
ActiveX OptoMMP Technical Note

PAGE
1

TECH
N

ICA
L N

O
TE

Form
 2136-141113

A
ctiveX O

ptoM
M

P Technical N
ote

Introduction
This technical note helps you use the ActiveX portion of 
the C++ OptoMMP Software Development Kit (SDK) for 
SNAP PAC (part number PAC-DEV-OPTOMMP-CPLUS, a 
free tookit available on our website at www.opto22.com. 

This technical note assumes that you already have an 
understanding of ActiveX and C++ programming. 

The SDK includes all the code for the C++ classes, 
ActiveX components, and examples. You are free to use 
this code at no charge in your own application, with or 
without modification. However, Opto 22 cannot support 
modification of the code.

The ActiveX components 
are essentially wrappers 
around the C++ classes, 
making the efficient C++ 
code available to many 
types of ActiveX clients. 

The diagram at right 
shows how layers are 
related.

Overview of the ActiveX Components
You can use the ActiveX components from Windows 
programming environments that support ActiveX 
components, such as Borland Delphi, Microsoft Visual 
Basic®, Visual Basic for Applications, VBScript, and Visual 
C++. 

Important ActiveX Client Issues
Before deciding to use these components in a particular 
language or tool, please keep the following in mind.

Some types of ActiveX clients are better suited for use 
with these components than others. The components 
are designed to be used in procedural languages, such 
as Visual Basic and C++. They are not recommended for 
use in other types of languages, such as graphical or 
dataflow languages (for exmaple, LabVIEW). Opto 22 
recommends Visual Basic 6.0 and Visual Basic for 
Applications as the best environments for using these 
components.

Opto 22 is able to support the use of the ActiveX 
components only in the environments for which 
examples are provided: Access 2000, Word 2000, Visual 
Basic 6.0, Internet Explorer 6.0, Visual C++ 6.0, and 
Borland Delphi 5. 

Also, please note these are ActiveX components, not 
controls. They do not have any user interface elements 
or design-time properties. They use methods and events 
but not properties.

Terminology
ActiveX is an umbrella term for many technologies 
based on COM (Component Object Model, a Microsoft 
technology allowing binary code reuse). Different 
programming environments use different terminology; 
in this chapter, we use terms as follows:

• An interface is a set of related functions (not a user 
interface). 

• A component is an implementation of one or more 
interfaces.

• A control is a component that also has user 
interface elements.

• An object is an instance of a component.

• A type library is a description of a library’s exposed 
classes, interfaces, methods, and properties. In this 
SDK, the type library is contained in the 
OptoSnapIoMemMapX.dll file.

• A UUID (Universally Unique Identifier, also called a 
GUID) is a a 128-bit value that uniquely identifies 
something.

ActiveX Names and IDs

NOTE: Different programming environments may require 
different information.

File Name: OptoSnapIoMemMapX.dll

Type Library UUID: 54D2FA40-E34F-11D2-9707-
080009ABC65D

Type Library Name: OptoSnapIoMemMapXLib

MemMap ProgID: 
OptoSnapIoMemMapX.O22SnapIoMemMapX.1

Your Application

SDK ActiveX 
Components

SDK C++ Classes

OptoMMP Protocol

Sockets

TCP and UDP

IP

Memory-mapped device

http://www.opto22.com/site/pr_details.aspx?cid=4&item=PAC-DEV-OPTOMMP-CPLUS


ActiveX OptoMMP Technical Note

PAGE
2 TECHNICAL NOTE • Form 2136-141113

MemMap Class UUID: 54D2FA50-E34F-11D2-9707-
080009ABC65D

MemMap Class Name: OptoSnapIoMemMapX

MemMap Interface UUID: 54D2FA4F-E34F-11D2-9707-
080009ABC65D

MemMap Interface Name: IO22SnapIoMemMapX

Streaming ProgID: 
OptoSnapIoMemMapX.OptoSnapIoStreamX.1

Streaming Class UUID: 54D2F150-E34F-11D2-9707-
080009ABC65D

Streaming Class Name: OptoSnapIoStreamX

Streaming Interface UUID: 54D2F14F-E34F-11D2-9707-
080009ABC65D

Streaming Interface Name: IO22SnapIoStreamX

Streaming Event Interface UUID: 54D2F148-E34F-11D2-
9707-080009ABC65D

Streaming Event Interface Name: 
_IOptoSnapIoStreamXEvents

OptoSnapIoMemMapX General Instructions
Each programming environment has a different way of 
using ActiveX components. Also, environments use 
different and conflicting terminology. See the 
environment’s documentation for more information on 
how to use ActiveX components. In general, however, you 
will need to do the following:
1. Add the component to the project, so the project 

knows about it.

– In some environments, you must add a reference 
to the type library, class, or interface. 

– In others, you must import the type library, class, 
or interface into a native format. For example, if 
you are using the component in Visual C++, it will 
build a C++ wrapper class for accessing the 
component.

2. Create an instance of the component.
3. Open a connection to the Opto 22 memory-mapped 

device.
4. Use the methods of the component to communicate 

with the connected device and check for errors.
5. When done, disconnect from the device .

6. If needed, destroy the instance that was created in 
step 2.

OptoSnapIoStreamX General Instructions
Common procedures for using the OptoSnapIoStreamX 
ActiveX component in a program are: 
1. Add the component to the project, so the project 

knows about it. 

– In some environments, you must add a reference 
to the type library, class, or interface. 

– In others, you must import the type library, class, 
or interface into a native format. For example, if 
you are using the component in Visual C++, it will 
build a C++ wrapper class for accessing the 
component.

2. Create an instance of the component. 
3. Call OpenStreaming() to initialize the stream type, 

length, and port. 
4. Call StartStreamListening() for each I/O unit.

A new thread is created to listen for incoming UDP 
packets. Every time a stream packet from a registered 
device is received, the OnStreamEvent will be called.

5. Depending on the type set in step #3., call the 
function GetLastStreamStandardBlock(), 
GetLastStreamStandardBlockEx(), or 
GetLastStreamCustomBlockEx() every time 
OnStreamEvent is called. 

6. To stop listening for a specified I/O unit, call 
StopStreamListening() at any time.

7. To add I/O units, call StartStreamListening() at any 
time.

8. When done, call CloseStreaming().
9. If needed, destroy the instance that was created in 

step 2.

Using Visual Basic 6.0 or Higher
When you add the component to a Visual Basic project, 
you must reference the component before using it. To do 
so, choose Project > References. In the list box, check 
OptoSnapIoMemMapX 2.0 Type Library. This action lets 
Visual Basic know that you intend to use the component 
from within the project.



ActiveX OptoMMP Technical Note

Form 2136-141113 • Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com
SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • sales@opto22.com • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • support@opto22.com

© 2014 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

PAGE
3

Several sample programs are provided, including one 
(Demo Center.vbp) that demonstrates all aspects of the 
ActiveX component. The Visual Basic examples use the file 
...\Examples\ActiveX\O22SIOMMXUtils.bas, which includes 
several useful general-purpose functions and error codes.

NOTE: If you’re using a version of Visual Basic higher than 6.0, 
you may prefer to use the .NET OptoMMP Software 
Development Kit for SNAP PAC, also available for free 
download from our website at www.opto22.com.

Using VBA and Microsoft Office
Some Microsoft Office programs include a macro 
language, Visual Basic for Applications (VBA), which is a 
subset of Visual Basic. VBA can use the 
OptoSnapIoMemMapX component in the same way that 
Visual Basic does. Examples are included of using VBA in 
Word and Access.

Using VBScript
Visual Basic Scripting Edition, or VBScript, is a subset of the 
Visual Basic programming language. VBScript is an 
interpreted language used in World Wide Web browsers 
and other applications. 

Microsoft FrontPage® or Microsoft Visual InterDev® can be 
used to write VBScript code that runs in an HTML page 
located on a PC on the same network as the Opto 22 
memory-mapped device. An example is included that 
illustrates using VBScript in a Web page to access the 
ActiveX component. 

If you are programming with VBScript, use the 
OptoSnapIoMemMap ActiveX component functions that 
begin with the letter V. These functions use only the variant 
data type, which is the only data type supported by 
VBScript. 

Using Borland Delphi 5
Borland Delphi 5, a version of the Pascal programming 
language, may be used with the ActiveX components. To 
access them, the type library must be imported into a 
project. See the readme.txt file in the included Delphi 
example for more information.

Using the ActiveX Components without the 
SDK
The ActiveX component must be installed on a computer 
before it can be used. If you want to run the examples or 
other ActiveX files you create on a computer that doesn’t 
have the SDK installed, you need to register the ActiveX 
DLL. To do so, follow these steps:
1. Copy the OptoSnapIoMemMapX.dll file to the new 

computer.
2. Register the OptoSnapIoMemMapX.dll file using the 

regsvr32.exe program. 

Regsvr32.exe can be found on most Windows 
systems. For instance, if you copied the ActiveX file to 
"c:\windows\system", you could register it by 
executing the command "regsvr32 
c:\windows\system\OptoSnapIoMemMapX.dll" from 
a Command Prompt.

Building the ActiveX Component with Visual 
C++ 6.0
All Visual C++ 6.0 source code for the ActiveX component 
is included in the ...\Source\ ActiveX directory. This source 
code may be modified and built by using Visual C++ 6.0.

If the component's interface or functionality is changed, 
consider changing the library and interface's universally 
unique identifiers (UUID). These values can be found in the 
files OptoSnapIoMemMapX.idl and 
O22SnapIoMemMapX.rgs. Use the GUIDGEN.EXE program 
included with Visual C++ to generate new UUID values.


