (instruction), 9-24, 9-25
connection line, 8-12
text block, 8-12

D
data types in subroutines, 12-2
data, sorting, in a dialog box, 3-23
date commands, 10-18
Debug mode

definition, 3-12
inspecting control engine, 5-12
inspecting I/O, 6-51

Debug toolbar, 3-13
debugging

changing speed, 7-14
choosing level, 7-13
strategy, 7-13
subroutines, 12-12
when using OptoScript, 11-30

delay
commands, 10-19
using in condition block loops, 4-22

deleting
chart, 8-16
chart elements, 8-12
command (instruction), 9-23
command, temporarily, 9-24
control engine association with strategy,

5-11
control engine from strategy, 5-12
event/reaction, 6-51
I/O point, 6-29
I/O unit, 6-16
PID loop, 6-41
Index-4 ioControl User’s Guide

toolbar buttons, 3-27
variable, 9-13

designing
basic rules for strategies, 4-9
for faster throughput, 4-21
steps for, 4-1

dialog box
sizing columns, 3-22
sorting columns, 3-23

digital
adding digital point, 6-16
changing I/O while strategy is running, 6-53
copying I/O point, 6-26
counter, 10-3
high-density module commands, 10-6
I/O unit commands, 10-15
latches, 10-3
MOMO event or reaction, 6-46
point commands, 11-12
point, definition, 3-4
pulse commands (instructions), 10-4
quadrature counter, 10-4
totalizer, 10-4

digital-only I/O unit, 6-9
directory listing, 10-50
disabling I/O, 10-5
docking

Strategy Tree, 3-17
watch window, 6-75

DOS batch file, 7-10
down timers, 10-20
downloading

files using FTP, 10-48
files using ioTerminal, 5-19
initialization file for table variable, 9-12
strategy, 7-6, 7-9

changing compression, 7-11
without using ioControl, 7-9

drawing toolbar, 3-12, 8-3
drum sequencers, using event/reactions for,

10-23

E
editing, See changing
EEPROM, See flash
elapsed time, 7-20

error
cannot delete item, A-2
queue, 5-14, B-2
status codes, B-3
TCP/IP cannot connect, A-5
types, B-1
See also troubleshooting

error handling
commands (instructions), 10-56
programming example, 4-13

Ethernet
connections, 10-41
link redundancy, 5-6

commands for, 10-15
ports, 10-41

event/reaction
adding, 6-42
changing, 6-50
commands, 10-22
configuration example, 6-48
configuring, 6-42
deleting, 6-51
groups, 6-49
inspecting, 6-56
MOMO, 6-46, 6-57

example
case statements, 4-16, 11-7
complex operations, 11-10
control system, 3-2
counter, 4-14
creating messages to display on screen,

4-11
error handling chart, 4-13
event/reaction, 6-48
File communication handle, 10-43
flag, 4-18
FTP communication handle, 10-48
if statements, 11-8
loops, 11-6
mathematical expressions, 11-3
mistic PID loop configuration, 6-39
pointers (indexing), 4-19
repetitive actions, 4-15
serial communication handle, 10-51
string building, 10-27, 11-4
string data extraction, 10-26
string formats, 10-25
ioControl User’s Guide Index-5

string table, 10-26
subroutine parameters, 12-8
TCP communication handle, 10-38
timer, 4-17

exiting, See closing
exporting

chart, 8-17
I/O configuration, 6-3

F
File communication handle, 10-42

examples, 10-43
file system on the brain

moving files via FTP, 10-48
saving files to flash, 10-17

file toolbar, 3-12
finding a block in a chart, 3-21
flag programming example, 4-18
flash memory, 6-52

saving files to, 10-17
saving strategy to, 7-4

floating point
converting to integer, 10-33
converting to string, 10-30
definition, 3-7, 10-32
in logic, 10-34
variable, definition, 9-2

flowchart, See chart
flow-through logic, 4-9
for loop, 11-6, 11-24
format

File communication handle, 10-42
FTP communication handle, 10-48
serial communication handle, 10-51
TCP communication handle, 10-37

FTP
directory listing, 10-50

FTP communication handle, 10-48
full debug, definition, 7-13
functions in OptoScript, 11-11

G
gain

and offset, 10-14
in PID loops, 6-65

grammar in OptoScript, F-11

H
hardware requirements for ioControl, 1-5
help

See also troubleshooting
help, online, 3-30
hex display mode, 3-24
hiding toolbars, 3-13
high-density digital

commands, 10-6
configuring module, 6-25
counting, 10-7
latches, 10-6

host task, 4-21
definition, 3-8
increasing frequency, 4-22

Hungarian notation, 11-14

I
I/O

changing configured point, 6-29
configuring, 6-16
copying configured point, 6-26
deleting configured point, 6-29
disabling, 10-5
exporting configuration, 6-3
importing configuration, 6-4
in strategy design, 4-2, 4-4
monitoring in watch window, 6-73
moving configured point, 6-25
naming points, 4-11
point numbers, 6-4
point, definition, 3-3
segmenting I/O from host network, 5-5
using in OptoScript, 11-12
viewing all in a strategy, 7-26, 7-28

I/O unit
adding, 6-12
changing, 6-16
commands, 4-23, 10-15, 10-51, 10-54,

10-55
compatibility chart, 6-4
configuring, 6-1
definition, 6-1
Index-6 ioControl User’s Guide

deleting, 6-16
exporting configuration, 6-3
importing configuration, 6-4
mistic, 6-5
monitoring in watch window, 6-73
point numbers, 6-4
serial, 6-5

if statements
in OptoScript, 11-22

if/then statements, 11-8
importing

chart, 8-18
I/O configuration, 6-4

info, viewing, 5-14
initialization file, 5-19, 9-10

creating, 9-10
downloading, 9-12

input point
definition, 3-3
disabling, 10-5

input/output, See I/O
inspecting

control engine, 5-12
control engine using ioTerminal, 5-16
event/reactions, 6-56
I/O, 6-51, 6-52
I/O using watch window, 6-73
mistic PID, 6-71
PID loop, 6-58
See also viewing

installing ioControl, 1-5
instruction, See command
integer

converting to float, 10-33
definition, 3-7, 10-32
in logic, 10-34
variable, definition, 9-2

interacting algorithm for PID, 10-60
interrupt, 6-42
ioControl

customizing, 3-25
definition, 3-1
designing a strategy, 4-1
directory, list of files in, C-2
errors, B-1
files, list of, C-1
installing, 1-5

main window, 3-11
mode, 3-11
opening other applications, 3-29
programming, 4-1, 11-1
system requirements, 1-5

ioDisplay, 3-8
ioManager, 6-1
ioMessage Viewer utility, A-7
ioTerminal utility

downloading files, 5-19
inspecting control engines, 5-16
testing communication with control engine,

A-4
ioUtilities, 5-16, 5-19, A-4, A-7, A-8
IP address

loopback, 10-37, 10-39
primary and secondary, 5-6

ISA algorithm for PID, 10-60
IVAL, 10-5

L
lag time, for PID, 6-59
latch, 10-6

commands (instructions), 10-3
launching, See opening
link redundancy, 10-15
literal

constant, 9-5
in OptoScript, F-8

load last mode at startup, 7-2
load last strategy at startup, 7-2
local subroutine parameter, 12-2
local variable, 12-2
log file, C-2
logic, in charts, 4-9, 4-22
logical commands (instructions), 10-33
logical operator in OptoScript, 11-20
logical true and false, 10-34
loop logic, 4-9
loopback address, 10-37, 10-39
looping, 11-6, 11-23, 11-24

M
mathematical commands (instructions), 10-32
mathematical expressions, 11-3
ioControl User’s Guide Index-7

in OptoScript, 11-19
memory, A-3
memory map commands, 10-55
message on screen, programming example,

4-11
message queue, 5-14
minimal debug, definition, 7-13
minimum/maximum value, 10-13, 10-14
mistic I/O unit, 6-5

addressing points, 6-10, 6-12
mistic I/O units, 6-2
mistic PID commands, 10-62
mode

Configure, definition of, 3-11
Debug, definition of, 3-12
Online, definition of, 3-12

mode toolbar, 3-13
modifying, See changing
MOMO, 6-46, 6-57
monitoring, See inspecting and viewing
mounting rack

analog/digital/serial I/O units, 6-7
B3000 serial, 6-10
compatibility, 6-4
digital I/O units, 6-9
G4, B100, B200 serial mistic brains, 6-12
SNAP-BRS, 6-10
SNAP-ENET-S64, 6-8
SNAP-UP1-M64, 6-8

moving
block, 8-11
connection line, 8-11
files via FTP, 10-48
I/O point, 6-25
text block, 8-11
to another window or chart, 3-15
toolbar, 3-13, 3-26
toolbar buttons, 3-27

multitasking, 3-8, 4-21
and strings, 10-25

must on/must off, See MOMO

N
naming

block, 4-10, 8-6
chart, 4-10, 8-15

conventions, 4-10, 11-14
I/O points, 4-11
variables, 4-11, 11-14

network
segmenting control network, 5-5

network redundancy, 5-6
number, converting to string, 10-30
numeric literals in OptoScript, 11-15
numeric table

adding, 9-8
as alternative to strings, 10-24

numeric variable
adding, 9-5
in OptoScript, 11-16

O
offset and gain commands (instructions),

10-13, 10-14
offset, definition, 10-14
online help, 3-30
Online mode

avoiding memory problems, 3-12
definition, 3-12

opening
applications from ioControl, 3-29
chart, 8-14
strategy, 7-2
watch window, 6-75

operator
bitwise, in OptoScript, 11-21
comparison, in OptoScript, 11-20
in standard commands (AND/OR), 9-22
logical, in OptoScript, 11-20
order of precedence, F-9

OptoScript
bitwise operators, 11-21
block example, 11-2
block, definition, 8-3
bookmark, 11-28
case statements, 11-7, 11-23
commands, 11-11, E-1
comments, F-10
communication handle, 10-45
comparison operators, 11-20
comparison with other languages, F-1
complex loops, 11-6
Index-8 ioControl User’s Guide

conditions, 11-8
control structures, 11-22
debugging strategies, 11-30
definition, 11-1
editor, 11-25
for loop, 11-24
functions, 11-11
if statements, 11-22
language reference, F-1
literals, F-8
logical operator, 11-20
math expressions, 11-3, 11-19
notes for programmers, F-6
numeric literals, 11-15
numeric variables, 11-16
pointers, 11-17
precedence for operators, F-9
repeat loop, 11-24
string handling, 11-4
strings, 11-16
switch statements, 11-23
syntax, 11-13, F-7, F-11
tables, 11-18
toolbar, 11-26
troubleshooting, 11-29
when to use, 11-2
while loop, 11-23

OptoVersion utility, A-8
output point

definition, 3-3
disabling, 10-5

P
page setup for printing graphics, 7-23
parallel algorithm for PID, 10-60
parameters, subroutine, 12-1, 12-5
passed-in subroutine parameters, 12-1
pasting

block, 8-12
command (instruction), 9-24, 9-25
connection line, 8-12
text block, 8-12

pausing
chart, 7-14

peer-to-peer communication, 10-36, 10-51
permanent storage, See flash memory

permissions in Windows 2000, A-9
persistent data, 9-4
persistent RAM, A-3
PID loop, 10-63

adding mistic, 6-34
algorithms, 10-60
changing, 6-40
configuring, 6-29, 10-59
definition, 10-59, 10-62
deleting, 6-41
determining system lag, 6-59
inspecting, 6-58
inspecting mistic, 6-71
mistic, 10-62
mistic configuration example, 6-39
tuning, 6-64
tuning mistic, 6-71

PID—Ethernet commands, 10-58
PID—mistic commands, 10-62
pointer

adding, 9-5
commands, 10-56, 11-17
definition, 3-8, 9-3, 10-57
in OptoScript, 11-17
programming example (indexing), 4-19

pointer table, 10-58
adding, 9-8

port
Ethernet, 10-41
peer-to-peer communication, 10-37

Powerup chart, 3-7
uses, 4-9

powerup sequencing, 10-23
precedence for operators, F-9
primary and secondary addresses

for control engine, 5-6
for I/O unit, 6-14

printing
bill of materials, 7-29
chart commands (instructions), 7-25
chart graphics, 7-23
chart instructions, 9-26
page setup, 7-23
subroutine commands, 7-25

problems, see troubleshooting
Product Support, 1-4
programming
ioControl User’s Guide Index-9

comparing OptoScript with other
languages, F-1

examples, 4-11
in ioControl, 4-1

pulse
commands (instructions), 10-4

Q
quadrature counter commands (instructions),

10-4
queue

checking messages, 5-14, B-2
quotation marks in strings, 11-16

R
rack for I/O modules

analog/digital/serial I/O units, 6-7
B3000 serial brains, 6-10
compatibility, 6-4
digital I/O units, 6-9
G4, B100, B200 serial mistic brains, 6-12
SNAP-BRS, 6-10
SNAP-ENET-S64, 6-8
SNAP-UP1-M64, 6-8

RAM, A-3
redundant communication links, 5-6, 10-15
repeat loop, 11-6, 11-24
repetitive actions programming example, 4-15
replacing elements, 7-31
retrieving a directory listing, 10-50
rounding, 10-32
running a strategy, 2-21

automatically, 7-12
manually, 7-12
without using ioControl, 7-10

S
saving

chart, 7-3, 8-14
configurations to flash memory, 6-52
files to flash memory, 10-17
strategy, 7-3
strategy to flash, 7-4
subroutine, 12-9

scanning event/reactions in a group, 6-49
scratch pad commands, 10-51
searching, 7-29
secondary address, 5-6, 6-14
segmenting control network, 5-5
selecting

block or text block, 8-10
connection line, 8-10

serial communication handle, 10-50
serial communication module

communicating with, 10-36, 10-38, 10-40
configuring, 6-25

serial devices, communicating with, 10-50
serial I/O unit, 6-5

changing baud rate, 6-14
setpoint, for PID, 6-29
setting hex display mode, 3-24
showing toolbars, 3-13
simulation commands, 10-69
sizing columns in a dialog box, 3-22
SNAP-B3000-ENET

referencing points on the rack, 6-6, 6-7
SNAP-D64RS rack, 6-9
SNAP-ENET-D64

referencing points on the rack, 6-9
SNAP-ENET-RTC

referencing points on the rack, 6-6, 6-7
SNAP-ENET-S64

referencing points on the rack, 6-8, 6-9
SNAP-PAC-R1

referencing points on the rack, 6-6
SNAP-PAC-R2

referencing points on the rack, 6-8
SNAP-UP1-ADS

referencing points on the rack, 6-6, 6-7
SNAP-UP1-D64

referencing points on the rack, 6-9
SNAP-UP1-M64

referencing points on the rack, 6-8, 6-9
software, launching from ioControl, 3-29
sorting columns in a dialog box, 3-23
splitting chart windows, 3-18
starting a strategy, 7-12
status codes, B-3
step into, 7-15
step out, 7-15
step over, 7-15
Index-10 ioControl User’s Guide

stepping
inside blocks, 7-16
one block at a time, 7-15
through a chart, 7-15
within a block, 7-13

stopping
strategy, 7-13

without using ioControl, 7-10
strategy

archiving
to computer, 7-5
to control engine, 5-17, 7-6

closing, 7-3, 7-4
compiling, 2-20, 7-6
compiling without downloading, 7-8
creating, 7-1
debugging, 7-13
debugging when using OptoScript, 11-30
definition, 3-9, 7-1
deleting control engine, 5-12
designing, 4-1, 4-9
designing for faster throughput, 4-21
disassociating control engine, 5-11
downloading, 7-6, 7-9
downloading, changing compression, 7-11
downloading, without using ioControl, 7-9
files, C-1
including subroutine, 12-9
opening, 7-2
replacing elements, 7-31
restoring archive from control engine, 5-18
running, 2-21

automatically, 7-12
manually, 7-12
without using ioControl, 7-10

saving, 7-3
saving to flash EEPROM, 7-4
searching, 7-29
stopping, 7-13
viewing all operands, 7-28
viewing variables and I/O, 7-26

Strategy Tree
definition, 3-14
docking, 3-17
icons, 3-14

string
adding control characters, 10-25

building, example of, 10-27
commands, 10-23, 11-16

equivalents in Visual Basic and C, 10-29
convert-to-string commands, 10-30
data extraction, example of, 10-26
definition, 3-7
examples, 10-25, 11-16
in OptoScript, 11-16
length and width, 10-24
quotation marks, 11-16
variable, adding, 9-5
variable, definition of, 9-3

string handling, 11-4
string table

adding, 9-8
example, 10-26

subroutine
adding commands (instructions), 12-8
adding local variables, 12-8
auto stepping, 7-17
breakpoints, 7-18
calling from a chart, 12-10
compiling, 12-9
configuring parameters, 12-5
configuring parameters, example, 12-8
creating, 12-3
data types, 12-2
debugging, 12-12
definition, 12-1
including in strategy, 12-9
list of files in, C-2
parameters, 12-1
pausing, 7-14
printing commands, 7-25
printing graphics, 7-23
saving, 12-9
searching, 7-29
stepping through, 7-15
tips, 12-3
viewing, 12-13
viewing all operands, 7-28
viewing variables, 7-26

switch statement, 11-7, 11-23
syntax

common errors, in OptoScript, 11-29
in OptoScript, 11-13, F-7, F-11

system requirements for ioControl, 1-5
ioControl User’s Guide Index-11

T
table

commands, 10-16, 10-21
in OptoScript, 11-18
numeric table as alternative to strings,

10-24
table variable, 9-4

adding, 9-8
changing, 9-16, 9-17
configuring, 9-8
initializing during strategy download, 9-10
monitoring in a watch window, 9-16, 9-17
optimizing throughput, 4-23

tabs, using to view windows, 3-15
target address, 10-15
task queue, 4-21, 10-17
TCP communication handle, 10-35, 10-36
TCP/IP cannot connect error, resolving, A-5
text block

deleting, 8-12
moving, 8-11
selecting, 8-10

text, changing color or size, 8-3, 8-12
throughput, optimizing, 4-21
time/date commands (instructions), 10-18
timer

commands (instructions), 10-19
definition, 3-7
down timer, 10-20
programming example, 4-17
up timer, 10-20
variable, definition, 9-3

timing a process, commands used for, 10-18
toolbar, 3-12

buttons, moving and deleting, 3-27
customizing, 3-25, 3-28
drawing, 8-3
hiding, 3-13
matching to screen resolution, 3-25
moving, 3-13, 3-26
OptoScript, 11-26
showing, 3-13

totalizer commands (instructions), 10-4, 10-14
TPO, 10-13
trigonometry commands (instructions), 10-32
troubleshooting

how to begin, A-1

in OptoScript, 11-29
ioMessage Viewer utility, A-7
memory problems, A-3
memory problems from Online mode

changes, 3-12
Product Support, 1-4
Windows 2000 permissions, A-9

tuning
mistic PID loop, 6-71
PID loop, 6-64

U
up timers, 10-20

V
variable

adding, 9-5
changing, 9-13, 9-14, 9-16
configuring, 9-5
definition, 3-9, 9-1
deleting, 9-13
in strategy design, 4-5
literal (constant), 9-5
monitoring in a watch window, 6-73, 9-14,

9-16
naming, 4-11, 11-14
OptoScript compared to other languages,

F-6
persisent data in, 9-4
pointer, definition, 10-57
table, 9-4
types of data, 9-2
types, in ioControl, 9-3
viewing all in a strategy, 7-26, 7-28

velocity algorithm for PID, 10-60
version, checking with OptoVersion, A-8
View toolbar, 3-13
subroutine

viewingviewing, See also inspecting
viewing

all operands, 7-28
all variables and I/O, 7-26
another window or chart, 3-15
bill of materials, 7-29
chart, 7-21
Index-12 ioControl User’s Guide

chart instructions, 9-26
communication handle variable, 9-14
event/reactions, 6-56
message queue, 5-14
mistic PID, 6-71
numeric table variable, 9-16
numeric variable, 9-14
PID loop, 6-58
pointer table variable, 9-17
pointer variable, 9-16
string table changing

numeric table, 9-16
string variable, 9-14
subroutine, 12-13
two copies of a chart at once, 3-18

W
warning, viewing, 5-14

watch window
creating, 6-73
docking, 3-17, 6-75
monitoring pointer variable, 9-16
monitoring table variable, 9-16, 9-17
monitoring variable, 9-14
opening, 6-75

while loop, 11-6, 11-23
Windows 2000

permissions, A-9

X
XVAL, 10-5

Z
zooming in or out, 3-20
z-order, changing, 8-11
ioControl User’s Guide Index-13

Index-14 ioControl User’s Guide

	Table of Contents
	1—Welcome to ioControl
	Introduction
	About this Guide
	Document Conventions

	Other Resources
	Documents and Online Help
	Product Support

	Installing ioControl
	System Requirements
	Installation Requirements
	Compatible Control Engines and I/O Units
	Important Note on Disk Drives

	2—ioControl Tutorial
	Introduction
	In this Chapter

	Opening the Strategy
	Saving the Strategy
	Examining the Strategy
	The Strategy Tree
	Docking the Strategy Tree

	Opening a Chart
	Opening a Block
	Adding a Command
	Configuring a Control Engine
	Compiling the Strategy
	Running the Strategy
	Inspecting Messages
	Stepping Through the Chart
	Auto Stepping

	Compiling and Downloading the Change
	Using a Watch Window
	Closing the Strategy and Exiting
	What’s Next?

	3—What Is ioControl?
	Introduction
	In this Chapter

	About ioControl
	Control System Example

	General Control Concepts
	Automation
	Control Engines
	Digital and Analog Inputs and Outputs
	SNAP Special-Purpose I/O Modules

	Key Features
	ioControl Terminology
	Analog Point
	Blocks
	Digital Point
	External Value
	Flowcharts
	Input Point
	Instructions (Commands)
	Internal Value
	Multitasking
	Output Point
	Pointer
	Strategy
	Variables

	ioControl Main Window
	Status Bar
	Mode
	Toolbars
	Moving Toolbars
	Hiding and Showing Toolbars

	Strategy Tree

	Windows and Dialog Boxes in ioControl
	Using Tabs to View Open Windows
	Docking Windows
	Splitting a Chart or Subroutine Window
	Zooming in a Chart or Subroutine Window
	Redrawing a Chart or Subroutine Window
	Changing Column Width in a Dialog Box
	Sorting Data in a Dialog Box

	Customizing ioControl for Your Needs
	Setting Decimal, Binary, or Hex Display Mode
	Setting Hex String View

	Customizing Toolbars
	Choosing Toolbars for Your Screen Resolution
	Moving Toolbars
	Moving and Deleting Buttons
	Creating Your Own Toolbar

	Setting Up Applications to Launch from ioControl

	Online Help

	4—Designing Your Strategy
	Introduction
	In this Chapter

	Steps to Design
	Solving the Problem
	Defining the Problem
	Designing a Logical Sequence of Steps to Solve the Problem
	Testing the Steps

	Building the Strategy
	Configuring Hardware
	Determining and Configuring Variables
	Creating ioControl Charts and Adding Instructions
	Compiling and Debugging the Strategy

	Using and Improving the Strategy

	Basic Rules
	Chart Guidelines
	Naming Conventions

	Instruction Examples
	Creating Messages to Display On Screen
	Error Handling
	Counting
	Using a Count Variable for Repetitive Actions
	Programming Case Statements
	Using a Timer
	Using a Flag
	Pointers and Indexing

	Optimizing Throughput
	Understanding ioControl Multitasking
	Host Task

	Optimizing PC to Control Engine Throughput
	Increasing Host Task Frequency
	Increasing Efficiencies in Your Strategy
	Ensuring Data Freshness for ioDisplay

	Optimizing Control Engine to I/O Throughput
	Using I/O Unit Commands
	Handling I/O Errors Efficiently

	5—Working with Control Engines
	Introduction
	In this Chapter

	Configuring Control Engines
	Defining a Control Engine on Your PC
	Control Engine Configuration Dialog Box

	Associating the Control Engine with Your Strategy

	Using Network Segmenting in ioControl
	Using Ethernet Link Redundancy in ioControl
	System Architecture for Ethernet Link Redundancy
	Ethernet Link Redundancy
	Ethernet Link, Computer, and Software Redundancy
	Ethernet Link Redundancy with Serial I/O Units

	Configuring Ethernet Link Redundancy
	Using Strategies with Link Redundancy

	Changing or Deleting a Control Engine
	Changing a Control Engine’s Definition
	Changing the Control Engine that Receives the Downloaded Strategy
	Removing a Control Engine’s Association with a Strategy
	Deleting a Control Engine from Your PC

	Inspecting Control Engines and the Queue
	Inspecting Control Engines in Debug Mode
	Viewing the Message Queue
	Message Queue Information

	Inspecting Control Engines from the ioTerminal Utility

	Downloading Files to the Control Engine
	Archiving Strategies
	Archiving to the Control Engine
	Restoring Archived Strategies from the Control Engine

	Downloading Files Without Opening ioControl

	6—Working with I/O
	Introduction
	In this Chapter

	Choosing a Configuration Tool
	Importing I/O Configuration into ioControl
	Copying I/O Configurations
	Creating the Configuration Export File
	Importing the Configuration File

	About I/O Units
	Addressing I/O Units
	SNAP Ethernet Analog and Digital Systems
	SNAP Ethernet Analog and Simple Digital Systems
	SNAP Ethernet Digital-Only Systems
	SNAP Serial-Based (mistic) I/O Units
	Non-SNAP Serial-Based (mistic) I/O Units

	Adding an I/O Unit
	Add I/O Unit Dialog Box
	Changing the Baud Rate for Serial I/O Units
	Changing Configured I/O Units
	Deleting Configured I/O Units

	Adding I/O Points
	Adding a Digital I/O Point
	Add Digital Point Dialog Box

	Adding an Analog I/O Point
	Add Analog Point Dialog Box

	Configuring Special-Purpose Modules
	Configuring a Serial Module
	Configuring a SNAP High-Density Digital Module

	Changing Point Configuration
	Moving a Configured I/O Point
	Copying a Configured I/O Point
	Changing a Configured I/O Point
	Deleting a Configured I/O Point

	Configuring PID Loops
	PIDs and Strategies
	Adding a PID Loop (Ethernet)
	Add PID Loop Dialog Box

	Adding a PID Loop (mistic)
	Add PID Loop Dialog Box (mistic)
	Setting PID Loop Control Options (mistic PIDs)
	PID Loop Control Options Dialog Box
	Mistic PID Loop Configuration Example

	Changing a PID Loop (Ethernet or mistic)
	Deleting a PID Loop (Ethernet or mistic)

	Configuring Event/Reactions
	Add Event/Reaction Dialog Box
	Adding a MOMO Event or Reaction (mistic I/O Units Only)
	Event/Reaction Configuration Example
	Using Event/Reaction Groups (mistic I/O Units Only)
	Creating Groups
	Deleting Groups

	Changing Configured Event/Reactions (mistic I/O Units Only)
	Deleting Event/Reactions (mistic I/O Units Only)

	Inspecting I/O in Debug Mode
	Inspecting I/O Units
	Inspecting Digital I/O Points
	Inspecting Analog I/O Points
	Inspecting Event/Reactions
	View Event/Reaction Dialog Box
	MOMO Event/Reactions

	Inspecting and Tuning PID Loops
	Inspecting a PID (Ethernet)
	Determining System Lag
	Tuning a PID Loop (Ethernet)
	Inspecting a PID Loop (mistic)
	View PID Loop (mistic) Dialog

	Using Watch Windows for Monitoring
	Creating a Watch Window
	Opening an Existing Watch Window
	Working in Watch Windows

	7—Working with Strategies
	Introduction
	In this Chapter

	Creating a New Strategy
	Opening a Strategy
	Opening an Existing Strategy
	Opening a Recently Used Strategy
	Loading a Strategy or Mode at Startup
	Opening Strategies in ioControl Basic and ioControl Professional
	Opening an OptoControl Strategy

	Saving and Closing
	Saving the Strategy and All Charts
	Saving the Strategy and Some Charts
	Saving the Strategy to a New Name
	Saving Before Debugging
	Closing a Strategy

	Saving a Strategy to Flash
	Saving to Flash Once
	Saving to Flash on Every Download

	Archiving Strategies
	Archiving to the Computer
	Archiving to the Control Engine

	Compiling and Downloading
	Compiling and Downloading in One Step
	Compiling without Downloading
	Compiling the Active Chart or Subroutine
	Compiling Changes Only
	Compiling the Entire Strategy

	Downloading Only
	Downloading Without Using ioControl
	Creating the Control Engine Download (.cdf) File
	Downloading the .cdf File using ioTerminal
	Downloading the .cdf File Using a DOS Batch File

	Changing Download Compression

	Running a Strategy Manually
	Running a Strategy Automatically (Autorun)
	Protecting a Running Strategy

	Stopping a Strategy
	Debugging
	Choosing Debug Level
	Changing Debugger Speed
	Pausing a Chart or Subroutine
	Stepping Through a Chart or Subroutine
	Single Stepping
	Auto Stepping

	Setting and Removing Breakpoints
	Managing Multiple Breakpoints
	Interpreting Elapsed Times

	Viewing and Printing
	Viewing Strategy Filename and Path
	Viewing an Individual Chart or Subroutine
	Viewing All Charts in a Strategy
	Printing Chart or Subroutine Graphics
	Setting Up the Page
	Previewing a Flowchart Printout
	Printing One Chart or Subroutine
	Printing All Charts in a Strategy

	Viewing and Printing Strategy or Subroutine Commands
	Viewing and Printing Strategy or Subroutine Elements
	Viewing and Printing a Cross Reference
	View and Print a Bill of Materials

	Searching and Replacing
	Searching
	Replacing

	8—Working with Flowcharts
	Introduction
	In this Chapter

	Creating a New Chart
	Working with Chart Elements
	What’s In a Chart?
	Using the Drawing Toolbar

	Changing the Appearance of Elements in a Chart Window
	Configure Chart Properties Dialog Box
	Changing Existing Elements to Match New Defaults

	Drawing Blocks
	Naming Blocks
	Renaming Blocks

	Connecting Blocks
	Action Blocks and OptoScript Blocks
	Condition Blocks

	Adding Text
	Editing Text

	Selecting Elements
	Moving Elements
	Moving Elements in Front of or Behind Other Elements (Changing Z-Order)

	Cutting, Copying, and Pasting Elements
	Deleting Elements
	Changing Element Color and Size
	Resizing Blocks or Text Blocks
	Changing Block Colors
	Changing Text
	Changing an Element Back to the Defaults

	Opening, Saving, and Closing Charts
	Opening a Chart
	Saving a Chart
	Closing a Chart

	Copying, Renaming, and Deleting Charts
	Copying a Chart
	Renaming a Chart
	Deleting a Chart

	Printing Charts
	Exporting and Importing Charts
	Exporting a Chart
	Importing a Chart

	9—Using Variables and Commands
	Introduction
	In this Chapter

	About Variables
	Types of Data in a Variable
	Variables in ioControl
	Table Variables

	Persistent Data
	Literals

	Adding Variables
	Add Variable Dialog Box

	Adding Tables
	Adding Table Variables
	Setting Initial Values in Tables During Strategy Download
	Creating the Initialization File
	Text Examples
	Downloading the Initialization File

	Changing a Configured Variable
	Deleting a Variable
	Viewing Variables in Debug Mode
	Viewing Numeric, String, and Communication Handle Variables
	Viewing Pointer Variables
	Viewing Numeric and String Tables
	Viewing Pointer Tables

	Adding Commands
	Changing a Command
	Deleting a Command
	Permanently Deleting a Command
	Commenting Out a Command

	Cutting or Copying a Command
	Pasting a Command
	Configuring a Continue Block
	Viewing and Printing Chart Instructions

	10—Programming with Commands
	Introduction
	In this Chapter

	Digital Point Commands
	States, Latches, and Counters
	Latches
	Counters
	Quadrature Counters

	Totalizers
	Pulses
	IVAL and XVAL
	Simulation and Test: The “Real” Use for XVAL and IVAL

	Additional Commands to Use with Standard Digital Points
	Standard Digital Points and OptoScript Code

	High-Density Digital Module Commands
	About High-Density Digital Modules
	Comparing SNAP High-Density and Standard Digital Modules

	Counting on High-Density Digital Modules
	Using HDD Module Counters

	Using HDD Module Commands
	Individual Point
	All Points on a Module
	All HDD Modules on the I/O Unit

	Analog Point Commands
	Offset and Gain Commands
	Minimum/Maximum Values
	Analog Totalizers
	Analog Points and OptoScript Code

	I/O Unit Commands
	Commands for Ethernet Link Redundancy
	Table Commands

	Control Engine Commands
	Commands Relating to Permanent Storage

	Chart Commands
	About the Task Queue

	Time/Date Commands
	Timing Commands
	Delay Commands
	Using Timers
	Down Timer Operation
	Up Timer Operation

	Miscellaneous Commands
	Comment Commands

	Event Reaction Commands
	Understanding Event/Reactions (mistic I/O Units Only)
	Why Use Event/Reactions?
	Typical Applications for Event/Reactions

	String Commands
	Using Strings
	String Length and Width
	Using Numeric Tables as an Alternative to Strings
	Strings and Multitasking
	Adding Control Characters to a String
	Sample String Variable
	Sample String Table
	String Data Extraction Examples
	Find Substring in String: Example 1
	Find Substring in String: Example 2

	String Building Example
	Move String
	Append Character to String
	Append String to String
	Append Character to String

	Comparison to Visual Basic and C
	Convert-to-String Commands
	ASCII Table

	Mathematical Commands
	Using Integers
	Using Floats
	Controlling Rounding

	Mixing and Converting Integers and Floats

	Logical Commands
	Understanding Logical Commands
	Logical True and Logical False

	Communication Commands
	Communication Handles
	Using TCP Communication Handles
	Incoming and Outgoing Communication
	TCP Communication Handle Examples
	Using Flowcharts to Control TCP/IP Communication
	Ethernet Connections and Ports

	Using the Control Engine’s File System
	Working with Files in Your Strategy

	Moving Files via FTP
	FTP Communication Handle Examples
	Using FTP Communication Handles in Your Strategy
	Retrieving a Directory Listing

	Using Serial Communication Handles to Communicate with Serial Devices
	Serial Communication Handle Examples
	Using Serial Communication Handles in Your Strategy

	I/O Unit—Scratch Pad Commands
	I/O Unit—Event Message Commands
	I/O Unit—Memory Map Commands
	Error Handling Commands
	Pointer Commands
	Understanding Pointers
	Advantages of Using Pointers
	Referencing Objects with Pointers

	PID—Ethernet Commands
	What is a PID?
	PID Loops on I/O Units
	Algorithm Choices (PID—Ethernet)
	Equations Common to All Algorithms
	Velocity Algorithm
	Non-velocity Algorithms

	PID—Mistic Commands
	What is a PID?
	Using PIDs on mistic I/O Units
	Velocity PID Equation (PID—mistic)
	Gain (P)
	Integral (I)
	Derivative (D)
	Integral-Derivative Interaction

	Configuration Tips (PID—mistic)
	Tuning Guidelines (PID—mistic)
	Setting the Scan Rate
	Determining the Loop Dead Time
	Tuning
	Solving Tuning Problems
	Starting the Tuning Process for a New PID Loop
	Derivative

	Tuning Graphs (PID—mistic)

	Simulation Commands

	11—Using OptoScript
	Introduction
	In this Chapter

	About OptoScript
	When To Use OptoScript
	For Math Expressions
	For String Handling
	For Complex Loops
	For Case Statements
	For Conditions
	For Combining Expressions, Operators, and Conditions

	OptoScript Functions and Commands
	Standard and OptoScript Commands
	Using I/O in OptoScript

	OptoScript Syntax
	More About Syntax with Commands

	OptoScript Data Types and Variables
	Variable Name Conventions
	Using Numeric Literals
	Making Assignments to Numeric Variables
	Using Strings
	Working with Pointers
	Working with Tables

	OptoScript Expressions and Operators
	Using Mathematical Expressions
	Using Comparison Operators
	Using Logical Operators
	Using Bitwise Operators
	Precedence

	OptoScript Control Structures
	If Statements
	Switch or Case Statements
	While Loops
	Repeat Loops
	For Loops

	Using the OptoScript Editor
	Troubleshooting “Unable To Find” Errors
	Troubleshooting Syntax Errors
	Debugging Strategies with OptoScript

	12—Using Subroutines
	Introduction
	In this Chapter

	About Subroutines
	Data Types for Subroutines

	Creating Subroutines
	Tips for Subroutines
	Drawing the Flowchart
	Configuring Subroutine Parameters
	Configured Parameters Example

	Adding Commands and Local Variables
	Compiling and Saving the Subroutine

	Using Subroutines
	Including a Subroutine in a Strategy
	Adding a Subroutine Instruction
	Debugging Subroutines

	Viewing Subroutines
	Viewing All Subroutines in a Strategy

	Printing Subroutines

	A—ioControl Troubleshooting
	How to Begin Troubleshooting
	1. Read Any Error Message Box
	2. Check Communication with the Control Engine
	3. Check the Message Queue
	4. Check Status Codes in Your Strategy
	5. Call Product Support

	Strategy Problems
	If You Cannot Delete an Item
	If You Have Memory Problems
	Archiving Strategies
	Do You Use Online Mode?

	Checking Communication with the Control Engine
	Resolving Communication Problems
	Matching ioControl Configuration to the Real World
	Resolving TCP/IP Cannot Connect Errors (-412)
	Pinging the Control Engine

	Other Troubleshooting Tools
	Checking Detailed Communication Information Using ioMessage Viewer
	Checking File Versions for Opto 22 Software
	Problems with Permissions in Windows 2000

	B—ioControl Errors and Messages
	Introduction
	Types of Errors
	ioControl Errors
	Queue Messages
	Using Queue Messages

	Status Codes

	List of Common Messages

	C—ioControl Files
	Introduction
	Files Related to a Strategy
	Files Associated with a Subroutine
	Files in the ioControl Directory

	D—Sample Strategy
	Introduction
	Factory Schematic
	Description of the Process
	Dough Vessel
	Chip Hopper
	Oven
	Inspection Station
	Conveyor
	Emergency Stops

	Required I/O
	Analog I/O
	Digital I/O

	E—OptoScript Command Equivalents
	Introduction

	F—OptoScript Language Reference
	Introduction
	OptoScript Comparison with Standard Programming Languages
	Function Comparison
	Variable Comparison

	Notes to Experienced Programmers
	Variable Database and Other Surprises
	ioControl's Target Audience
	Language Syntax

	OptoScript Lexical Reference
	Token Syntax Legend
	Literals and Names
	Keywords (Reserved Words)
	Operators
	Comments

	OptoScript Grammar Syntax Reference

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

