MODBUS/TCP INTEGRATION KIT
FOR PAC PROJECT

Form 1676-110223—February 2011

OPTO Z22

43044 Business Park Drive - Temecula - CA 92590-3614
Phone: 800-321-OPTO (6786) or 951-695-3000
Fax: 800-832-OPTO (6786) or 951-695-2712
WWWw.opto22.com

Product Support Services
800-TEK-OPTO (835-6786) or 951-695-3080
Fax: 951-695-3017
Email: support@opto22.com
Web: support.opto22.com

Modbus/TCP Integration Kit for PAC Project
Form 1676-110223—February 2011

Copyright © 2011 Opto 22.
All rights reserved.
Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22 assumes no
responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the
manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation, labor,
or any other contingent costs. Opto 22 1/0 modules and solid-state relays with date codes of 1/96 or later are guaranteed
for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID modules, and modules
that contain mechanical contacts or switches. Opto 22 does not warrant any product, components, or parts not
manufactured by Opto 22; for these items, the warranty from the original manufacturer applies. These products include,
but are not limited to, OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson GT-48; see the product data sheet for
specific warranty information. Refer to Opto 22 form number 1042 for complete warranty information.

Wired+Wireless controllers and brains and N-TRON wireless access points are licensed under one or more of the following
patents: U.S. Patent No(s). 5282222, RE37802, 6963617; Canadian Patent No. 2064975; European Patent No. 1142245;
French Patent No. 1142245; British Patent No. 1142245; Japanese Patent No. 2002535925A; German Patent No. 60011224,

Opto 22 FactoryFloor, Optomuy, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl, ioDisplay,
ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl, OptoDatalink, OptoDisplay,
OptoEMU, OptoEMU Sensor, OptoEMU Server, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, PAC
Control, PAC Display, PAC Manager, PAC Project, SNAP Ethernet I/O, SNAP I/0, SNAP OEM 1/0, SNAP PAC System, SNAP
Simple 1/0, SNAP Ultimate /0, and Wired+Wireless are trademarks of Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, Windows, and Windows Vista are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered
trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET is a
registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric. Wiegand is a
registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M Gateway Software, and
Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia Corporation. Sony is a trademark of
Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson. CompactLogix, MicroLogix, SLC, and RSLogix
are trademarks of Rockwell Automation. Allen-Bradley and ControlLogix are a registered trademarks of Rockwell
Automation. CIP and EtherNet/IP are trademarks of ODVA.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

Modbus/TCP Integration Kit for PAC Project

Table of Contents

Chapter T: Getting Started.coiiiiiiiiiiii it it ittt iii i iie i 1
Understanding Modbus Protocol 2
Whatis Required. 2
Modbus/TCP Functions SUPPOrted oo 2
Data Types Supported in the Input and Holding Registers.........................oooooi. 3
Important Note for Users Upgrading from Version 8.1

(or Earlier) of this TOOIKIt 3
Installing the Integration Kit o 4

Changing the Modbus Slave TCP Port. 4
Running the Example Strategiesooo e 5
Using Communication Handles. 5
Using Data Addressesin Modbus i 5
PACDisplay EXamples.o 5

Chapter 2: Using the Master Subroutines.coeiiiiiiiiiiiiineennnnnnn. 7
Adding Master SUBIOULINeS o o 7
Data Tables Used By Master SUbroutingsoooi i 7
Operation Mode Details for Master SUbroutingscooooiii i, 8
Examples Using the Master Register Parameter................ooo i, 9

1 9

88 e 10

S8 3 11
Configuration of SUDIOUTINGSo oo 14

MB 0T Read COilS. . ..o 15

MB 02 Read Discrete INPULS. ..o 16

MB 03 Read Holding Registersooovm e 17

MB 04 Read INpUt RegISterS. 18

MB 05 Write Single Coil. oo 19

MB 06 Write Single Register o 20

MB 08 DIagnOstiCs . ..ottt et 21

MB 15 Write Multiple COIls. ... 23

MB 16 Write Multiple Registers oo 24

MB 22 Mask Write Register 25

Modbus/TCP Integration Kit for PAC Project n

MB 23 Read Write Holding Registers. ... 26

Chapter 3: UsingtheSlave Chart. ...ttt iiiiiieieeenneeennns 27
Initialization. ... 27
Number of Masters SUPPOrted 28
Data Tables Used By Slave Chart. e 28
Operation Mode Details for Slave Chart. ... 28

EXAMIDIES 29
Importing the Slave Chart.o 31

Chapter 4: Troubleshootingciiiiii ittt it iiiieerennneenannas 33
Addressing Problems. oo o 33
Communication Problems When Using the Slave Chart 34
Problems When Using the Master SUDIOUtINGS.coooeii e 35
Modbus EXCeption COAES.t 35

Modbus/TCP Integration Kit for PAC Project

1: Getting Started

The Modbus/TCP Integration Kit for PAC Project™ (Part # PAC-INT-MBTCP) allows Opto 22 SNAP PAC
controllers, using PAC Control™ to connect via Ethernet to Modbus/TCP devices.

The Integration Kit contains:

« Asetof PAC Control master subroutines that are added to a strategy to enable an Opto 22
SNAP PAC controller to communicate as a Modbus/TCP master

+ Anexample Modbus/TCP slave strategy containing the slave chart MB_Slave_TCP that is
imported into a strategy to enable an Opto 22 controller to communicate as a
Modbus/TCP slave

Both the master subroutines and the slave strategy transmit message strings as specified in the
Modbus Application Protocol Specification v1.1a and Modbus Messaging on TCP/IP Implementation
Guide v1.0a. Both guides are available on the web at http://Modbus-IDA.org.

The master subroutines and slave strategy transmit and receive messages using Modbus standard
register, input and coil numbers. The desired information is stored or retrieved using PAC Control
numeric tables.

This manual assumes the user fully understands how to use PAC Control, Modbus/TCP, and the
Modbus device to be used.

This chapter includes the following topics:

Topic Page

Understanding Modbus Protocol

What is Required

Modbus/TCP Functions Supported

Data Types Supported in the Input and Holding Registers

Important Note for Users Upgrading from Version 8.1 (or Earlier) of this Toolkit

Installing the Integration Kit

Running the Example Strategies

Using Communication Handles

Using Data Addresses in Modbus

ajaoa|lalal bl wWw| W] N|I N[N

PAC Display Examples

Modbus/TCP Integration Kit for PAC Project

http://Modbus-IDA.org

UNDERSTANDING MODBUS PROTOCOL

Understanding Modbus Protocol

This toolkit assumes that you are knowledgeable about Modbus protocol addressing, and register,
coil, and input numbering. Even for those who are experienced, we highly recommend reading the

Modicon Modbus Protocol Reference Guide, which is available at this link:
http://www.modbus.org/docs/PlI_MBUS_300.pdf

We especially recommend the following two sections of the Modbus guide:

« Chapter 2: Data and Control Functions of the Modicon guide explains the key subtleties of
register, coil, and input numbering/naming as opposed to register, coil, and input addressing.
This helps eliminate a common point of confusion, even for those who are experienced with

Modbus protocol.

« Appendix A: Exception Responses of the Modicon guide discusses the possible exception codes a
Modbus device can reply with and what the codes mean. This helps when diagnosing

communication problems.

What is Required

Before including the subroutines in your strategy, you will need a PC with PAC Project 8.1a (Basic or

Pro) or newer.

Modbus/TCP Functions Supported

The following Modbus/TCP function codes are supported by the master subroutines. These function

codes are also supported by the slave chart.

Modbus/TCP
Function Code

Name

PAC Control Subroutine

01

Read Coils

MB_01_Read_Caoils

02

Read Discrete Inputs

MB_02_Read_Discrete_Inputs

03

Read Holding Registers

MB_03_Read_Holding Registers

04

Read Input Registers

MB_04_Read_Input_Registers

05

Write Single Coil

MB_05_Write_Single_Coil

06

Write Single Register

MB_06_Write_Single_Register

08

Diagnostics

MB_08_Diagnostics

15

Write Multiple Coils

MB_15_ Write_Multiple_Coils

16

Write Multiple Registers

MB_16_Write_Multiple_Registers

22

Mask Write Register

MB_22 Mask_Write_Registers

23

Read Write Multiple Registers

MB_23 Read_Write_Holding _Registers

Modbus/TCP Integration Kit for PAC Project

http://www.modbus.org/docs/PI_MBUS_300.pdf

CHAPTER 1: GETTING STARTED

Data Types Supported in the Input and Holding Registers

The following data types are supported for input and holding registers. These data types are set by
the Data Type subroutine parameter in the master subroutines and the nMB_Data_Type variable
used in the slave chart:

Value Data Type
0 16-bit unsigned (Modbus standard and default)
1 16-bit signed
2 Floating point (Uses two registers)
3 Floating point (Swapped. Uses two registers.)
4 32-bit signed (Uses 2 registers)
5 32-bit signed (Swapped. Uses 2 registers.)

NOTE: Most Modbus devices store 32-bit data values in two consecutive 16-bit registers. However, Opto 22
SNAP PAC controllers store 32-bit data values in individual table elements because tables support full
32-bit data values.

When accessing 32-bit data in most Modbus protocol devices, the data is stored in two consecutive
16-bit registers. Data that is 16 bits is sometimes referred to as a word, just as 8-bit data is referred to
as a byte.

Modbus protocol messages treat each 16-bit register, or word, as 2 bytes with the high order byte
coming before the low order byte. However, when device manufactures started supporting 32-bit
data in standard Modbus messages, there was not a standard regarding the order of 16-bit registers
(words) in the message when it comes to 32-bit data. Because of this, some Modbus protocol
devices put the bytes of the high order register (word) first, and the low order register (word)
second. Other devices do just the opposite.

In order to provide flexibility when communicating with both types of devices, the PAC Modbus/TCP
toolkit supports word swapping when using 32-bit data types. We normally send the high-order
word before the low order word in the message. If the data is not correct, it may be because the
word order is backwards compared to your Modbus device. If this is the case, you can simply change
the word order by selecting the appropriate swapped data type.

For example, if you are dealing with floating point data using Data Type 2, you could try Data Type 3
in order to swap the order of the 16-bit words in the message.

Important Note for Users Upgrading from Version 8.1
(or Earlier) of this Toolkit

In prior versions of the toolkit (versions 8.1 and earlier), all Register data was handled with either a
float table (in the case of Read Holding Registers, Read Input Registers, Preset Multiple Registers, and
Read Write Holding Registers) or a float variable (in the case of Preset Single Register) regardless of
the value of the Data Type parameter.

Modbus/TCP Integration Kit for PAC Project

INSTALLING THE INTEGRATION KIT

Starting with version R8.2a of the toolkit, the table and variable data types now correctly match the
Data Type parameter. This impacts how the subroutines are called by the strategy and how the
strategy interacts with the data tables.

When calling the subroutine, you will now need to pass both float and integer tables (or float and
integer variables). The subroutine will know which to use based on the value of the Data Type
parameter. For example, if using integer data, you still have to pass the float table (or variable) even
though it won't be used (and vice versa). The simplest thing to do is to just configure the extra table
as having a length of 1 so it does not take up too much room in the controller.

You will also need to make sure that your strategy interacts with the correct data tables. When using
Data Types 2 or 3, which are both float data types, your strategy will need to interact with the
appropriate float table. When using Data Types 0, 1, 4, or 5, which are all integer data types, your
strategy will need to interact with the appropriate integer table.

Installing the Integration Kit

To install the integration kit on your computer, unzip the zip file to your C: drive. The expanded files
will be placed automatically in CAModbusTCPPAC.

Changing the Modbus Slave TCP Port

An Opto 22 SNAP PAC controller has a built-in Modbus/TCP slave capability, which only provides
access to the I/0 portions of the memory map (see Note below). The slave toolkit, on the other
hand, provides access to both the strategy, portions of the memory map, and the I/O. Therefore, in
order for the slave toolkit to work, you must disable the built-in Modbus slave functionality by
changing the Modbus slave TCP port to a value of 0 (zero) as follows.

NOTE: I/0 access only applies to rack-mounted controllers, such as the SNAP-PAC-RT or R2.

1. Open PAC Manager.
2. Inthe PAC Manager main window, click the Inspect button.

3. Inthe Device Name field, type the IP address for the SNAP PAC controller (or choose it from the
drop-down list).

4. C(lick Communications and choose Network Security.

5. Under PORTS, click the Value field for Modbus.

6. Change the value to 0 (zero). Click Apply.

7. C(lick Status Write.

8. Under Operation Commands, choose Send configuration to flash. Click Send Command.

9. Under Operation Commands again, choose Restart Device from powerup. Click Send

Command.

For more details on using PAC Manager, see the PAC Manager User’s Guide, form 1704.

Modbus/TCP Integration Kit for PAC Project

CHAPTER 1: GETTING STARTED

Running the Example Strategies

The toolkit includes example strategies to demonstrate how to use the master subroutines and the
slave chart in a PAC Control strategy. Before including the subroutines in your own strategy, we
recommend that you first run the example strategy and pay special attention to the strategy logic
and the configuration of variables.

To run the example master strategy, start PAC Control, and then open the strategy file named
MBMasterTCPidb. To run the example slave strategy, open the strategy named MBSlaveTCPidb.

Using Communication Handles

Be sure to use a separate TCP communication handle for each chart that uses the Modbus/TCP
subroutines.

In PAC Control, if two charts were to run simultaneously while sharing an open communication
handle, each chart would be able to read and write data from the communication handle as if the
other running chart didn't exist. Because these reads and writes are not synchronized between the
charts, it is possible for one chart to read the other chart's data.

Using Data Addresses in Modbus

When used as Modbus terminology, the term address can be confusing. In Modbus, addresses are
always zero-based, which means that the first address is 0, not 1.

For example:

» The coil known as coil 1 in a progammable controller is addressed as coil 0000 in the data
address field of a Modbus message.

+ Holding register 40001 is addressed as register 0000 in the data address field of the message.
The function code field already specifies a holding register operation. Therefore the 4XXXX
reference is implicit.

PAC Display Examples

Two PAC Display™ example projects are included in the ZIP file to show what can be done using
PAC Display. While not necessary components of the toolkit, you can use the ModbusTCPMaster and
ModbusTCPSlave projects to check PAC Control master and slave connections. For more information
on using PAC Display, see the PAC Display User’s Guide, form 1702.

Modbus/TCP Integration Kit for PAC Project

PAC DISPLAY EXAMPLES

n Modbus/TCP Integration Kit for PAC Project

2: Using the Master
Subroutines

This chapter includes the following topics:

Topic Page
Adding Master Subroutines (below)
Data Tables Used By Master Subroutines 7
Operation Mode Details for Master Subroutines 8
Examples Using the Master Register Parameter 9
Configuration of Subroutines 14

Adding Master Subroutines

The Modbus master subroutines allow an Opto 22 controller to function as a Modbus master device.

Each master subroutine in the integration kit supports one Modbus function code and can function

independently of the other subroutines. Therefore, you need only use the subroutines for the

Modbus functions that you require. For more information about subroutines, see the PAC Control

User’s Guide.

When you decide which subroutines you need, include them in your strategy as follows:

1. Start PAC Control in Configure Mode and open the strategy that you intend to use with the
integration kit.

2. Select Configure—Subroutines Included to open the Subroutine Files dialog.

3. (lickthe Add button and use the browser to select each subroutine file (ISB extension) you
wish to include in your strategy from the folder C\ModbusTCPPAC\Subs.

4. C(lick OK.

The subroutines appear in the Subroutines Included folder and are ready to be used in your
strategy.

Modbus/TCP Integration Kit for PAC Project

DATA TABLES USED BY MASTER SUBROUTINES

Data Tables Used By Master Subroutines

These are the names used for Modbus data tables in the example Master strategy:
« ntMB_Coils_0X (integer 32 table)

« ntMB_Inputs_1X (integer 32 table)

« ftMB_Holding_Registers_4X_Float (float table)

« ftMB_Input_Registers_3X_Float (float table)

+ ntMB_Holding_Registers_4X_Int (integer 32 table)

« NtMB_Input_Register_3X_Int (integer 32 table)

You can name the tables however you want because the names of the tables are passed to the
subroutines.

You may need to adjust the lengths of these tables to accommodate the amount of Modbus data
and the register, coil, and input numbers expected to be accessed by the Modbus master device.

Use strategy logic to populate data in or retrieve data from these tables from the most recent
Modbus message received.

NOTE: An integer table is used for data types 0, 1,4, and 5. A float table is used for data types 2 and 3.

See “Important Note for Users Upgrading from Version 8.1 (or Earlier) of this Toolkit” on page 3.

Operation Mode Details for Master Subroutines

Version 8.1d of the Modbus/TCP PAC Control toolkit added a new feature called the Operation
Mode. In the Master subroutines, this is implemented by an additional passed parameter called
Master Register.

If you want to use the same register, coil, or input numbers in the master and slave, use a value of -1
for the Master Register parameter. This is how the original versions of this toolkit worked prior to
adding the Operation Mode feature.

When the Master Register parameter is greater than or equal to 0, it designates the starting table
index used in the Opto 22 SNAP PAC controller (the Master).

All subroutines that are passed a table to read or write Modbus data use the new parameter. The
following subroutines do not support the new Operation Mode feature:

« MB_05_Write Single Coil
+ MB_06_Write_ Single Register
« MB_22_ Mask Write _Registers

If you want to use different register, coil, or input numbers in the master and slave, then use the
specific starting table index in the master as the Master Register parameter and specify the slave
starting register, coil, or input number in the Slave Register parameter.

This method is useful when the data in the slave is offset to a high register, coil, or input number. In
this case, it allows using much smaller tables in the master. This method can also be used when
accessing data in multiple slaves and consolidating it into one set of tables in the master.

NOTE: The parameter formerly named Starting_Address has been renamed to Slave_Register.

n Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

Examples Using the Master Register Parameter

Case 1

Subroutines Related to Coils and Inputs

For Coils and Inputs, there is always a one-to-one correlation between the number of coils or inputs
in the slave and the number of table elements used for the data in the master.

The Master Register parameter only affects the starting coil (or input) number used in the master
data tables. This corresponds to the data table index number.

Example 1A: When the Master Register parameter is -1, the subroutine uses the value of the Start
Coil (or Start Input) parameter as the starting Coil (or Input) number in the slave and also as the
starting table index in the master.

Parameter Value
Master Register -1
Slave Register 19
Qty of Coils 3
Master Slave
Table Index Coil Number
19 — 19
20 — 20
21 &— 21

Example 1B: When the Master Register parameter is greater than or equal to 0, the subroutine uses
the value of the Start Coil (or Start Input) parameter as the starting Coil (or Input) number in the
Slave and it uses the value of the Master Register parameter as the starting table index in the master.

Parameter Value
Master Register 1
Slave Register 101
Qty of Inputs 3
Master Slave
Table Index input Number
1 — 101
2 — 102
3 — 103

Modbus/TCP Integration Kit for PAC Project n

EXAMPLES USING THE MASTER REGISTER PARAMETER

Case 2

Subroutines related to Input Registers and Holding Registers when the Data Type
Parameter is 0 or 1 (both 16-bit data types)

For Input Registers and Holding Registers, when using 16-bit data types, there is always a
one-to-one correlation between the number or registers in the slave and the number of table
elements used for the data in the master.

The Master Register parameter only affects the starting register number used in the master data
tables. This corresponds to the data table index number.

Example 2A: When the Master Register parameter is -1, the subroutine uses the value of the Start
Register parameter as the starting register number in the slave and also as the starting table index in

the master.
Parameter Value Comment
Master Register -1
Slave Register 7001
Qty of H Registers 3
Data Type Oorl data type is 16-bit
Master Slave
Table Index Register Number
7001 — 7001
7002 - 7002
7003 — 7003

Example 2B: When the Master Register parameter is greater than or equal to 0, the subroutine uses
the value of the Start Register parameter as the starting register number in the Slave and it uses the
value of the Master Register parameter as the starting table index in the master.

Parameter Value Comment

Master Register 99

Slave Register 7001

Qty of | Registers 3

Data Type Oorl data type is 16-bit
Master Slave

Table Index Register Number

99 — 7001

100 — 7002

101 — 7003

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

Case 3

Subroutines related to Input Registers and Holding Registers when the Data Type
parameter is 2, 3, 4, or 5 (all 32-bit data types)

NOTE: Opto 22 SNAP- PAC tables support 32-bit data; tables start with index 0. A table with length of 10
has indexes 0 through 9.

For Input Registers and Holding Registers, when using 32-bit data types, there is always a
two-to-one correlation between the number of (16-bit) registers in the slave and the number of
(32-bit) table elements used for the data in the master. This is because most slave devices store data
in 16-bit registers. Consequently, 32-bit data in these devices are stored in two consecutive 16-bit
registers.

For 32-bit data, the Master Register parameter affects not only the starting register number used in
the master data tables, but also the quantity of registers accessed in the slave.

Example 3A: When the Master Register parameter is -1, the subroutine uses the value of the Start
Register parameter as the starting register number in the slave and also as the starting table index in
the master.

In addition, the Qty of H Registers (or Qty of | Registers) parameter determines the quantity of 16-bit
registers read from or written to the slave. The number of 32-bit registers in the master will be half
the quantity of this parameter.

The Qty of H Registers (or Qty of | Registers) parameter must be an even number.
The Start Register parameter must be an odd number.

The Start Register value will determine the first table index used for the 32-bit data in the master.
Additional 32-bit values will be put into subsequent odd indexes of the table so that the table
indexes in the master will match the first register number for each set of two consecutive 16-bit
registers in the slave. All even table indexes are unused.

Parameter Value Comment
Master Register -1
Slave Register 7001 must be an odd number
Qty of | Registers 4 must be an even number
Data Type 2,340r5 data type is 32-bit
Master Slave
Table Index Register Number
7001 «— 7001
7002
7003 «— 7003
7004

Modbus/TCP Integration Kit for PAC Project

EXAMPLES USING THE MASTER REGISTER PARAMETER

Example 3B: When the Master Register parameter is greater than or equal to 0, the subroutine uses
the value of the Start Register parameter as the starting register number in the Slave and it uses the
value of the Master Register parameter as the starting table index in the master.

In addition, the Qty of H Registers (or Qty of | Registers) parameter determines the quantity of 32-bit
data values you want to read from or write to the slave and the number of 32-bit table elements
used in the master. However, the Modbus protocol has no mechanism for identifying 32-bit data in
the messages, so the subroutine requests twice the quantity of registers because the data in the
slave is assumed to be 16-bit.

The Master Register value will determine the first table index used for the 32-bit data in the master.
Additional 32-bit values will be put into consecutive indexes of the table so that there will not be
any gaps in the table.

Parameter Value Comment
Master Register 8
Slave Register 7001 must be an odd number
Qty of H Registers 3 Qty of 32-bit values
Data Type 2,3/40r5 | datatype is 32-hit
Master Slave
Table Index Register Number
7001
8 -
7002
7003
9 -
7004
7005
10 -
7006

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

Configuration of Subroutines

The following tables list the parameters for each function code and describe the type of data for
each parameter:

Function Code Subroutine Page

MB 01 Read Coils page 15
MB 02 Read Discrete Inputs page 16
MB 03 Read Holding Registers page 17
MB 04 Read Input Registers page 18
MB 05 Write Single Coil page 19
MB 06 Write Single Register page 20
MB 08 Diagnostics page 21
MB 15 Write Multiple Coils page 23
MB 16 Write Multiple Registers page 24
MB 22 Mask Write Register page 25
MB 23 Read Write Holding Registers page 26

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

MB 01 Read Coils

Name

Description

Slave Address

Integer 32 Variable (1-255)

Start Coil

Integer 32 Variable (1-65536)

Quantity of Coils

Integer 32 Variable (1-2000)

Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time (s) Float Variable (Wait time in seconds for slave to respond)
MB Coils 0X Integer 32 Table (The subroutine will support coils 1-65535)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When Master Register is -1, it uses the value of Start Coil parameter as the starting
Coil number in the slave and also as the starting table index in the PAC (master).

>=0 = When Master Register is greater than or equal to 0, it uses the value of Start Coil
as the starting Coil number in the Slave and it uses the value of Master Register as the
starting table index in the PAC (master).

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

MB 02 Read Discrete Inputs

Name

Description

Slave Address

Integer 32 Variable (1-255)

Start Input Integer 32 Variable (1-65536)

S}‘;ﬁ?smy of Integer 32 Variable (1-2000)

Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time(s) Float Variable (Wait time in seconds for slave to respond)

MB Inputs 1X Integer 32 Table (The subroutine will support Inputs 1-65535)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When Master Register is -1, it uses the value of Start Input parameter as the start-
ing Input number in the slave and also as the starting table index in the PAC (master).
>=0 = When Master Register is greater than or equal to 0, it uses the

value of Start Input as the starting Input number in the Slave and it uses the value of
Master Register as the starting table index in the PAC (master).

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

MB 03 Read Holding Registers

Name

Description

Slave Address

Integer 32 Variable (1-255)

Start Register

Integer 32 Variable (1-65536)

Qty of H Registers

Integer 32 Variable (1-125)

Identifier Integer 32 Variable (Used for transaction pairing)
Com Handle Communication Handle
Wait Time(s) Float Variable (Wait time in seconds for slave to respond)

MB H Reg4X Int

Integer 32 Table

PAC Control strategy table used by the master to store the Holding Register data when
using integer data (data types 0, 1, 4, 5).

MB H Register 4X - MB H Reg4X FloatFloat tablePAC Control strategy table used by
the master to store the Holding Register data when using float data (data types 2, 3)

MB H Register 4X

Float Table (The subroutine will support registers 1-65535)

Data Type

Integer 32 Variable

0 = 16-bit unsigned (Modbus standard and default)
1 = 16-bit signed

2 = Floating Pt.

3 = Floating Pt. (swapped)

4 = 32-bit signed

5 = 32-bit signed (swapped)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When the Master Register parameter is -1 and the Data Type parameter is 0 or 1
(16-bit data), the subroutine uses the value of the Start Register parameter as the start-
ing register number in the slave and also as the starting table index in the master.

>=0 = When the Master Register parameter is greater than or equal to 0 and the Data
Type parameter is 0 or 1 (16-bit data), the subroutine uses the value of the

Start Register parameter as the starting register number in the Slave and it uses the
value of the Master Register parameter as the starting table index in the master.

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

MB 04 Read Input Registers

Name

Description

Slave Address

Integer 32 Variable (1-255)

Start Register

Integer 32 Variable (1-65536)

Qty of | Registers

Integer 32 Variable (1-125)

Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time(s) Float Variable (Wait time in seconds for slave to respond)
MB | Reg3X Int Integer 32 Table

MB | Reg3X Float

Float Table (The subroutine will support registers 1-65535)
PAC Control strategy table used by the master to store the Input Register data when
using float data (data types 2, 3)Integer 32 Table

Data Type

Integer 32 Variable

0 = 16-bit unsigned (Modbus standard and default)
1 = 16-bit signed

2 = Floating Pt.

3 = Floating Pt. (swapped)

4 = 32-bit signed

5 = 32-bit signed (swapped)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When the Master Register parameter is -1 and the Data Type parameter is 0 or 1
(16-bit data), the subroutine uses the value of the Start Register parameter as the start-
ing register number in the slave and also as the starting table index in the master.

>=0 = When the Master Register parameter is greater than or equal to 0 and the Data
Type parameter is 0 or 1 (16-bit data), the subroutine uses the value of the

Start Register parameter as the starting register number in the Slave and it uses the
value of the Master Register parameter as the starting table index in the master.

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

MB 05 Write Single Coil

Name

Description

Slave Address

Integer 32 Variable (1-255)

Coil

Integer 32 Variable (1-65536)

Coil State

Integer 32 Variable (0 = OFF 1 =ON)

Identifier

Integer 32 Variable (Used for transaction pairing)

Com Handle

Communication Handle

Wait Time(s)

Float Variable (Wait time in seconds for slave to respond)

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match
Function and Exception code = Error from PDU

OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

MB 06 Write Single Register

Name

Description

Slave Address

Integer 32 Variable (1-255)

Register

Integer 32 Variable (1-65536)

Reg Value Float

Float Variable
Value to write to the register when using float data (data types
2,3)

Integer 32 Variable

Reg Value Int Value to write to the register when using integer data (data types
0,1,4,5)

Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time(s) Float Variable (Wait time in seconds for slave to respond)
Integer 32 Variable
0 = 16-bit unsigned (Modbus standard and default)
1 = 16-bit signed

Data Type 2 = Floating Pt.

3 = Floating Pt. (swapped)
4 = 32-bit signed
5 = 32-bit signed (swapped)

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match
Function and Exception code = Error from PDU

OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project m

CONFIGURATION OF SUBROUTINES

MB 08 Diagnostics

Name Description

Slave Address Integer 32 Variable (1-255)

Sub-Function Integer 32 Variable (0-65535)

Data(Send) Integer 32 Variable (0-65535)
Data(Rec) Integer 32 Variable (see “Function 08 Diagnostics Sub-function Codes” on page 22)
Identifier Integer 32 Variable (Used for transaction pairing)
Com Handle Communication Handle
Wait Time (s) Float Variable (Wait time in seconds for slave to respond)
String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Return Status Identifier Mismatch = Send and receive identifier do not match
Sub-function Reserved = Not supported code

Response Mismatch = Send and Receive packet mismatch
Function and Exception code = Error from PDU

OK = Success

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Put Status In

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

Function 08 Diagnostics Sub-function Codes

Sub-Function Name Data (Send) Data(Rec)
0 Return Query Data Any 0
1 Restart Communication Option 0 or 1 =Clear Log 0
2 Return Diagnostic Register 0 Register data
3 Change ASCII Input Delimiter Decimal Value of Character | 0
4 Force Listen Only Mode 0 0
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Clear Counters and Diagnostic Register | 0 0
11 Return Bus Message Count 0 Message Ct.
12 Return Bus Communication Error Count | 0 Error Ct.
13 Return Bus Exception Error Count 0 Error Ct.
14 Return Slave Message Count 0 Message Ct.
15 Return Slave No Response Count 0 No Response Ct.
16 Return Slave NAK Count 0 NAK Ct.
17 Return Slave Busy Count 0 Busy Ct.
18 Return Bus Character Overrun Count 0 Overrun Ct.
19 Reserved
20 Clear Overrun Counter And Flag 0 0
21 Reserved 0

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

MB 15 Write Multiple Coils

Name Description
Slave Address Integer 32 Variable (1-255)
Start Coll Integer 32 Variable (1-65536)

Quantity of Coils Integer 32 Variable (1-1968)

MB Coil 0X Integer 32 Table (The subroutine will support coils 1-65535)
Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time(s) Float Variable (Wait time in seconds for slave to respond)

Integer 32 Variable

< 0 = default operation mode

-1 =— When Master Register is -1, it uses the value of Start Coil parameter as the start-
Master Register ing Coil number in the slave and also as the starting table index in the PAC (master).
>=0 = When Master Register is greater than or equal to 0, it uses the value of Start Coil
as the starting Coil number in the Slave and it uses the value of Master Register as the
starting table index in the PAC (master).

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Return Status

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Put Status In

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

MB 16 Write Multiple Registers

Name

Description

Slave Address

Integer 32 Variable (1-255)

Start Register

Integer 32 Variable (1-65536)

Qty of Registers

Integer 32 Variable (1-120)

MB H Reg4X Int

Integer 32 Table
PAC Control strategy table used by the master to store the Holding Register data when
using integer data (data types 0, 1, 4, 5).

MB H Reg4X Float

Float table
PAC Control strategy table used by the master to store the Holding Register data when
using float data (data types 2, 3)

Identifier Integer 32 Variable (Used for transaction pairing)

Com Handle Communication Handle

Wait Time(s) Float Variable (Wait time in seconds for slave to respond)
Integer 32 Variable
0 = 16-bit unsigned (Modbus standard and default)
1 = 16-bit signed

Data Type 2 = Floating Pt.

3 = Floating Pt. (swapped)
4 = 32-bit signed
5 = 32-bit signed (swapped)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When the Master Register parameter is -1 and the Data Type parameter is O or 1
(16-bit data), the subroutine uses the value of the Start Register parameter as the start-
ing register number in the slave and also as the starting table index in the master.

>=0 = When the Master Register parameter is greater than or equal to 0 and the Data
Type parameter is 0 or 1 (16-bit data), the subroutine uses the value of the Start Regis-
ter parameter as the starting register number in the Slave and it uses the value of the
Master Register parameter as the starting table index in the master.

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

MB 22 Mask Write Register

Name

Description

Slave Address

Integer 32 Variable (1-255)

Ref Address Integer 32 Variable (1-65536)
AND Mask Integer 32 Variable (0 - 65535)
OR Mask Integer 32 Variable (0 - 65535)

Identifier Integer 32 Variable

(Used for transaction pairing)

Com Handle

Communication Handle

Wait Time(s)

Float Variable (Wait time in seconds for slave to respond)

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match
Function and Exception code = Error from PDU

OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CHAPTER 2: USING THE MASTER SUBROUTINES

MB 23 Read Write Holding Registers

NOTE: This subroutine no longer has the Wait Time(s) passed parameter. Wait time is set in block 1 Init of
the subroutine. Default = 4 seconds.

Name

Description

Slave Address

Integer 32 Variable (1 - 255)

R Start Register

Integer 32 Variable (1 - 65536)

R Qt H Registers

Integer 32 Variable (1 - 125)

W Start Register

Integer 32 Variable (1 - 65536)

W Qt H Registers

Integer 32 Variable (1 - 125)

Identifier

Integer 32 Variable (Used for transaction pairing)

Com Handle

Communication Handle

MB H Reg4X Int

Integer 32 Table
PAC Control strategy table used by the master to store the Holding Register data when
using integer data (data types 0, 1, 4, 5).

MB H Reg4X Float

Float Table (The subroutine will support registers 1 - 65535)
PAC Control strategy table used by the master to store the Holding Register data when
using float data (data types 2, 3)

Data Type

Integer 32 Variable

0 = 16bit unsigned (Modbus standard and default)
1 = 16bit signed

2 = Floating Pt.

3 = Floating Pt. (swapped)

4 = 32bit signed

5 = 32bit signed (swapped)

Master Register

Integer 32 Variable

< 0 = default operation mode

-1 = When the Master Register parameter is -1 and the Data Type parameter is 0 or 1
(16-bit data), the subroutine uses the value of the Start Register parameter as the start-
ing register number in the slave and also as the starting table index in the master.

>=0 = When the Master Register parameter is greater than or equal to 0 and the Data
Type parameter is 0 or 1(16-bit data), the subroutine uses the value of the

Start Register parameter as the starting register number in the Slave and it uses the
value of the Master Register parameter as the starting table index in the master.

Return Status

String

No Session = Not able to open session

Timeout = No response within time limit

Too Many Characters = More then 260 characters

Identifier Mismatch = Send and receive identifier do not match

Function and Exception code = Error from PDU

Invalid Table Length = Used an index greater than the number of elements in the table.
OK = Success

Put Status In

Integer 32 Variable

0 = Success

-67 = Out of memory
-69 = Null object error

Modbus/TCP Integration Kit for PAC Project

CONFIGURATION OF SUBROUTINES

Modbus/TCP Integration Kit for PAC Project

3: Using the Slave Chart

This chapter includes the following topics:

Topic Page
Initialization (below)
Number of Masters Supported 28
Data Tables Used By Slave Chart 28
Operation Mode Details for Slave Chart 28
Importing the Slave Chart 31

Initialization

Before starting the Slave chart, there are a number of parameters that must be initialized. These

include:

nMB_Number_of Masters_Supported

See “Number of Masters Supported” on page 28.

nMB_Data_Type

See “Data Types Supported in the Input and Holding Registers” on page 3.

nSlave_Register_Mode

See “Operation Mode Details for Slave Chart” on page 28.

nMB_Slave Address

Modbus Slave Address. The default is set for address 1.

Modbus/TCP Integration Kit for PAC Project

NUMBER OF MASTERS SUPPORTED

Number of Masters Supported

This Slave chart will support 1 to 4 Modbus masters. Set the variable
(nMB_Number_of_Masters_Supported) to the number of Modbus masters this slave chart will
support. The defaultis setto 1.

Data Tables Used By Slave Chart

« ntMB_Coils_OX (integer 32 table)

« ntMB_Inputs_1X (integer 32 table)

« ftMB_Holding_Registers_4X_Float (float table)

« ftMB_Input_Registers_3X_Float (float table)

« ntMB_Holding_Register_4X_Int (integer 32 table)
« ntMB_Input_Register_3X_Int (integer 32 table)

NOTE: An integer table is used for data types 0, 1,4, and 5. A float table is used for data types 2 and 3.

You may need to adjust the lengths of these tables to accommodate the amount of Modbus data
and the register, coil, and input numbers expected to be accessed by the Modbus master device.

Use strategy logic to populate data in or retrieve data from these tables.

Operation Mode Details for Slave Chart

Version 8.1d of the Modbus TCP PAC Control toolkit added a new feature called the Operation Mode.
In the Slave chart, this is implemented by a new variable named Slave_Register_Mode.

The Slave_Register_Mode variable only applies when using 32-bit data types (Datalype is 2, 3, 4,
or 5) with Input and Holding Registers. When accessing coils or inputs, or when using 16-bit data
types, the Slave_Register_Mode variable has no effect; data is accessed in consecutive indexes.

The Slave_Register_Mode variable is treated as a flag that can either be true or false. In PAC
controllers, False is defined as the value 0, and True is defined as any non-zero value.

If the value of Slave_Register_Mode is True when accessing Input or Holding Registers using 32-bit
data types (DataType is 2, 3, 4, or 5), data will be accessed in consecutive table indexes. However, if it
is False, data will be in every other odd index of the data table, which requires that the Master use a
starting register number that is odd.

If you want to maintain compatibility with previous versions of the toolkit, before the Operation
Mode feature is added, set the Slave_Register_Mode variable to a value of False (0).

Modbus/TCP Integration Kit for PAC Project

Examples

CHAPTER 3: USING THE SLAVE CHART

Coils & Inputs.

Example 1A:

Slave_Register_Mode

(any value)

Starting Coil

19

Qty of Coils

19 - 19

20 - 20

21 - 21
Example 1B:

Slave_Register_Mode

(any value)

Starting Input

102

Qty of Inputs

102 — 102
103 — 103
104 — 104

Input & Holding Registers with 16-bit Data Types

Example 2A:

Slave_Register_Mode | (any value)

Starting Holding
Register

7001

Qty of Registers

Data Type

Oorl

Modbus/TCP Integration Kit for PAC Project

OPERATION MODE DETAILS FOR SLAVE CHART

7001 - 7001
7002 - 7002
7003 - 7003
Example 2B:

Slave_Register_Mode | (any value)

Starting Holding
Register

7001

Qty of Registers

Data Type Oorl

Example 2B (continued)

7001 — 7001
7002 — 7002
7003 — 7003

Input & Holding Registers with 32-bit Data Types

Example 3A:

Slave_Register_Mode False (0)

Starting Input Register

7001 must be an odd number

Qty of Registers

must be an even number

Data Type 2,3,4,0r5

7001

— 7001
7002
7003

— 7003
7004

Modbus/TCP Integration Kit for PAC Project

CHAPTER 3: USING THE SLAVE CHART

Example 3B:
Master Slave Parameter Value
Slave_Register_Mode True (1)
Starting Holding Register
Qty of Registers
Data Type 2,3,4,0r5
Master Slave
Register Number Table Index
8
- 8
9
10
- 9
11
12
- 10
13

Importing the Slave Chart

The MBSlaveTCP slave chart allows an Opto 22 controller to function as a Modbus slave device.
Unlike the subroutines used in master strategies, which are run as needed, the MBSlaveTCP chart is
started in the Powerup chart and must run all the time. After the chart is started, it continuously
monitors port 502 for Modbus traffic.

To copy the Modbus Slave chart to your strategy, you must export the chart MBSlaveTCP as a PAC
Control chart export file (.cxf file) and then import it into your strategy. For more information, see
Chapter 8 of form 1700, the PAC Control User's Guide.

Start the Modbus Slave chart in the Powerup chart of your strategy.

Modbus/TCP Integration Kit for PAC Project

IMPORTING THE SLAVE CHART

Modbus/TCP Integration Kit for PAC Project

4: Troubleshooting

This chapter includes the following topics:

Topic Page
Addressing Problems (below)
Communication Problems When Using the Slave Chart 34
Problems When Using the Master Subroutines 35
Modbus Exception Codes 35

Addressing Problems

Controller and Modbus device will not connect
If the Master Subroutines are being used:

Verify the status of the Open Outgoing Communication command by inspecting the
nModbus_Port_Status variable located in the Modbus command subroutine being executed. If it
was successful, the value should be 0. Any other value indicates a problem. Please see form 1701,
the PAC Control Command Reference for the definitions of error codes for the Open Outgoing
Communication command.

If the Slave Chart is being used:

Verify the status of the Accept Incoming Communication Command by inspecting the
ntModbus_Port_Status table. If it was successful the value should be >= 0. Any value < 0 indicates a
problem. If the variable, N(MB_Number_of_Masters_Supported, is set to 1 then index 1 of the table
is the status. If the variable, nMB_Number_of_Masters_Supported, is set to 4 the status of the
connection will be in index 1, 2, 3 or 4. When multiple masters are enabled the Slave will try to
accept incoming communication on each Communication Handle. The first to connect depends on
which Communication Handle is accepting incoming communication at that time. Please see form
1701, the PAC Control Command Reference for the definitions of error codes for the command.

Modbus/TCP Integration Kit for PAC Project

COMMUNICATION PROBLEMS WHEN USING THE SLAVE CHART

The controller is receiving data from the Modbus device but the data is not
correct

« Verify that the Data Type configured in the controller matches the Modbus device.

« Ifthe Data Type for the controller and Modbus device match but you are still getting incorrect
data, try assigning other Data Types on the controller to resolve the issue. For example, when
using 32-bit data types, it may be necessary to use the appropriate “swapped” version of that
data type.

Communication Problems When Using the Slave Chart

Use the following variables to help diagnose problems with Modbus communication when using
the slave chart:

nChart_Status

This is the status of starting the slave chart.

nException_Code

This is the exception code to the master device returned by the slave. A value of 0 indicates no
exception code.

sLast_Return_Status

This is the status of the last transmitted Modbus packet from the slave.

[t will return OK if the transmit was successful.

ntReceive_Table

This table contains the characters that were received by the slave chart from the most recent
Modbus message received.

sReturn_Status
This indicates the status of the received and transmitted Modbus packets.

[t will return OK or several error messages. Examples of the error messages are CRC Mismatch and
Wrong Slave Address.

Problems When Using the Master Subroutines

Use the following guidelines to help diagnose problems when using the master subroutines:
« Review the status of the communication handle variable to verify that it is open.

+ Review the value of the variable used for the Return Status parameter. See “Configuration of
Subroutines” on page 13.

« Review the value of the variable used for the Put Status In parameter.

Modbus/TCP Integration Kit for PAC Project

CHAPTER 4: TROUBLESHOOTING

Modbus Exception Codes

For alist of the Modbus exception codes and their meanings, see Modicon Modbus Protocol Reference
Guide, which is available at this link:

http://www.modbus.org/docs/PI_MBUS_300.pdf

http://www.modbus.org/docs/PI_MBUS_300.pdf

MODBUS EXCEPTION CODES

Modbus/TCP Integration Kit for PAC Project

	Table of Contents
	1: Getting Started
	Understanding Modbus Protocol
	What is Required
	Modbus/TCP Functions Supported
	Data Types Supported in the Input and Holding Registers
	Important Note for Users Upgrading from Version 8.1 (or Earlier) of this Toolkit
	Installing the Integration Kit
	Changing the Modbus Slave TCP Port

	Running the Example Strategies
	Using Communication Handles
	Using Data Addresses in Modbus
	PAC Display Examples

	2: Using the Master Subroutines
	Adding Master Subroutines
	Data Tables Used By Master Subroutines
	Operation Mode Details for Master Subroutines
	Examples Using the Master Register Parameter
	Case 1
	Case 2
	Case 3

	Configuration of Subroutines
	MB 01 Read Coils
	MB 02 Read Discrete Inputs
	MB 03 Read Holding Registers
	MB 04 Read Input Registers
	MB 05 Write Single Coil
	MB 06 Write Single Register
	MB 08 Diagnostics
	MB 15 Write Multiple Coils
	MB 16 Write Multiple Registers
	MB 22 Mask Write Register
	MB 23 Read Write Holding Registers

	3: Using the Slave Chart
	Initialization
	Number of Masters Supported
	Data Tables Used By Slave Chart
	Operation Mode Details for Slave Chart
	Examples

	Importing the Slave Chart

	4: Troubleshooting
	Addressing Problems
	Communication Problems When Using the Slave Chart
	Problems When Using the Master Subroutines
	Modbus Exception Codes

