
OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

PAGE 1

TECHNICAL NOTE
Form 2011-180815

USING MODBUS DEVICES WITH OPTO 22 PRODUCTS

This document introduces the Modbus® protocol and gives you basic information for using it to communicate

between Opto 22 products and other devices. Use this document together with the Modicon Modbus

Reference Guide, your Opto 22 product manual, and other manufacturers’ product manuals to integrate

devices and systems.

About Modbus

Modbus is an open protocol widely used in automation and other industries. Published by Modicon in 1979,

the protocol provides a messaging structure for master/slave communications between intelligent devices.

Originally developed for Modicon’s PLCs, Modbus can now be found in valves, energy meters, variable

frequency drives (VFDs), temperature probes, and all kinds of other devices. The Modbus Organization, a trade

organization, provides protocol information and documentation.

Although it was designed for a serial network, Modbus has since been adapted to work over Ethernet as well.

Over Ethernet the protocol is called Modbus/TCP.

Modbus Support in Opto 22 Products

Native Support

Many Opto 22 devices can communicate using Modbus/TCP and/or Modbus, often in addition to other

protocols. For example:

• groov View in groov EPIC, the groov Box, and groov Server for Windows acts as a Modbus master

over Ethernet to slave devices, providing data and control from a mobile operator interface for

Modbus/TCP PLCs and devices.

• All Opto 22 controllers and brains based on Ethernet and the OptoMMP protocol—including all

groov EPIC processors, SNAP PAC controllers, and Ethernet brains—have built-in Modbus/TCP slave

capability.

• OptoEMU Sensor energy monitoring units can act as a Modbus master to slave devices using

Modbus/TCP or Modbus serial (RTU or ASCII). OptoEMU Sensors can also act as Modbus/TCP slave

devices.

• The SNAP-B3000-MODBUS analog/digital brain talks only Modbus serial.

Integration Kits

In addition to these products that natively communicate using Modbus, you can use free integration kits to

communicate with other Opto 22 products:

• PAC Project controllers—One integration kit handles both Modbus/TCP and Modbus serial (ASCII or

RTU) for PAC Control. This integration kit works with all controllers that use PAC Project, including groov

EPIC and SNAP PAC controllers.

• ioProject controllers—Two kits are available for legacy ioControl, Modbus/TCP or Modbus serial.

• FactoryFloor controllers—The integration kit supports Modbus ASCII or RTU (no Modbus/TCP).

Each integration kit includes a single subroutine for your PAC Control, ioControl, or OptoControl strategy to

make the controller a Modbus slave, plus several subroutines to make it a Modbus master (one for each

supported Modbus master function code). To use a kit, you add code in your control strategy to call the

subroutine and pass in the Modbus registers you want. The subroutine builds the appropriate Modbus

messages to send and receive data.

http://modbus.org/

PAGE 2

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

Form 2011-180815Using Modbus Devices with Opto 22 Products

If you’re using the master subroutines, you’ll notice that these subroutines are named by the Modbus

command name and number that they execute. You call the command by setting a variable of that name to

true. For example, to manipulate a digital output you would use the Coil Modbus command 01. So you would

run the subroutine MB_01_Read_Coils.

Each subroutine has a table or tables associated with it. Which table is used depends on the data type you’ve

set in the subroutine command parameter. The subroutine builds the Modbus message, sends it, receives a

response, parses the response, and places the data in the proper table for you to use in your strategy.

All integration kits include documentation with more details for the specific kit. For the PAC Control kit,

documentation is in the text blocks inside each subroutine and example strategy flowchart.

NOTE: Most Modbus devices store 32-bit data values in two consecutive 16-bit registers. However, PAC Project

controllers store 32-bit data values in individual table elements, because these tables support full 32-bit data values.

Don’t be confused by the difference between reading two consecutive registers in the slave device and using a single

table element in PAC Control.

Setting up Ports

To use a Modbus/TCP integration kit, you must change the Modbus port as follows:

groov EPIC processors: EPIC uses ports 502 and 8502 for the built-in slave functionality, so do not use either

of these port numbers.

• To use an EPIC as a Modbus master, change the Modbus port in the integration kit. Then use groov

Manage to add a rule to open that port on the EPIC (Home > Security > Firewall > Add Rule).

• To use an EPIC as a slave, change the Modbus port both in the integration kit and on the Modbus master.

SNAP PAC controllers: Using PAC Manager, change the Modbus port on the controller. By default SNAP PAC

controllers and brains open port 502 for the built-in Modbus/TCP slave functionality. However, the

Modbus/TCP integration kit won’t work unless you change the built-in Modbus slave port from 502 to 0.

See the PAC Manager User’s Guide (form 1704) for instructions.

Getting Started with Modbus/TCP

A little preparation now will save you a lot of time and trouble later.

1. First, download the Modicon Modbus Protocol Reference Guide, a short guide with key information on

the protocol and its commands:

http://www.modbus.org/docs/PI_MBUS_300.pdf

If you’re using Modbus/TCP, also download this guide:

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

2. Skim these guides to familiarize yourself with the protocol and (for Modbus/TCP) how it’s implemented

over Ethernet. Pay attention to command numbers and exception response codes. (See “Common

Commands” on page 5 for the commands used with most Opto 22 products.)

3. Read “Modbus Integration Issues” on page 3 so you’ll understand the integration issues to watch out for

while using Modbus.

4. Download Modscan32 utility software from Win-TECH: http://www.win-tech.com/html/modscan32.htm

You may also find the Technical Resources section on the Modbus Organization website useful:

http://www.modbus.org/tech.php

https://www.opto22.com/support/resources-tools/documents/1704-pac-manager-users-guide
http://www.modbus.org/docs/PI_MBUS_300.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/tech.php
http://www.win-tech.com/html/modscan32.htm

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

PAGE 3

Form 2011-180815Using Modbus Devices with Opto 22 Products

MODBUS INTEGRATION ISSUES

Because it was designed for Modicon’s PLCs in the late 1970s, the Modbus protocol as published has

limitations based on capabilities at that time. Manufacturers have worked around those limitations in various

ways.

For example, the protocol was based on 16-bit unsigned integers, but now 32 bits (or 64) are often required to

handle data as floats or signed integers. The way manufacturers deal with this situation varies, even though

they’re using the same protocol.

Three areas typically can cause trouble when integrating Modbus devices:

• Serial network wiring and setup (If you’re using Modbus/TCP, skip this section.)

• Data type and word order

• Command and register numbering

Serial Network Wiring and Setup

If you’re using Modbus/TCP, skip this section.

If you’re using Modbus over a serial network, all devices must be set up with the same wiring and

communication parameters in order to communicate.

Look in each device’s user guide to see the choices specified for that device and how to change them.

Wiring choices include:

• RS-232, with or without flow control

• RS-485/422 four-wire

• RS-485 two-wire

An RS-485/422 serial network must also be properly terminated and biased. If a device is physically the first or

last one on the serial network, it should be set as terminated. Any one device in the network (typically the host

or master device) should be set as biased. Check your device’s user guide to determine how to set termination

and biasing for that device.

Parameters include:

• Baud rate

• Parity (Odd, Even, or None)

• Number of data bits

• Number of stop bits

Example

Suppose you have five devices on the serial network. You decide that network wiring will be RS-485 two-wire.

• Set termination on the first and last device in the network. Set biasing on any one of the devices.

• Set communication parameters all the same, for example:

– 9600 baud

– Parity: none

– 8 data bits

– 1 stop bit

PAGE 4

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

Form 2011-180815Using Modbus Devices with Opto 22 Products

Data Type and Word Order

Values are interpreted based on the data type—for example, Boolean, float, 64-bit signed integer—and on

word order.

As mentioned earlier, the original Modbus spec used registers defined as 16-bit unsigned integers (two bytes,

also called one word). But 32-bit floats and 32- or 64-bit integers have become common. To accommodate

the extra bits for integers or floats, device manufacturers had to use two or four contiguous 16-bit registers

(two or four words).

Within a register Modbus specifies byte order as Big Endian: the most significant byte is at the lower address

(which is more human-readable). But multi-register data is not specified. Some manufacturers put the most

significant word in higher-numbered registers, and some put it in lower-numbered registers.

To get accurate data when using Opto 22 products with Modbus devices, refer to the documentation for your

device to see how the manufacturer approaches data types that span more than one 16-bit register/address.

Look for terms like high or low order, high or low registers, MSB and LSB (most significant byte and least

significant byte).

Obviously values will be very different depending on how you read multi-register data. For example, a 32-bit

integer has two words. Suppose the following words are sent (in hex):

- Register 1 = 1234
- Register 2 = 5678
Depending on word order, these two words could represent two very different values:

• 12345678 (hex), which would be 305,419,896 (decimal)

• 56781234 (hex), which would be 1,450,709,556 (decimal)

For 64-bit values, which span four registers, there are four possible ways to represent a value. If register values

are (in hex):

- Register 1 = 1234
- Register 2 = 5678
- Register 3 = 90AB
- Register 4 = CDEF
The resulting data could be:

The problem of word order is often tricky enough that the best way to determine it is to check a known value.

If the known value is very different from what it should be, try changing the order and see if that fixes the

problem.

Possible word order Resulting data

Register
containing LSB

32-bit value
containing LSB

64-bit value (hex)
from registers 1-4

Higher Higher 1234 5678 90AB CDEF

Lower Higher 5678 1234 CDEF 90AB

Higher Lower 90AB CDEF 1234 5678

Lower Lower CDEF 90AB 5678 1234

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

PAGE 5

Form 2011-180815Using Modbus Devices with Opto 22 Products

Commands and Registers

Common Commands

Here are typical actions you’ll want to take with Opto 22 products and the Modbus commands to use.

Commands are shown in both decimal and hex:

For details on each command, see the Modicon Modbus Protocol Reference Guide.

Register Addressing

Remember that all numbers in Modbus messages are in hex. Each register is numbered. The Modbus protocol

provides for four types of registers:

When you build a Modbus message, leave off the first digit of the register, because the command itself

indicates the group of addresses it applies to. For example, Modbus command 03 is Read Holding Registers,

which are by definition in addresses 4xxxx. Therefore the initial 4 is left off the address.

Confusingly, Modbus register addresses are zero-based, but register numbers are one-based. That means that,

for example, register number 1 is at register address 0, and register number 48F is at register address 48E.

Many manufacturers of Modbus products use the zero-based register addresses: for example, when you write

to coil #1, you use address 0000. However, some manufacturers use register numbers based on 1, where coil #1

would be address 0001. If you are getting the wrong data at a register, check to see if the correct data appears

in the address just before or just after, and adjust your address accordingly.

Action Command Command definition

Dec. Hex

Read digital output 01 01 Read Coil Status

Read digital input 02 02 Read Input Status

Read analog output 03 03 Read Holding Registers

Read analog input 04 04 Read Input Registers

Turn on/off one digital output 05 05 Force Single Coil

Write to one analog output 06 06 Preset Single Register

Turn on/off multiple digital outputs 15 0F Force multiple coils

Write multiple analog outputs 16 10 Preset multiple registers

Report hardware and firmware revision levels 17 11 Report slave ID

Register type Register address (hex) Typical use

Coils 00000–0FFFF Write to digital points

Inputs 10000–1FFFF Read digital points

Input registers 30000–3FFFF Read analog points

Holding registers 40000–4FFFF Write to analog points

PAGE 6

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

Form 2011-180815Using Modbus Devices with Opto 22 Products

MODBUS TROUBLESHOOTING

If you can’t get your Modbus device to communicate with your Opto 22 device, the easiest way to

determine the source of the problem is to start with a known good Modbus program. Modscan32 is an

inexpensive, well-known Modbus master used for testing. It talks both Modbus/TCP and Modbus serial.

Because Modscan32 is a known quantity, using it to test communication with the Modbus slave is a key step

in making sure that your setup is correct and the data you’re getting is accurate. If you haven’t already,

download Modscan32 utility software from Win-TECH: http://www.win-tech.com/html/modscan32.htm

Native Support: Troubleshooting Steps

If you’re taking advantage of the native Modbus/TCP slave support in a groov product, OptoEMU Sensors, or

Ethernet-based OptoMMP controllers or brains, follow these steps. For groov View, also see the groov View

User’s Guide (form 2027).

1. If the Opto 22 product is the Modbus slave, use Modscan32 as the Modbus master to connect to the

Opto 22 device. If it works, check the inputs and outputs and familiarize yourself with how Opto channels

(points) map to Modbus coils, inputs, holding registers, etc. Refer to the Modbus/TCP Protocol Guide

(Opto 22 form 1678) for help.

2. If the Opto 22 product is the Modbus master, start by using Modscan32 as the master to connect to your

slave device (instead of the Opto 22 master). Make sure you understand how the slave device uses data

types and word order. Test known values to make sure they are correct.

3. If the slave device (Opto or other manufacturer) does not work properly with Modscan32, contact the

device’s manufacturer for help. (See page 8 for Opto 22 Product Support contact information.)

4. If the slave device works fine with Modscan32, then connect the real master and slave and test them

together, again checking known values. If you have problems, review “Modbus Integration Issues” on

page 3. If communication still doesn’t work, contact Opto 22 Product Support (contact information is on

page 8).

Integration Kit: Troubleshooting Steps

If you’re using an integration kit with PAC Project, ioProject, or FactoryFloor controllers, follow these

troubleshooting steps.

First, make sure you have changed the Modbus/TCP port as described in “Setting up Ports” on page 2.

Master Subroutine

1. If you’re using a Modbus master subroutine (for any Opto product), connect Modscan32 to the slave

device instead of connecting the Opto controller to the slave.

2. If you cannot establish basic communication, review “Modbus Integration Issues” on page 3 and check

the guide that came with the integration kit. Contact Opto 22 Product Support if it still doesn’t work.

(Contact information is on page 8.)

3. Once basic communication is established, connect the slave device to the Opto 22 controller. Download

the example master strategy (comes with the kit) to the controller, run it, and test each subroutine that

the slave supports and you will need.

4. If all subroutines are working and known data values are appearing correctly, then talk to the slave using

your own custom strategy to call the Modbus subroutines.

Slave Subroutine

1. If you’re using a Modbus slave subroutine (for any Opto product), download the example slave strategy

(comes with the kit) to the controller, run the strategy, and attempt to connect with Modscan32.

http://www.win-tech.com/html/modscan32.htm
https://www.opto22.com/support/resources-tools/documents/2027-groov-view-users-guide
https://www.opto22.com/support/resources-tools/documents/2027-groov-view-users-guide
https://www.opto22.com/support/resources-tools/documents/1678-modbus-tcp-protocol-guide

OPTO 22 • 800-321-6786 • 1-951-695-3000 • www.opto22.com • sales@opto22.com

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

PAGE 7

Form 2011-180815Using Modbus Devices with Opto 22 Products

2. If it does not work, review “Modbus Integration Issues” on page 3 and check the guide that came with

the integration kit. If it still doesn’t work, contact Opto 22 Product Support (page 8).

3. When communication is established, try to connect the Modbus master you intend to use to the Opto

product, still running the example strategy.

4. After working out any problems here and making sure that known data values are correct, finally

integrate the slave strategy with your own custom code.

Troubleshooting Q&A

Q: I am talking, and I can see my digital stuff, but analog data (holding registers) look crazy.
What's wrong?

A: The data type might be wrong, the word order might be wrong, or the startng register number might be

wrong. Modbus registers are only 16-bit. So when we try to read 32-bit floats or 32- or 64-bit integers, the data

needs to be arranged correctly (see “Data Type and Word Order” on page 4). You can check the slave device’s

user guide to see how the data is going to be returned. You can also use Modscan32 to just quickly read the

data as each type until things look normal.

Q: What else can go wrong?

A: If it is Modbus/TCP, the same things that always go wrong with TCP communications: wrong IP address, bad

cable, bad network, etc. Make sure you have changed the Modbus/TCP port as described in “Setting up Ports”

on page 2.

If it is Modbus serial, the same things that always go wrong with serial communications: cable too long, cable

mis-wired, baud rate, data bit, parity or stop bit mismatch, and so on. Use the TX/RX LEDs to troubleshoot the

problem.

If you’re using an integration kit with PAC Control and you’ve checked all the basics, you can go into Debug

mode and check the specific queries that are being sent out and responses received (or in the case of the slave

subroutine, the queries received and responses sent out). Compare these to the Modbus Protocol Reference

Guide to determine the problem. This is an advanced step. It generally does not get to this point unless there is

a bug in software or the device you’re talking to.

Q: My slave device sent me an exception response. What's that?

A: It means the slave device received a query addressed to it, but for some reason it could not respond with

the data requested. Look it up in Modicon’s Modbus Protocol Reference Guide. There are six exception codes, but

you’ll usually only see 01 ILLEGAL FUNCTION or 02 ILLEGAL DATA ADDRESS. Exceptions are usually caused by

using a function code that is not supported by the slave device for the register numbers being accessed.

Verify the correct starting register number and the function codes supported for that register number. Try

reading only one value instead of a group of values. Using ModScan32 can be very helpful in this situation.

Q: My groov EPIC or SNAP PAC processor just needs to be a Modbus/TCP slave. Do I need the
toolkit?

A: No, you can use the built-in Modbus/TCP slave functionality. All of the points are easily available. Some of

the other memory map addresses can be directly accessed by determining where they are with the Modbus

calculator in PAC Manager. Strategy variables can be accessed by building a chart to move them to or from the

Scratch Pad, which is also available via Modbus/TCP. For more information, see the Modbus/TCP Protocol Guide,

form 1678.

https://www.opto22.com/support/resources-tools/documents/1678-modbus-tcp-protocol-guide

PAGE 8

OPTO 22 • www.opto22.com SALES • sales@opto22.com SUPPORT • support@opto22.com
43044 Business Park Dr. Temecula, CA 92590-3614 800-321-6786 • 1-951-695-3000 800-835-6786 • 1-951-695-3080

© 2012-2018 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

Form 2011-180815Using Modbus Devices with Opto 22 Products

FOR HELP

Other Documents

You may find these other Opto 22 documents useful, too:

Opto 22 Product Support

If you have problems using Modbus devices with Opto 22 products and cannot find the help you need in this

guide or the guides listed above, contact Opto 22 Product Support.

Phone: 800-TEK-OPTO (800-835-6786 toll-free

in the U.S. and Canada)

951-695-3080

Monday through Friday,

7 a.m. to 5 p.m. Pacific Time

Fax: 951-695-3017

Email: support@opto22.com

Opto 22 website: www.opto22.com

To do this See this document Form

Adding Modbus/TCP devices in groov View groov View User’s Guide 2027

Changing Modbus port on a PAC (not on EPIC)
or calculating Modbus addresses (other than
I/O points)

PAC Manager User’s Guide 1704

Using Modbus/TCP with Opto 22 Ethernet
controllers and brains Modbus/TCP Protocol Guide 1678

Using subroutines in Modbus integration kits PAC Control User’s Guide 1700

Using Modbus with OptoEMU Sensors OptoEMU Sensor Communication Guide 1958

Using Modbus integration kits:
Modbus Integration Kit, PAC Control

Modbus/Serial Integration Kit, ioControl
Modbus/TCP Integration Kit, ioControl
Modbus Integration Kit, OptoControl (Serial)

Modbus Integration Kit for PAC Control Technical
Note
Modbus/Serial Integration Kit for ioProject
Modbus/TCP Integration Kit for ioProject
Modbus 3.1 Integration Kit for OptoControl

2164
1660
1644
1128

NOTE: Email messages and phone calls

to Opto 22 Product Support are

grouped together and answered in the

order received.

https://www.opto22.com/support/resources-tools/documents/2027-groov-view-users-guide
https://www.opto22.com/support/resources-tools/documents/1704-pac-manager-users-guide
https://www.opto22.com/support/resources-tools/documents/1678-modbus-tcp-protocol-guide
https://www.opto22.com/support/resources-tools/documents/1700-pac-control-users-guide
https://www.opto22.com/support/resources-tools/documents/1958_optoemu_sensor_communication_guide-pdf
https://www.opto22.com/support/resources-tools/documents/2164_modbus_integration_kit_for_pac_control_tech_n
http://www.opto22.com/site/documents/doc_drilldown.aspx?aid=2993
http://www.opto22.com/site/documents/doc_drilldown.aspx?aid=2939
http://www.opto22.com/site/documents/doc_drilldown.aspx?aid=1737
mailto:support@opto22.com
https://www.opto22.com

	Using Modbus Devices with Opto 22 Products
	About Modbus
	Modbus Support in Opto 22 Products
	Native Support
	Integration Kits
	Setting up Ports

	Getting Started with Modbus/TCP

	Modbus Integration Issues
	Serial Network Wiring and Setup
	Example

	Data Type and Word Order
	Commands and Registers
	Common Commands
	Register Addressing

	Modbus Troubleshooting
	Native Support: Troubleshooting Steps
	Integration Kit: Troubleshooting Steps
	Master Subroutine
	Slave Subroutine

	Troubleshooting Q&A

	For Help
	Other Documents
	Opto 22 Product Support

