
OPTOCONTROL
COMMAND REFERENCE
Form 725-120508—May, 2012

43044 Business Park Drive • Temecula • CA 92590-3614
Phone: 800-321-OPTO (6786) or 951-695-3000

Fax: 800-832-OPTO (6786) or 951-695-2712
www.opto22.com

Product Support Services
800-TEK-OPTO (835-6786) or 951-695-3080

Fax: 951-695-3017
Email: support@opto22.com

Web: support.opto22.com

OptoControl Command Reference
Form 725-120508—May, 2012

Copyright © 1998–2012 Opto 22.
All rights reserved.
Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22 assumes no
responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the
manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation, labor,
or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of 1/96 or later are guaranteed
for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID modules, and modules
that contain mechanical contacts or switches. Opto 22 does not warrant any product, components, or parts not
manufactured by Opto 22; for these items, the warranty from the original manufacturer applies. These products include,
but are not limited to, OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson GT-48; see the product data sheet for
specific warranty information. Refer to Opto 22 form number 1042 for complete warranty information.

Wired+Wireless controllers and brains and N-TRON wireless access points are licensed under one or more of the following
patents: U.S. Patent No(s). 5282222, RE37802, 6963617; Canadian Patent No. 2064975; European Patent No. 1142245;
French Patent No. 1142245; British Patent No. 1142245; Japanese Patent No. 2002535925A; German Patent No. 60011224.

Opto 22 FactoryFloor, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl, ioDisplay,
ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl, OptoDataLink, OptoDisplay,
OptoEMU, OptoEMU Sensor, OptoEMU Server, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, PAC
Control, PAC Display, PAC Manager, PAC Project, SNAP Ethernet I/O, SNAP I/O, SNAP OEM I/O, SNAP PAC System, SNAP
Simple I/O, SNAP Ultimate I/O, and Wired+Wireless are trademarks of Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, Windows, and Windows Vista are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered
trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET is a
registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric. Wiegand is a
registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M Gateway Software, and
Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia Corporation. Sony is a trademark of
Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson. CompactLogix, MicroLogix, SLC, and RSLogix
are trademarks of Rockwell Automation. Allen-Bradley and ControlLogix are a registered trademarks of Rockwell
Automation. CIP and EtherNet/IP are trademarks of ODVA.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.
OptoControl Command Referenceii

Table of Contents
Welcome to the OptoControl Command Reference xv

About this Reference..xv

Other FactoryFloor Resources ..xv
Documents and Online Help..xv
Product Support..xvi

Commands by Command Group ...xvii

A ... A-1
Absolute Value ..A- 1
Accept Session on TCP Port ..A- 2
Add ..A- 3
Add User Error to Queue ...A- 4
Add User I/O Unit Error to Queue..A- 5
AND ...A- 6
AND? ...A- 7
Append Character to String...A- 8
Append String to String...A- 9
ARCNET Connected? ...A- 10
ARCNET Message Address Equal to?...A- 11
ARCNET Node Present? ..A- 12
Arccosine ...A- 13
Arcsine...A- 14
Arctangent ...A- 15

B ... B-1
Bit AND..B- 1
Bit AND?..B- 2
Bit Clear ...B- 4
Bit NOT ..B- 5
Bit NOT? ..B- 6
Bit Off?...B- 8
Bit On? ...B- 9
OptoControl Command Reference iii

Bit OR...B- 10
Bit OR? ...B- 11
Bit Rotate...B- 12
Bit Set ..B- 14
Bit Shift..B- 15
Bit Test ..B- 17
Bit XOR ..B- 18
Bit XOR?...B- 19

C ... C-1
Calculate & Set Analog Gain ..C- 1
Calculate & Set Analog Offset ..C- 3
Calculate & Store Strategy CRC..C- 4
Calculate Strategy CRC ...C- 5
Call Chart ...C- 6
Calling Chart Running? ..C- 7
Calling Chart Stopped?..C- 8
Calling Chart Suspended? ...C- 9
Caused a Chart Error?..C- 10
Caused an I/O Unit Error?..C- 11
Characters Waiting at Serial Port? ...C- 12
Chart Running? ..C- 13
Chart Stopped? ..C- 14
Chart Suspended? ...C- 15
Clamp Float Table Element ...C- 16
Clamp Float Variable ...C- 17
Clamp Integer 32 Table Element ...C- 18
Clamp Integer 32 Variable...C- 19
Clamp PID Output ..C- 20
Clamp PID Setpoint ...C- 21
Clear All Errors ..C- 22
Clear All Event Latches ...C- 23
Clear All Latches ...C- 24
Clear Counter...C- 25
Clear Event Latch...C- 26
Clear I/O Unit Interrupt..C- 27
Clear Off-Latch ..C- 28
Clear On-Latch ...C- 29
Clear PC Byte Swap Mode (ISA only)..C- 30
Clear Pointer ..C- 30
Clear Pointer Table Element..C- 31
Clear Quadrature Counter ...C- 32
Clear Receive Buffer..C- 33
Close Ethernet Session ...C- 34
Comment (Block)..C- 35
Comment (Single Line) ..C- 36
Communication to All I/O Points Enabled? ...C- 37
iv OptoControl Command Reference

Communication to All I/O Units Enabled?...C- 38
Complement ..C- 39
Configure I/O Unit ...C- 40
Configure Port..C- 41
Configure Port Timeout Delay ...C- 42
Continue Calling Chart ..C- 43
Continue Chart...C- 44
Continue Timer ..C- 45
Convert Float to String ..C- 45
Convert Hex String to Number ..C- 47
Convert IEEE Hex String to Number ..C- 48
Convert Mistic I/O Hex to Float...C- 49
Convert Number to Formatted Hex String...C- 50
Convert Number to Hex String ..C- 51
Convert Number to Mistic I/O Hex..C- 52
Convert Number to String ...C- 53
Convert Number to String Field...C- 54
Convert String to Float ..C- 55
Convert String to Integer 32..C- 56
Convert String to Integer 64..C- 57
Convert String to Lower Case ...C- 59
Convert String to Upper Case..C- 59
Copy Date to String (DD/MM/YY)...C- 60
Copy Date to String (MM/DD/YY)...C- 61
Copy Time to String ...C- 62
Cosine ..C- 63
CTS Off?...C- 64
CTS On? ...C- 65

D ... D-1
Decrement Variable...D- 1
Delay (mSec)..D- 2
Delay (Sec)...D- 3
Disable Communication to All I/O Points..D- 4
Disable Communication to All I/O Units ...D- 5
Disable Communication to Analog Point ..D- 6
Disable Communication to Digital Point ...D- 7
Disable Communication to Event/Reaction ..D- 8
Disable Communication to I/O Unit ..D- 9
Disable Communication to PID Loop...D- 11
Disable Event/Reaction Group ..D- 12
Disable I/O Unit Causing Current Error ...D- 13
Disable Interrupt on Event...D- 14
Disable PID Output ..D- 15
Disable PID Output Tracking in Manual Mode ...D- 16
Disable PID Setpoint Tracking in Manual Mode...D- 17
Disable Scanning for All Events ..D- 18
OptoControl Command Reference v

Disable Scanning for Event .. D- 19
Disable Scanning of Event/Reaction Group ... D- 20
Divide.. D- 21
Down Timer Expired? ... D- 22

E ..E-1
Enable Communication to All I/O Points ...E- 1
Enable Communication to All I/O Units ..E- 2
Enable Communication to Analog Point..E- 3
Enable Communication to Digital Point ..E- 4
Enable Communication to Event/Reaction..E- 5
Enable Communication to I/O Unit..E- 6
Enable Communication to PID Loop ..E- 7
Enable Event/Reaction Group ...E- 8
Enable I/O Unit Causing Current Error ..E- 9
Enable Interrupt on Event ..E- 10
Enable PID Output ...E- 11
Enable PID Output Tracking in Manual Mode...E- 12
Enable PID Setpoint Tracking in Manual Mode..E- 13
Enable Scanning for All Events ...E- 14
Enable Scanning for Event ..E- 15
Enable Scanning of Event/Reaction Group ...E- 16
Equal? ..E- 16
Equal to Table Element?..E- 18
Error? ...E- 19
Error on I/O Unit?...E- 20
Ethernet Session Open? ..E- 21
Event Occurred?...E- 22
Event Occurring?..E- 23
Event/Reaction Communication Enabled? ..E- 24
Event/Reaction Group Communication Enabled? ...E- 25
Event Scanning Disabled? ...E- 26
Event Scanning Enabled? ..E- 27

F ..F-1
Find Character in String... F- 1
Find Substring in String ... F- 2
Float Valid? .. F- 3

G ... G-1
Generate Checksum on String.. G- 1
Generate Forward CCITT on String .. G- 2
Generate Forward CRC-16 on String .. G- 3
Generate N Pulses.. G- 4
Generate Random Number... G- 5
Generate Reverse CCITT on String... G- 6
vi OptoControl Command Reference

Generate Reverse CRC-16 on String ...G- 7
Generate Reverse CRC-16 on Table (32 bit)..G- 8
Generating Interrupt? ..G- 9
Get & Clear Analog Filtered Value..G- 10
Get & Clear Analog Maximum Value..G- 11
Get & Clear Analog Minimum Value...G- 12
Get & Clear Analog Totalizer Value ..G- 13
Get & Clear Counter ..G- 14
Get & Clear Digital I/O Unit Latches...G- 15
Get & Clear Digital-64 I/O Unit Latches..G- 16
Get & Clear Event Latches ..G- 18
Get & Clear Off-Latch..G- 19
Get & Clear On-Latch ..G- 20
Get & Clear Quadrature Counter ...G- 21
Get & Clear Simple-64 I/O Unit Latches ...G- 22
Get & Restart Off-Pulse Measurement...G- 23
Get & Restart Off-Time Totalizer ..G- 24
Get & Restart On-Pulse Measurement ...G- 25
Get & Restart On-Time Totalizer ...G- 26
Get & Restart Period ...G- 27
Get Active Interrupt Mask...G- 28
Get Address of I/O Unit Causing Current Error ...G- 29
Get Analog Filtered Value ...G- 30
Get Analog Lower Clamp ..G- 31
Get Analog Maximum Value ...G- 32
Get Analog Minimum Value..G- 33
Get Analog Square Root Filtered Value ..G- 34
Get Analog Square Root Value ...G- 35
Get Analog Totalizer Value ...G- 36
Get Analog Upper Clamp...G- 37
Get ARCNET Host Destination Address..G- 38
Get ARCNET Destination Address on Port ..G- 39
Get ARCNET Peer Destination Address ..G- 40
Get Chart Status ..G- 41
Get Controller Address..G- 42
Get Controller Type ...G- 43
Get Counter ...G- 44
Get Day..G- 45
Get Day of Week ...G- 46
Get Default Host Port ..G- 47
Get Digital I/O Unit as Binary Value ...G- 48
Get Digital-64 I/O Unit as Binary Value ..G- 49
Get Digital I/O Unit Latches ..G- 50
Get Digital-64 I/O Unit Latches...G- 51
Get Error Code of Current Error ...G- 52
Get Error Count ..G- 53
Get Ethernet Session Name..G- 54
Get Event Latches..G- 55
OptoControl Command Reference vii

Get Firmware Version... G- 56
Get Frequency... G- 57
Get High Bits of Integer 64... G- 58
Get Hours.. G- 59
Get ID of Block Causing Current Error .. G- 60
Get Julian Day .. G- 61
Get Length of Table .. G- 62
Get Low Bits of Integer 64 ... G- 63
Get Minutes.. G- 64
Get Mixed I/O Unit as Binary Value ... G- 65
Get Month .. G- 66
Get Name of Chart Causing Current Error.. G- 67
Get Name of I/O Unit Causing Current Error.. G- 68
Get Nth Character .. G- 69
Get Number of Characters Waiting on Serial or ARCNET Port G- 70
Get Number of Characters Waiting on Ethernet Session .. G- 71
Get Off-Latch .. G- 72
Get Off-Pulse Measurement .. G- 73
Get Off-Pulse Measurement Complete Status .. G- 74
Get Off-Time Totalizer .. G- 75
Get On-Latch... G- 76
Get On-Pulse Measurement ... G- 77
Get On-Pulse Measurement Complete Status ... G- 78
Get On-Time Totalizer .. G- 79
Get Period ... G- 80
Get Period Measurement Complete Status ... G- 81
Get PID Control Word ... G- 82
Get PID D Term... G- 83
Get PID I Term .. G- 84
Get PID Input .. G- 85
Get PID Mode ... G- 86
Get PID Output.. G- 87
Get PID Output Rate of Change.. G- 88
Get PID P Term ... G- 89
Get PID Scan Rate .. G- 90
Get PID Setpoint ... G- 91
Get Port of I/O Unit Causing Current Error ... G- 92
Get Priority.. G- 93
Get Priority of Host Task .. G- 94
Get Quadrature Counter ... G- 95
Get RTU/M4IO Temperature .. G- 96
Get RTU/M4IO Voltage .. G- 97
Get Seconds ... G- 98
Get Seconds Since Midnight.. G- 99
Get Simple-64 I/O Unit as Binary Value... G- 100
Get Simple-64 I/O Unit Latches ... G- 101
Get String Length ... G- 102
Get Substring.. G- 103
viii OptoControl Command Reference

Get System Time ...G- 104
Get Year...G- 105
Greater? ...G- 106
Greater Than or Equal?..G- 107
Greater Than or Equal to Table Element? ...G- 108
Greater Than Table Element?..G- 109

H ...H-1
Host Task Received a Message? ..H- 1
Hyperbolic Cosine..H- 2
Hyperbolic Sine ...H- 3
Hyperbolic Tangent ...H- 4

I ... I-1
Increment Variable ... I- 1
Interrupt Disabled for Event? ... I- 2
Interrupt Enabled for Event?... I- 3
Interrupt on Port0?.. I- 4
Interrupt on Port1?.. I- 4
Interrupt on Port2?.. I- 5
Interrupt on Port3?.. I- 6
Interrupt on Port6?.. I- 6
I/O Point Communication Enabled?.. I- 7
I/O Unit Communication Enabled? ... I- 8
I/O Unit Ready? .. I- 9
IVAL Set Analog from Table... I- 10
IVAL Set Analog Point .. I- 11
IVAL Set Counter .. I- 12
IVAL Set Digital Binary... I- 13
IVAL Set Frequency .. I- 14
IVAL Set Off-Latch.. I- 15
IVAL Set Off-Pulse .. I- 16
IVAL Set Off-Totalizer... I- 17
IVAL Set On-Latch .. I- 18
IVAL Set On-Pulse .. I- 19
IVAL Set On-Totalizer ... I- 20
IVAL Set Period... I- 21
IVAL Set PID Control Word... I- 22
IVAL Set PID Process Term... I- 23
IVAL Set Quadrature Counter ... I- 24
IVAL Set TPO Percent ... I- 25
IVAL Set TPO Period ... I- 26
IVAL Turn Off .. I- 27
IVAL Turn On... I- 28
OptoControl Command Reference ix

L ..L-1
Less? .. L- 1
Less Than or Equal?... L- 2
Less Than or Equal to Table Element? .. L- 3
Less Than Table Element?... L- 5
Low RAM Backup Battery?.. L- 6

M ... M-1
Make Integer 64 .. M- 1
Maximum... M- 2
Minimum ... M- 3
Modulo .. M- 4
Move.. M- 5
Move 32 Bits ... M- 6
Move Analog I/O Unit to Table ... M- 7
Move Digital I/O Unit to Table .. M- 8
Move Digital I/O Unit to Table Element.. M- 9
Move from Pointer Table Element .. M- 10
Move from String Table .. M- 11
Move from Table Element ... M- 12
Move Mixed I/O Unit to Table .. M- 13
Move Simple-64 I/O Unit to Table .. M- 14
Move String ... M- 15
Move Table Element to Digital I/O Unit.. M- 16
Move Table Element to Table ... M- 17
Move Table to Analog I/O Unit ... M- 17
Move Table to Digital I/O Unit .. M- 19
Move Table to Mixed I/O Unit .. M- 20
Move Table to Simple-64 I/O Unit .. M- 21
Move Table to Table ... M- 22
Move to Pointer ... M- 23
Move to Pointer Table ... M- 24
Move to String Table... M- 25
Move to Table Element ... M- 26
Multiply ... M- 27

N ..N-1
Natural Log ... N- 1
NOT... N- 2
NOT? ... N- 3
Not Equal? .. N- 4
Not Equal to Table Element?.. N- 5

O ..O-1
Off? ... O- 1
Off-Latch Set?... O- 2
x OptoControl Command Reference

On?...O- 3
On-Latch Set? ..O- 4
Open Ethernet Session..O- 5
OR ..O- 6
OR? ..O- 8

P ... P-1
Pause Timer ... P- 1
PID Loop Communication Enabled?... P- 2
Pointer Equal to NULL?.. P- 3
Pointer Table Element Equal to NULL? ... P- 4

R ... R-1
Raise e to Power ...R- 1
Raise to Power ..R- 2
Ramp Analog Output ...R- 3
Read Byte from PC Memory (ISA only)..R- 4
Read Byte from PC Port (ISA only)...R- 5
Read Event/Reaction Hold Buffer ...R- 6
Read Numeric Table from I/O Memory Map ..R- 6
Read Numeric Variable from I/O Memory Map..R- 8
Read String Table from I/O Memory Map ..R- 9
Read String Variable from I/O Memory Map..R- 11
Read Word from PC Memory (ISA only) ..R- 12
Read Word from PC Port (ISA only) ...R- 13
Receive Character via Serial Port..R- 14
Receive N Characters via ARCNET ...R- 15
Receive N Characters via Ethernet ...R- 16
Receive N Characters via Serial Port ..R- 18
Receive String via ARCNET...R- 19
Receive String via Ethernet ...R- 20
Receive String via Serial Port..R- 21
Receive Table via ARCNET..R- 23
Receive Table via Ethernet..R- 24
Receive Table via Serial Port ..R- 25
Remove Current Error and Point to Next Error ..R- 26
Reset Controller...R- 27
Retrieve Strategy CRC...R- 28
Round...R- 29

S ... S-1
Seed Random Number ..S- 1
Set Analog Filter Weight...S- 2
Set Analog Gain ..S- 4
Set Analog Offset ..S- 5
Set Analog Totalizer Rate ...S- 6
OptoControl Command Reference xi

Set Analog TPO Period ..S- 8
Set ARCNET Host Destination Address ..S- 9
Set ARCNET Destination Address on Port ..S- 10
Set ARCNET Mode Raw..S- 11
Set ARCNET Mode Standard ..S- 12
Set ARCNET Peer Destination Address ..S- 13
Set Date...S- 14
Set Day ..S- 15
Set Day of Week ...S- 16
Set Digital I/O Unit from MOMO Masks...S- 17
Set Digital-64 I/O Unit from MOMO Masks ...S- 18
Set Down Timer Preset Value ...S- 19
Set End-of-Message Terminator ...S- 20
Set Hours ...S- 21
Set I/O Unit Configured Flag ...S- 22
Set Minutes ...S- 23
Set Mixed I/O Unit from MOMO Masks ...S- 24
Set Month..S- 25
Set Nth Character..S- 26
Set Number of Retries to All I/O Units ...S- 27
Set PC Byte Swap Mode (ISA only)...S- 28
Set PID Control Word ..S- 29
Set PID D Term ..S- 30
Set PID I Term..S- 31
Set PID Input..S- 32
Set PID Mode to Auto ...S- 33
Set PID Mode to Manual...S- 34
Set PID Output Rate of Change ...S- 35
Set PID P Term...S- 36
Set PID Scan Rate ...S- 37
Set PID Setpoint ..S- 38
Set Priority ...S- 39
Set Priority of Host Task..S- 40
Set Seconds...S- 41
Set Simple-64 I/O Unit from MOMO Masks ...S- 42
Set Time ..S- 43
Set TPO Percent...S- 44
Set TPO Period...S- 45
Set Up Timer Target Value ..S- 46
Set Variable False ...S- 47
Set Variable True...S- 48
Set Year ...S- 49
Shift Table Elements ...S- 50
Sine..S- 51
Square Root ...S- 52
Start Chart ...S- 53
Start Continuous Square Wave...S- 54
Start Counter ...S- 55
xii OptoControl Command Reference

Start Default Host Task ...S- 56
Start Host Task (ASCII) ..S- 57
Start Host Task (Binary)...S- 58
Start Off-Pulse ...S- 59
Start On-Pulse ...S- 60
Start Quadrature Counter ..S- 61
Start Timer...S- 62
Stop Chart..S- 63
Stop Chart on Error ..S- 64
Stop Counter..S- 65
Stop Host Task ..S- 66
Stop Quadrature Counter ..S- 67
Stop Timer ...S- 68
String Equal? ...S- 69
String Equal to String Table Element? ..S- 70
Subtract ...S- 71
Suspend Chart ...S- 72
Suspend Chart on Error ...S- 73
Suspend Default Host Task ...S- 74

T ...T-1
Table Element Bit Clear... T- 1
Table Element Bit Set.. T- 2
Table Element Bit Test .. T- 3
Tangent.. T- 4
Test Equal .. T- 5
Test Equal Strings ... T- 7
Test Greater... T- 8
Test Greater or Equal .. T- 9
Test Less.. T- 10
Test Less or Equal ... T- 12
Test Not Equal ... T- 13
Test Within Limits ... T- 14
Timer Expired? ... T- 15
Transmit Character via Serial Port .. T- 16
Transmit NewLine via Serial Port ... T- 17
Transmit String via ARCNET ... T- 19
Transmit String via Ethernet ... T- 20
Transmit String via Serial Port .. T- 22
Transmit Table via ARCNET .. T- 23
Transmit Table via Ethernet .. T- 24
Transmit Table via Serial Port ... T- 25
Transmit/Receive Mistic I/O Hex String with Checksum ... T- 27
Transmit/Receive Mistic I/O Hex String with CRC ... T- 28
Transmit/Receive OPTOMUX String ... T- 29
Transmit/Receive String via ARCNET ... T- 31
Transmit/Receive String via Ethernet ... T- 32
OptoControl Command Reference xiii

Transmit/Receive String via Serial Port ..T- 34
Truncate...T- 36
Turn Off..T- 37
Turn Off RTS ..T- 38
Turn Off RTS After Next Character ...T- 39
Turn On ..T- 40
Turn On RTS...T- 41

U ... U-1
Up Timer Target Time Reached? .. U- 1

V ... V-1
Variable False? ..V- 1
Variable True? ...V- 2
Verify Checksum on String ..V- 3
Verify Forward CCITT on String ...V- 4
Verify Forward CRC-16 on String ..V- 5
Verify Reverse CCITT on String ...V- 6
Verify Reverse CRC-16 on String...V- 7

W ..W-1
Within Limits? ... W- 1
Write Byte to PC Memory (ISA only) ... W- 3
Write Byte to PC Port (ISA only) .. W- 4
Write I/O Unit Configuration to EEPROM ... W- 5
Write Numeric Table to I/O Memory Map.. W- 6
Write Numeric Variable to I/O Memory Map ... W- 8
Write String Table to I/O Memory Map.. W- 9
Write String Variable to I/O Memory Map ... W- 11
Write Word to PC Memory (ISA only) ... W- 12
Write Word to PC Port (ISA only) .. W- 13

X ... X-1
XOR..X- 1
XOR? ..X- 3

Index ... Index-1
xiv OptoControl Command Reference

Welcome to the OptoControl
Command Reference
Welcome to OptoControl™, Opto 22’s visual control language for Microsoft®Windows® systems,
and a part of the Opto 22 FactoryFloor® suite of products. OptoControl provides a complete and
powerful set of commands for all your industrial control needs.

About this Reference
This command reference describes in detail all OptoControl programming commands, or
instructions.The commands are listed alphabetically. The OptoControl User’s Guide, in a separate
binder, explains how to install and use OptoControl. For helpful information on using commands,
see Chapter 10, “Programming with Commands,” in the user’s guide.

This reference assumes that you are already familiar with Microsoft Windows on your personal
computer. If you are not familiar with Windows or your PC, refer to the documentation from
Microsoft and your computer manufacturer.

Other FactoryFloor Resources

Documents and Online Help
To help you understand and use the FactoryFloor suite of products, the following resources are
provided:

• Online Help is available in OptoControl, OptoDisplay, OptoServer, and most of the
OptoUtilities. To open online Help, choose Help➞Contents and Index in any screen.

• OptoControl User’s Guide, OptoDisplay User’s Guide, and OptoServer User’s Guide
give step-by-step instructions for using each of these products. The OptoServer User’s
Guide binder also contains a master FactoryFloor Glossary, which defines terms for all
FactoryFloor products.
OptoControl Command Reference xv

Online versions (Adobe® Acrobat® format) of these and other FactoryFloor documents are
available from the Help menu in your FactoryFloor application. To view a document, select
Help➞Manuals, and then choose a document from the submenu.

• OptoControl Command Reference contains detailed information about each command
(instruction) available in OptoControl.

• Two quick reference cards, OptoControl Commands and Beginner’s Guide to
OptoControl Commands, are located in the front pocket of the OptoControl Command
Reference.

• FactoryFloor resources are also available on the Opto 22 Web site at
factoryfloor.opto22.com. You can conveniently access this and other sections of the
Opto 22 Web site using the Help menu in your FactoryFloor application. Select
Help➞Opto 22 on the Web, and then select an online resource from the submenu.

Product Support
If you have any questions about FactoryFloor, you can call, fax, or e-mail Opto 22 Product Support.

Phone: 800-TEK-OPTO (835-6786)
951-695-3080
(Hours are Monday through Friday,
7 a.m. to 5 p.m. Pacific Time)

Fax: 951-695-3017

Email: support@opto22.com

Opto 22 website: www.opto22.com

When calling for technical support, be prepared to provide the following information about your
system to the Product Support engineer:

• Software and version being used

• Controller firmware version

• PC configuration (type of processor, speed, memory, operating system)

• A complete description of your hardware and operating systems, including:
– jumper configuration
– accessories installed (such as expansion daughter cards)
– type of power supply
– types of I/O units installed
– third-party devices installed (for example, barcode readers)

• Specific error messages seen.

NOTE: Email messages
and phone calls to
Opto 22 Product Support
are grouped together
and answered in the
order received.
xvi OptoControl Command Reference

Commands by Command Group
OptoControl Command See pg OptoScript Equivalent (Arguments)

Di
gi

ta
l P

oi
nt Clear All Latches C-24 ClearAllLatches(On I/O Unit)

Clear Counter C-25 ClearCounter(On Point)
Clear Off-Latch C-28 ClearOffLatch(On Point)
Clear On-Latch C-29 ClearOnLatch(On Point)
Clear Quadrature Counter C-32 ClearQuadratureCounter(On Point)
Generate N Pulses* G-4 GenerateNPulses(On Time (Seconds), Off Time

(Seconds), Number of Pulses, On Point)
Get & Clear Counter G-14 GetClearCounter(From Point)
Get & Clear Off-Latch G-19 GetClearOffLatch(From Point)
Get & Clear On-Latch G-20 GetClearOnLatch(From Point)
Get & Clear Quadrature Counter G-21 GetClearQuadratureCounter(From Point)
Get & Restart Off-Pulse Measurement* G-23 GetRestartOffPulseMeasurement(From Point)
Get & Restart Off-Time Totalizer* G-24 GetRestartOffTimeTotalizer(From Point)
Get & Restart On-Pulse Measurement* G-25 GetRestartOnPulseMeasurement(From Point)
Get & Restart On-Time Totalizer* G-26 GetRestartOnTimeTotalizer(From Point)
Get & Restart Period* G-27 GetRestartPeriod(From Point)
Get Counter G-44 GetCounter(From Point)
Get Frequency G-57 GetFrequency(From Point)
Get Off-Latch G-72 See Off-Latch Set?
Get Off-Pulse Measurement* G-73 GetOffPulseMeasurement(From Point)
Get Off-Pulse Measurement Complete

Status*
G-74 GetOffPulseMeasurementCompleteStatus(From Point)

Get Off-Time Totalizer* G-75 GetOffTimeTotalizer(From Point)
Get On-Latch G-76 See On-Latch Set?
Get On-Pulse Measurement* G-77 GetOnPulseMeasurement(From Point)
Get On-Pulse Measurement Complete

Status*
G-78 GetOnPulseMeasurementCompleteStatus(From Point)

Get On-Time Totalizer* G-79 GetOnTimeTotalizer(From Point)
Get Period* G-80 GetPeriod(From Point)
Get Period Measurement Complete Status* G-81 GetPeriodMeasurementCompleteStatus(From Point)
Get Quadrature Counter G-95 GetQuadratureCounter(On Point)
Off? O-1 IsOff(Point)
Off-Latch Set? O-2 IsOffLatchSet(On Point)
On? O-3 IsOn(Point)
On-Latch Set? O-4 IsOnLatchSet(On Point)
Set TPO Percent* S-44 SetTpoPercent(To Percent, On Point)
Set TPO Period* S-45 SetTpoPeriod(To Seconds, On Point)
Start Continuous Square Wave* S-54 StartContinuousSquareWave(On Time (Seconds), Off Time

(Seconds), On Point)
Start Counter S-55 StartCounter(On Point)
Start Off-Pulse* S-59 StartOffPulse(Off Time (Seconds), On Point)
Start On-Pulse* S-60 StartOnPulse(On Time (Seconds), On Point)
Start Quadrature Counter S-61 StartQuadratureCounter(On Point)
Stop Counter S-65 StopCounter(On Point)
Stop Quadrature Counter S-67 StopQuadratureCounter(On Point)
Turn Off T-37 TurnOff(Output)
Turn On T-40 TurnOn(Output)
*Not available on SNAP Ethernet-based I/O units
OptoControl Command Reference xvii

An
al

og
 P

oi
nt Calculate & Set Analog Gain C-1 CalcSetAnalogGain(On Point)

Calculate & Set Analog Offset C-3 CalcSetAnalogOffset(On Point)
Get & Clear Analog Filtered Value* G-10 GetClearAnalogFilteredValue(From)
Get & Clear Analog Maximum Value G-11 GetClearAnalogMaxValue(From)
Get & Clear Analog Minimum Value G-12 GetClearAnalogMinValue(From)
Get & Clear Analog Totalizer Value* G-13 GetClearAnalogTotalizerValue(From)
Get Analog Filtered Value* G-30 GetAnalogFilteredValue(From)
Get Analog Lower Clamp G-31 GetAnalogLowerClamp(From)
Get Analog Maximum Value G-32 GetAnalogMaxValue(From)
Get Analog Minimum Value G-33 GetAnalogMinValue(From)
Get Analog Square Root Filtered Value* G-34 GetAnalogSquareRootFilteredValue(From)
Get Analog Square Root Value* G-35 GetAnalogSquareRootValue(From)
Get Analog Totalizer Value* G-36 GetAnalogTotalizerValue(From)
Get Analog Upper Clamp G-37 GetAnalogUpperClamp(From)
Ramp Analog Output* R-3 RampAnalogOutput(Ramp Endpoint, Units/Sec, Point to

Ramp)
Set Analog Filter Weight* S-2 SetAnalogFilterWeight(To, On Point)
Set Analog Gain S-4 SetAnalogGain(To, On Point)
Set Analog Offset S-5 SetAnalogOffset(To, On Point)
Set Analog Totalizer Rate* S-6 SetAnalogTotalizerRate(To Seconds, On Point)
Set Analog TPO Period S-8 SetAnalogTpoPeriod(To, On Point)
*Not available on SNAP Ethernet-based I/O units

C
ha

rt Call Chart C-6 CallChart(Chart)
Calling Chart Running? C-7 IsCallingChartRunning()
Calling Chart Stopped? C-8 IsCallingChartStopped()
Calling Chart Suspended? C-9 IsCallingChartSuspended()
Chart Running? C-13 IsChartRunning(Chart)
Chart Stopped? C-14 IsChartStopped(Chart)
Chart Suspended? C-15 IsChartSuspended(Chart)
Continue Calling Chart C-43 ContinueCallingChart()
Continue Chart C-44 ContinueChart(Chart)
Get Chart Status G-41 GetChartStatus(Chart)
Get Priority G-93 GetPriority()
Get Priority of Host Task G-94 GetPriorityOfHostTask(On Port)
Host Task Received A Message? H-1 HasHostTaskReceivedMessage(On Port)
Set Priority S-39 SetPriority()
Set Priority Of Host Task S-40 SetPriorityOfHostTask(On Port)
Start Chart S-53 StartChart(Chart)
Start Default Host Task S-56 StartDefaultHostTask()
Start Host Task (ASCII) S-57 StartHostTaskAscii(On Port)
Start Host Task (Binary) S-58 StartHostTaskBinary(On Port)
Stop Chart S-63 StopChart(Chart)
Stop Chart on Error S-64 StopChartOnError()
Stop Host Task S-66 StopHostTask(On Port)
Suspend Chart S-72 SuspendChart(Chart)
Suspend Chart on Error S-73 SuspendChartOnError()
Suspend Default Host Task S-74 SuspendDefaultHostTask()

OptoControl Command See pg OptoScript Equivalent (Arguments)
xviii OptoControl Command Reference

I/O
 U

ni
t Configure I/O Unit C-40 ConfigureIoUnit(I/O Unit)

Get & Clear Digital I/O Unit Latches G-15 GetClearDigitalIoUnitLatches(From, State, On-Latch,
Off-Latch, Clear Flag)

Get & Clear Digital-64 I/O Unit Latches G-16 GetClearDigital64IoUnitLatches(From, State, On-Latch,
Off-Latch, Clear Flag)

Get & Clear Simple-64 I/O Unit Latches G-22 GetClearSimple64IoUnitLatches(From, State, On-Latch,
Off-Latch, Clear Flag)

Get Digital I/O Unit as Binary Value G-48 GetDigitalIoUnitAsBinaryValue(I/O Unit)
Get Digital-64 I/O Unit as Binary Value G-49 GetDigital64IoUnitAsBinaryValue(I/O Unit)
Get Digital I/O Unit Latches G-50 GetDigitalIoUnitLatches(From, State, On-Latch,

Off-Latch)
Get Digital-64 I/O Unit Latches G-51 GetDigital64IoUnitLatches(From, State, On-Latch,

Off-Latch)
Get Mixed I/O Unit as Binary Value G-65 GetMixedIoUnitAsBinaryValue(I/O Unit)
Get Simple-64 I/O Unit as Binary Value G-100 GetSimple64IoUnitAsBinaryValue(I/O Unit)
Get Simple-64 I/O Unit Latches G-101 GetSimple64IoUnitLatches(From, State, On-Latch,

Off-Latch)
I/O Unit Ready? I-9 IsIoUnitReady(I/O Unit)
Move Analog I/O Unit to Table M-7 MoveAnalogIoUnitToTable(I/O Unit, To Index, Of Table)
Move Digital I/O Unit to Table M-8 MoveDigitalIoUnitToTable(I/O Unit, Starting Index, Of

Table)
Move Digital I/O Unit to Table Element M-9 (No exact equivalent. See the OptoControl Command Reference for an

alternative method.)
Move Mixed I/O Unit to Table M-13 MoveMixedIoUnitToTable(I/O Unit, Starting Index, Of

Table)
Move Simple-64 I/O Unit to Table M-14 MoveSimple64IoUnitToTable(I/O Unit, Starting Index,

Of Table)
Move Table Element to Digital I/O Unit M-16 MoveTableElementToDigitalIoUnit(From Table, Of Table,

Move To)
Move Table to Analog I/O Unit M-17 MoveTableToAnalogIoUnit(Start at Index, Of Table,

Move to)
Move Table to Digital I/O Unit M-19 MoveTableToDigitalIoUnit(Start at Index, Of Table,

Move to)
Move Table to Mixed I/O Unit M-20 MoveTableToMixedIoUnit(Start at Index, Of Table, Move

to)
Move Table to Simple-64 I/O Unit M-21 MoveTableToSimple64IoUnit(Start at Index, Of Table,

Move to)
Set Digital I/O Unit from MOMO Masks S-17 SetDigitalIoUnitFromMomo(Must-On Mask, Must-Off Mask,

Digital I/O Unit)
Set Digital-64 I/O Unit from MOMO Masks S-18 SetDigital64IoUnitFromMomo(Must-On Mask, Must-Off

Mask, Digital-64 I/O Unit)
Set I/O Unit Configured Flag S-22 SetIoUnitConfiguredFlag(For I/O Unit)
Set Mixed I/O Unit from MOMO Masks S-24 SetMixedIoUnitFromMomo(Must-On Mask, Must-Off Mask,

Mixed I/O Unit)
Set Number of Retries to All I/O Units S-27 SetNumberOfRetriesToAllIoUnits(To)
Set Simple-64 I/O Unit from MOMO Masks S-42 SetSimple64IoUnitFromMomo(Must-On Mask, Must-Off

Mask, Simple-64 I/O Unit)
Write I/O Unit Configuration to EEPROM W-5 WriteIoUnitConfigToEeprom(On I/O Unit)

OptoControl Command See pg OptoScript Equivalent (Arguments)
OptoControl Command Reference xix

M
is

ce
lla

ne
ou

s Comment (Block) C-35 /* block comment */
Comment (Single Line) C-36 // single line comment
Continue Timer C-45 ContinueTimer(Timer)
Delay (mSec) D-2 DelayMsec(Milliseconds)
Delay (Sec) D-3 DelaySec(Seconds)
Down Timer Expired? D-22 HasDownTimerExpired(Down Timer)
Float Valid? F-3 IsFloatValid(Float)
Generate Reverse CRC-16 on Table

(32 bit)
G-8 GenerateReverseCrc16OnTable32(Start Value, Table,

Starting Element, Number of Elements)
Get Length of Table G-62 GetLengthOfTable(Table)
Move M-5 x = y;
Move from Table Element M-12 x = nt[0];
Move Table Element to Table M-17 nt1[0] = nt2[5];
Move Table to Table M-22 MoveTableToTable(From Table, From Index, To Table, To

Index, Length)
Move to Table Element M-26 nt[0] = x;
Pause Timer P-1 PauseTimer(Timer)
Set Down Timer Preset Value S-19 SetDownTimerPreset(Target Value, Down Timer)
Set Up Timer Target Value S-46 SetUpTimerTarget(Target Value, Up Timer)
Shift Table Elements S-50 ShiftTableElements(Shift Count, Table)
Start Timer S-62 StartTimer(Timer)
Stop Timer S-68 StopTimer(Timer)
Timer Expired? T-15 HasTimerExpired(Timer)
Up Timer Target Time Reached? U-1 HasUpTimerReachedTargetTime(Up Timer)

PI
D Clamp PID Output* C-20 ClampPidOutput(High Clamp, Low Clamp, On PID Loop)

Clamp PID Setpoint* C-21 ClampPidSetpoint(High Clamp, Low Clamp, On PID Loop)
Disable PID Output* D-15 DisablePidOutput(Of PID Loop)
Disable PID Output Tracking in Manual

Mode*
D-16 DisablePidOutputTrackingInManualMode(On PID Loop)

Disable PID Setpoint Tracking in Manual
Mode*

D-17 DisablePidSetpointTrackingInManualMode(On PID Loop)

Enable PID Output* E-11 EnablePidOutput(Of PID Loop)
Enable PID Output Tracking in Manual

Mode*
E-12 EnablePidOutputTrackingInManualMode(On PID Loop)

Enable PID Setpoint Tracking in Manual
Mode*

E-13 EnablePidSetpointTrackingInManualMode(On PID Loop)

Get PID Control Word* G-82 GetPidControlWord(From PID Loop)
Get PID D Term* G-83 GetPidDTerm(From PID Loop)
Get PID I Term* G-84 GetPidITerm(From PID Loop)
Get PID Input* G-85 GetPidInput(From PID Loop)
Get PID Mode* G-86 GetPidMode(From PID Loop)
Get PID Output* G-87 GetPidOutput(From PID Loop)
Get PID Output Rate of Change* G-88 GetPidOutputRateOfChange(From PID Loop)
Get PID P Term* G-89 GetPidPTerm(From PID Loop)
Get PID Scan Rate* G-90 GetPidScanRate(From PID Loop)
Get PID Setpoint* G-91 GetPidSetpoint(From PID Loop)
Set PID Control Word* S-29 SetPidControlWord(On Mask, Off Mask, For PID Loop)
Set PID D Term* S-30 SetPidDTerm(To, On PID Loop)
Set PID I Term* S-31 SetPidITerm(To, On PID Loop)
Set PID Input* S-32 SetPidInput(To, On PID Loop)
Set PID Mode to Auto* S-33 SetPidModeToAuto(On PID Loop)
Set PID Mode to Manual* S-34 SetPidModeToManual(On PID Loop)
Set PID Output Rate of Change* S-35 SetPidOutputRateOfChange(To, On PID Loop)
Set PID P Term* S-36 SetPidPTerm(To, On PID Loop)
Set PID Scan Rate* S-37 SetPidScanRate(To, On PID Loop)
Set PID Setpoint* S-38 SetPidSetpoint(To, On PID Loop)
*Not available on SNAP Ethernet brains

OptoControl Command See pg OptoScript Equivalent (Arguments)
xx OptoControl Command Reference

 C
on

tro
lle

r Add User Error to Queue A-4 AddUserErrorToQueue(Error Number)
Add User I/O Unit Error to Queue A-5 AddUserIoUnitErrorToQueue(Error Number, I/O Unit)
Calculate & Store Srategy CRC C-4 CalcStoreStrategyCRC()
Calculate Strategy CRC C-5 CalcStrategyCrc()
Caused a Chart Error? C-10 HasChartCausedError(Chart)
Caused an I/O Unit Error? C-11 HasIoUnitCausedError(I/O Unit)
Clear All Errors C-22 ClearAllErrors()
Clear PC Byte Swap Mode (ISA only) C-30 ClearPcByteSwapMode()
Disable I/O Unit Causing Current Error D-13 DisableIoUnitCausingCurrentError()
Enable I/O Unit Causing Current Error E-9 EnableIoUnitCausingCurrentError()
Error? E-19 IsErrorPresent()
Error on I/O Unit? E-20 IsErrorOnIoUnit()
Get Address of I/O Unit Causing Current

Error
G-29 GetAddressOfIoUnitCausingCurrentError()

Get Controller Address G-42 GetControllerAddress()
Get Controller Type G-43 GetControllerType()
Get Default Host Port G-47 GetDefaultHostPort()
Get Error Code of Current Error G-52 GetErrorCodeOfCurrentError()
Get Error Count G-53 GetErrorCount()
Get Firmware Version G-56 GetFirmwareVersion(Put in)
Get ID of Block Causing Current Error G-60 GetIdOfBlockCausingCurrentError()
Get Name of Chart Causing Current Error G-67 GetNameOfChartCausingCurrentError(Put in)
Get Name of I/O Unit Causing Current Error G-68 GetNameOfIoUnitCausingCurrentError(Put in)
Get Port of I/O Unit Causing Current Error G-92 GetPortOfIoUnitCausingCurrentError()
Get RTU/M4IO Temperature G-96 GetRtuM4IoTemperature()
Get RTU/M4IO Voltage G-97 GetRtuM4IoVoltage()
Low RAM Backup Battery? IsRamBackupBatteryLow()
Read Byte from PC Memory (ISA only) R-4 ReadByteFromPcMemory(From Address)
Read Byte from PC Port (ISA only) R-5 ReadByteFromPcPort(From Address)
Read Word from PC Memory (ISA only) R-12 ReadWordFromPcMemory(From Address)
Read Word from PC Port (ISA only) R-13 ReadWordFromPcPort(From Address)
Remove Current Error and Point to Next

Error
R-26 RemoveCurrentError()

Reset Controller R-27 ResetController()
Retrieve Strategy CRC R-4 RetrieveStrategyCrc()
Set PC Byte Swap Mode (ISA only) S-28 SetPcByteSwapMode()
Write Byte to PC Memory (ISA only) W-3 WriteByteToPcMemory(Byte, To Address)
Write Byte to PC Port (ISA only) W-4 WriteByteToPcPort(Byte, To Address)
Write Word to PC Memory (ISA only) W-12 WriteWordToPcMemory(Word, To Address)
Write Word to PC Port (ISA only) W-13 WriteWordToPcPort(Word, To Address)

OptoControl Command See pg OptoScript Equivalent (Arguments)
OptoControl Command Reference xxi

Ti
m

e/
Da

te Copy Date to String (DD/MM/YY) C-60 DateToStringDDMMYY(String)
Copy Date to String (MM/DD/YY) C-61 DateToStringMMDDYY(String)
Copy Time to String C-62 TimeToString(String)
Get Day G-45 GetDay()
Get Day of Week G-46 GetDayOfWeek()
Get Hours G-59 GetHours()
Get Julian Day G-61 GetJulianDay()
Get Minutes G-64 GetMinutes()
Get Month G-66 GetMonth()
Get Seconds G-98 GetSeconds()
Get Seconds Since Midnight G-99 GetSecondsSinceMidnight()
Get System Time G-104 GetSystemTime()
Get Year G-105 GetYear()
Set Date S-14 SetDate(To)
Set Day S-15 SetDay(To)
Set Day of Week S-16 SetDayOfWeek(To)
Set Hours S-21 SetHours(To)
Set Minutes S-23 SetMinutes(To)
Set Month S-25 SetMonth(To)
Set Seconds S-41 SetSeconds(To)
Set Time S-43 SetTime(To)
Set Year S-49 SetYear(To)

Co
m

m
un

ic
at

io
n—

I/O Convert Mistic I/O Hex to Float C-49 MisticIoHexToFloat(Convert)
Convert Number to Mistic I/O Hex C-52 NumberToMisticIoHex(Convert, Put Result in)
Read Numeric Table from I/O Memory Map R-6 ReadNumTableFromIoMemMap(Length, Start Index, I/O

Unit, Mem address, To)
Read Numeric Variable from I/O Memory

Map
R-8 ReadNumVarFromIoMemMap(I/O Unit, Mem address, To)

Read String Table from I/O Memory Map R-9 ReadStrTableFromIoMemMap(Length, Start Index, I/O
Unit, Mem address, To)

Read String Variable from I/O Memory Map R-11 ReadStrVarFromIoMemMap(Length, I/O Unit, Mem address,
To)

Transmit/Receive Mistic I/O Hex String
with Checksum

T-27 TransReceMisticIoHexStringWithChecksum(Hex String, On
Port, Put Result in)

Transmit/Receive Mistic I/O Hex String
with CRC

T-28 TransReceMisticIoHexStringWithCrc(Hex String, On
Port, Put Result in)

Transmit/Receive OPTOMUX String T-29 TransReceOptomuxString(String, On Port, Put Result
in)

Write Numeric Table to I/O Memory Map W-6 WriteNumTableToIoMemMap(Length, Start Index, I/O
Unit, Mem address, Table)

Write Numeric Variable to I/O Memory Map W-8 WriteNumVarToIoMemMap(I/O Unit, Mem address,
Variable)

Write String Table to I/O Memory Map W-9 WriteStrTableToIoMemMap(Length, Start Index, I/O
Unit, Mem address, Table)

Write String Variable to I/O Memory
Map

W-11 WriteStrVarToIoMemMap(I/O Unit, Mem address,
Variable)

OptoControl Command See pg OptoScript Equivalent (Arguments)
xxii OptoControl Command Reference

Co
m

m
un

ic
at

io
n—

N
et

w
or

k Accept Session on TCP Port A-2 AcceptSessionOnTcpPort(TCP Port)
ARCNET Connected? A-10 IsArcnetConnected()
ARCNET Message Address Equal To? A-11 IsArcnetMsgAddressEqual(Address)
ARCNET Node Present? A-12 IsArcnetNodePresent(Address)
Close Ethernet Session C-34 CloseEthernetSession(Session, On Port)
Ethernet Session Open? E-21 IsEnetSessionOpen(Session)
Get ARCNET Destination Address on Port G-39 GetArcnetDestAddressOnPort(On Port)
Get ARCNET Host Destination Address G-38 GetArcnetHostDestAddress()
Get ARCNET Peer Destination Address G-40 GetArcnetPeerDestAddress()
Get Ethernet Session Name G-54 GetEthernetSessionName(Session, Put in)
Get Number of Characters Waiting on

Ethernet Session
G-71 GetNumCharsWaitingOnEnetSession(On Session)

Open Ethernet Session O-5 OpenEthernetSession(Session Name, On Port)
Receive N Characters via ARCNET R-15 ReceiveNCharsViaArcnet(Put in, Num. Characters, From

Port)
Receive N Characters via Ethernet R-16 ReceiveNCharsViaEthernet(Put in, Num. Characters,

From Session)
Receive String via ARCNET R-19 ReceiveStringViaArcnet(Put in, From Port)
Receive String via Ethernet R-20 ReceiveStringViaEthernet(Put in, From Session)
Receive Table via ARCNET R-23 ReceiveTableViaArcnet(Start at Index, Of Table, From

Port)
Receive Table via Ethernet R-24 ReceiveTableViaEthernet(Start at Index, Of Table,

From Session)
Set ARCNET Destination Address on Port S-10 SetArcnetDestAddressOnPort(To Address, On Port)
Set ARCNET Host Destination Address S-9 SetArcnetHostDestAddress(To)
Set ARCNET Mode Raw S-11 SetArcnetModeRaw()
Set ARCNET Mode Standard S-12 SetArcnetModeStandard()
Set ARCNET Peer Destination Address S-13 SetArcnetPeerDestAddress(To)
Transmit String via ARCNET T-19 TransStringViaArcnet(String, On Port)
Transmit String via Ethernet T-20 TransStringViaEthernet(String, Via Session, On Port)
Transmit Table via ARCNET T-23 TransTableViaArcnet(Start at Index, Of Table, On Port)
Transmit Table via Ethernet T-24 TransTableViaEthernet(Start at Index, Of Table, Via

Session, On Port)
Transmit/Receive String via ARCNET T-31 TransReceStringViaArcnet(String, On Port, Put Result

in)
Transmit/Receive String via Ethernet T-32 TransReceStringViaEthernet(String, Via Session, On

Port, Put Result in)

OptoControl Command See pg OptoScript Equivalent (Arguments)
OptoControl Command Reference xxiii

M
at

he
m

at
ic

al Absolute Value A-1 AbsoluteValue(Of)
Add A-3 x + y
Arccosine A-13 Arccosine(Of)
Arcsine A-14 Arcsine(Of)
Arctangent A-15 Arctangent(Of)
Clamp Float Table Element C-16 ClampFloatTableElement(High Limit, Low Limit, Element

Index, Of Float Table)
Clamp Float Variable C-17 ClampFloatVariable(High Limit, Low Limit, Float

Variable)
Clamp Integer 32 Table Element C-18 ClampInt32TableElement(High Limit, Low Limit, Element

Index, Of Integer 32 Table)
Clamp Integer 32 Variable C-19 ClampInt32Variable(High Limit, Low Limit, Integer 32

Variable)
Complement C-39 -x
Cosine C-63 Cosine(Of)
Decrement Variable D-1 DecrementVariable(Variable)
Divide D-21 x / y
Generate Random Number G-5 GenerateRandomNumber()
Hyperbolic Cosine H-2 HyperbolicCosine(Of)
Hyperbolic Sine H-3 HyperbolicSine(Of)
Hyperbolic Tangent H-4 HyperbolicTangent(Of)
Increment Variable I-1 IncrementVariable(Variable)
Maximum M-2 Max(Compare, With)
Minimum M-3 Min(Compare, With)
Modulo M-4 x % y
Multiply M-27 x * y
Natural Log N-1 NaturalLog(Of)
Raise e to Power R-1 RaiseEToPower(Exponent)
Raise to Power R-2 Power(Raise, To the)
Round R-29 Round(Value)
Seed Random Number S-1 SeedRandomNumber()
Sine S-51 Sine(Of)
Square Root S-52 SquareRoot(Of)
Subtract S-71 x - y
Tangent T-4 Tangent(Of)
Truncate T-36 Truncate(Value)

OptoControl Command See pg OptoScript Equivalent (Arguments)
xxiv OptoControl Command Reference

St
rin

g Append Character to String A-8 s1 += 'a';
Append String to String A-9 s1 += s2;
Convert Float to String C-45 FloatToString(Convert, Length, Decimals, Put Result

in)
Convert Hex String to Number C-45 HexStringToNumber(Convert)
Convert IEEE Hex String to Number C-48 IEEEHexStringToNumber(Convert)
Convert Number to Formatted Hex String C-50 NumberToFormattedHexString(Convert, Length, Put

Result in)
Convert Number to Hex String C-51 NumberToHexString(Convert, Put Result in)
Convert Number to String C-53 NumberToString(Convert, Put Result in)
Convert Number to String Field C-54 NumberToStringField(Convert, Length, Put Result in)
Convert String to Float C-55 StringToFloat(Convert)
Convert String to Integer 32 C-56 StringToInt32(Convert)
Convert String to Integer 64 C-57 StringToInt64(Convert)
Convert String to Lower Case C-59 StringToLowerCase(Convert)
Convert String to Upper Case C-59 StringToUpperCase(Convert)
Find Character in String F-1 FindCharacterInString(Find, Start at Index, Of

String)
Find Substring in String F-2 FindSubstringInString(Find, Start at Index, Of

String)
Generate Checksum on String G-1 GenerateChecksumOnString(Start Value, On String)
Generate Forward CCITT on String G-2 GenerateForwardCcittOnString(Start Value, On String)
Generate Forward CRC-16 on String G-3 GenerateForwardCrc16OnString(Start Value, On String)
Generate Reverse CCITT on String G-6 GenerateReverseCcittOnString(Start Value, On String)
Generate Reverse CRC-16 on String G-7 GenerateReverseCrc16OnString(Start Value, On String)
Get Nth Character G-69 GetNthCharacter(From String, Index)
Get String Length G-102 GetStringLength(Of String)
Get Substring G-103 GetSubstring(From String, Start at Index, Num.

Characters, Put Result in)
Move from String Table M-11 s = st[0];
Move String M-15 s1 = s2;
Move to String Table M-25 st[0] = s;
Set Nth Character S-26 SetNthCharacter(To, In String, At Index)
String Equal? S-69 s1 == s2
String Equal to String Table Element? S-70 s == st[0]
Test Equal Strings T-37 See String Equal?
Verify Checksum on String V-3 VerifyChecksumOnString(Start Value, On String)
Verify Forward CCITT on String V-4 VerifyForwardCcittOnString(Start Value, On String)
Verify Forward CRC-16 on String V-5 VerifyForwardCrc16OnString(Start Value, On String)
Verify Reverse CCITT on String V-6 VerifyReverseCcittOnString(Start Value, On String)
Verify Reverse CRC-16 on String V-7 VerifyReverseCrc16OnString(Start Value, On String)

Po
in

te
rs Clear Pointer C-30 pn1 = null;

Clear Pointer Table Element C-31 pt[0] = null;
Move from Pointer Table Element M-10 pn = pt[0];
Move to Pointer M-23 pn = &n;
Move to Pointer Table M-24 pt[0] = &n;
Pointer Equal to Null? P-3 pn == null
Pointer Table Element Equal to Null? P-4 pt[0] == null

OptoControl Command See pg OptoScript Equivalent (Arguments)
OptoControl Command Reference xxv

Lo
gi

ca
l AND A-6 x and y

AND? A-7 See AND
Bit AND B-1 x bitand y
Bit AND? B-2 See Bit AND
Bit Clear B-4 BitClear(Item, Bit to Clear)
Bit NOT B-5 bitnot x
Bit NOT? B-6 See Bit NOT
Bit Off? B-8 IsBitOff(In, Bit)
Bit On? B-9 IsBitOn(In, Bit)
Bit OR B-10 x bitor y
Bit OR? B-11 See Bit OR
Bit Rotate B-12 BitRotate(Item, Count)
Bit Set B-14 BitSet(Item, Bit to Set)
Bit Shift B-15 x << nBitsToShift
Bit Test B-17 BitTest(Item, Bit to Test)
Bit XOR B-18 x bitxor y
Bit XOR? B-19 See Bit XOR
Equal? E-16 x == y
Equal to Table Element? E-18 n == nt[0]
Get High Bits of Integer 64 G-58 GetHighBitsOfInt64(High Bits From)
Get Low Bits of Integer 64 G-63 GetLowBitsOfInt64(Integer 64)
Greater? G-106 x > y
Greater Than Table Element? G-109 x > nt[0]
Greater Than or Equal? G-107 x >= y
Greater Than or Equal to Table Element? G-108 x >= nt[0]
Less? L-1 x < y
Less Than Table Element? L-5 x < nt[0]
Less Than or Equal? L-2 x <= y
Less Than or Equal to Table Element? L-3 x <= nt[0]
Make Integer 64 M-1 MakeInt64(High Integer, Low Integer)
Move 32 Bits M-6 Move32Bits(From, To)
NOT N-2 not x
NOT? N-3 not x
Not Equal? N-4 x <> y
Not Equal to Table Element? N-5 n <> nt[0]
OR O-6 x or y
OR? O-8 See OR
Set Variable False S-47 SetVariableFalse(Variable)
Set Variable True S-48 SetVariableTrue(Variable)
Table Element Bit Clear T-1 TableElementBitClear(Element Index, Of Integer Table,

Bit to Clear)
Table Element Bit Set T-2 TableElementBitSet(Element Index, Of Integer Table,

Bit to Set)
Table Element Bit Test T-3 TableElementBitTest(Element Index, Of Integer Table,

Bit to Test)
Test Equal T-5 See Equal?
Test Greater T-8 See Greater?
Test Greater or Equal T-9 See Greater Than or Equal?
Test Less T-10 See Less?
Test Less or Equal T-12 See Less Than or Equal?
Test Not Equal T-13 See Not Equal?
Test Within Limits T-14 See Within Limits?
Variable False? V-1 IsVariableFalse(Variable)
Variable True? V-2 IsVariableTrue(Variable)
Within Limits? W-1 IsWithinLimits(Value, Low Limit, High Limit)
XOR X-1 x xor y
XOR? X-3 See XOR

OptoControl Command See pg OptoScript Equivalent (Arguments)
xxvi OptoControl Command Reference

Co
m

m
un

ic
at

io
n—

Se
ria

l Characters Waiting at Serial Port? C-12 AreCharsWaitingAtSerialPort(Port)
Clear Receive Buffer C-33 ClearReceiveBuffer()
Configure Port C-41 ConfigurePort(Configuration)
Configure Port Timeout Delay C-42 ConfigurePortTimeoutDelay(Delay (Seconds), On Port)
CTS Off? C-64 IsCtsOff(On Port)
CTS On? C-65 IsCtsOn(On Port)
Get Active Interrupt Mask G-28 GetActiveInterruptMask()
Get Number of Characters Waiting on

Serial or ARCNET Port
G-70 GetNumCharsWaitingOnPort(On Port)

Interrupt on Port 0? I-4 IsInterruptOnPort0()
Interrupt on Port 1? I-4 IsInterruptOnPort1()
Interrupt on Port 2? I-5 IsInterruptOnPort2()
Interrupt on Port 3? I-6 IsInterruptOnPort3()
Interrupt on Port 6? I-6 IsInterruptOnPort6()
Receive Character via Serial Port R-14 ReceiveCharViaSerialPort(From Port)
Receive N Characters via Serial Port R-18 ReceiveNCharsViaSerialPort(Put in, Num. Characters,

From Port)
Receive String via Serial Port R-21 ReceiveStringViaSerialPort(Put in, From Port)
Receive Table via Serial Port R-25 ReceiveTableViaSerialPort(Start at Index, Of Table,

From Port)
Set End-of-Message Terminator S-20 SetEndOfMessageTerminator(To Character)
Transmit Character via Serial Port T-16 TransCharViaSerialPort(Character, On Port)
Transmit NewLine via Serial Port T-17 TransNewLineViaSerialPort(On Port)
Transmit String via Serial Port T-22 TransStringViaSerialPort(String, On Port)
Transmit Table via Serial Port T-25 TransTableViaSerialPort(Start at Index, Of Table, On

Port)
Transmit/Receive String via Serial Port T-34 TransReceStringViaSerialPort(String, On Port, Put

Result in)
Turn Off RTS T-38 TurnOffRts(On Port)
Turn Off RTS After Next Character T-39 TurnOffRtsAfterNextChar()
Turn On RTS T-41 TurnOnRts(On Port)

Ev
en

t/R
ea

ct
io

n Clear All Event Latches C-23 ClearAllEventLatches(On I/O Unit)
Clear Event Latch C-26 ClearEventLatch(On Event/Reaction)
Clear I/O Unit Interrupt C-27 ClearIoUnitInterrupt(On I/O Unit)
Disable Interrupt On Event D-14 DisableInterruptOnEvent(Event/Reaction)
Disable Scanning For All Events D-18 DisableScanningForAllEvents(On I/O Unit)
Disable Scanning For Event D-19 DisableScanningForEvent(Event/Reaction)
Disable Scanning of Event/Reaction Group D-20 DisableScanningOfEventReactionGroup(E/R Group)
Enable Interrupt on Event E-10 EnableInterruptOnEvent(Event/Reaction)
Enable Scanning For All Events E-14 EnableScanningForAllEvents(On I/O Unit)
Enable Scanning For Event E-15 EnableScanningForEvent(Event/Reaction)
Enable Scanning of Event/Reaction Group E-16 EnableScanningOfEventReactionGroup(E/R Group)
Event Occurred? E-22 HasEventOccurred(Event/Reaction)
Event Occurring? E-23 IsEventOccurring(Event/Reaction)
Event Scanning Disabled? E-26 IsEventScanningDisabled(Event/Reaction)
Event Scanning Enabled? E-27 IsEventScanningEnabled(Event/Reaction)
Generating Interrupt? G-9 IsGeneratingInterrupt(I/O Unit)
Get & Clear Event Latches G-18 GetClearEventLatches(E/R Group)
Get Event Latches G-55 GetEventLatches(E/R Group)
Interrupt Disabled For Event? I-2 IsInterruptDisabledForEvent(Event/Reaction)
Interrupt Enabled For Event? I-3 IsInterruptEnabledForEvent(Event/Reaction)
Read Event/Reaction Hold Buffer R-6 ReadEventReactionHoldBuffer(Event/Reaction)

OptoControl Command See pg OptoScript Equivalent (Arguments)
OptoControl Command Reference xxvii

Si
m

ul
at

io
n Communication to All I/O Points Enabled? C-37 IsCommToAllIoPointsEnabled()

Communication To All I/O Units Enabled? C-38 IsCommToAllIoUnitsEnabled()
Disable Communication to All I/O Points D-4 DisableCommuncationToAllIoPoints()
Disable Communication to All I/O Units D-5 DisableCommunicationToAllIoUnits()
Disable Communication to Analog Point D-6 DisableCommunicationToAnalogPoint(Analog Point)
Disable Communication to Digital Point D-7 DisableCommunicationToDigitalPoint(Digital Point)
Disable Communication to Event/Reaction D-8 DisableCommunicationToEventReaction(Event/Reaction)
Disable Communication to I/O Unit D-9 DisableCommunicationToIoUnit(I/O Unit)
Disable Communication to PID Loop D-11 DisableCommunicationToPidLoop(PID Loop)
Disable Event/Reaction Group D-12 DisableEventReactionGroup(E/R Group)
Enable Communication to All I/O Points E-1 EnableCommunicationToAllIoPoints()
Enable Communication to All I/O Units E-2 EnableCommunicationToAllIoUnits()
Enable Communication to Analog Point E-3 EnableCommunicationToAnalogPoint(Analog Point)
Enable Communication to Digital Point E-4 EnableCommunicationToDigitalPoint(Digital Point)
Enable Communication to Event/Reaction E-5 EnableCommunicationToEventReaction(Event/Reaction)
Enable Communication to I/O Unit E-6 EnableCommunicationToIoUnit(I/O Unit)
Enable Communication to PID Loop E-7 EnableCommunicationToPidLoop(PID Loop)
Enable Event/Reaction Group E-8 EnableEventReactionGroup(E/R Group)
Event/Reaction Communication Enabled? E-24 IsEventReactionCommEnabled(Event/Reaction)
Event/Reaction Group Communication

Enabled?
E-25 IsEventReactionGroupEnabled(E/R Group)

I/O Point Communication Enabled? I-7 IsIoPointCommEnabled(I/O Point)
I/O Unit Communication Enabled? I-8 IsIoUnitCommEnabled(I/O Unit)
IVAL Set Analog from Table I-10 IvalSetAnalogFromTable(Start at Index, Of Table,

On I/O Unit)
IVAL Set Analog Point I-11 IvalSetAnalogPoint(To, On Point)
IVAL Set Counter I-12 IvalSetCounter(To, On Point)
IVAL Set Digital Binary I-13 IvalSetDigitalBinary(On Mask, Off Mask, On I/O Unit)
IVAL Set Frequency I-14 IvalSetFrequency(To, On Point)
IVAL Set Off-Latch I-15 IvalSetOffLatch(To, On Point)
IVAL Set Off-Pulse I-16 IvalSetOffPulse(To, On Point)
IVAL Set Off-Totalizer I-17 IvalSetOffTotalizer(To, On Point)
IVAL Set On-Latch I-18 IvalSetOnLatch(To, On Point)
IVAL Set On-Pulse I-19 IvalSetOnPulse(To, On Point)
IVAL Set On-Totalizer I-20 IvalSetOnTotalizer(To, On Point)
IVAL Set Period I-21 IvalSetPeriod(To, On Point)
IVAL Set PID Control Word I-22 IvalSetPidControlWord(On Mask, Off Mask, For PID Loop)
IVAL Set PID Process Term I-23 IvalSetPidProcessTerm(To, On PID Loop)
IVAL Set Quadrature Counter I-24 IvalSetQuadratureCounter(To, On Point)
IVAL Set TPO Percent I-25 IvalSetTpoPercent(To, On Point)
IVAL Set TPO Period I-26 IvalSetTpoPeriod(To, On Point)
IVAL Turn Off I-27 IvalTurnOff(Point)
IVAL Turn On I-28 IvalTurnOn(Point)
PID Loop Communication Enabled? IsPidLoopCommEnabled(PID Loop)

OptoControl Command See pg OptoScript Equivalent (Arguments)
xxviii OptoControl Command Reference

A
 A
Absolute Value
Mathematical Action

Function: To ensure that a value is positive.

Typical Use: To ensure a positive value when the result of a computation may be negative.

Details: Copies Argument 1 to Argument 2, dropping the minus sign if it exists.

Arguments:

Standard
Example:

Absolute Value
Of Negative_Value Float Variable

Put Result in Positive_Value Float Variable

OptoScript
Example:

AbsoluteValue(Of)
Positive_Value = AbsoluteValue(Negative_Value);

This is a function command; it returns the positive value. The returned value can be consumed by
a variable (as in the example shown) or by a control structure, mathematical expression, etc. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• To change a negative value to a positive value, make Argument 1 and Argument 2 the same.
• Use to convert a -1 Boolean result to a 1 for programs communicating with the controller

that represent logical True with 1 rather than -1. This is required only when such programs
read Boolean values from the controller.

See Also: Complement (page C-39)

Argument 1
Of
Analog Input
Analog Output
Float Variable
Integer 32 Variable
Integer 64 Variable

Argument 2
Put Result in
Analog Output
Float Variable
Integer 32 Variable
Integer 64 Variable
OptoControl Command Reference A-1

Accept Session on TCP Port
Communication—Network Action

Function: In peer-to-peer Ethernet communication, to find out if a new session has been opened and, if so,
to acknowledge the session. (In this case the controller acts as the slave, and the session is
opened by the master.)

Typical Use: To accept an incoming connection that has been made on a TCP port.

Details: • This function is currently usable on ports 2002 and 2003 only. (NOTE: If you are not using
Ethernet, however, you can also use this command for port 2001.)

• Note the session number that is returned, as you will need to refer to the session by its
number.

• This function is not needed for the host port 2001.

Arguments:

Standard
Example:

Accept Session on TCP Port
TCP Port 2002 Integer 32 Literal

Put Result In SESSION Integer 32 Variable

OptoScript
Example:

AcceptSessionOnTcpPort(TCP Port)
SESSION = AcceptSessionOnTcpPort(2002);

This is a function command; it returns the session number. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, mathematical expression, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The session will be closed by the master. To determine whether the session is still open, use the
commands Get Number of Characters Waiting on Ethernet Session, Ethernet Session Open? or
Receive String via Ethernet. (Get Number of Characters Waiting on Ethernet Session is the best
method.)

Result Data: 0–127 = Session number

Status Codes: -51 = Invalid port number. Use 2002 or 2003.
-70 = No Ethernet card present.
-74 = No sessions needing to be opened on the specified port.

See Also: Get Number of Characters Waiting on Ethernet Session (page G-71), Receive String via Ethernet
(page R-20), Ethernet Session Open? (page E-21)

Argument 1
TCP Port
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result In
Float Variable
Integer 32 Variable
A-2 OptoControl Command Reference

A
Add
Mathematical Action

Function: To add two numeric values.

Typical Use: To add two numbers to get a third number, or to add one number to a running total.

Details: • The standard OptoControl command adds Argument 1 and Argument 2 and places the result
in Argument 3. Argument 3 can be the same as either of the first two Arguments (unless
they are read-only, such as analog inputs), or it can be a completely different argument.

• Accommodates different item types such as float, integer, analog, and digital
without restriction.

Arguments:

Standard
Example:

Add
Ingredient_1_Weight Analog Input

Plus Ingredient_2_Weight Analog Input
Put Result in Total_Weight Analog Output

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the + operator.
Total_Weight = Ingredient_1_Weight + Ingredient_2_Weight;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the + operator has many uses. For more information on mathematical

expressions in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

Queue Errors: 33 = Overflow error—result too large.

See Also: Increment Variable (page I-1), Subtract (page S-71)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Plus
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result In
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
OptoControl Command Reference A-3

Add User Error to Queue
Controller Action

Function: Enables the user to force a program error into the error queue.

Typical Use: Simulating errors offline to test a user-written error handler.

Details: Adds a standard predefined error number to the error queue. Valid range is 30–45.

Arguments:

Standard
Example:

Add User Error to Queue
Error Number 36 Integer 32 Literal

OptoScript
Example:

AddUserErrorToQueue(Error Number)
AddUserErrorToQueue(36);

This is a procedure command; it does not return a value.

Notes: See the Error Codes appendix in the OptoControl User’s Guide for a complete list.

See Also: Add User I/O Unit Error to Queue (page A-5), Get Error Code of Current Error (page G-52)

Argument 1
Error Number
Integer 32 Literal
Integer 32 Variable
A-4 OptoControl Command Reference

A
Add User I/O Unit Error to Queue
Controller Action

Function: Enables the user to force an I/O unit error into the error queue.

Typical Use: Simulating I/O unit errors offline to test a user-written error handler.

Details: Adds a standard predefined I/O unit error number to the error queue. Valid range is 1–29.

Arguments:

Standard
Example:

Add User I/O Unit Error to Queue
Error Number 29 Integer 32 Literal

I/O Unit MY_B3000 B3000 SNAP Digital

OptoScript
Example:

AddUserIoUnitErrorToQueue(Error Number, I/O Unit)
AddUserIoUnitErrorToQueue(29, MY_B3000);

This is a procedure command; it does not return a value.

Notes: See the Error Codes appendix in the OptoControl User’s Guide for a complete list.

See Also: Add User Error to Queue (page A-4), Get Error Code of Current Error (page G-52)

Argument 1
Error Number
Integer 32 Literal
Integer 32 Variable

Argument 2
I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
OptoControl Command Reference A-5

AND
Logical Action

Function: To perform a logical AND on any two allowable values.

Typical Use: To determine if each of a pair of values is non-zero (True).

Details: • The standard OptoControl command performs a logical AND on Argument 1 and Argument 2
and puts result in Argument 3. Examples:

Argument 1 Argument 2 Argument 3
0 0 0
-1 0 0
0 -1 0
-1 -1 -1

• The result is -1 (True) if both values are non-zero, 0 (False) otherwise.
• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

AND
Limit_Switch1 Digital Input

With Limit_Switch2 Digital Input
Put Result in Both_Switches_Closed Integer Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the and operator.
Both_Switches_Closed = Limit_Switch1 and Limit_Switch2;

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the and operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital channels with this command.
• In OptoScript code, you can combine logical operators and AND multiple variables, for

example: x = a and b and c and d;
• In standard OptoControl code, to AND multiple variables (such as A, B, C, and D) into one

variable (such as ANSWER), do the following:
1. AND A with B, Put Result in ANSWER.
2. AND C with ANSWER, Put Result in ANSWER.
3. AND D with ANSWER, Put Result in ANSWER.

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
A-6 OptoControl Command Reference

A
• To test for individual bits, use Bit Test or Bit AND.

See Also: Bit Test (page B-17), AND (page A-6), AND? (page A-7)

AND?
Logical Condition

Function: To perform a logical AND? on any two allowable values.

Typical Use: Used in place of calling Variable True? twice.

Details: • Performs a logical AND? on Argument 1 and Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 False
-1 0 False
0 -1 False
-1 -1 True

• Evaluates True if both values are non-zero, False otherwise.

Arguments:

Standard
Example:

Is Limit_Switch1 Digital Input
AND?

Limit_Switch2 Digital Input

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the and operator.
if (Limit_Switch1 and Limit_Switch2) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the and operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital channels with this command.
• In OptoScript code, you can combine logical operators and AND multiple variables, for

example: if (a and b and c and d) then
• In standard OptoControl code, multiple values can be AND?ed by repeating this condition or

the Variable True? condition several times in the same block.
• Use Bit AND? if the objective is to test for individual bits.

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference A-7

• Executes faster than using Variable True? twice.

See Also: Bit AND? (page B-2) Variable True? (page V-2) Variable False? (page V-1)

Append Character to String
String Action

Function: To add a character to the end of a string variable.

Typical Use: To build strings consisting of non-printable or binary characters.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• The character is represented by an ASCII value. (See the ASCII table in Chapter 10 of the

OptoControl User’s Guide.) A space is a character 32 and a “1” is a character 49.
• Appending a value of zero is legal and will append a null byte.
• If the appended value is greater than 255 (hex FF) or less than 0, the value will be truncated

to eight bits; for example, -2 becomes hex FE and 257 (hex 101) becomes 1.
• Floats (if used) are automatically rounded to integers before conversion.
• If the string cannot hold any more characters, the character will not be appended.

Arguments:

Standard
Example:

The following example appends a “!” to a string (for example, “Hello” would become “Hello!”):
Append Character to String

Append 33 Integer 32 Literal
To Hello_String String Variable

The following example appends an ETX (character 3) to a string. An ETX or some other
terminating character may be required when sending commands to serial devices, such as
barcode printers, scales, or single-loop controllers.
Append Character to String

Append 3 Integer 32 Literal
To Command_String String Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the += operator and the Chr
keyword. The OptoScript code for the first example above could be either of the following lines:
Hello_String += Chr(33);

Hello_String += Chr('!');

The OptoScript code for the second example would be:
Command_String += Chr(3);

Argument 1
Append
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
String Variable
A-8 OptoControl Command Reference

OptoControl Command Reference A-9

A
Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide. For more

information on using strings in OptoScript code, see Chapter 11 of the OptoControl User’s
Guide.

• To clear a string, use Move String before using this command. Moving an empty string (“”)
to a string variable will clear it.

Dependencies: The string variable must be wide enough to hold one more character.

See Also: Append String to String (page A-9)

Append String to String
String Action

Function: To add a string to the end of another string variable.

Typical Use: To build strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• If the string variable cannot hold all of the appended string, the remaining portion of the

string to be appended will be discarded.
• Single characters can be appended (yielding the same result as an Append Character to

String). For example, to append a “space,” use the space bar rather than the number 32.

Arguments:

Standard
Example:

The following example appends the string “ world” to a string. For example, “Hello” would
become “Hello world” (note the space before the “w” in “ world”). Quotes are shown here for
clarity only; do not use them in the standard command.
Append String to String

Append “ world” String Literal
To Hello_String String Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the += operator. Quotes are
required in OptoScript code.
Hello_String += " world";

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• For more information on using strings in OptoScript code, see Chapter 11 of the OptoControl

User’s Guide. For example, in OptoScript, you can append several strings at once, as shown:
string1 = string2 + string3 + string4;

• To clear a string, use Move String before using this command. Moving an empty string (“”)
to a string variable will clear it.

Dependencies: The string variable must be wide enough to hold the appended string.

See Also: Append Character to String (page A-8)

Argument 1
Append
String Literal
String Variable

Argument 2
To
String Variable

ARCNET Connected?
Communication—Network Condition

Function: To determine if the controller is connected to an active ARCNET link.

Typical Use: To detect a failure of the ARCNET link so that a backup communication path can be enabled.

Details: • Evaluates True if there is at least one other active ARCNET device on the link,
False otherwise.

• This “active” ARCNET device can be another controller or a PC, etc.

Arguments: None.

Standard
Example:

ARCNET Connected?

OptoScript
Example:

IsArcnetConnected()
if IsArcnetConnected() then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.

Dependencies: This command does not work with G4LC32 and G4LC32SX controllers that do not have Flash
memory.

See Also: Host Task Received a Message? (page H-1) ARCNET Node Present? (page A-12)
A-10 OptoControl Command Reference

A
ARCNET Message Address Equal to?
Communication—Network Condition

Function: To determine if the message received in the ARCNET port originated from a specified address.

Typical Use: To determine the source of the last ARCNET message received.

Details: Evaluates True if the addresses match, False otherwise.

Arguments:

Standard
Example:

Address 3 Integer 32 Literal
ARCNET Message Address Equal to?

OptoScript
Example:

IsArcnetMsgAddressEqual(Address)
if IsArcnetMsgAddressEqual(3) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: ARCNET Node Present? (page A-12)

Argument 1
Address
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference A-11

ARCNET Node Present?
Communication—Network Condition

Function: To determine if a specific node on the ARCNET network or link is present.

Typical Use: To determine if a specific node on the ARCNET link has gone offline.

Details: • Evaluates True if the specified node responds, False otherwise.
• The ARCNET chip set cannot directly detect the presence of the next logical node on the

network. The next logical node is defined as the first address found on the link either
immediately before or after the controller’s address. Knowledge of the addresses of each
device on the network can be used with this function to determine if the next logical node is
present.

• If there are controllers at addresses 1 and 2, and if there is a PC at address 3, then the
controller at address 1 can determine if the ARCNET card in the PC at 3 is responding. If it is,
this implies that the node at address 2 must exist also.

Arguments:

Standard
Example:

Address 247 Integer 32 Literal
ARCNET Node Present?

OptoScript
Example:

IsArcnetNodePresent(Address)
if IsArcnetNodePresent(247) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.

Dependencies: This command does not work with G4LC32 and G4LC32SX controllers that do not have Flash
memory.

See Also: ARCNET Connected? (page A-10) ARCNET Message Address Equal to? (page A-11)

Argument 1
Address
Integer 32 Literal
Integer 32 Variable
A-12 OptoControl Command Reference

A
Arccosine
Mathematical Action

Function: To derive the angular value from a cosine value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arccosine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a cosine value with a range of –1.0 to 1.0.
• The angular value returned is in radians with a range of 0 to pi.

(To convert radians to degrees, multiply by 180/pi.)

Arguments:

Standard
Example:

Arccosine
Of X Float Variable

Put Result in RADIANS Float Variable

OptoScript
Example:

Arccosine(Of)
RADIANS = Arccosine(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Cosine if the angle is known and the cosine is desired.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Cosine (page C-63), Arcsine (page A-14), Arctangent (page A-15)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference A-13

Arcsine
Mathematical Action

Function: To derive the angular value from a sine value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arcsine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a sine value with a range of –1.0 to 1.0.
• The angular value returned is in radians with a range of –pi/2 to pi/2. (To convert radians to

degrees, multiply by 180/pi.)

Arguments:

Example: Arcsine
Of X Float Variable

Put Result in RADIANS Float Variable

OptoScript
Example:

Arcsine(Of)
RADIANS = Arcsine(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Sine if the angle is known and the sine is desired.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Sine (page S-51) , Arctangent (page A-15), Arccosine (page A-13)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
A-14 OptoControl Command Reference

A
Arctangent
Mathematical Action

Function: To derive the angular value from a tangent value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arctangent of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a tangent value.
• The angular value returned is in radians with a range of –pi/2 to pi/2.

(To convert radians to degrees, multiply by 180/pi.)

Arguments:

Standard
Example:

Arctangent
Of X Float Variable

Put Result in RADIANS Float Variable

OptoScript
Example:

Arctangent(Of)
RADIANS = Arctangent(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Tangent if the angle is known and the tangent is desired.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Arccosine (page A-13), Arcsine (page A-14)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference A-15

A-16 OptoControl Command Reference

B
 B
Bit AND
Logical Action

Function: To perform a bitwise AND on any two allowable values.

Typical Use: To clear one or more bits as specified by a mask (zero bits will clear).

Details: • Performs a bitwise AND on Argument 1 and Argument 2 and puts result in Argument 3. One
value is the mask for selecting specific bits in the other value. Examples:

Argument 1 Argument 2 Argument 3
0 0 0
1 0 0
0 1 0
1 1 1

• Acts on all bits.

Arguments:

Standard
Example:

This example copies the four least significant bits from VALUE to RESULT and sets all remaining
bits in RESULT to zero.

Bit AND
VALUE Integer 32 Variable

With 15 Integer 32 Literal
Put Result in RESULT Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitand operator.
RESULT = VALUE bitand 15;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. The following example ands
the bits from two variables and writes the result to an I/O unit:
SetDigitalIoUnitFromMomo(nTemp1 bitand nTemp2,

bitnot (nTemp1 bitand nTemp2),
Dig16_IO_Unit);

Argument 1
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
With
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output*
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only * Standard commands only
OptoControl Command Reference B-1

This example moves a value from an I/O unit, ands the bits with a variable, and writes to the
same I/O unit:
nTemp1 = GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit);

nTemp1 = nTemp1 bitand nVariable;

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

For other types of I/O units, substitute the appropriate commands (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue and SetDigital64IoUnitFromMomo).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers with this command.
• To clear bits in Argument 1, set a zero for each bit to clear in the mask (all remaining bits

must be 1), and make Argument 1 and Argument 3 the same.
• You may prefer to set a 1 for each bit to clear in the mask, then use Bit NOT to invert all bits.
• Use 255 as the mask to keep the lower eight bits.
• To clear only one bit, use Bit Clear.
• To test for non-zero values, use AND.

See Also: Bit Clear (page B-4), AND (page A-6), AND? (page A-7), Bit AND? (page B-2)

Bit AND?
Logical Condition

Function: To perform a bitwise AND? on any two allowable values.

Typical Use: To determine if the individual bits of one value match the on bits of a mask value.

Details: • Performs a bitwise AND? on Argument 1 and Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 False
1 0 False
0 1 False
1 1 True

• Evaluates True if any bit set to 1 in the mask (Argument 2) is also set to 1 in Argument 1.
Evaluates False if all of the mask’s 1 bits are set to 0 in Argument 1.

• Acts on all bits.
B-2 OptoControl Command Reference

B
Arguments:

Standard
Example:

This example reads the current state of all points on a digital I/O unit and Bit AND?s the value
with the constant 33,280 (1000 0010 0000 0000 binary). Evaluates True if either point 15 or 9 is
on, False if both points are off.

Is BRICK_1 G4 Digital Remote Simple I/O Unit
Bit AND?

33280 Integer 32 Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitand operator. Note that
for this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of BRICK_1
has been moved to a variable so it can be anded:
if (GetDigitalIoUnitAsBinaryValue(BRICK_1) bitand 33280) then

For other types of I/O units, substitute the appropriate command (for example, for a SNAP Digital
64 I/O unit, use GetDigital64IoUnitAsBinaryValue).
The following is a simpler example; it ands the bits from two variables:
if (nVariable1 bitand nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers or digital I/O units with this command.
• Use 255 as the constant to check the lower eight points.

See Also: Bit OR? (page B-11), AND? (page A-7)

Argument 1
Is
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only
OptoControl Command Reference B-3

Bit Clear
Logical Action

Function: To clear a specified bit (set it to zero) in an allowable value.

Typical Use: To clear one bit of a particular integer variable.

Details: • Performs this action on a copy of Argument 1, then moves the copy to Argument 3.
• For most I/O units and integer 32 variables, the valid range for the bit to clear is 0–31. For

SNAP digital 64 I/O units and integer 64 variables, the valid range is 0–63.
• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a

value of 63, requires only 6 bits.

Arguments:

Standard
Example:

This example does a binary read of the I/O unit IO_UNIT_1, clears bit 0, and does a binary write
of the data back out to IO_UNIT_1. This will cause point 0 of the I/O unit to be turned off. If point
0 happens to be an input, nothing will happen.
Bit Clear

IO_UNIT_1 G4 Digital Local Simple I/O Unit
Bit to Clear 0 Integer 32 Literal

Put Result in IO_UNIT_1 G4 Digital Remote Simple I/O Unit

OptoScript
Example:

BitClear(Item, Bit to Clear)
nBitCleared = BitClear(IO_UNIT_1, 0);

This is a function command; it returns the cleared bit. This example is different from the standard
example, because in OptoScript the returned value cannot be an I/O unit.
To turn off a point as in the standard example, you could use the following OptoScript code:
SetDigitalIoUnitFromMomo(0, 1 << nPointToClear, Dig16_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Although this command can be used to turn off digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To clear bits in Argument 1, make Argument 1 and Argument 3 the same.
• To clear several bits at once, use Bit AND.

See Also: Bit AND (page B-1), Bit Test (page B-17), Bit Set (page B-14)

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Bit to Clear
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only
B-4 OptoControl Command Reference

B
Bit NOT
Logical Action

Function: To invert all 32 or 64 bits of an allowable value.

Typical Use: To invert “mask” bits.

Details: • Inverts Argument 1 and puts result in Argument 2. Examples:
Argument 1 Argument 2

0 -1
-1 0

• Performs this action on a copy of Argument 1, then moves the copy to Argument 2.
• Acts on all bits.

Arguments:

Standard
Example:

Bit NOT
DATA Integer 32 Variable

Put Result in DATA Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitnot operator.
DATA = bitnot DATA;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. This example moves a value
from an I/O unit, bitnots the value, and writes the result to the same I/O unit:
nTemp1 = GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit);

SetDigitalIoUnitFromMomo(bitnot nTemp1, nTemp1, Dig16_IO_Unit);

For other types of I/O units, substitute the appropriate commands (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue and SetDigital64IoUnitFromMomo).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers with this command.

Argument 1
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output*
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only
OptoControl Command Reference B-5

• To invert all bits in Argument 1, make both Arguments the same.
• To clear one or more specific bits, use this command to invert the mask bits. Then, Bit AND

the mask with the value containing the bits to be cleared.
• To toggle True/False, use NOT.

See Also: NOT (page N-2), Bit XOR (page B-18), XOR (page X-1), Bit NOT? (page B-6)

Bit NOT?
Logical Condition

Function: To invert all 32 or 64 bits of an allowable value and determine if the result is True or False.

Typical Use: To determine if any bit is off.

Details: • Inverts Argument 1 and evaluates whether the result is True or False. Examples:
Argument 1 Result

0 True
1 False

• Evaluates True if any bit is set to 0, False otherwise.
• Acts on all bits.

Arguments:

Standard
Example:

This example reads the state of all points of the specified digital I/O unit and then inverts them.
Evaluates True if any point is off, False otherwise.

Is BRICK_1 G4 Digital Remote Simple I/O Unit
Bit NOT?

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitnot operator. Note that
for this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of BRICK_1
is moved to a variable so the bitnot operator can be used:
nTemp1 = GetDigitalIoUnitAsBinaryValue(BRICK_1);

if (bitnot nTemp1) then

Argument 1
Is
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only
B-6 OptoControl Command Reference

B
For other types of I/O units, substitute the appropriate command (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue).
The following is a simpler example; it bitnots a variable:
if (bitnot nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers or digital I/O units with this command.
• Use NOT if the objective is to toggle the value between True and False.

See Also: Bit On? (page B-9), Bit Off? (page B-8)
OptoControl Command Reference B-7

Bit Off?
Logical Condition

Function: To test the False status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: • Evaluates True if the bit in Argument 1 specified by Argument 2 is set to 0. Evaluates False if
the bit is set to 1.

• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

Arguments:

Standard
Example:

This example evaluates to True if point 15 of I/O UNIT 1 is off, False otherwise.
In IO_UNIT_1 G4 Digital Multifunction I/O Unit

Bit Off?
Bit 15 Integer 32 Literal

OptoScript
Example:

IsBitOff(In, Bit)
if (IsBitOff(IO_UNIT_1, 15)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information on OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• Use Bit AND? if the objective is to test several bits at once.

See Also: Bit On? (page B-9), Bit AND? (page B-2), Bit Test (page B-17)

Argument 1
In
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Bit
Integer 32 Literal
Integer 32 Variable
B-8 OptoControl Command Reference

B
Bit On?
Logical Condition

Function: To test the True status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: • Evaluates True if the bit specified in Argument 2 is set to 1 in Argument 1. Evaluates False if
the bit is set to 0.

• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

Arguments:

Standard
Example:

This example evaluates to True if point 0 of I/O UNIT 1 is on, False otherwise.
In IO_UNIT_1 G4 Digital Multifunction I/O Unit

Bit On?
Bit 0 Integer 32 Literal

OptoScript
Example:

IsBitOn(In, Bit)
if (IsBitOn(IO_UNIT_1, 0)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information on OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• Use Bit AND? if the objective is to test several bits at once.

See Also: Bit Off? (page B-8), Bit AND? (page B-2), Bit Test (page B-17)

Argument 1
In
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Bit
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference B-9

Bit OR
Logical Action

Function: To perform a bitwise OR on any two allowable values.

Typical Use: To set one or more bits as specified by a “mask.”

Details: • Performs a bitwise OR on Argument 1 and Argument 2 and puts result in Argument 3.
Examples:

Argument 1 Argument 2 Argument 3
0 0 0
1 0 1
0 1 1
1 1 1

• Combines all bits set to 1 in Argument 1 and Argument 2. The result (Argument 3) can be put
into either of the first two items or into a different item.

• Acts on all bits. One value is the mask for selecting specific bits to set in the other value.

Arguments:

Standard
Example:

This example sets bit 2 in a copy of Argument 1 and puts the result in Argument 3.
Bit OR

VALUE Integer 32 Variable
With 4 Integer 32 Literal

Put Result in RESULT Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitor operator.
RESULT = VALUE bitor 4;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. The following example ors
the bits from two variables and writes the result to an I/O unit:
SetDigitalIoUnitFromMomo(nTemp1 bitor nTemp2,

bitnot (nTemp1 bitor nTemp2),
Dig16_IO_Unit);

Argument 1
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
With
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output*
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only * Standard commands only
B-10 OptoControl Command Reference

B
This example moves a value from an I/O unit, ors the bits with a variable, and writes to the
same I/O unit:
nTemp1 = GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit);

nTemp1 = nTemp1 bitor nVariable;

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

For other types of I/O units, substitute the appropriate commands (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue and SetDigital64IoUnitFromMomo).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers with this command.
• Although this command can be used to turn on digital points, it is used primarily to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To set bits in Argument 1, make Argument 1 and Argument 3 the same.
• To set only one bit, use Bit Set.
• To test if either of two values is True, use OR.

See Also: Bit Set (page B-14), OR (page O-6), Bit XOR (page B-18), XOR (page X-1)

Bit OR?
Logical Condition

Function: To perform a bitwise OR? on any two allowable values.

Typical Use: To determine if any bit is set to 1 in either of two values.

Details: Performs a bitwise OR? on Argument 1 and Argument 2. Examples:
Argument 1 Argument 2 Results

0 0 False
1 0 True
0 1 True
1 1 True

• Evaluates to True if any bit is set to 1 in either of the two allowable values, False otherwise.
• Acts on all bits.
• Functionally equivalent to the OR? condition.
OptoControl Command Reference B-11

Arguments:

Standard
Example:

Is Fault_Bits_1 Integer 32 Variable
Bit Or?

Fault_Bits_2 Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitor operator.
if (Fault_Bits_1 bitor Fault_Bits_2) then

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. In this example, the value
of Dig16_IO_Unit is moved to a variable so the bitor operator can be used:
if (GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit) bitor nInteger) then

For other types of I/O units, substitute the appropriate command (for example, for a SNAP Digital
64 I/O unit, use GetDigital64IoUnitAsBinaryValue).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers or digital I/O units with this command. Although this
condition can be used to determine the status of digital points, it is primarily used to test
bits in an integer variable. These bits can be used as flags to carry information such as
status, control, or fault (real-time or latch).

• Use Bit On? or Bit Off? if the objective is to test only one bit.

See Also: Bit On? (page B-9), Bit Off? (page B-8), OR? (page O-8)

Bit Rotate
Logical Action

Function: To rotate all 32 or 64 bits of an allowable value to the left or right.

Typical Use: To shift bits left or right with wraparound.

Argument 1
Is
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only
B-12 OptoControl Command Reference

B
Details: • Acts on all bits. All bits rotated past one end reappear at the other end. If Argument 2 is

positive, bits rotate left. If it is negative, bits rotate right. If it is zero, no rotation occurs.
• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a

value of 63, requires only 6 bits.

Arguments:

Standard
Example:

Bit Rotate
Mask_Variable Integer 32 Variable

Count 4 Integer 32 Literal
Move To Result_Variable Integer 32 Variable

This example shows the bits of a copy of Mask_Variable rotated to the left by 4, with the result
placed in Result_Variable. If Mask_Variable is -2,147,483,904 (10000000 00000000 00000000
00000000 binary), then after the rotation Result_Variable would be 8 (00000000 00000000
00000000 00001000 binary).

OptoScript
Example:

BitRotate(Item, Count)
Result_Variable = BitRotate(Mask_Variable, 4);

This is a function command; it returns the result of the bit rotation. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. In OptoScript code it cannot be consumed by an I/O unit, however. See Chapter
11 of the OptoControl User’s Guide for more information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the same
thing by using OptoScript code such as the following:
nTemp1 = BitRotate(Dig16_IO_Unit, nCount);

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• It is advisable to use only integers with this command.
• To rotate bits in Argument 1, make Argument 1 and Argument 3 the same.
• To get rid of all bits that move past either end, use Bit Shift.

See Also: Bit Shift (page B-15)

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Count
Integer 32 Literal
Integer 32 Variable

Argument 3
Move To
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only
OptoControl Command Reference B-13

Bit Set
Logical Action

Function: To set a specified bit (set it to 1) in an allowable value.

Typical Use: To set a bit in an integer variable that is used as a flag.

Details: • Performs this action on a copy of Argument 1, then moves the copy to Argument 3.
• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a

value of 63, requires only 6 bits.

Arguments:

Standard
Example:

Bit Set
Pump3_Ctrl_Bits Integer 32 Variable

Bit to Set 15 Integer 32 Literal
Put Result in Pump3_Ctrl_Bits Integer 32 Variable

If Pump3_Ctrl_Bits is 8 (00000000 00000000 00000000 00001000 binary), then after the Bit Set,
Pump3_Ctrl_Bits would be 32776 (00000000 00000000 10000000 00001000 binary).

OptoScript
Example:

BitSet(Item, Bit to Set)
Pump3_Ctrl_Bits = BitSet(Pump3_Ctrl_Bits, 15);

This is a function command; it returns the value with the specified bit set. The returned value can
be consumed by a variable (as shown) or by another item, such as a control structure. It cannot
be consumed by an I/O unit, however. See Chapter 11 of the OptoControl User’s Guide for more
information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the
same thing by using OptoScript code such as the following:
SetDigitalIoUnitFromMomo(1 << nPointToSet, 0, Dig16_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• It is advisable to use only integers with this command.
• Although this command can be used to turn on digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Bit to Set
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only
B-14 OptoControl Command Reference

B
• To set bits in Argument 1, make Argument 1 and Argument 3 the same.
• To set several bits at once, use Bit OR.

See Also: Bit OR (page B-10), Bit Test (page B-17), Bit Clear (page B-4)

Bit Shift
Logical Action

Function: To shift the bits of an allowable value to the right or left.

Typical Use: To evaluate the four bytes of a 32-bit integer or the eight bytes of a 64-bit integer one at a time.
A faster way to multiply or divide integers.

Details: • Functionally equivalent to integer multiplication or division, except faster. Bit Shift with a
Count of 2 is the same as multiplying by 4. Bit Shift with a Count of -3 is the same as
dividing by 8.

• Acts on all bits. All bit positions vacated by the shift are filled with zeros.
• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a

value of 63, requires only 6 bits.
• In the standard OptoControl command, if Argument 2 is positive, bits will shift left. If it is

negative, bits will shift right. If it is zero, no shifting will occur.

Arguments:

Standard
Example:

Bit Shift
Mask_Variable Integer 32 Variable

Count -8 Integer 32 Literal
Put Result in Result_Variable Integer 32 Variable

This example shows the bits of a copy of Mask_Variable shifted to the right by 8, with the
result placed in Result_Variable.
If Mask_Variable is -2,147,483,904 (10000000 00000000 00000000 00000000 binary), then after
the shift Result_Variable would be 8,388,608 (00000000 10000000 00000000 00000000 binary).

Argument 1
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
Count
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output*
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only
OptoControl Command Reference B-15

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the << (left shift) or >> (right
shift) operators. Note that the result of the bit shift cannot be put into an I/O unit.
Result_Variable = Mask_Variable >> 8;

Although the result of the bit shift cannot be put into an I/O unit, you can accomplish the
same thing by using OptoScript code. The following example shifts bits in a variable and writes
the result to an I/O unit:
nTemp1 = nTemp1 >> 8;

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

This example moves a value from an I/O unit, shifts bits, and writes to the same I/O unit:
nTemp1 = GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit);

nTemp1 = nTemp1 >> 8;

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

For other types of I/O units, substitute the appropriate commands (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue and SetDigital64IoUnitFromMomo).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators such as >> and << in OptoScript code, see Chapter 11 of
the OptoControl User’s Guide.

• To shift bits in Argument 1, make Argument 1 and Argument 3 the same.
• To retain all bits that move past either end, use Bit Rotate.

See Also: Bit Rotate (page B-12)
B-16 OptoControl Command Reference

B
Bit Test
Logical Action

Function: To determine the status of a specific bit in an allowable value.

Typical Use: To test a bit in an integer variable that is used as a flag.

Details: • Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

• If the bit is clear (0), 0 is moved to Argument 3.
• If the bit is set (1), -1 is moved to Argument 3.
• The result can also be sent directly to a digital output.

Arguments:

Standard
Example:

Bit Test
Pump3_Ctrl_Bits Integer 32 Variable

Bit to Test 15 Integer 32 Literal
Put Result in Pump3_Ctrl_Bits Integer 32 Variable

If Pump3_Ctrl_Bits is 00000000 00000000 10000000 00001000, the result would be set to True.

OptoScript
Example:

BitTest(Item, Bit to Test)
Pump3_Ctrl_Bits = BitTest(Pump3_Ctrl_Bits, 15);

This is a function command; it returns a value of 0 (bit is clear) or -1 (bit is set). The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information on
OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To test several bits at once, use Bit AND.

See Also: Bit Clear (page B-4), Bit Set (page B-14), Bit On? (page B-9)

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Variable
Integer 64 Variable
SNAP Digital 64
SNAP Remote Simple Digital

Argument 2
Bit to Test
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Digital Output
Integer 32 Variable
Local Simple Digital Output
OptoControl Command Reference B-17

Bit XOR
Logical Action

Function: To perform a bitwise EXCLUSIVE OR on any two allowable values.

Typical Uses: • To toggle one or more bits as specified by a “mask.”
• To toggle an integer between zero and any other value.

Details: • Performs a bitwise EXCLUSIVE OR on Argument 1 and Argument 2 and puts the result in
Argument 3. Examples:

BIT MANIPULATION VALUE MANIPULATION
Argument 1 Argument 2 Argument 3 Argument 1 Argument 2 Argument 3

0 0 0 0 22 22
0 1 1 22 22 0
1 0 1 255 65280 65535
1 1 0 0 -1 -1

-1 0 -1

• Acts on all bits. One value is the mask for selecting specific bits in the other value.

Arguments:

Standard
Example:

Bit XOR
Data Integer 32 Variable

With 22 Integer 32 Literal
Put Result in Data_New Integer 32 Variable

This example performs a Bit XOR on a copy of Data with the constant 22 (binary 10110). The
result (Data_New) has bits 1, 2, and 4 inverted. If Data = 0, Data_New = 22. If Data = 22,
Data_New = 0.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitxor operator.
Data_New = Data bitxor 22;

Argument 1
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
With
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 3
Put Result in
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Digital Output
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output*
SNAP Digital 64*
SNAP Remote Simple Digital*

* Standard commands only * Standard commands only * Standard commands only
B-18 OptoControl Command Reference

B
Note that for this command, I/O units cannot be used the same way as in the standard
command. However, you can accomplish the same thing using OptoScript code. The following
example xors the bits from two variables and writes the result to an I/O unit:
SetDigitalIoUnitFromMomo(nTemp1 bitxor nTemp2,

bitnot(nTemp1 bitxor nTemp2),
Dig16_IO_Unit);

This example moves a value from an I/O unit, xors the bits with a variable, and writes to the same
I/O unit:
nTemp1 = GetDigitalIoUnitAsBinaryValue(Dig16_IO_Unit);

nTemp1 = nTemp1 bitxor nVariable;

SetDigitalIoUnitFromMomo(nTemp1, bitnot nTemp1, Dig16_IO_Unit);

For other types of I/O units, substitute the appropriate commands (for example, for a SNAP
Digital 64 I/O unit, use GetDigital64IoUnitAsBinaryValue and SetDigital64IoUnitFromMomo).

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use this command only with integers.
• This command can be used to toggle digital outputs as well as bits in an integer variable.

These bits can be used as flags to carry information such as status, control, or fault
(real-time or latch).

• To toggle bits in Argument 1, make Argument 1 and Argument 3 the same.
• To toggle a bit, Bit XOR with 1. Zero leaves the bit unchanged.
• To toggle an integer value between 0 and -1, use XOR.

See Also: XOR (page X-1), Bit NOT (page B-5), NOT (page N-2)

Bit XOR?
Logical Condition

Function: To determine the inequality of any two allowable values.

Typical Use: To detect a change of state of any bit in either of two values.

Details: • Performs a bitwise XOR? on Argument 1 and Argument 2. Examples:
Bit Test Value Test

Argument 1 Argument 2 Result Argument 1 Argument 2 Result
0 0 FALSE 0 0 FALSE
0 1 TRUE -1 0 TRUE
1 0 TRUE 255 65280 TRUE
1 1 FALSE 22 22 FALSE

• Evaluates True if the two allowable values are not equal, False if they are equal.
• Acts on all bits.
• Functionally equivalent to the Not Equal? condition when used with integer types.
OptoControl Command Reference B-19

Arguments:

Standard
Example:

Is BRICK_0 G4 Digital Local Simple I/O Unit
Bit XOR?

PREV_BRICK_0 Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitxor operator. Note that
for this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of BRICK_0
is moved to a variable so the bitxor operator can be used:
if (GetDigitalIoUnitAsBinaryValue(BRICK_0) bitxor PREV_BRICK_0) then

For other types of I/O units, substitute the appropriate command (for example, for a SNAP Digital
64 I/O unit, use GetDigital64IoUnitAsBinaryValue).
The following is a simpler example; it bitxors two variables:
if (nVariable1 bitxor nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on logical operators in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide.

• It is advisable to use only integers or digital I/O units with this command. Although this
condition can be used to determine the status of digital points, it is primarily used to test
bits in an integer variable. These bits can be used as flags to carry information such as
status, control, or fault (real-time or latch).

• Use the False exit if the objective is to test for an exact match, or use the Equal? condition if
using numeric values.

See Also: Equal? (page E-16), Bit AND? (page B-2), Bit NOT (page B-5), Bit OR? (page B-11)

Argument 1
Is
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*

Argument 2
[Value]
B100 Digital Multifunction I/O Unit*
B3000 SNAP Digital*
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit*
G4 Digital Multifunction I/O Unit*
G4 Digital Remote Simple I/O Unit*
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP Digital 64*
SNAP Remote Simple Digital*
B-20 OptoControl Command Reference

C
 C
Calculate & Set Analog Gain
Analog Point Action

Function: To improve the accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input.

Details: • The command cannot be used with high-density analog inputs, such as the G4AIVA and
G4AITM, or high-density bricks, such as the G4HDAR and G4HDAL. For these inputs, set gain
manually using the command Set Analog Gain.

• Reads the current value of a specified analog input and interprets it as the maximum
(100 percent, full-scale) value. Make sure you set the analog input to its full-scale value
before using this command. Exception: For all SNAP thermocouple analog inputs used with a
SNAP serial brain (not Ethernet), set as follows:

• Calculates a gain based on the current value that will cause this value to read 100 percent
(full scale). Stores the calculated gain in Argument 2 for subsequent use, if desired.

• The calculated gain will be used until power is removed from the I/O unit, or it will always
be used if it is stored in permanent memory at the I/O unit.

• The default gain value is 1.0. The valid range for gain is 0.0003 to 16.0.

Arguments:

Module Thermocouple Gain Temp
in ° C

Gain Temp
in ° F

SNAP-AITM E 981.75 1799.15

SNAP-AITM J 673.50 1244.30

SNAP-AITM K 904.30 1659.74

SNAP-AITM-2 B 1705.75 3102.35

SNAP-AITM-2 C 1399.75 2551.55

SNAP-AITM-2 D 1352.20 2465.96

SNAP-AITM-2 G 2140.50 3884.90

SNAP-AITM-2 N 712.00 1313.60

SNAP-AITM-2 R 1147.40 2097.32

SNAP-AITM-2 S 1451.80 2645.24

SNAP-AITM-2 T 258.80 497.84

Argument 1
On Point
Analog Input

Argument 2
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference C-1

Standard
Example:

Calculate & Set Analog Gain
On Point Boiler_Temperature Analog Input

Put Result in Gain_Coefficient Float Variable

OptoScript
Example:

CalcSetAnalogGain(On Point)
Gain_Coefficient = CalcSetAnalogGain(Boiler_Temperature);

This is a function command; it returns the calculated gain. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, I/O point, etc. See Chapter 11
of the OptoControl User’s Guide for more information.

Notes: To ensure that the calculated gain coefficient will always be used, store this and other
changeable I/O unit values in permanent memory at the I/O unit. (You can do so through Debug
mode.)

Dependencies: • Always use Calculate & Set Analog Offset before using this command.
• Always set the analog input to the full-scale (100 percent) value before using this command.

See Also: Calculate & Set Analog Offset (page C-3), Set Analog Gain (page S-4), Set Analog Offset (page
S-5)
C-2 OptoControl Command Reference

C
Calculate & Set Analog Offset
Analog Point Action

Function: To improve accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input.

Details: • The command cannot be used with high-density analog inputs, such as the G4AIVA and
G4AITM, or high-density bricks, such as the G4HDAR and G4HDAL. For these inputs, set
offset manually using the command Set Analog Offset.

• Reads the current value of a specified analog input and interprets it as the minimum
(0 percent, zero-scale) value. Make sure you set the analog input to its zero-scale value
before using this command. (Note that zero scale on a bipolar input module with a range of
-10 VDC to +10 VDC is -10 VDC.) Exception: For all SNAP thermocouple analog modules used
with a SNAP serial brain (not Ethernet), set the analog input to 0° C.

• Calculates an offset based on the current input value that will cause this value to read 0
percent (zero scale). Stores the calculated offset in Argument 2 for subsequent use.

• The calculated offset will be used until power is removed from the I/O unit, or it will always
be used if it is stored in permanent memory at the I/O unit.

• For non-Ethernet brains, offset and gain are in units of raw counts. For example, on a G4
analog input, an offset of -1,024 causes a 25 percent input value to read 0 percent (zero
scale).

• For Ethernet brains, offset and gain are in engineering units. For example, an offset of 1
affects actual input by one degree F. or C.

Arguments:

Standard
Example:

Calculate & Set Analog Offset
On Point Boiler_Temperature Analog Input

Put Result in OFFSET Integer 32 Variable

OptoScript
Example:

CalcSetAnalogOffset(On Point)
OFFSET = CalcSetAnalogOffset(Boiler_Temperature);

This is a function command; it returns the calculated offset. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, I/O point, etc. See Chapter 11
of the OptoControl User’s Guide for more information

Notes: • This command is intended to be used in conjunction with Calculate & Set Analog Gain.
• To ensure that the calculated offset will always be used, store this and other changeable I/O

unit values in permanent memory at the I/O unit. (You can do so through Debug mode.)

See Also: Calculate & Set Analog Gain (page C-1), Set Analog Gain (page S-4), Set Analog Offset (page S-5)

Argument 1
On Point
Analog Input

Argument 2
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference C-3

Calculate & Store Strategy CRC
Controller Action

Function: Calculates and stores a 16-bit CRC on the program in RAM.

Typical Use: After additional words are downloaded by PC Workstations and after variables are reassigned or
“linked” to tables.

Details: • Recalculates and stores the CRC on the program in RAM. This value is the new program
integrity reference used at powerup. It can also be checked by the running program.

• If the integrity check fails at powerup, the program in RAM will be immediately erased.
• If the program is altered by any of the “Link” commands, the powerup integrity check will

fail unless this command is used after the last “Link” command in the Powerup chart.

Arguments: None.

Standard
Example:

Calculate & Store Strategy CRC

OptoScript
Example:

CalcStoreStrategy()
CalcStoreStrategy();

This is a procedure command; it does not return a value.

Notes: • This command should only be used once in the Powerup chart.
• The CRC value calculated can be retrieved using Retrieve Strategy CRC.
• This is the same command automatically used after each full program download or after

each online change download.

See Also: Calculate Strategy CRC (page C-5), Reset Controller (page R-27)
C-4 OptoControl Command Reference

C
Calculate Strategy CRC
Controller Action

Function: Calculates and returns a 16-bit CRC on the program in RAM.

Typical Use: Periodically used in an error handler to check the integrity of the running program.

Details: Use the result to compare with the original CRC that was automatically calculated during the last
download. The original CRC is obtained by using Retrieve Strategy CRC. These two values should
match exactly.

Arguments:

Standard
Example:

Calculate Strategy CRC
Put Result in New_CRC_Calc Integer 32 Variable

OptoScript
Example:

CalcStrategyCrc()
New_CRC-Calc = CalcStrategyCrc();

This is a function command; it returns the 16-bit CRC. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: This command could take several minutes to execute when 30 tasks are running and the program
is very large. Therefore, do not use it in a chart where timing is critical.

See Also: Retrieve Strategy CRC (page R-28), Reset Controller (page R-27)

Argument 1
Put Result in
Integer 32 Variable
OptoControl Command Reference C-5

Call Chart
Chart Action

Function: Starts another chart and immediately suspends the calling chart. Automatically continues the
calling chart when the called chart ends.

Typical Use: Allows a main or “executive” chart to easily orchestrate the execution of other charts that
typically have a dedicated function, thereby reducing the total number of charts running
concurrently.

Details: • This command is functionally a combination of three other commands, Start Chart, Suspend
Chart, and Continue Calling Chart. It attempts to start the specified chart and if successful,
suspends the chart that issued the command. There is no need to check the returned status
if it’s known that the called chart is stopped and that there is room in the 32-task queue for
another chart. When the called chart finishes, the calling chart automatically continues.

• If the called chart is already running, the command has no effect and a zero is returned,
indicating that the command failed.

• The status variable indicates success (-1) or failure (0).

Arguments:

Standard
Example:

Call Chart
Chart Tank_Monitor Chart

Put Status in Call_Status Integer 32 Variable

OptoScript
Example:

CallChart(Chart)
Call_Status = CallChart(Tank_Monitor);

This is a function command; it returns a -1 (indicating success) or a 0 (indicating failure). The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Typically used to chain charts so that they run sequentially rather than concurrently.
• Can be used by concurrently running charts calling a sub-chart that performs a common

function. For this use, the status must be checked to ensure success.

Dependencies: A task must be available in the 32-task queue.

See Also: Continue Calling Chart (page C-43), Start Chart (page S-53), Suspend Chart (page S-72)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable
C-6 OptoControl Command Reference

C
Calling Chart Running?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the running state.

Typical Use: To determine the status of the chart that started this chart.

Details: Evaluates True if the calling chart is running, False if not.

Arguments: None.

Standard
Example:

Calling Chart Running?

OptoScript
Example:

IsCallingChartRunning()
Chart_Status = IsCallingChartRunning();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Continue Calling Chart (page C-43), Calling Chart Suspended? (page C-9), Calling Chart Stopped?
(page C-8)
OptoControl Command Reference C-7

Calling Chart Stopped?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the stopped state.

Typical Use: To determine the status of the chart that started this chart.

Details: Evaluates True if the calling chart is stopped, False if not.

Arguments: None.

Standard
Example:

Calling Chart Stopped?

OptoScript
Example:

IsCallingChartStopped()
Chart_Status = IsCallingChartStopped();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Continue Calling Chart (page C-43), Calling Chart Suspended? (page C-9), Calling Chart Running?
(page C-7)
C-8 OptoControl Command Reference

C
Calling Chart Suspended?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the suspended state.

Typical Use: Called before Continue Calling Chart to ensure its success.

Details: Evaluates True if the calling chart is suspended, False if not.

Arguments: None.

Standard
Example:

Calling Chart Suspended?

OptoScript
Example:

IsCallingChartSuspended()
Chart_Status = IsCallingChartSuspended();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use before Continue Calling Chart to ensure its success. See the Continue Calling

Chart action for details.

See Also: Continue Calling Chart (page C-43), Calling Chart Running? (page C-7), Calling Chart Stopped?
(page C-8)
OptoControl Command Reference C-9

Caused a Chart Error?
Controller Condition

Function: To determine if the specified chart caused the current error in the error queue.

Typical Use: To determine which chart caused the current error.

Details: • Evaluates True if the specified chart caused the error, False otherwise.
• The current error is the oldest one and is always at the top of the error queue.

Arguments:

Standard
Example:

Has POWERUP Chart
Caused a Chart Error?

OptoScript
Example:

HasChartCausedError(Chart)
if (HasChartCausedError(POWERUP)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information

Notes: Use Debug mode to view the error queue for detailed information.

Dependencies: Prior to using this call, you should ensure that the error of interest is pointed to by using the
Remove Current Error and Point to Next Error command.

See Also: Get Error Code of Current Error (page G-52), Remove Current Error and Point to Next Error (page
R-26)

Argument 1
Has
Chart
C-10 OptoControl Command Reference

C
Caused an I/O Unit Error?
Controller Condition

Function: To determine if the specified I/O unit caused the top error in the error queue.

Typical Use: To determine which I/O unit caused an error.

Details: • Evaluates True if the specified I/O unit caused the error, False otherwise.
• Must use Error on I/O Unit? before using this command, since this command assumes the

top error is an I/O error.

Arguments:

Standard
Example:

Has DIG_BRICK_1 G4 Analog Mulitifunction I/O Unit
Caused an I/O Unit Error?

OptoScript
Example:

HasIoUnitCausedError(I/O Unit)
if (HasIoUnitCausedError(DIG_BRICK_1)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Be sure the top error in the queue is an I/O error.
• Use Debug mode to view the error queue for detailed information.

Dependencies: Must use Error on I/O Unit? before using this command.

See Also: Error on I/O Unit? (page E-20), Get Error Code of Current Error (page G-52), Remove Current Error
and Point to Next Error (page R-26)

Argument 1
Has
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
OptoControl Command Reference C-11

Characters Waiting at Serial Port?
Communication—Serial Condition

 Function: To determine if there are characters in the receive buffer of a closed communication port.

 Typical Use: To communicate with other controllers and other serial devices.

 Details: • Evaluates False if there are no characters in the receive buffer.
• Evaluates True if there is at least one character in the receive buffer, or if the command

could not execute properly (see Notes below).

 Arguments:

Standard
Example:

Port 1 Integer 32 Literal
Characters Waiting at Serial Port?

OptoScript
Example:

AreCharsWaitingAtSerialPort(Port)
if (AreCharsWaitingAtSerialPort(1)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• It is possible that this command may not execute properly because the port may be in use or

the port number may not be valid. Because of this, it is recommended that the command Get
Number of Characters Waiting on Serial or ARCNET Port be used instead.

 See Also: Get Number of Characters Waiting on Serial or ARCNET Port (page G-70)

Argument 1
Port
Integer 32 Literal
Integer 32 Variable
C-12 OptoControl Command Reference

C
Chart Running?
Chart Condition

Function: To check if the specified chart is in the running state.

Typical Use: To determine the status of the specified chart.

Details: Evaluates True if the specified chart is running, False if not.

Arguments:

Standard
Example:

Is CHART_B Chart
Chart Running?

OptoScript
Example:

IsChartRunning(Chart)
Chart_Status = IsChartRunning(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Chart Suspended? (page C-15) Chart Stopped? (page C-14)

Argument 1
Is
Chart
OptoControl Command Reference C-13

Chart Stopped?
Chart Condition

Function: To check if the specified chart is in the stopped state.

Typical Use: Used before Start Chart to ensure its success when it is imperative that Start Chart succeed.

Details: Evaluates True if the specified chart is stopped, False if not.

Arguments:

Standard
Example:

Is CHART_B Chart
Chart Stopped?

OptoScript
Example:

IsChartStopped(Chart)
Chart_Status = IsChartStopped(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• When a chart calls a Start Chart followed immediately by a Suspend Chart to suspend itself,

it depends on the target chart to continue it later. Hence, it is imperative that the target chart
be started, otherwise the original (calling) chart will remain suspended. This condition can
determine if the target chart has started.

See Also: Chart Suspended? (page C-15) Chart Running? (page C-13)

Argument 1
Is
Chart
C-14 OptoControl Command Reference

C
Chart Suspended?
Chart Condition

Function: To check if the specified chart is in the suspended state.

Typical Use: To determine the status of the specified chart.

Details: Evaluates True if the specified chart is suspended, False if not.

Arguments:

Standard
Example:

Is CHART_B Chart
Chart Suspended?

OptoScript
Example:

IsChartSuspended(Chart)
Chart_Status = IsChartSuspended(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use before Continue Chart to ensure success.

See Also: Chart Running? (page C-13) Chart Stopped? (page C-14)

Argument 1
Is
Chart
OptoControl Command Reference C-15

Clamp Float Table Element
Mathematical Action

Function: To force a table element value to be greater than or equal to a low limit and less than or equal
to a high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A table element value greater than the high limit will be set to the high limit. A table
element value less than the low limit will be set to the low limit. Any other value is
left unchanged.

• Use this command before evaluating the table value each time.

Arguments:

Standard
Example:

Clamp Float Table Element
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Element Index 4 Integer 32 Literal
Of Table Flow_Data Float Table

OptoScript
Example:

ClampFloatTableElement(High Limit, Low Limit, Element Index, Of Float Table)
ClampFloatTableElement(Max_Flow_Rate, Low_Flow_Cutoff, 4, Flow_Data);

This is a procedure command; it does not return a value.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Clamp Integer 32 Table Element (page C-18), Clamp Float Variable (page C-17), Clamp Integer 32
Variable (page C-19)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
Float Table
C-16 OptoControl Command Reference

C
Clamp Float Variable
Mathematical Action

Function: To force a variable value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A variable value greater than the high limit will be set to the high limit. A variable value less
than the low limit will be set to the low limit. Any other value is left unchanged.

• Use this command before evaluating the variable value each time.

Arguments:

Standard
Example:

Clamp Float Variable
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Float Variable Flow_Var Float Variable

OptoScript
Example:

ClampFloatVariable(High Limit, Low Limit, Float Variable to Clamp)
ClampFloatVariable(Max_Flow_Rate, Low_Flow_Cutoff, Flow_Var);

This is a procedure command; it does not return a value.

See Also: Clamp Float Table Element (page C-16), Clamp Integer 32 Table Element (page C-18), Clamp
Integer 32 Variable (page C-19)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Float Variable
Float Variable
OptoControl Command Reference C-17

Clamp Integer 32 Table Element
Mathematical Action

Function: To force a table element value to be greater than or equal to a low limit and less than or equal
to a high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A table element value greater than the high limit will be set to the high limit. A table
element value less than the low limit will be set to the low limit. Any other value is left
unchanged.

• Use this command before evaluating the table value each time.

Arguments:

Standard
Example:

Clamp Integer 32 Table Element
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Element Index 4 Integer 32 Literal
Of Integer 32 Table Flow_Data Integer 32 Table

OptoScript
Example:

ClampInt32TableElement(High Limit, Low Limit, Element Index, Of Integer 32 Table)
ClampInt32TableElement(Max_Flow_Rate, Low_Flow_Cutoff, 4, Flow_Data);

This is a procedure command; it does not return a value.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Clamp Float Table Element (page C-16), Clamp Float Variable (page C-17), Clamp Integer 32
Variable (page C-19)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Integer 32 Table
Integer 32 Table
C-18 OptoControl Command Reference

C
Clamp Integer 32 Variable
Mathematical Action

Function: To force a variable value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A variable value greater than the high limit will be set to the high limit. A variable value less
than the low limit will be set to the low limit. Any other value is left unchanged.

• Use this command before evaluating the variable value each time.

Arguments:

Standard
Example:

Clamp Integer 32 Variable
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Integer 32 Variable Flow_Var Integer 32 Variable

OptoScript
Example:

ClampInt32Variable(High Limit, Low Limit, Integer 32 Variable to Clamp)
ClampInt32Variable(Max_Flow_Rate, Low_Flow_Cutoff, Flow_Var);

This is a procedure command; it does not return a value.

See Also: Clamp Integer 32 Table Element (page C-18), Clamp Float Variable (page C-17), Clamp Float Table
Element (page C-16)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Integer 32 Variable
Integer 32 Variable
OptoControl Command Reference C-19

Clamp PID Output
PID Action

Function: To force a PID output value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep the PID output within a desired range while it is fully operational in auto mode.

Details: • A calculated PID output value greater than the high limit will be set to the high limit. A
calculated PID output value less than the low limit will be set to the low limit. Any other
calculated PID output value is left unchanged.

• If this command is sent when the PID is in manual mode, the command will not be executed.
• This command takes effect at the next PID scan interval.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Clamp PID Output
High Clamp Max_PID_output Float Variable
Low Clamp Min_PID_output Float Variable
On PID Loop Extruder_zone8 PID Loop

OptoScript
Example:

ClampPidOutput(High Clamp, Low Clamp, On PID Loop)
ClampPidOutput(Max_PID_output, Min_PID_output, Extruder_zone8);

This is a procedure command; it does not return a value.

Dependencies: Will not clamp values written directly to the analog output channel by anything else besides the
PID on the I/O unit.

See Also: Clamp PID Setpoint (page C-21)

Argument 1
High Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On PID Loop
PID Loop
C-20 OptoControl Command Reference

C
Clamp PID Setpoint
PID Action

Function: To force a PID setpoint value to be greater than or equal to a low limit and less than or equal to
a high limit.

Typical Use: To keep an operator from moving the PID setpoint outside a desired range.

Details: • A setpoint value greater than the high limit will be set to the high limit. A setpoint value less
than the low limit will be set to the low limit. Any other setpoint value is left unchanged.

• If this command is sent when the PID is in manual mode, the command will not be executed.
• This command takes effect at the next PID scan interval.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Clamp PID Setpoint
High Clamp Max_PID_output Float Variable
Low Clamp Min_PID_output Float Variable
On PID Loop Extruder_zone8 PID Loop

OptoScript
Example:

ClampPidSetpoint(High Clamp, Low Clamp, On PID Loop)
ClampPidSetpoint(Max_PID_output, Min_PID_output, Extruder_zone8);

This is a procedure command; it does not return a value.

See Also: Clamp PID Output (page C-20)

Argument 1
High Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On PID Loop
PID Loop
OptoControl Command Reference C-21

Clear All Errors
Controller Action

Function: To clear the error queue in the controller.

Typical Use: To clear all errors from a full error queue.

Details: This function clears all errors in the queue. Normally this is not necessary. If your program
performs error checking, it will eventually clear the error queue. If no error checking is done,
simply let the queue fill up.

Arguments: None.

Standard
Example:

Clear All Errors

OptoScript
Example:

ClearAllErrors()
ClearAllErrors();

This is a procedure command; it does not return a value.

Notes: Downloading and running a strategy automatically clears all errors.

See Also: Get Error Code of Current Error (page G-52), Get Error Count (page G-53), Remove Current Error
and Point to Next Error (page R-26)
C-22 OptoControl Command Reference

C
Clear All Event Latches
Event/Reaction Action

Function: To reset all 256 event latches on the I/O unit.

Typical Use: In the Powerup chart, to reset all event latches on the I/O unit to a known or default state.

Details: Each event sets a latch at the moment its criteria is True. This command resets all latches.

Arguments:

Standard
Example:

Clear All Event Latches
On I/O Unit ESTOP_BUTTONS G4 Analog Multifunction I/O Unit

OptoScript
Example:

ClearAllEventLatches(On I/O Unit)
ClearAllEventLatches(ESTOP_BUTTONS);

This is a procedure command; it does not return a value.

Notes: • Use with care, since this command will erase the history of all event latches.
• Normally Clear Event Latch is used to reset a single event latch after it has been evaluated.

Dependencies: Event/reactions are not supported on local simple I/O units.

See Also: Clear Event Latch (page C-26)

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
G4 Analog Multifunction I/O Unit
G4 Digital Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Remote Simple Digital
OptoControl Command Reference C-23

Clear All Latches
Digital Point Action

Function: To reset all digital input latches on a digital multifunction or remote simple I/O unit.

Typical Use: To ensure all input on- or off-latches are reset. Usually performed after a powerup sequence.

Details: • Clears all previously set on- or off-latches associated with input channels on the specified
digital multifunction I/O unit regardless of the on/off status of the inputs.

• All input channels automatically have the latch feature.
• An on-latch is set when the input channel changes from off to on.
• An off-latch is set when the input channel changes from on to off.

Arguments:

Standard
Example:

Clear All Latches
On I/O Unit INPUT_BOARD_1 Digital Multifunction I/O Unit

OptoScript
Example:

ClearAllLatches(On I/O Unit)
ClearAllLatches(INPUT_BOARD_1);

This is a procedure command; it does not return a value.

Notes: If using the latching feature on one or more digital inputs, it is a good practice to clear all the
latches after powerup or reset.

Dependencies: Applies only to remote simple and local digital multifunction I/O units.

See Also: Clear On-Latch (page C-29), Clear Off-Latch (page C-28)

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
C-24 OptoControl Command Reference

C
Clear Counter
Digital Point Action

Function: To reset a digital input counter to zero.

Typical Use: To reset a digital input configured with a counter feature.

Details: • Resets the specified counter input to zero as soon as it is used.
• Does not stop the counter from continuing to run (as Stop Counter does).

Arguments:

Standard
Example:

Clear Counter
On Point Bottle_Counter Counter

OptoScript
Example:

ClearCounter(On Point)
ClearCounter(Bottle_Counter);

This is a procedure command; it does not return a value.

Dependencies: Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: Get Counter (page G-44), Get & Clear Counter (page G-14), Start Counter (page S-55), Stop
Counter (page S-65)

Argument 1
On Point
Counter
OptoControl Command Reference C-25

Clear Event Latch
Event/Reaction Action

Function: To reset a specified event latch on the I/O unit.

Typical Use: After an event has been evaluated.

Details: To determine that a specified event has occurred, the event latch must be checked. One way to
check the event latch is to use the condition Event Occurred? To detect the next incident of the
event, the event latch must be reset using this command.

Arguments:

Standard
Example:

Clear Event Latch
On Event/Reaction ESTOP_BUTTON_1 Analog Event/Reaction

OptoScript
Example:

ClearEventLatch(On Event/Reaction)
ClearEventLatch(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: Always use after Clear I/O Unit Interrupt (if using interrupts).

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Clear I/O Unit Interrupt (page C-27), Clear All Event Latches (page C-23), Event Occurred? (page
E-22)

Argument 1
On Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
C-26 OptoControl Command Reference

C
Clear I/O Unit Interrupt
Event/Reaction Action

Function: To reset the interrupt latch, which turns off the interrupt line on the I/O unit.

Typical Use: In the Interrupt chart, to reset the interrupt latch immediately after determining that an I/O unit
has generated an interrupt.

Details: Resets the interrupt latch to off.

Arguments:

Standard
Example:

Clear I/O Unit Interrupt
On I/O UNIT ESTOP_BUTTONS B3000 SNAP DIGITAL

OptoScript
Example:

ClearIoUnitInterrupt(On I/O Unit)
ClearIoUnitInterrupt(ESTOP_BUTTONS);

This is a procedure command; it does not return a value.

Notes: • Use Generating Interrupt? to determine if a specified I/O unit has generated an interrupt.
• Clear the interrupt first, then check all event latches, to ensure that a new event latch will

generate a new interrupt.

Dependencies: Event/reactions are not supported on simple I/O units.

See Also: Generating Interrupt? (page G-9) Event Occurred? (page E-22) Clear Event Latch (page C-26)

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
G4 Analog Multifunction I/O Unit
G4 Digital Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Remote Simple Digital
OptoControl Command Reference C-27

Clear Off-Latch
Digital Point Action

Function: To reset a previously set digital input off-latch.

Typical Use: To reset the off-latch associated with a digital input to catch the next transition.

Details: • Resets the off-latch of a single digital input regardless of the on/off status of the input.
• The next time the input channel changes from on to off, the off-latch will be set.
• Off-latches are very useful for catching high-speed on-off-on input transitions, since they are

processed by the remote simple or digital multifunction I/O unit locally.

Arguments:

Standard
Example:

Clear Off-Latch
On Point BUTTON_1 Digital Input

OptoScript
Example:

ClearOffLatch(On Point)
ClearOffLatch(BUTTON_1);

This is a procedure command; it does not return a value.

Notes: Clear an off-latch after a Get Off-Latch command to re-arm the latch.

Dependencies: Applies only to inputs configured with the off-latch feature on digital multifunction or remote
simple I/O units.

See Also: Get Off-Latch (page G-72), Clear All Latches (page C-24)

Argument 1
On Point
Digital Input
C-28 OptoControl Command Reference

C
Clear On-Latch
Digital Point Action

Function: To reset a previously set digital input on-latch.

Typical Use: To reset the on-latch associated with a digital input to catch the next transition.

Details: • Resets the on-latch of a single digital input regardless of the on/off status of the input.
• The next time the input channel changes from off to on, the on-latch will be set.
• On-latches are very useful for catching high-speed off-on-off input transitions, since they are

processed by the remote simple or digital multifunction I/O unit locally.

Arguments:

Standard
Example:

Clear On-Latch
On Point Button_1 Digital Input

OptoScript
Example:

ClearOnLatch(On Point)
ClearOnLatch(Button_1);

This is a procedure command; it does not return a value.

Notes: Clear an on-latch after a Get On-Latch command to re-arm the latch.

Dependencies: Applies only to inputs configured with the on-latch feature on digital multifunction or remote
simple I/O units.

See Also: Get On-Latch (page G-76), Clear All Latches (page C-24)

Argument 1
On Point
Digital Input
OptoControl Command Reference C-29

Clear PC Byte Swap Mode (ISA only)
Controller Action

Function: Restores the ISA controller PC bus driver to the default mode of operation.

Typical Use: During testing to undo the mode change.

Details: Normally this command will never be used outside of testing.

Arguments: None.

Standard
Example:

Clear PC Byte Swap Mode (ISA only)

OptoScript
Example:

ClearPcByteSwapMode()
ClearPcByteSwapMode();

This is a procedure command; it does not return a value.

See Also: Set PC Byte Swap Mode (ISA only) (page S-28)

Clear Pointer
Pointers Action

Function: To NULL out a pointer.

Typical Use: To clear a pointer so that it no longer points to an object.

Arguments:

Standard
Example:

Clear Pointer
Pointer IO_Pointer Pointer Variable

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Assign null to the pointer:
IO_Pointer = null;

Notes: Operations cannot be performed on NULL pointers. NULL pointers do not point to
any object.

See Also: Move to Pointer (page M-23), Clear Pointer Table Element (page C-31)

Argument 1
Pointer
Pointer Variable
C-30 OptoControl Command Reference

C
Clear Pointer Table Element
Pointers Action

Function: To NULL out the specified element of a pointer table.

Typical Use: To clear an element in a pointer table so that it no longer points to any object.

Arguments:

Standard
Example:

Clear Pointer Table Element
Index 17 Integer 32 Literal

Of Table IO_POINTER_TABLE Pointer Table

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Assign null to the pointer:
IO_POINTER_TABLE[17] = null;

Notes: Operations cannot be performed on a NULL pointer.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move to Pointer Table (page M-24)

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table
OptoControl Command Reference C-31

Clear Quadrature Counter
Digital Point Action

Function: To reset a quadrature counter to zero.

Typical Use: To reset a quadrature counter used with incremental encoders.

Details: • Resets the specified quadrature counter to zero as soon as it is used.
• Does not stop the quadrature counter from continuing to count.
• A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and
2, 3 and 4 are not.

Arguments:

Standard
Example:

Clear Quadrature Counter
On Point ENCODER_1 Quadrature Counter

OptoScript
Example:

ClearQuadratureCounter(On Point)
ClearQuadratureCounter(ENCODER_1);

This is a procedure command; it does not return a value.

Dependencies: Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: Get Quadrature Counter (page G-95), Get & Clear Quadrature Counter (page G-21), Start
Quadrature Counter (page S-61), Stop Quadrature Counter (page S-67)

Argument 1
On Point
Quadrature Counter
C-32 OptoControl Command Reference

C
Clear Receive Buffer
Communication—Serial Action

Function: To empty the receive buffer of a communication port.

Typical Use: To put the receive buffer in a known state (empty). To empty it of garbage characters or partial
messages.

Details: All characters in the receive buffer will be deleted, even if the port is in use by another chart.

Arguments:

Standard
Example:

Clear Receive Buffer
On Port My_Port Integer 32 Variable

Put Result in My_Port_Status Integer 32 Variable

OptoScript
Example:

ClearReceiveBuffer(On Port)
My_Port_Status = ClearReceiveBuffer(My_Port);

This is a function command; it returns a status code as shown below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use once before starting communications.
• Always use just before sending a message that requires a response.
• Always use after communication errors to help recover.

Status Codes: 0 = Port is in use already.
-1 = OK.
-51 = Invalid port number—use port 0–7.

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
Integer 32 Variable
OptoControl Command Reference C-33

Close Ethernet Session
Communication—Network Action

Function: Disconnect the previously established link with another Ethernet node.

Typical Use: When communication with the other node is no longer required.

Details: • Frees the session number for later use.
• Valid ports are 8, 9, and 10.

Arguments:

Standard
Example:

Close Ethernet Session
Session Session_Number Integer 32 Variable
On Port 9 Integer 32 Literal

Put Status in Ethernet_Status Integer 32 Variable

OptoScript
Example:

CloseEthernetSession(Session, On Port)
Ethernet_Status = CloseEthernetSession(Session_Number, 9);

This is a function command; it returns a status code as shown below.

Status Codes: 0 = Success.
-40 = Timeout—specified port already in use.
-51 = Invalid port number—must be 8, 9, or 10. Or, wrong port number for the session.
-70 = No Ethernet card present.
-73 = Timeout—Couldn’t close the session.
-74 = Session wasn’t open.
-75 = Invalid session number—use 0–127.
-77 = This controller doesn’t support Ethernet.

See Also: Open Ethernet Session (page O-5)

Argument 1
Session
Integer 32 Literal
Integer 32 Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Integer 32 Variable
C-34 OptoControl Command Reference

C
Comment (Block)
Miscellaneous Action or Condition

Function: To disable one or more commands in an action or condition block.

Typical Use: To temporarily disable commands within an action or condition block during debugging.

Details: • This command is normally used in pairs. Everything between the pair of Comment (Block)
commands is considered a comment and is ignored when the strategy is compiled and
downloaded. In the Instructions dialog box, commands that are commented out appear in
gray.

• This command is useful for temporarily disabling a group of commands within an action
block while debugging a program.

• If the second Comment (Block) is omitted, everything from the first Comment (Block) to the
end of the action block is considered a comment.

Arguments: None.

Standard
Example:

Comment (Block)
Action or Condition
Action or Condition
Action or Condition
Comment (Block)

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Use a slash and an asterisk before
the block comment, and an asterisk and a slash after the block comment:
/* block comment */

See Also: Comment (Single Line) (page C-36)
OptoControl Command Reference C-35

Comment (Single Line)
Miscellaneous Action or Condition

Function: To add a comment to an action or condition block.

Typical Use: To document commands within a block.

Details: Comments are string constants. They use controller memory.

Arguments:

Standard
Example:

Comment (Single Line)
PID_LOOP_CONTROL_START String Literal

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Use two slashes before the
comment.
// single line comment

See Also: Comment (Block) (page C-35)

Argument 1
[Value]
String Literal
C-36 OptoControl Command Reference

C
Communication to All I/O Points Enabled?
Simulation Condition

Function: To determine whether communication between the program in the controller and all analog and
digital points is enabled.

Typical Use: For simulation and testing. An I/O point might be disabled if you do not want to communicate
with it during testing.

Details: All analog and digital point communication is enabled by default. It can be turned off for
individual points in the configuration dialog box or by using the command Disable
Communication to Analog Point or Disable Communication to Digital Point. Use this command to
find out if communication has been disabled.

Arguments: None

Standard
Example:

Communication to All I/O Points Enabled?

OptoScript
Example:

IsCommToAllIoPointsEnabled()
if (IsCommToAllIoPointsEnabled()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command is much faster than checking points individually.
• Be aware that I/O points may not be reachable even if communication is enabled. For

example, the I/O unit may be turned off or unplugged, but its points may still be enabled. To
determine whether an I/O unit is reachable, use I/O Unit Ready?

See Also: Disable Communication to All I/O Points (page D-4), Enable Communication to All I/O Points
(page E-1), Disable Communication to Analog Point (page D-6), Disable Communication to Digital
Point (page D-7), I/O Point Communication Enabled? (page I-7)
OptoControl Command Reference C-37

Communication to All I/O Units Enabled?
Simulation Condition

Function: To determine whether communication between the program in the controller and all I/O units is
enabled.

Typical Use: For simulation and testing. An I/O unit might be disabled if you do not want to communicate with
it during testing.

Arguments: None.

Standard
Example:

Communication to All I/O Units Enabled?

OptoScript
Example:

IsCommToAllIoUnitsEnabled()
if (IsCommToAllIoUnitsEnabled()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command is much faster than checking I/O units individually.
• Be aware that the I/O unit may not be reachable even if communication is enabled. For

example, the I/O unit may be turned off or unplugged, but its points and the unit itself may
still be enabled. To determine whether an I/O unit is reachable, use I/O Unit Ready?

See Also: Disable Communication to All I/O Units (page D-5), Enable Communication to All I/O Units (page
E-2), Disable Communication to I/O Unit (page D-9), , I/O Unit Communication Enabled? (page I-8)
C-38 OptoControl Command Reference

C
Complement
Mathematical Action

Function: To change the sign of a number from positive to negative or from negative to positive.

Typical Use: To make a result positive after subtracting a large number from a small number. The command
Absolute Value is another, better way to accomplish the same thing.

Details: Same as multiplying by -1, but executes faster. Thus, -1 becomes 1, 1 becomes -1, etc.

Arguments:

Standard
Example:

Complement
Temperature_Difference Float Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the minus sign:
- Temperature_Difference

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• The complement of zero is zero.

See Also: Bit NOT (page B-5), NOT (page N-2), Absolute Value (page A-1)

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable
OptoControl Command Reference C-39

Configure I/O Unit
I/O Unit Action

Function: Configures the I/O unit: sets a power-up clear, configures all points, watchdogs, temperature
reporting (F or C), and so on..

Typical Use: Factory QA testing.

Details: Forces a reconfiguration of the I/O unit the next time any point on the I/O unit is referenced by
the program.

Arguments:

Standard
Example:

Configure I/O Unit
I/O Unit FURNACE_PID G4 Analog Multifunction I/O Unit

OptoScript
Example:

ConfigureIoUnit(I/O Unit)
ConfigureIoUnit(FURNACE_PID);

This is a procedure command; it does not return a value.

Notes: If you are using Ethernet for communication, you need to already have a session open. To open a
session, first use Enable I/O Unit; then use Configure I/O Unit.

See Also: Set I/O Unit Configured Flag (page S-22)

Argument 1
I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
C-40 OptoControl Command Reference

C
Configure Port
Communication—Serial Action

Function: To set serial port baud rate, parity, number of data bits, number of stop bits, and CTS on ports
0–3.

Typical Uses: • To deviate from the factory defaults (no parity, 8 data bits, 1 stop bit, CTS disabled).
• To set the baud rate independently of either the Configurator settings or the front panel or

jumper settings on the controller.
• To activate CTS control when sending to radios and modems.

Details: • Parameters are not case-sensitive.
• Works only on ports 0–3.
• Sets a default port timeout delay that is baud rate-dependent.
• Use COM0 for port 0, COM1 for port 1, COM2 for port 2, COM3 for port 3.
• Valid baud rates are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800,

and 115200.
• Valid parity choices are N (none), E (even), O (odd).
• Valid data bit choices are 5–8.
• Valid stop bit choices are 1–2.
• Valid CTS choices are “CTS” (enabled) or no entry (disabled).

Arguments:

Standard
Example:

Configure Port
Configuration COM1:38400,N,8,1,CTS String Literal
Put Status in MY_PORT_STATUS Integer 32 Variable

OptoScript
Example:

ConfigurePort(Configuration)
MY_PORT_STATUS = ConfigurePort("COM1:38400,N,8,1,CTS");

This is a function command; it returns a status code as shown below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Overrides all previous settings made by the Configurator or controller front panel or jumpers.
• Use before Configure Port Timeout Delay, since this command will alter its value.
• Use the “CTS” parameter when communicating with radios and modems.

Status Codes: 0 = OK.
-40 = Timeout—specified port is already in use.
-50 = Improper configuration string syntax.

Argument 1
Configuration
String Literal
String Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference C-41

Configure Port Timeout Delay
Communication—Serial Action

Function: To change the default timeout delay setting.

Typical Use: To change the timeout delay (the time before retries are attempted) when there is a
communication error.

Details: The default value is based on the baud rate for the port and is usually sufficient.

Arguments:

Standard
Example:

Configure Port Timeout Delay
Delay (Seconds) 1.5 Float Literal

On Port 2 Integer 32 Literal

OptoScript
Example:

ConfigurePortTimeoutDelay(Delay (Seconds), On Port)
ConfigurePortTimeoutDelay(1.5, 2);

This is a procedure command; it does not return a value.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• If you choose to change the timeout delay, do so after using the Configure Port command.
• Use this command to increase the delay if errors -41 or -42 are a constant problem.
• When sending or receiving long messages (50 or more characters), increase the timeout

delay. As a minimum, use the result of this formula: (longest message length / baud rate) *
40. For example, a 24-character message at 9600 baud results in a delay of 0.1 seconds.

• This command does not apply to ports 8, 9, or 10 (Ethernet).

Dependencies: The Configure Port command will overwrite any value set by this command.

See Also: Set Number of Retries to All I/O Units (page S-27), Configure Port (page C-41)

Argument 1
Delay (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable
C-42 OptoControl Command Reference

C
Continue Calling Chart
Chart Action

Function: To continue the chart that started the current chart without having to know its name.

Typical Use: To use a chart as a form of subroutine, where this “subchart” may be called from many other
charts to perform some common function.

Details: • The only effect this command will have is to continue a suspended chart. If the calling chart
is in any other state, the calling chart will be unaffected by this command.

• The calling chart will resume execution at its next scheduled time in the 32-task queue.
• The STATUS variable indicates success (-1) or failure (0). Since a failure would “break the

chain” of execution, care must be taken to ensure success. In this example, it is possible for
CHART_A to start SUB_CHART_A, then lose its time slice before it suspends itself, leaving
it in the running state. Further, it is possible for SUB_CHART_A to complete execution in its
allocated time slice(s) and issue the Continue Calling Chart command, which will fail
because the calling chart is still in the running state.

To prevent this situation, SUB_CHART_A should be modified to add the condition CALLING
Chart Suspended? just before the Continue Calling Chart action. The True exit will lead
directly to the Continue Calling Chart action, but the False exit will loop back to the CALLING
Chart Suspended? condition itself to re-evaluate if the chart has been suspended. This
ensures proper operation.

• For the same reason, the condition Chart Stopped? should preface the Start Chart
“SUB_CHART_A” command.

Arguments:

Standard
Example:

Continue Calling Chart
Put Status in STATUS Integer 32 Variable

OptoScript
Example:

ContinueCallingChart()
STATUS = ContinueCallingChart();

This is a function command; it returns a -1 (indicating success) or a 0 (indicating failure).

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• A safer method from a multitasking perspective is to utilize OptoControl’s built-in subroutine

feature.

See Also: Continue Calling Chart (page C-43), Start Chart (page S-53), Stop Chart (page S-63), Suspend
Chart (page S-72), Calling Chart Suspended? (page C-9)

Argument 1
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference C-43

Continue Chart
Chart Action

Function: To change the state of a specified chart from suspended to running.

Typical Use: In conjunction with Suspend Chart, to cause a specified chart to resume execution from where it
left off.

Details: • The only effect this command will have is to continue a suspended chart. If the specified
chart is in any other state, it will be unaffected by this command.

• Upon success, the chart will resume execution at its next scheduled time in the 32-task
queue at the point at which it was suspended.

• Suspended charts give up their time slice.
• The STATUS variable indicates success (-1) or failure (0).
• It is possible for CHART_A to complete execution of the commands between Suspending

Chart B and Continuing Chart B in its allocated time slice(s). If this happens the Continue
Chart “CHART_B” command will fail, because the actual state of Chart B hasn’t changed
since it hasn’t received a time slice yet.

Arguments:

Standard
Example:

Continue Chart
Chart CHART_A Chart

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

ContinueChart(Chart)
STATUS = ContinueChart(CHART_A);

This is a function command; it returns a -1 (indicating success) or a 0 (indicating failure).

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Loop on Chart Suspended? before this command if success is critical.
• If you are trying to continue the Interrupt chart at the very beginning of the Powerup chart,

first use the Delay command to allow the Interrupt chart time to start up and suspend itself.
A delay of at least two milliseconds is recommended.

See Also: Suspend Chart (page S-72), Chart Suspended? (page C-15), Set Priority (page S-39)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable
C-44 OptoControl Command Reference

C
Continue Timer
Miscellaneous Action

Function: To continue a paused timer variable.

Typical Use: Used with Pause Timer command to track total on/off (up/down, fwd/reverse) time.

Details: The timer variable must have been paused with the Pause Timer command. It continues from the
value at which it was paused.

Arguments:

Standard
Example:

Continue Timer
Timer OVEN_TIMER Down Timer Variable

OptoScript
Example:

ContinueTimer(Timer)
ContinueTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: None

See Also: Start Timer (page S-62), Stop Timer (page S-68), Pause Timer (page P-1), Set Down Timer Preset
Value (page S-19), Set Up Timer Target Value (page S-46)

Convert Float to String
String Action

Function: To convert a float to a formatted string having a specified length and number of digits to the right
of the decimal.

Typical Use: To print a float or send it to another device using a specific format or length.

Details: • The Length parameter (Argument 2) specifies the final length of the resulting string,
including the decimal point. Leading spaces (character 32) are added if required.

• The Decimals parameter (Argument 3) specifies the number of digits to the right of the
decimal point.

• Rounding occurs whenever digits on the right must be dropped.
• Digits to the left of the decimal point are never dropped.
• If the whole number portion (digits to the left of the decimal plus the decimal itself) of the

resulting string would be larger than its allocated space, the resulting string will be filled
with asterisks to alert you to the problem. For example, if the value to convert is 123.4567
with a Length value of 5 and a Decimals value of 2, the space allocated to the whole

Argument 1
Timer
Down Timer Variable
Up Timer Variable
OptoControl Command Reference C-45

number portion is only three (5 - 2). Since four characters (“123.”) are required, the formatted
number “123.46” will not fit, so “*****” will be moved to the destination string.

• If the declared width of the string variable is less than the specified length, the remaining
portion (least significant characters) of the formatted string will be discarded.

• Although integers can also be converted, significant rounding errors will occur for
values of 1,000,000 or more.

Arguments:

Standard
Example:

The following example converts a decimal number in variable MY VALUE to a string
(for example, if MY VALUE is 12.3435, the string becomes “12.34”):

Convert Float to String
Convert My_Value Float Variable
Length 5 Integer 32 Literal

Decimals 2 Integer 32 Literal
Put Result in Value_as_String String Variable

OptoScript
Example:

FloatToString(Convert, Length, Decimals, Put Result in)
FloatToString(My_Value, 5, 2, Value_as_String);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide. For more information
on using strings in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Set decimals to zero to get an integer. Normal rounding will occur.

Dependencies: The string variable must be wide enough to hold the resulting formatted string.

See Also: Convert Float to String (page C-45), Convert Number to String (page C-53)

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Decimals
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
String Variable
C-46 OptoControl Command Reference

C
Convert Hex String to Number
String Action

Function: To convert a hex string value to an integer value.

Typical Use: To accommodate communications where values may be represented by hex strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• An empty string results in a value of zero.
• Conversion is not case-sensitive. For example, the strings “FF,” “ff,” “fF,” and “Ff” all convert

to a value of 255.
• Legal hex characters are “0” through “9,” “A” through “F,” and “a” through “f.”
• A string containing an illegal character will be converted up to the point just before the

illegal character. For example, the strings “AG” and “A 123” will both convert to 10 (the
value of “A”).

• Leading spaces in strings will convert to zeros.

Arguments:

Standard
Example:

Convert Hex String to Number
Convert String_From_Port String Variable

Put Result in Int_Value Integer 32 Variable

OptoScript
Example:

HexStringToNumber(Convert)
Int_Value = HexStringToNumber(String_From_Port);

This is a function command; it returns the converted number. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• If the hex string contains an IEEE float, you must use Convert IEEE Hex String to Number.

See Also: Convert Number to Hex String (page C-51), Convert String to Float (page C-55), Convert String to
Integer 32 (page C-56), Convert IEEE Hex String to Number (page C-48)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference C-47

Convert IEEE Hex String to Number
String Action

Function: To convert a hex string representing an IEEE float in native IEEE format to a number.

Typical Use: To retrieve the float value previously stored as hex after using Convert Number to Formatted
Hex String.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Use between controllers or other computers that use the IEEE format when efficiency of

communications is desired.
• The eight hex characters are converted to four bytes (IEEE float format).
• The hex string must be in Motorola or Big Endian format (most significant byte on the left, in

the least significant address).

Arguments:

Standard
Example:

The following example converts a hex string into a float value. For example, if STRING FROM
PORT contains “418E6666” then MY FLOAT VALUE becomes 17.8.

Convert IEEE Hex String to Number
Convert STRING_FROM_PORT String Variable

Put Result in MY_FLOAT_VALUE Float Variable

OptoScript
Example:

IEEEHexStringToNumber(Convert)
MY_FLOAT_VALUE = IEEEHexStringToNumber(STRING_FROM_PORT);

This is a function command; it returns the converted number. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “String Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Convert Number to Formatted Hex String (page C-50), Convert Hex String to Number (page C-47)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable
C-48 OptoControl Command Reference

C
Convert Mistic I/O Hex to Float
Communication—I/O Action

Function: Converts a float value represented as an eight-character hex response from an I/O unit to a float
number.

Typical Use: Reading analog values in engineering units from an I/O unit.

Details: • I/O units use integers to represent all numeric values. Float values are handled using a
16-bit signed integer for the whole number part and a 16-bit unsigned integer for the
fractional part. Each count in the fractional part represents 0.000015259. These four bytes
become eight bytes when represented in hex.

• Legal range is -32768 to 32767.

Arguments:

Standard
Example:

Convert Mistic I/O Hex to Float
Hex String IO_Response String Variable

Put Result in Eunit_Value Float Variable

OptoScript
Example:

MisticIoHexToFloat(Convert)
Eunit_Value = MisticIoHexToFloat(IO_Response);

This is a function command; it returns the converted float. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Convert Hex String to Number instead when the hex response represents a count.

Dependencies: Use Transmit/Receive Mistic I/O Hex String first.

See Also: Transmit/Receive Mistic I/O Hex String with Checksum (page T-27), Transmit/Receive Mistic I/O
Hex String with CRC (page T-28), Convert Number to Mistic I/O Hex (page C-52), Convert Hex
String to Number (page C-47)

Argument 1
Hex String
String Literal
String Variable

Argument 2
Put Result in
Float Variable
OptoControl Command Reference C-49

Convert Number to Formatted Hex String
String Action

Function: To convert an integer to a formatted hex string having a specified length, or to convert a float to
an eight-byte IEEE hex format.

Typical Uses: • To allow efficient transfer of numeric data via a serial port. (The largest number can be sent
using only eight hex characters.)

• To print a hex number or to send it to another device with a fixed length.

Details: • The Length parameter (Argument 2) specifies the final length of the resulting string.
Leading zeros are added if required.

• To send a float value in native IEEE format, set Argument 2 to Argument 8 and use a variable
or float literal. Use Convert IEEE Hex String to Number to convert the eight hex characters
back to a float.

• If the resulting hex string is wider than the specified length, the most significant hex
characters will be discarded.

• If the declared width of the string variable is less than the specified length, the remaining
portion (least significant characters) of the formatted string will be discarded.

• Upper case is used for all hex characters; for example, 1,000 decimal is represented as 3E8
rather than 3e8.

Arguments:

Standard
Example:

The following example converts a decimal integer to a hex string. If MY ADDRESS has the value
255, the resulting hex string would be “00FF” because Length is 4. If Length had been 2, the hex
string would have become “FF.”

Convert Number to Formatted Hex String
Convert My_Address Integer 32 Variable
Length 4 Integer 32 Literal

Put Result in Address_as_Hex String Variable

OptoScript
Example:

NumberToFormattedHexString(Convert, Length, Put Result in)
NumberToFormattedHexString(My_Address, 4, Address_as_Hex);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Caution: Do not use a float where an integer would suffice. Floats are not automatically

converted to integers with this command.

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable
C-50 OptoControl Command Reference

C
• Must use a Length of 8 when converting a float.

Dependencies: The string variable must be wide enough to hold the hex string.

See Also: Convert Float to String (page C-45), Convert Number to Hex String (page C-51), Convert Number
to String (page C-53), Convert Number to String Field (page C-54)

Convert Number to Hex String
String Action

Function: To convert a decimal integer to a hex string.

Typical Uses: • To send an integer value with a predetermined length to another controller.
• To print a hex representation of a number or to send it to another device.

Details: • Does not add leading zeros or spaces.
• If the resulting string is too big, the string will be truncated. No error will be reported and

memory will not be corrupted.
• If the declared width of the string variable is less than the resulting hex string length, the

remaining portion of the hex string (least significant characters) will be discarded.
• Upper case is used for all hex characters; for example, 1,000 decimal is represented as 3E8

rather than 3e8.

Arguments:

Standard
Example:

The following example converts a number in MY ADDRESS to a hex string
(for example, if MY ADDRESS has the value 256, the hex string becomes “100”):

Convert Number to Hex String
Convert My_Address Integer 32 Variable

Put Result in Address_as_Hex String Variable

Argument 1
Convert
Analog Input
Analog Output
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
Down Timer Variable
Float Literal
Float Variable
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
Integer 32 Literal
Integer 32 Variable
SNAP Remote Simple Digital
Up Timer Variable

Argument 2
Put Result in
String Variable
OptoControl Command Reference C-51

OptoScript
Example:

NumberToHexString(Convert, Put Result in)
NumberToHexString(My_Address, Address_as_Hex);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Must use Convert Number to Formatted Hex String when converting floats.

Dependencies: The string variable must be wide enough to hold the resulting hex string.

See Also: Convert Number to Formatted Hex String (page C-50), Convert Float to String (page C-45), Convert
Number to String (page C-53), Convert Number to String Field (page C-54)

Convert Number to Mistic I/O Hex
Communication—I/O Action

Function: Converts a float value to an eight-character hex string using the I/O unit engineering units format.

Typical Use: Sending values in engineering units to an analog I/O unit.

Details: • I/O units use integers to represent all numeric values. Float values are handled using a
16-bit signed integer for the whole number part and a 16-bit unsigned integer for the
fractional part. Each count in the fractional part represents 0.000015259. These four bytes
become eight bytes when represented in hex.

• Legal range is -32768 +32767.

Arguments:

Standard
Example:

Convert Number to Mistic I/O Hex
Number EUNIT_VALUE Float Variable

Put Result in HEX_VALUE String Variable

OptoScript
Example:

NumberToMisticIoHex(Convert, Put Result in)
NumberToMisticIoHex(EUNIT_VALUE, HEX_VALUE);

This is a procedure command; it does not return a value.

Notes: Use Convert Number to Formatted Hex String when the number represents a count or bit pattern.

See Also: Transmit/Receive Mistic I/O Hex String with Checksum (page T-27), Convert Mistic I/O Hex to
Float (page C-49), Convert Number to Formatted Hex String (page C-50)

Argument 1
Number
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
String Variable
C-52 OptoControl Command Reference

C
Convert Number to String
String Action

Function: To convert a decimal number to a string.

Typical Use: To print a number or send it to another device.

Details: • Represents floating point values in scientific notation (for example, 1.234e+01 rather than
12.34).

• If the declared width of the string variable is less than the resulting string length, the
remaining portion of the string (characters on the right) will be discarded.

• Examples:

12.3456 becomes1.23456e+01—Note the exponential format for floats.

12345 becomes12345—Note no change for integers.

Arguments:

Standard
Example:

The following example converts a decimal number in MY_VALUE to a string (for example, if
MY_VALUE is 12.34, the string becomes 1.234e+01; if MY_VALUE is the integer value 1234, the
string becomes 1234):

Convert Number to String
Convert My_Value Float Variable

Put Result in Value_as_String String Variable

OptoScript
Example:

NumberToString(Convert, Put Result in)
NumberToString(MY_Value, Value_as_String);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• To avoid scientific notation or to have greater control over format, use Convert Float to String

instead.

Dependencies: The string variable must be wide enough to hold the resulting string.

See Also: Convert String to Integer 32 (page C-56), Convert Float to String (page C-45)

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
String Variable
OptoControl Command Reference C-53

Convert Number to String Field
String Action

Function: To convert a number to a string using a specified minimum length.

Typical Use: To fix the length of an integer before sending it to a serial printer or to another device.

Details: • The resulting string length will be greater than or equal to the length specified in the Length
parameter (Argument 2).

• If the declared width of the string variable is less than the resulting string length, the
remaining portion of the string (characters on the right) will be discarded.

• A value whose length is less than that specified will have leading spaces added as
necessary.

• A value whose length is equal to or greater than the specified length will be sent as is.
• Examples:

23456 becomes 23456—There are six digits (one leading space in front of the 2).

0 becomes 0—There are six digits (five leading spaces in front of the 0).

2345678 becomes 2345678—The six-digit specified length is ignored.

12.3 becomes 1.23e0—The six-digit specified length is ignored.

Arguments:

Standard
Example:

Convert Number to String Field
Convert Value Integer 32 Variable
Length 6 Integer 32 Literal

Put Result in Value_as_String String Variable

OptoScript
Example:

NumberToStringField(Convert, Length, Put Result in)
NumberToStringField(Value, 6, Value_as_String);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Convert Float to String to better control the resulting format, if desired.

Dependencies: The string variable must be wide enough to hold the resulting string.

See Also: Convert Number to Formatted Hex String (page C-50), Convert Float to String (page C-45), Convert
Number to String (page C-53), Convert Number to Hex String (page C-51)

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable
C-54 OptoControl Command Reference

C
Convert String to Float
String Action

Function: To convert a string to a float value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources
are strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Although this command can be used to convert a string to an integer, significant rounding

errors will occur for values of 1,000,000 or more.
• Valid, convertible characters are 0 to 9, the decimal point, and “e” (natural log base). Spaces

are also considered valid, although they are not converted. Note in particular that commas
are invalid.

• Strings are analyzed from left to right.
• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

will be ignored. For example, “123 4” and “123.0 X” both convert to 123.0.
• If an invalid character is found, the string will be converted to 0.0. For example, “X 22.2 4”

and “1,234 45” both convert to 0.0, since the X in the first string and the comma in the
second are invalid. Note, however, that “45 1,234” would convert to 45.0, since the invalid
character (“,”) would be ignored once the valid text block (“45”) was found.

• The following are string-to-float conversion examples:
STRING FLOAT

“” 0.0
“A12” 0.0
“123P” 0.0
“123 P” 123.0

“123.456” 123.456
“22 33 44” 22.0
“ 22.11” 22.11

“1,234.00” 0.0
“1234.00” 1234.0
“1.23e01” 12.3

Arguments:

Standard
Example:

Convert String to Float
Convert String_from_Port String Variable

Put Result in Float_Value Float Variable

OptoScript
Example:

StringToFloat(Convert)
Float_Value = StringToFloat(String_from_Port);

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
OptoControl Command Reference C-55

This is a function command; it returns the converted float. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “String Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Convert Float to String (page C-45), Convert String to Integer 32 (page C-56)

Convert String to Integer 32
String Action

Function: To convert a string to an integer value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources
are strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Valid, convertible characters are 0 to 9. Spaces are also considered valid, although they are

not converted. Note in particular that commas are invalid.
• Strings are analyzed from left to right.
• Text that could be read as a float value is truncated to an integer value. For example, “123.6”

is truncated to 123. (To round a float rather than truncating it, do not use this command.
Instead, use Convert String to Float and then use Move to move the float to an integer.)

• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

are ignored. For example, “123 4” and “123.0 X” both convert to 123.
• If an invalid character is found, the string is used up to that character. For example, “X 22 4”

becomes 0, since the first character (X) is invalid. “1,234 45” becomes 1, since the comma is
invalid.

• The following are string-to-integer conversion examples:
STRING INTEGER

“” 0
“A12” 0
“123P” 123
“123 P” 123

“123.456” 123
“22 33 44” 22
“ 22.51” 22
“1,234” 1

“1234.00” 1234

Arguments: Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Integer 32 Variable
C-56 OptoControl Command Reference

C
Standard
Example:

Convert String to Integer 32
Convert String_from_Port String Variable

Put Result in Int_Value Integer 32 Variable

OptoScript
Example:

StringToInt32(Convert)
Int_Value = StringToInt32(String_from_Port);

This is a function command; it returns the converted integer. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Avoid alpha characters. Stick with 0 to 9.
• If you need to convert a string to an integer 64 for use with a 64-point digital-only I/O unit,

use the command Convert String to Integer 64.

See Also: Convert String to Float (page C-55), Convert Number to String (page C-53)

Convert String to Integer 64
String Action

Function: To convert a string to an integer 64 value.

Typical Use: Most conversions will be to integer 32 values and use the command Convert String to Integer 32.
Use this command to accommodate communications or operator entry strings that must be
converted to integer 64 values for use with digital-only 64-point I/O units.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Valid, convertible characters are 0 to 9. Spaces are also considered valid, although they are

not converted. Note in particular that commas are invalid.
• Strings are analyzed from left to right.
• Text that could be read as a float value is truncated to an integer value. For example, “123.6”

is truncated to 123. (To round a float rather than truncating it, do not use this command.
Instead, use Convert String to Float and then use Move to move the float to an integer.)

• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

are ignored. For example, “123 4” and “123.0 X” both convert to 123.
• If an invalid character is found, the string is used up to that character. For example, “X 22 4”

becomes 0, since the first character (X) is invalid. “1,234 45” becomes 1, since the comma is
invalid.

• The following are string-to-integer conversion examples:
String Integer

“” 0
“A12” 0
“123P” 123
“123 P” 123
OptoControl Command Reference C-57

“123.456” 123
“22 33 44” 22
“ 22.51” 22
“1,234” 1

“1234.00” 1234

Arguments:

Standard
Example:

Convert String to Integer 64
Convert String_from_Port String Variable

Put Result in Int_Value Integer 64 Variable

OptoScript
Example:

StringToInt64(Convert)
Int_Value = StringToInt64(String_from_Port);

This is a function command; it returns the converted integer. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Avoid alpha characters. Stick with 0 to 9.

See Also: Convert String to Float (page C-55), Convert Number to String (page C-53)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Integer 64 Variable
C-58 OptoControl Command Reference

C
Convert String to Lower Case
String Action

Function: Changes any uppercase letters in the string to lower case.

Typical Use: To simplify string matching by making all characters the same case.

Details: Does not affect numbers, blanks, punctuation, etc.

Arguments:

Standard
Example:

Convert String to Lower Case
Convert IO_COMMAND String Variable

OptoScript
Example:

StringToLowerCase(Convert)
StringToLowerCase(IO_COMMAND);

This is a procedure command; it does not return a value.

See Also: Convert String to Upper Case (page C-59)

Convert String to Upper Case
String Action

Function: Changes any lowercase letters in the string to upper case.

Typical Use: To simplify string matching by making all characters the same case.

Details: Does not affect numbers, blanks, punctuation, etc.

Arguments:

Standard
Example:

Convert String to Upper Case
Convert IO_COMMAND String Variable

OptoScript
Example:

StringToUpperCase(Convert)
StringToUpperCase(IO_COMMAND);

This is a procedure command; it does not return a value.

See Also: Convert String to Lower Case (page C-59)

Argument 1
Convert
String Variable

Argument 1
Convert
String Variable
OptoControl Command Reference C-59

Copy Date to String (DD/MM/YY)
Time/Date Action

Function: To read the date from the controller’s real-time clock/calendar and put it into a string variable in
the standard European format dd/mm/yy, where dd = day (01–31), mm = month (01–12), and
yy = year (00–99).

Typical Use: To date stamp an event in an OptoControl program.

Details: • If the current date is March 1, 1999, this action would place the string “01/03/99” into the
String parameter (Argument 1).

• The destination string should have a minimum width of eight.

Arguments:

Standard
Example:

Copy Date to String (DD/MM/YY)
To DATE_STRING String Variable

OptoScript
Example:

DateToStringDDMMYY(String)
DateToStringDDMMYY(DATE_STRING);

This is a procedure command; it does not return a value.

Notes: This is a one-time read of the date. If the date changes, you will need to execute the command
again to get the current date.

Queue Error: -48 = String too short.

See Also: Copy Date to String (MM/DD/YY) (page C-61), Copy Time to String (page C-62), Set Date (page
S-14), Set Time (page S-43)

Argument 1
To
String Variable
C-60 OptoControl Command Reference

C
Copy Date to String (MM/DD/YY)
Time/Date Action

Function: To read the date from the controller’s real-time clock/calendar and put it into a string variable in
the standard United States format mm/dd/yy, where mm = month (01–12), dd = day (01–31), and
yy = year (00–99).

Typical Use: To date stamp an event in an OptoControl program.

Details: • If the current date is March 1, 1999, this action would place the string “03/01/99” into the
String parameter (Argument 1).

• The destination string should have a minimum width of eight.

Arguments:

Standard
Example:

Copy Date to String (MM/DD/YY)
To DATE_STRING String Variable

OptoScript
Example:

DateToStringMMDDYY(String)
DateToStringMMDDYY(DATE_STRING);

This is a procedure command; it does not return a value.

Notes: This is a one-time read of the date. If the date changes, you will need to execute the command
again to get the current date.

Queue Error: -48 = String too short.

See Also: Copy Date to String (DD/MM/YY) (page C-60), Copy Time to String (page C-62), Set Date (page
S-14), Set Time (page S-43)

Argument 1
To
String Variable
OptoControl Command Reference C-61

Copy Time to String
Time/Date Action

Function: To read the time from the controller’s real-time clock/calendar and put it into a string variable in
the format hh:mm:ss, where hh = hours (00–23), mm = minutes (00–59), and ss = seconds
(00–59).

Typical Use: To time stamp an event in an OptoControl program.

Details: • Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00
p.m. = 23:59:00.

• If the current time is 2:35 p.m., this action would place the string “14:35:00” into the String
parameter (Argument 1).

• The destination string should have a minimum width of eight.

Arguments:

Standard
Example:

Copy Time to String
To TIME_STRING String Variable

OptoScript
Example:

TimeToString(String)
TimeToString(TIME_STRING);

This is a procedure command; it does not return a value.

Notes: • This is a one-time read of the time. If the time changes, you will need to execute the
command again to get the current time.

• Put this command in a small program loop that executes frequently to ensure that the string
always contains the current time.

Queue Error: -48 = String too short.

See Also: Copy Date to String (DD/MM/YY) (page C-60), Copy Date to String (MM/DD/YY) (page C-61), Set
Date (page S-14), Set Time (page S-43)

Argument 1
To
String Variable
C-62 OptoControl Command Reference

C
Cosine
Mathematical Action

Function: To derive the cosine of an angle.

Typical Use: Trigonometric function for computing triangular base of the angle.

Details: • Calculates the cosine of Argument 1 and places the result in Argument 2.
• Argument 1 has a range of -infinity to +infinity.
• The range of Argument 2 is -1.0 to 1.0, inclusive.
• The following are examples of cosine calculations:

RADIANS DEGREES RESULT
0.0 0.0 1.0

0.785398 45 0.707106
1.570796 90 0.0
2.356194 135 -0.707106
3.141592 180 -1.0
3.926991 225 -0.707106
4.712388 270 0.0
5.497787 315 0.707106
6.283185 360 1.0

Arguments:

Standard
Example:

Cosine
Of RADIANS Float Variable

Put Result in COSINE Float Variable

OptoScript
Example:

Cosine(Of)
COSINE = Cosine(RADIANS);

This is a function command; it returns the cosine. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578.
• Use Arccosine if the cosine is known and the angle is desired.

Queue Errors: 35 = Not a number—result invalid.

See Also: Arccosine (page A-13), Sine (page S-51), Tangent (page T-4)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference C-63

CTS Off?
Communication—Serial Condition

Function: Checks the CTS input on the specified serial port to determine if it’s Off.

Typical Use: In applications that require flow control such as high-speed modems and radio links.

Details: • Evaluates True whenever the CTS input is less than zero volts and may be True when the CTS
input is not connected to anything.

• When CTS is Off and flow control is enabled, no characters can be transmitted.

Arguments:

Standard
Example:

On Port 3 Integer 32 Literal
CTS Off?

OptoScript
Example:

IsCtsOff(On Port)
if (IsCtsOff(3)) then

This is a function command; it returns a value of -1 (true) or 0 (false). The returned value can be
consumed by a control structure (as shown) or by another item, such as a mathematical
expression. See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: CTS On? (page C-65)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable
C-64 OptoControl Command Reference

C
CTS On?
Communication—Serial Condition

 Function: Checks the CTS input on the specified serial port to determine if it’s On.

 Typical Use: In applications that require flow control such as high-speed modems and radio links.

 Details: • Evaluates True whenever the CTS input is greater than zero volts and may be True when the
CTS input is not connected to anything.

• When CTS is On or flow control is disabled, characters can be transmitted at any time.

 Arguments:

Standard
Example:

On Port 3 Integer 32 Literal
CTS On?

OptoScript
Example:

IsCtsOn(On Port)
if (IsCtsOn(3)) then

This is a function command; it returns a value of -1 (true) or 0 (false). The returned value can be
consumed by a control structure (as shown) or by another item, such as a mathematical
expression. See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: CTS Off? (page C-64)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference C-65

C-66 OptoControl Command Reference

D
 D
Decrement Variable
Mathematical Action

Function: To decrease the value specified by 1.

Typical Use: To control countdown loops and other counting applications.

Details: Same as subtracting 1: 9 becomes 8, 0 becomes -1, 22.22 becomes 21.22, etc.

Arguments:

Standard
Example:

Decrement Variable
Num_Holes_Left_to_Punch Integer 32 Variable

OptoScript
Example:

DecrementVariable(Variable)
DecrementVariable(Num_Holes_Left_to_Punch);

This is a procedure command; it does not return a value. This command is equivalent to the
following math expression in OptoScript:
Num_Holes_Left_to_Punch = Num_Holes_Left_to_Punch - 1;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Executes faster than subtracting 1. (TRUE IN OPTOSCRIPT??)

See Also: Increment Variable (page I-1)

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable
OptoControl Command Reference D-1

Delay (mSec)
Miscellaneous Action

Function: To slow the execution of program logic and to release the remaining time of a chart’s time slice.

Typical Use: To cause a chart to give up the remaining time of its time slice.

Details: • Units are in milliseconds.
• When this command is used, the chart is suspended immediately, since it would be

inefficient to use CPU time just to wait.
• The chart is continued automatically at the Delay (mSec) command at its next scheduled

time in the 32-task queue. If the delay has not expired, the suspend/continue cycle
continues.

• The actual minimum delay is usually greater than 1 millisecond and is a function of how
many tasks are running concurrently. For example, if there are 10 tasks running, each with a
priority of 1, the minimum delay would be 10 x 1 x 0.5 milliseconds = 5 milliseconds.

Arguments:

Standard
Example:

Delay (mSec)
1 Integer 32 Literal

OptoScript
Example:

DelayMsec(Milliseconds)
DelayMsec(1);

This is a procedure command; it does not return a value.

Notes: • For readability, use Delay (Sec) for delays longer than 10 seconds.
• When high accuracy is needed, reduce the number of tasks running concurrently.
• Speed Tip: Use this command in an action block connected to the False exit of a condition

block while waiting in a loop for the condition to become true. This will give up the time
slice while waiting. Connect the Delay (mSec) action block back to the condition block.

Dependencies: Minimum time is increased as the number of concurrent tasks increases.

Queue Errors: 33 = Overflow error—delay value larger than 2,147,483,647.

See Also: Delay (Sec) (page D-3)

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
D-2 OptoControl Command Reference

D
Delay (Sec)
Miscellaneous Action

Function: To slow the execution of program logic and to release the remaining time of a chart’s time slice.

Typical Use: To pause logic execution in a chart.

Details: • Units are in seconds with millisecond resolution.
• When this command is used, the chart is suspended immediately, since it would be

inefficient to utilize CPU time just to wait.
• The chart is continued automatically at the Delay (Sec) command at its next scheduled time

in the 32-task queue. If the delay has not expired, the suspend/continue cycle continues.
• The actual minimum delay is usually greater than 1 millisecond and is a function of how

many tasks are running concurrently. For example, if there are 10 tasks running, each with a
priority of 1, the minimum delay would be 10 x 1 x 0.5 milliseconds = 5 milliseconds.

Arguments:

Standard
Example:

Delay (Sec)
10.525 Float Literal

OptoScript
Example:

DelaySec(Seconds)
DelaySec(10.525);

This is a procedure command; it does not return a value.

Notes: • Use Delay (mSec) for delays shorter than 10 seconds.
• When high accuracy is needed, reduce the number of tasks running concurrently.

Dependencies: Minimum time is increased as the number of concurrent tasks increases.

See Also: Delay (mSec) (page D-2)

Argument 1
[Value]
Float Literal
Float Variable
OptoControl Command Reference D-3

Disable Communication to All I/O Points
Simulation Action

Function: To disable communication between the program in the controller and all analog and digital
points.

Typical Use: To disconnect the program from all analog and digital points for simulation and testing.
To force the program in the controller to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This command can be used for simulation and for faster
processing of program logic in speed-sensitive applications.

Details: • All analog and digital point communication is enabled by default.
• This command does not affect the points in any way. It only disconnects the program in the

controller from the points.
• When communication to I/O points is disabled, program actions have no effect.
• When a program reads the value of a disabled point, the last value before the point was

disabled (IVAL) will be returned. Likewise, any attempts by the program to change the value
of an output point will affect only the IVAL, not the actual output point (XVAL). Disabling a
point while a program is running has no effect on the program.

Arguments: None

Standard
Example:

Disable Communication to All I/O Points

OptoScript
Example:

DisableCommunicationToAllIoPoints()
DisableCommunicationToAllIoPoints();

This is a procedure command; it does not return a value.

See Also: Enable Communication to All I/O Points (page E-1)
D-4 OptoControl Command Reference

D
Disable Communication to All I/O Units
Simulation Action

Function: Changes a flag internal to the controller to indicate that all the I/O units are offline. This causes
communication from the program to the I/O units to cease.

Typical Use: To force the program in the controller to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This can be used for simulation and for faster processing of
program logic in speed-sensitive applications.

Details: • No I/O unit communication errors will be generated by the program while communication to
the I/O units is disabled.

• In Debug mode OptoControl can still communicate to the I/O units, since it ignores the
disabled flag.

Arguments: None.

Standard
Example:

Disable Communication to All I/O Units

OptoScript
Example:

DisableCommunicationToAllIoUnits()
DisableCommunicationToAllIoUnits();

This is a procedure command; it does not return a value.

See Also: Enable Communication to All I/O Units (page E-2)
OptoControl Command Reference D-5

Disable Communication to Analog Point
Simulation Action

Function: To disable communication between the program in the controller and an individual analog
channel.

Typical Use: To disconnect the program from a specified analog channel for simulation and program testing.

Details: • All analog point communication is enabled by default.
• This command does not affect the analog channel in any way. It only disconnects the

program in the controller from the analog channel.
• When communication to an analog channel is disabled, program actions have no effect.
• When a program reads the value of a disabled channel, the last value before the channel

was disabled (IVAL) will be returned. Likewise, any attempts by the program to change the
value of an output channel will affect only the IVAL, not the actual output channel (XVAL).

• Disabling an analog channel while a program is running has no effect on the program.

Arguments:

Standard
Example:

Disable Communication to Analog Point
TANK_LEVEL Analog Input

OptoScript
Example:

DisableCommunicationToAnalogPoint(Point)
DisableCommunicationToAnalogPoint(TANK_LEVEL);

This is a procedure command; it does not return a value.

Notes: • Disabling an analog channel is ideal for a startup situation, since the program thinks it is
reading an input or updating an output as it normally would be.

• Use the IVAL field in Debug mode to change the value of an analog input.
• Use the XVAL field in Debug mode to change the value of an analog output.

See Also: Enable Communication to Analog Point (page E-3)

Argument 1
[Value]
Analog Input
Analog Output
D-6 OptoControl Command Reference

D
Disable Communication to Digital Point
Simulation Action

Function: To disable communication between the program in the controller and an individual digital
channel.

Typical Use: To disconnect the program from a specified digital channel for simulation and program testing.

Details: • All digital point communication is enabled by default.
• This command does not affect the digital channel in any way. It only disconnects the

program in the controller from the digital channel.
• When communication to a digital channel is disabled, program actions have no effect.
• When a program reads the state of a disabled channel, the last value before the channel

was disabled (IVAL) will be returned.
• Likewise, any attempts by the program to change the state of an output channel will affect

only the IVAL, not the actual output channel (XVAL). Disabling a digital channel when a
program is running has no effect on the program.

Arguments:

Standard
Example:

Disable Communication to Digital Point
START_BUTTON Local Simple Digital Input

OptoScript
Example:

DisableCommunicationToDigitalPoint(Point)
DisableCommunicationToDigitalPoint(START_BUTTON);

This is a procedure command; it does not return a value.

Notes: • Use Turn Off instead if the objective is to shut off a digital output.
• Disabling a digital channel is ideal for a start-up situation, since the program thinks it is

reading an input or updating an output as it normally would.
• Use the IVAL field in Debug mode to change the state of an input to on or off.
• Use the XVAL field in Debug mode to change the state of an output to on or off.

See Also: Enable Communication to Digital Point (page E-4)

Argument 1
[Value]
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference D-7

Disable Communication to Event/Reaction
Simulation Action

Function: To disable communication between the program in the controller and the specified
event/reaction.

Typical Use: To disconnect the program from a specified event/reaction for simulation and program testing.

Details: • All event/reaction communication is enabled by default.
• Does not affect the event/reaction at the I/O unit in any way. While communication to the

event/reaction is disabled, any OptoControl command that refers to it by name will not
affect it because the command only has access to the IVAL.

• If the event/reaction is disabled and it’s active, reactions will occur. If an interrupt is
enabled, it will try to interrupt the controller. However, the program in the controller will not
be able to read or clear any status bits associated with the event/reaction until it is enabled
(see Enable Communication to Event/Reaction).

Arguments:

Standard
Example:

Disable Communication to Event/Reaction
ESTOP_BUTTON_1 Digital Event/Reaction

OptoScript
Example:

DisableCommunicationToEventReaction(Event/Reaction)
DisableCommunicationToEventReaction(ESTOP_BUTTON);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• To actually stop an event/reaction, use Disable Scanning for Event.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Enable Communication to Event/Reaction (page E-5)

Argument 1
[Value]
Analog Event/Reaction
Digital Event/Reaction
D-8 OptoControl Command Reference

D
Disable Communication to I/O Unit
Simulation Action

Function: To disable communication between the program in the controller and all channels on the I/O unit.

Typical Uses: • To prohibit the program in the controller from reading or writing to the I/O unit for simulation
and program testing.

• To gain fast I/O processing. With communication disabled, all logic is executed using values
within the controller.

Details: • All program references to I/O will be restricted to the use of internal I/O values (IVAL).
• Input IVALs will remain in their current state (unless changed by the user via Debug mode or

with special simulation commands).
• Output IVALs will reflect what the program is instructing the outputs to do.
• Caution: Event/reactions (if any) will still be operational at the I/O unit. Any outputs that are

on may remain on.

Arguments:

Standard
Example:

Disable Communication to I/O Unit
Vapor_Extraction G4 Analog Multifunction I/O Unit

OptoScript
Example:

DisableCommunicationToIoUnit(I/O Unit)
DisableCommunicationToIoUnit(Vapor_Extraction);

This is a procedure command; it does not return a value.

Notes: • Communication to I/O units is normally disabled using OptoControl.
• If I/O units are disabled to speed logic execution, perform the following in the order shown:

1. Move Analog I/O Unit to Table (with I/O unit still disabled): Copies analog output IVALs
updated by program.

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
OptoControl Command Reference D-9

2. Get Digital I/O Unit as Binary Value (with I/O unit still disabled): Copies digital output
IVALs updated by program.

3. Enable Communication to I/O Unit: Re-establishes communications.

4. Move Table to Analog I/O Unit: Writes to the table Moved to above. Updates analog
outputs.

5. Set Digital I/O Unit from MOMO Masks: writes to the value read above. Updates
digital outputs.

6. Move Analog I/O Unit to Table: Updates analog input IVALs.

7. Get Digital I/O Unit as Binary Value: Updates digital input IVALs.

8. Disable Communication to I/O Unit: Disconnects communications.

9. Program logic . . . (Not for use with commands that access MIN, MAX, AVERAGE,
COUNTS, etc.)

10. Repeat 1 through 9.

See Also: Enable Communication to I/O Unit (page E-6)
D-10 OptoControl Command Reference

D
Disable Communication to PID Loop
Simulation Action

Function: To disable communication between the program in the controller and the PID.

Typical Use: To disconnect the program from a specified PID for simulation and program testing.

Details: • All PID communication is enabled by default.
• Does not affect the PID at the I/O unit in any way. While communication to the PID is

disabled, any OptoControl command that refers to it by name will not affect it because the
command will only have access to the IVAL.

• No changes can be made to the PID by the program in the controller while the PID is
disabled.

Arguments:

Standard
Example:

Disable Communication to PID Loop
HEATER_3 PID Loop

OptoScript
Example:

DisableCommunicationToPidLoop(PID Loop)
DisableCommunicationToPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

Notes: • To stop updating the PID output, use Set PID Mode to Manual instead of Disable
Communication to PID Loop.

• Many additional PID loop control features are available, including Deactivate PID Output.
See the Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult the
Opto 22 BBS.

Dependencies: Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Mode to Manual (page S-34)

Argument 1
[Value]
PID Loop
OptoControl Command Reference D-11

Disable Event/Reaction Group
Simulation Action

Function: Changes a flag internal to the controller to indicate that the event/reaction group is offline.
This causes communication from the program to the event/reaction group to cease.

Typical Use: To force the program in the controller to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This can be used for simulation.

Details: • No I/O unit communication errors will be generated by the program while communication to
the event/reaction group is disabled.

• In Debug mode OptoControl can still communicate to the event/reaction group since it
ignores the disabled flag.

Arguments:

Standard
Example:

Disable Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A

OptoScript
Example:

DisableEventReactionGroup(E/R Group)
DisableEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

Notes: This command has no effect on the operation of the event/reaction group at the I/O unit.

See Also: Enable Event/Reaction Group (page E-8)

Argument 1
[Value]
Event/Reaction Group
D-12 OptoControl Command Reference

D
Disable I/O Unit Causing Current Error
Controller Action

Function: To disable communication between the program in the controller and all channels on the I/O unit
if the I/O unit generated the top queue error.

Typical Use: Since the I/O unit is automatically disabled after a queue error 29, this command is not currently
needed.

Details: • The controller generates a queue error 29 (timeout) whenever an I/O unit does not respond.
When this happens, all further communication to the I/O unit is disabled to ensure that
communication to other I/O units does not slow down.

• I/O unit errors other than 29 will not disable communication.

Arguments: None.

Standard
Example:

Disable I/O Unit Causing Current Error

OptoScript
Example:

DisableIoUnitCausingCurrentError()
DisableIoUnitCausingCurrentError();

This is a procedure command; it does not return a value.

Notes: • This command is typically used in an error handling chart.
• Always use Error on I/O Unit? to determine if the top error in the error queue is an I/O unit

error before using this command.
• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be an error generated by an
I/O unit, as listed below:

Queue error 2 = CRC/checksum.

Queue error 3 = Bad message length received.

Queue error 4 = I/O unit has powered up since last access.

Queue error 6 = Watchdog timeout has occurred on I/O unit.

Queue error 29 = I/O unit did not respond within specified time.

Queue Errors: 29 = I/O unit did not respond within specified time.
60 = The current error in the error queue is not an I/O error.

See Also: Enable I/O Unit Causing Current Error (page E-9), Error on I/O Unit? (page E-20)
OptoControl Command Reference D-13

Disable Interrupt on Event
Event/Reaction Action

Function: To disable interrupt notification for a specified event/reaction.

Typical Use: To accommodate situations where the specified event/reaction is still needed but the interrupt
notification is not.

Details: See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

Arguments:

Standard
Example:

Disable Interrupt on Event
Event/Reaction ESTOP_BUTTON_1 Analog Event/Reaction

OptoScript
Example:

DisableInterruptOnEvent(Event/Reaction)
DisableInterruptOnEvent(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: To disable both the interrupt notification and the event/reaction, use Disable Scanning
for Event.

Dependencies: • Event/reactions must be configured on the I/O unit before they can be referenced.
• Event/reactions are not supported on simple I/O units.

See Also: Enable Interrupt on Event (page E-10), Disable Scanning for Event (page D-19)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
D-14 OptoControl Command Reference

D
Disable PID Output
PID Action

Function: To prevent the PID from updating its associated analog output channel.

Typical Use: To allow manual changes to the analog output channel associated with the PID without
disturbing the PID and without interference by the PID.

Details: • A manually set output value will remain unchanged until it is either changed again manually
or the PID output is enabled. When the PID output is enabled, any necessary output
adjustments will be made to the current value. This is a bumpless operation.

• Clears bit 5 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Disable PID Output
Of PID Loop Extruder_Zone08 PID Loop

OptoScript
Example:

DisablePidOutput(Of PID Loop)
DisablePidOutput(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is quite useful in presetting a PID output before activation or forcing a PID
output to off.

• The PID calculation is ongoing while the PID output is “disabled.” The PID has no knowledge
that its connection to the associated analog output channel has been disconnected.

See Also: Enable PID Output (page E-11)

Argument 1
Of PID Loop
PID Loop
OptoControl Command Reference D-15

Disable PID Output Tracking in Manual Mode
PID Mode

Function: To prevent the PID output from tracking the PID input while in manual mode.

Typical Use: To put the PID output back to normal mode.

Details: • Factory default is PID output tracking disabled.
• When PID output tracking is disabled the PID output will not track the input while in manual

mode. The PID output will remain unchanged by the PID calculation while in manual mode.
• Clears bit 4 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Disable PID Output Tracking in Manual Mode
On PID Loop Extruder_Zone08 PID Loop

OptoScript
Example:

DisablePidOutputTrackingInManualMode(On PID Loop)
DisablePidOutputTrackingInManualMode(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Enable PID Output Tracking in Manual Mode (page E-12), Write I/O Unit Configuration to EEPROM
(page W-5)

Argument 1
On PID Loop
PID Loop
D-16 OptoControl Command Reference

D
Disable PID Setpoint Tracking in Manual Mode
PID Action

Function: To prevent the PID setpoint from tracking the PID input while in manual mode.

Typical Use: To prevent the setpoint from being altered automatically while in manual mode.

Details: • Factory default is PID setpoint tracking enabled.
• When PID setpoint tracking is disabled the setpoint will not be altered by the PID at the I/O

unit. This may be the most desirable state because it does not disturb the setpoint.
• Clears bit 3 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Disable PID Setpoint Tracking in Manual Mode
On PID Loop Extruder_Zone08 PID Loop

OptoScript
Example:

DisablePidSetpointTrackingInManualMode(On PID Loop)
DisablePidSetpointTrackingInManualMode(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Enable PID Setpoint Tracking in Manual Mode (page E-13), Write I/O Unit Configuration to
EEPROM (page W-5)

Argument 1
On PID Loop
PID Loop
OptoControl Command Reference D-17

Disable Scanning for All Events
Event/Reaction Action

Function: To deactivate all event/reactions on the specified I/O unit.

Typical Use: To shut off all event/reactions during a planned shutdown or an emergency stop.

Details: Disables the scanning of all event/reactions, directing the I/O unit to stop looking for any events.
No logic is executed; no reaction occurs.

Arguments:

Standard
Example:

Disable Scanning for All Events
On I/O Unit Overtemp_Sensors G4 Analog Multifunction I/O Unit

OptoScript
Example:

DisableScanningForAllEvents(On I/O Unit)
DisableScanningForAllEvents(Overtemp_Sensors);

This is a procedure command; it does not return a value.

Notes: To stop a specific event/reaction, use Disable Scanning for Event.

Dependencies: Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for Event (page D-19), Enable Scanning for Event (page E-15), Enable Scanning
for All Events (page E-14)

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
G4 Analog Multifunction I/O Unit
G4 Digital Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Remote Simple Digital
D-18 OptoControl Command Reference

D
Disable Scanning for Event
Event/Reaction Action

Function: To deactivate a specific event/reaction.

Typical Use: To shut off a specific event/reaction during a planned shutdown or an emergency stop.

Details: Disables the scanning of an event/reaction, directing the I/O unit to stop looking for the event.
No logic is executed; no reaction occurs.

Arguments:

Standard
Example:

Disable Scanning for Event
Event/Reaction ESTOP_BUTTON_1 Analog Event/Reaction

OptoScript
Example:

DisableScanningForEvent(Event/Reaction)
DisableScanningForEvent(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• To disable all event/reactions, use Disable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for All Events (page D-18), Enable Scanning for Event (page E-15), Enable
Scanning for All Events (page E-14)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference D-19

Disable Scanning of Event/Reaction Group
Event/Reaction Action

Function: Stops all event/reactions in the specified group.

Typical Use: To stop scanning all event/reactions in the specified group with one command rather than issuing
a separate command to stop each one.

Details: There can be up to 16 event/reaction groups, each containing as many as 16 event/reactions. If
all related event/reactions are in the same group, this command could be quite useful.

Arguments:

Standard
Example:

Disable Scanning of Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A

OptoScript
Example:

DisableScanningOfEventReactionGroup(E/R Group)
DisableScanningOfEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

See Also: Enable Scanning of Event/Reaction Group (page E-16)

Argument 1
Event/Reaction Group
Event/Reaction Group
D-20 OptoControl Command Reference

D
Divide
Mathematical Action

Function: To divide two numerical values.

Typical Use: To perform a standard division action.

Details: • Divides Argument 1 by Argument 2 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .
• If Argument 2 is 0, an error 36 (divide by zero) is added to the error queue.

Arguments:

Standard
Example:

Divide
Total_Distance Float Variable

By 2.0 Float Literal
Put Result in Half_Distance Float Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the / operator.
Half_Distance = Total_Distance / 2.0;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide. For more
information on mathematical expressions in OptoScript code, see Chapter 11 of the
OptoControl User’s Guide.

• Avoid divide-by-zero errors by checking Argument 2 before doing the division to be sure it
does not equal zero. Use VARIABLE TRUE? (if it’s True, it’s not zero) or Test Not Equal
(to zero).

• Speed Tip: Use Bit Shift instead of Divide for integer math when the divisor is 2, 4, 8, 16, 32,
64, etc.

Queue Errors: 33 = Overflow error—result too large.
36 = Divide by zero.

See Also: Modulo (page M-4), Multiply (page M-27), Bit Shift (page B-15)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
By
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
OptoControl Command Reference D-21

Down Timer Expired?
Miscellaneous Condition

Function: To check if a down timer has expired (reached zero).

Typical Use: Used to measure a time interval with good precision. Better than time delay commands for delays
within looping charts.

Details: When a down timer has reached zero, it is considered expired.

Arguments:

Standard
Example:

Down Timer Expired?
Down Timer OVEN_TIMER Down Timer Variable

OptoScript
Example:

HasDownTimerExpired(Down Timer)
if (HasDownTimerExpired(OVEN_TIMER)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on using timer commands.

See Also: Start Timer (page S-62), Stop Timer (page S-68), Continue Timer (page C-45), Pause Timer (page
P-1), Set Down Timer Preset Value (page S-19)

Argument 1
Down Timer
Down Timer Variable
D-22 OptoControl Command Reference

E
 E
Enable Communication to All I/O Points
Simulation Action

Function: To enable communication between the program in the controller and all analog and digital
points.

Typical Use: To re-connect the program to all analog and digital points after simulation and testing.

Details: All analog and digital point communication is enabled by default.

Arguments: None

Standard
Example:

Enable Communication to All I/O Points

OptoScript
Example:

EnableCommunicationToAllIoPoints()
EnableCommunicationToAllIoPoints();

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Points (page D-4), I/O Point Communication Enabled? (page I-7)
OptoControl Command Reference E-1

Enable Communication to All I/O Units
Simulation Action

Function: Changes a flag internal to the controller to indicate that all the I/O units are online. This allows
normal communication from the program to the I/O units.

Typical Use: To cause the program in the controller to attempt to read/write to I/O units (XVALs) rather than
use internal values (IVALs). Very useful to re-establish communication with all I/O units that have
just been turned on without having to specify their name.

Details: Sets the Enabled flag which allows the next program reference to the I/O unit to attempt to
communicate with the I/O unit. If the I/O unit has just been turned on, it will be configured. If a
watchdog at the I/O unit timed out while communication was disabled, a watchdog timeout error
will be added to the error queue.

Arguments: None.

Standard
Example:

Enable Communication to All I/O Units

OptoScript
Example:

EnableCommunicationToAllIoUnits()
EnableCommunicationToAllIoUnits();

This is a procedure command; it does not return a value.

Notes: • Can be used in a chart that executes periodically to automatically bring I/O units that have
just been turned on back online.

• Use of this command periodically within a program will prevent the disabling of
communication to any point or any I/O unit by any means.

See Also: Disable Communication to All I/O Units (page D-5)
E-2 OptoControl Command Reference

E
Enable Communication to Analog Point
Simulation Action

Function: To enable communication between the program in the controller and an individual analog
channel.

Typical Use: To reconnect the program to a specified analog channel after simulation or program testing.

Details: • All analog channel communication is enabled by default.
• This command does not affect the analog channel in any way. It only connects the program

in the controller with the analog channel.
• When communication to an analog channel is enabled, program actions again take effect.
• When a program reads the value of an enabled input channel, the current value of the

channel (XVAL) will be returned to the program (IVAL). Likewise, an enabled output channel
will update when the program writes a value. The XVAL and IVAL will match at this time.

Arguments:

Standard
Example:

Enable Communication to Analog Point
TANK_LEVEL Analog Input

OptoScript
Example:

EnableCommunicationToAnalogPoint(Point)
EnableCommunicationToAnalogPoint(TANK_LEVEL);

This is a procedure command; it does not return a value.

Notes: Use this command to enable an analog channel previously disabled by the Disable
Communication to Analog Point command.

See Also: Disable Communication to Analog Point (page D-6)

Argument 1
[Value]
Analog Input
Analog Output
OptoControl Command Reference E-3

Enable Communication to Digital Point
Simulation Action

Function: To enable communication between the program in the controller and an individual digital
channel.

Typical Use: To reconnect the program to a specified digital channel after simulation or program testing.

Details: • All digital channel communication is enabled by default.
• This command does not affect the digital channel in any way. It only connects the program in

the controller with the digital channel.
• When communication to a digital channel is enabled, program actions can affect it.
• When a program reads the state of an enabled input channel, the current status of the

channel (XVAL) will be returned to the program (IVAL).
• Likewise, an enabled output channel will update when the program writes a value. The

XVAL and IVAL will match at this time.

Arguments:

Standard
Example:

Enable Communication to Digital Point
Motor_Start Local Simple Digital Output

OptoScript
Example:

EnableCommunicationToDigitalPoint(Point)
EnableCommunicationToDigitalPoint(Motor_Start);

This is a procedure command; it does not return a value.

Notes: • Use Turn On instead to turn on digital output.
• Use this command to enable a digital channel previously disabled by the Disable

Communication to Digital Point command.

See Also: Disable Communication to Digital Point (page D-7)

Argument 1
[Value]
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
E-4 OptoControl Command Reference

E
Enable Communication to Event/Reaction
Simulation Action

Function: To enable communication between the program in the controller and the specified
event/reaction.

Typical Use: To reconnect the program to a specified event/reaction after simulation and program testing.

Details: • All event/reaction communication is enabled by default.
• Does not affect the event/reaction at the I/O unit in any way.

Arguments:

Standard
Example:

Enable Communication to Event/Reaction
ESTOP_BUTTON_1 Analog Event/Reaction

OptoScript
Example:

EnableCommunicationToEventReaction(Event/Reaction)
EnableCommunicationToEventReaction(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• To enable all event/reactions, use Enable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Disable Communication to Event/Reaction (page D-8), Enable Scanning for All Events (page E-14)

Argument 1
[Value]
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference E-5

Enable Communication to I/O Unit
Simulation Action

Function: To enable communication between the program in the controller and all channels on the I/O unit.

Typical Use: To re-establish communication between the controller and the I/O unit after it was automatically
disabled due to a timeout error (29).

Details: • Attempts to communicate with the I/O unit.
• If the communication succeeds and the I/O unit reports that it has lost power since the last

communication, all channels will be configured and all event/reactions (if any) will be sent.
Counters will have to be restarted under program control.

• If this command fails because the I/O unit specified is still not responding, a new error 29
will be added to the bottom of the error queue.

Arguments:

Standard
Example:

Enable Communication to I/O Unit
Vapor_Extraction G4 Digital Multifunction I/O Unit

OptoScript
Example:

EnableCommunicationToIoUnit(I/O Unit)
EnableCommunicationToIoUnit(Vapor_Extraction);

This is a procedure command; it does not return a value.

Notes: This command is sometimes useful for debugging and/or system startup.

Queue Errors: 29 = I/O unit did not respond within specified time.

See Also: Disable Communication to I/O Unit (page D-9)

Argument 1
[Value]
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
E-6 OptoControl Command Reference

E
Enable Communication to PID Loop
Simulation Action

Function: To enable communication between the program in the controller and the PID.

Typical Use: To reconnect the program to a specified PID after simulation or program testing.

Details: • All PID communication is enabled by default.
• Does not affect the PID at the I/O unit in any way. While communication to the PID is

enabled, any OptoControl command that refers to it by name will have full access.

Arguments:

Standard
Example:

Enable Communication to PID Loop
HEATER_3 PID Loop

OptoScript
Example:

EnableCommunicationToPidLoop(PID Loop)
EnableCommunicationToPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

Notes: Many additional PID loop control features are available, including Activate PID Output.
See the Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult the Opto 22
BBS.

Dependencies: Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Disable Communication to PID Loop (page D-11)

Argument 1
[Value]
PID Loop
OptoControl Command Reference E-7

Enable Event/Reaction Group
Simulation Action

Function: Changes a flag internal to the controller to indicate that the event/reaction group is online.
This allows normal communication from the program to the event/reaction group in the I/O unit.

Typical Use: To re-enable communication from the program in the controller to the event/reaction group in the
I/O unit after it was disabled using Disable Event/Reaction Group.

Details: Sets the event/reaction group Enabled flag which allows the next program reference to anything
in that group to attempt to communicate with the I/O unit.

Arguments:

Standard
Example:

Enable Event/Reaction Group
ER_E_STOP_GROUP_A

OptoScript
Example:

EnableEventReactionGroup(E/R Group)
EnableEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

Notes: This command has no affect on the operation of the event/reaction group at the I/O unit.

See Also: Disable Event/Reaction Group (page D-12)

Argument 1
[Value]
Event/Reaction Group
E-8 OptoControl Command Reference

E
Enable I/O Unit Causing Current Error
Controller Action

Function: To enable communication between the program in the controller and all channels on the I/O unit
if the top queue error is a 29.

Typical Use: To re-establish communication between the controller and the I/O unit after it was automatically
disabled due to a timeout error (29).

Details: • The controller generates a queue error 29 (timeout) whenever an I/O unit does not respond.
When this happens, all further communication to the I/O unit is disabled to ensure that
communication to other I/O units does not slow down. This may be undesirable in some
cases. This command can be used to re-establish communication.

• If this command fails because the I/O unit specified is still not responding, a new error 29
will be added to the bottom of the error queue.

Arguments: None.

Standard
Example:

Enable I/O Unit Causing Current Error

OptoScript
Example:

EnableIoUnitCausingCurrentError()
EnableIoUnitCausingCurrentError();

This is a procedure command; it does not return a value.

Notes: • This command is typically used in an error handling chart.
• Always use Error on I/O Unit? to determine if the top error in the error queue is an I/O unit

error before using this command.
• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be a 29.

Queue Errors: 29 = I/O unit did not respond within specified time.
60 = The current error in the error queue is not an I/O error.

See Also: Disable I/O Unit Causing Current Error (page D-13), Error on I/O Unit? (page E-20)
OptoControl Command Reference E-9

Enable Interrupt on Event
Event/Reaction Action

Function: To activate interrupt notification for a specified event/reaction.

Typical Use: To provide interrupt notification to the Mistic program so it can resume.

Details: The event/reaction must be active (scanning enabled) for the interrupt to work.

Arguments:

Standard
Example:

Enable Interrupt on Event
Event/Reaction Acid_Tank_1_High_Level Analog Event/Reaction

OptoScript
Example:

EnableInterruptOnEvent(Event/Reaction)
EnableInterruptOnEvent(Acid_Tank_1_High_Level);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Enable Communication to Event/Reaction to enable a disabled event/reaction.

Dependencies: • Event/reactions must be configured on the I/O unit before they can be referenced.
• Event/reactions are not supported on simple I/O units.

See Also: Disable Interrupt on Event (page D-14), Disable Scanning for Event (page D-19)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
E-10 OptoControl Command Reference

E
Enable PID Output
PID Action

Function: To enable the PID to update its associated analog output channel.

Typical Use: To reconnect the PID with its associated analog output channel after manual changes were made
to the analog output channel via program or debugger.

Details: • A manually set output value will remain unchanged until it is either changed again manually
or the PID output is enabled. When the PID output is enabled, any necessary output
adjustments will be made to the current value. This is a bumpless operation.

• Sets bit 5 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Enable PID Output
On PID Loop EXTRUDER_ZONE08 PID Loop

OptoScript
Example:

EnablePidOutput(On PID Loop)
EnablePidOutput(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: The PID calculation is ongoing while the PID output is “disabled.” The PID has no knowledge that
its connection to the associated analog output channel has been disconnected.

See Also: Disable PID Output (page D-15)

Argument 1
On PID Loop
PID Loop
OptoControl Command Reference E-11

Enable PID Output Tracking in Manual Mode
PID Action

Function: To cause the PID output to track the PID input while in manual mode.

Typical Use: As a non-PID related signal converter.

Details: • Factory default is PID output tracking disabled.
• When PID output tracking is enabled the PID output will track the input while in manual

mode. This is useful as a signal converter where the input is a temperature sensor for
example and the output is 0–10 volts.

• Sets bit 4 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Enable PID Output Tracking in Manual Mode
On PID Loop EXTRUDER_ZONE08 PID Loop

OptoScript
Example:

EnablePidOutputTrackingInManualMode(On PID Loop)
EnablePidOutputTrackingInManualMode(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Disable PID Output Tracking in Manual Mode (page D-16), Write I/O Unit Configuration to
EEPROM (page W-5)

Argument 1
On PID Loop
PID Loop
E-12 OptoControl Command Reference

E
Enable PID Setpoint Tracking in Manual Mode
PID Action

Function: To cause the PID setpoint to track the PID input while in manual mode.

Typical Use: To prevent a “bump” on the PID output when switching from manual to auto mode.

Details: • Factory default is PID setpoint tracking enabled.
• When PID setpoint tracking is enabled the setpoint will follow the PID input to ensure zero

error. Therefore, when switching from manual to auto, the PID output will not change. This is
called a “bumpless transfer.”

• This may not be the most desirable state because the setpoint is altered, which means the
setpoint must be changed back to where it was, which will cause a bump in the PID output.

• Sets bit 3 of the PID control word.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Enable PID Setpoint Tracking in Manual Mode
On PID Loop EXTRUDER_ZONE08 PID Loop

OptoScript
Example:

EnablePidSetpointTrackingInManualMode(On PID Loop)
EnablePidSetpointTrackingInManualMode(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Disable PID Setpoint Tracking in Manual Mode (page D-17), Write I/O Unit Configuration to
EEPROM (page W-5)

Argument 1
On PID Loop
PID Loop
OptoControl Command Reference E-13

Enable Scanning for All Events
Event/Reaction Action

Function: To activate all event/reactions on the specified I/O unit.

Typical Use: To reactivate all event/reactions after a planned shutdown or an emergency stop.

Details: Whenever scanning for event/reactions is started, all events found to be True on the first scan
will be considered to have just occurred. Therefore, the reactions will follow.

Arguments:

Standard
Example:

Enable Scanning for All Events
On I/O Unit Overtemp_Sensors G4 Digital Multifunction I/O Unit

OptoScript
Example:

EnableScanningForAllEvents(On I/O Unit)
EnableScanningForAllEvents(Overtemp_Sensors);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• To activate a specific event/reaction, use Enable Scanning for Event.
• Normally used after Disable Scanning for All Events.

Dependencies: Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for Event (page D-19), Enable Scanning for Event (page E-15), Disable Scanning
for All Events (page D-18)

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
G4 Analog Multifunction I/O Unit
G4 Digital Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
E-14 OptoControl Command Reference

E
Enable Scanning for Event
Event/Reaction Action

Function: To activate a specific event/reaction.

Typical Use: To reactivate a specific event/reaction after a planned shutdown.

Details: If the event is found to be True when scanning for an event/reaction is started, the reaction will
occur.

Arguments:

Standard
Example:

Enable Scanning for Event
Event/Reaction Acid_Tank_1_High_Level Digital Event/Reaction

OptoScript
Example:

EnableScanningForEvent(Event/Reaction)
EnableScanningForEvent(Acid_Tank_1_High_Level);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• To activate all event/reactions, use Enable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Enable Scanning for All Events (page E-14)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference E-15

Enable Scanning of Event/Reaction Group
Event/Reaction Action

Function: Starts all event/reactions in the specified group.

Typical Use: To start scanning all event/reactions in the specified group with one command rather than
issuing a separate command to start each one.

Details: There can be up to 16 event/reaction groups, each containing as many as 16 event/reactions. If
all related event/reactions are in the same group, this command could be quite useful.

Arguments:

Standard
Example:

Enable Scanning of Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A

OptoScript
Example:

EnableScanningOfEventReactionGroup()
EnableScanningOfEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

See Also: Disable Scanning of Event/Reaction Group (page D-20)

Equal?
Logical Condition

Function: To determine the equality of two values.

Typical Use: To branch program logic based on the sequence number of the process.

Details: • Determines if Argument 1 is equal to Argument 2. Examples:
Argument 1 Argument 2 Result

-1 -1 True
-1 1 False

22.22 22.22 True
22.22 22.221 False

• Evaluates True if both values are the same, False otherwise.

Argument 1
Event/Reaction Group
Event/Reaction Group
E-16 OptoControl Command Reference

E
Arguments:

Standard
Example:

Is BATCH_STEP Integer 32 Variable
Equal?

To 4 Integer 32 Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (BATCH_STEP == 4) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the == operator has many uses. For more information on comparison

operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.
• Use either Greater Than or Equal? or Less Than or Equal? when testing floats or analog

values, since exact matches are rare.
• Use Within Limits? to test for an approximate match.
• To test for inequality, use either Not Equal? or the False exit.

See Also: Greater? (page G-106), Less? (page L-1), Not Equal? (page N-4), Greater Than or Equal? (page
G-107), Greater Than or Equal? (page G-107), Less Than or Equal? (page L-2), Within Limits? (page
W-1)

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
OptoControl Command Reference E-17

Equal to Table Element?
Logical Condition

Function: To determine if a numeric value is exactly equal to the specified value in a float or integer table.

Typical Use: To perform lookup table matching.

Details: • Determines if one value (Argument 1) is equal to another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 False
-98.765 -98.765 True
-32768 -32768 True
2222 2222 True

• Evaluates True if both values are exactly the same, False otherwise.

Arguments:

Standard
Example:

Is THIS_READING Float Variable
Equal to Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (THIS_READING == TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
E-18 OptoControl Command Reference

E
• In OptoScript code, the == operator has many uses. For more information on comparison

operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.
• Use either Greater Than or Equal to Table Element? or Less Than Or Equal To Table Element?

when testing floats, integers, or analog values unless an exact match is required.
• To test for inequality, use either Not Equal to Table Element? or the False exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Greater Than Table Element? (page G-109), Less Than Table Element? (page L-5), Not Equal to
Table Element? (page N-5), Greater Than or Equal to Table Element? (page G-108), Less Than or
Equal to Table Element? (page L-3)

Error?
Controller Condition

Function: To determine if there is an error in the error queue.

Typical Use: To determine if further error handling should be performed.

Details: Evaluates True if there is an error in the error queue, False otherwise.

Arguments: None.

Standard
Example:

Error?

OptoScript
Example:

IsErrorPresent()
if (IsErrorPresent()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Error on I/O Unit? to determine if it is an I/O related error.
• Use Debug mode to view the error queue for detailed information.

See Also: Error on I/O Unit? (page E-20)
OptoControl Command Reference E-19

Error on I/O Unit?
Controller Condition

Function: To determine if the top error in the error queue is an I/O-related error.

Typical Use: To determine if further error handling for I/O units should be performed.

Details: • Evaluates True if the current error in the error queue is an I/O unit error, False otherwise.
• Queue errors two through 29 are considered I/O unit errors, with 29 being the most common.

Arguments: None.

Standard
Example:

Error on I/O Unit?

OptoScript
Example:

IsErrorOnIoUnit()
if (IsErrorOnioUnit()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Caused an I/O Unit Error? to determine which I/O unit caused the error.

Queue Errors: Use Debug mode to view the error queue for detailed information.

See Also: Caused an I/O Unit Error? (page C-11), Remove Current Error and Point to Next Error (page R-26),
Error? (page E-19)
E-20 OptoControl Command Reference

E
Ethernet Session Open?
Communication—Network Condition

Function: To determine if the specified Ethernet session is still online.

Typical Use: To determine if the other node associated with the Ethernet session number is still online.

Details: Evaluates True if the Ethernet session is online.

Arguments:

Standard
Example:

Session SESSION_NUMBER Integer 32 Variable
Ethernet Session Open?

OptoScript
Example:

IsEnetSessionOpen(Session)
if (IsEnetSessionOpen(SESSION_NUMBER)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: An Ethernet session is a logical link (a virtual dedicated cable) between two nodes. Up to 32
sessions total can be concurrently established on the three logical Ethernet ports—8, 9, and 10.
These three ports use the same Ethernet card.

Dependencies: Must first use Open Ethernet Session to establish a session, or Accept Session on TCP Port to
accept a session initiated by a peer.

See Also: Open Ethernet Session (page O-5)

Argument 1
Session
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference E-21

Event Occurred?
Event/Reaction Condition

Function: To determine if a specific event has occurred.

Typical Use: To determine which event caused an interrupt.

Details: • Evaluates True if the specified event/reaction has occurred, False if it has not.
• When the event occurs, its event latch is set. It will remain set until cleared with Clear Event

Latch.

Arguments:

Standard
Example:

Has Sequence_Finished Analog Event/Reaction
Event Occurred?

OptoScript
Example:

HasEventOccurred(Event/Reaction)
if (HasEventOccurred(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• The current state of the event is not relevant to this condition. See Event Occurring?
• Always use Clear Event Latch after the event has occurred. This allows detection of

subsequent events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Occurring? (page E-23) Clear Event Latch (page C-26), Clear I/O Unit Interrupt (page C-27),
Generating Interrupt? (page G-9)

Argument 1
Has
Analog Event/Reaction
Digital Event/Reaction
E-22 OptoControl Command Reference

E
Event Occurring?
Event/Reaction Condition

Function: To determine if the criteria for a specific event is currently true.

Typical Use: To determine if a specific situation still exists.

Details: Evaluates True if the criteria for the specified event are still true, False if the criteria are no
longer true.

Arguments:

Standard
Example:

Is Sequence_Finished Analog Event/Reaction
Event Occurring?

OptoScript
Example:

IsEventOccurring(Event/Reaction)
if (IsEventOccurring(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• This is an easy way to test for an I/O state pattern.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Occurred? (page E-22)

Argument 1
Is
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference E-23

Event/Reaction Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified
event/reaction is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

Event/Reaction ER_E_STOP_1
Event/Reaction Communication Enabled?

OptoScript
Example:

IsEventReactionCommEnabled(Event/Reaction)
if (IsEventReactionCommEnabled(ER_E_STOP_1)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Event/Reaction Group Communication Enabled? (page E-25)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
E-24 OptoControl Command Reference

E
Event/Reaction Group Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified
event/reaction group is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

E/R Group ER_E_STOP_GROUP
Event/Reaction Group Communication Enabled?

OptoScript
Example:

IsEventReactionGroupEnabled(E/R Group)
if (IsEventReactionGroupEnabled(ER_E-STOP_GROUP)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Event/Reaction Communication Enabled? (page E-24)

Argument 1
E/R Group
Event/Reaction Group
OptoControl Command Reference E-25

Event Scanning Disabled?
Event/Reaction Condition

Function: To determine if a specific event/reaction is active or not.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: Evaluates True if the specified event/reaction is not being scanned, False if it is being scanned.

Arguments:

Standard
Example:

Event/Reaction Sequence_Finished
Event Scanning Disabled?

OptoScript
Example:

IsEventScanningDisabled(Event/Reaction)
if (IsEventScanningDisabled(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

Notes: See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Event Scanning Enabled? (page E-27)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
E-26 OptoControl Command Reference

E
Event Scanning Enabled?
Event/Reaction Condition

Function: To determine if a specific event/reaction is active.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: Evaluates True if the specified event/reaction is being scanned, False if it’s not being scanned.

Arguments:

Standard
Example:

Event/Reaction Sequence_Finished
Event Scanning Enabled?

OptoScript
Example:

IsEventScanningEnabled(Event/Reaction)
if (IsEventScanningEnabled(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Scanning Disabled? (page E-26)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference E-27

E-28 OptoControl Command Reference

F
 F
Find Character in String
String Action

Function: Locate a character within a string.

Typical Use: When parsing strings to locate delimiters and punctuation characters.

Details: • The search is case-sensitive.
• The search begins at the location specified so that multiple occurrences of the same

character can be found.
• The last parameter will contain an integer specifying the position at which the character is

located. Values returned will be from 1 to the string length.

Arguments:

Standard
Example:

Find Character in String
Find 34 Integer 32 Literal

Start at Index POSITION Integer 32 Variable
Of String MSG_RECEIVED String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

FindCharacterInString(Find, Start at Index, Of String)
POSITION = FindCharacterInString(34, POSITION, MSG_RECEIVED);

This is a function command; it returns the position at which the character is located in the string.

Notes: When the 2nd and 4th parameters use the same variable, increment the variable after each find
so that the same character won’t be found again and again.

Error Code: -80 = Specified character could not be found.

See Also: Find Substring in String (page F-2)

Argument 1
Find
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of String
String Literal
String Variable

Argument 4
Put Result in
Integer 32 Variable
OptoControl Command Reference F-1

Find Substring in String
String Action

Function: Locate a string of characters (substring) within a string.

Typical Use: When parsing strings to locate key words.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• The search is case-sensitive.
• The search begins at the location specified so that multiple occurrences of the same

substring can be found.
• The last parameter will contain an integer specifying the position at which the substring

starts. Values returned will be from 1 to the string length.

Arguments:

Standard
Example:

This example shows the string in quotes for clarity only; do not use quotes in the standard
command:
Find Substring in String

Find “SHIFT” String Literal
Start at Index POSITION Integer 32 Variable

Of String MSG_RECEIVED String Variable
Put Result in POSITION Integer 32 Variable

OptoScript
Example:

FindSubstringInString(Find, Start at Index, Of String)
POSITION = FindSubstringInString("SHIFT", POSITION, MSG_RECEIVED);

This is a function command; it returns the position at which the substring starts within the string.
Quotes are required in OptoScript code.

Notes: When Start At Index and Put Result In use the same variable, increment the variable after each
find so that the same substring won’t be found again and again.

Error Code: -81 = Specified substring could not be found.

See Also: Find Character in String (page F-1)

Argument 1
Find
String Literal
String Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of String
String Literal
String Variable

Argument 4
Put Result in
Integer 32 Variable
F-2 OptoControl Command Reference

F
Float Valid?
Miscellaneous Condition

Function: To verify that a float variable contains a valid value.

Typical Use: To check float validity after reading a float from an external device, such as a comm handle, a
scratch pad location, or an analog point.

Details: This command performs a simple test on the float variable to see if it contains a valid IEEE format
float number. If the bit pattern of the float value has at least these bits set, 0x7F800000
(01111111100000000000000000000000), then it is considered invalid and the command returns
a false (0).

Arguments:

Standard
Example:

Float Valid?
Is Oil_Pressure Float Variable

OptoScript
Example:

IsFloatValid(Float)
if (IsFloatValid(Oil_Pressure)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Analog points on an unplugged module return a value of NAN (not a number--an invalid float).

See Also: Move 32 Bits (page M-6)

Argument 1
Is
Float Variable
OptoControl Command Reference F-3

F-4 OptoControl Command Reference

G
 G
Generate Checksum on String
String Action

Function: Calculate an eight-bit checksum value.

Typical Use: Serial communication that requires checksum error checking.

Details: • Checksum type is eight-bit.
• The Start Value is also known as the “seed.” It is usually zero.
• When calculating the checksum one character at a time (or a group of characters at a time),

the Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

Generate Checksum on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateChecksumOnString(Start Value, On String)
POSITION = GenerateChecksumOnString(0, MSG_TO_SEND);

This is a function command; it returns the checksum. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The checksum can be appended to the string by using the following standard commands:
1. “Convert Number to Formatted Hex String” with the length argument set to a value of 2.
2. “Append String to String.”

The method used to calculate the checksum is:
1. Take the numerical sum of the ASCII numerical representation of each character in the

string.
2. Divide the result by 256.
3. The integer remainder is the eight-bit checksum.

To calculate the LRC of a string, take the two’s complement of the checksum:
1. Generate checksum on the string.
2. Subtract the checksum from 255. This is the one’s complement of the checksum.
3. Add one to the result. This is the two’s complement of the checksum.

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable
OptoControl Command Reference G-1

Example: For a string containing only the capital letter “A”, the checksum is 65. To calculate the
LCR, subtract the checksum (65) from 255, which equals 190. Add one to this result, resulting in
an LCR of 191.

See Also: Verify Checksum on String (page V-3)

Generate Forward CCITT on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Serial communication that requires CRC error checking.

Details: • CRC type is 16-bit forward CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

Generate Forward CCITT on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateForwardCcittOnString(Start Value, On String)
POSITION = GenerateForwardCcittOnString(0, MSG_TO_SEND);

This is a function command; it returns the forward CCITT. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The CRC can be appended to the string one character at a time using Append Character to String.
For the first character use Bit Shift -8 on the CRC and append the result. For the second character
simply append the original CRC value.

Result Data: The “Put Result in” argument will contain the Forward CCITT that was calculated.

See Also: Generate Reverse CCITT on String (page G-6), Generate Forward CRC-16 on String (page G-3),
Generate Reverse CRC-16 on Table (32 bit) (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable
G-2 OptoControl Command Reference

G
Generate Forward CRC-16 on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Serial communication that requires CRC error checking.

Details: • CRC type is 16-bit forward.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

Generate Forward CRC-16 on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateForwardCrc16OnString(Start Value, On String)
POSITION = GenerateForwardCrc16OnString(0, MSG_TO_SEND);

This is a function command; it returns the forward CRC. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The CRC can be appended to the string one character at a time using Append Character to String.
For the first character use Bit Shift -8 on the CRC and append the result. For the second character
simply append the original CRC value.

See Also: Generate Reverse CRC-16 on String (page G-7), Generate Forward CCITT on String (page G-2),
Generate Reverse CRC-16 on Table (32 bit) (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable
OptoControl Command Reference G-3

Generate N Pulses
Digital Point Action

Function: To output a specified number of pulses of configurable on and off times.

Typical Use: To drive stepper motor controllers, flash indicator lamps, or increment counters.

Details: • Generates a digital waveform on the specified digital output channel. On Time specifies the
amount of time in seconds that the channel will remain on during each pulse; Off Time
specifies the amount of time the channel will remain off.

• The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz.

• The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
• Valid range for Number of Pulses is 0 to 2,147,483,647 if an integer is used, 0 to

4,294,967,000 if a float is used.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Generate N Pulses
On Time (Seconds) 0.250 Float Literal
Off Time (Seconds) 0.500 Float Literal
Number of Pulses Number_of_Pulses Float Variable

On Point DIG_OUTPUT Digital Output

OptoScript
Example:

GenerateNPulses(On Time (Seconds), Off Time (Seconds), Number of Pulses, On Point)
GenerateNPulses(0.250, 0.500, Number_of_Pulses, DIG_OUTPUT);

This is a procedure command; it does not return a value.

Notes: • To stop a currently executing pulse train, use Turn Off.
• Executing a Generate N Pulses command will discontinue any previous Generate N Pulses

command.
• The minimum on or off time is 0.001 seconds; however, the digital output module’s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to be
used.

Dependencies: Applies only to outputs on digital multifunction I/O units.

See Also: Turn Off (page T-37), Start Continuous Square Wave (page S-54)

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Number of Pulses
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 4
On Point
Digital Output
G-4 OptoControl Command Reference

G
Generate Random Number
Mathematical Action

Function: To get a random value between zero and one.

Typical Use: To generate random delay values for retries when multiple clients are requesting the
same resource.

Details: Use Seed Random Number before using this command to give the random number generator a
random value to start with. Since the sequence of “random” numbers generated for any given
seed value is always the same, it is imperative that a random seed value be used to avoid
generating the same sequence of numbers every time.

Arguments:

Standard
Example:

Generate Random Number
Put in LOTTO_SEED Float Variable

OptoScript
Example:

GenerateRandomNumber()
LOTTO_SEED = GenerateRandomNumber();

This is a function command; it returns the random number. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: To get a random Integer between zero and 99, for example, multiply the float value returned by
99.0 and put the result in an integer.

Dependencies: Use Seed Random Number first.

See Also: Seed Random Number (page S-1)

Argument 1
Put in
Float Variable
OptoControl Command Reference G-5

Generate Reverse CCITT on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Serial communication that requires CRC error checking.

Details: • CRC type is 16-bit reverse CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

Generate Reverse CCITT on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateReverseCcittOnString(Start Value, On String)
POSITION = GenerateReversCcittOnString(0, MSG_TO_SEND);

This is a function command; it returns the reverse CCITT. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The CRC can be appended to the string one character at a time using Append Character to String.
For the first character use Bit Shift -8 on the CRC and append the result. For the second character
simply append the original CRC value.

See Also: Generate Forward CCITT on String (page G-2), Generate Reverse CRC-16 on String (page G-7),
Generate Reverse CRC-16 on Table (32 bit) (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable
G-6 OptoControl Command Reference

G
Generate Reverse CRC-16 on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Serial communication that requires CRC error checking.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

Generate Reverse CRC-16 on String
Start Value 0 Integer 32 Literal
On String MSG_TO _SEND String Variable

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateReverseCrc16OnString(Start Value, On String)
POSITION = GenerateReverseCrc16OnString(0, MSG_TO_SEND);

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The CRC can be appended to the string one character at a time using Append Character to String.
For the first character use Bit Shift -8 on the CRC and append the result. For the second character
simply append the original CRC value.

See Also: Generate Forward CRC-16 on String (page G-3), Generate Reverse CCITT on String (page G-6),
Generate Reverse CRC-16 on Table (32 bit) (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable
OptoControl Command Reference G-7

Generate Reverse CRC-16 on Table (32 bit)
Miscellaneous Action

Function: Calculate a 16-bit CRC value.

Typical Use: Serial communication that requires CRC error checking. The command is a quick and convenient
way to verify the integrity of table data transferrred serially from one controller to another.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• The table can contain as little as one element.

Arguments:

Standard
Example:

Generate Reverse CRC-16 on Table (32 bit)
Start Value 0 Integer 32 Literal

Table VALUES_TO _SEND FloatTable
Starting Element 1 Integer 32 Literal
Number of Elements 31 Integer 32 Literal

Put Result in POSITION Integer 32 Variable

OptoScript
Example:

GenerateReverseCrc16OnTable32(Start Value, Table, Starting Element, Number of
Elements)
POSITION = GenerateReverseCrc16OnTable32(0, VALUES_TO_SEND, 1, 31);

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command is only useful once the data in the table is static.
• The easiest way to check data is to make the table one element longer than necessary, then

generate the CRC and move its result to the extra table element. The command Transmit
Table via Serial Port is typically used to transfer up to 32 table elements at a time, including
the CRC value. When the data is received, use this command at the receiving end to
generate the CRC again and compare it to the first CRC value.

For example, on the controller sending the data:

1. Generate Reverse CRC-16 on Table (32 bit) on table elements 1–31.

2. Use Move to Table Element to move the CRC value to table element 0.

3. Use Transmit Table via Serial Port to send all 32 table elements (0–31).

Then, on the controller receiving the data:

1. Receive Table via Serial Port.

2. Generate Reverse CRC-16 on Table (32 bit) on table elements 1–31.

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
Table
Float Table
Integer 32 Table

Argument 3
Starting Element
Integer 32 Literal
Integer 32 Variable

Argument 4
Number of Elements
Integer 32 Literal
Integer 32 Variable

Argument 5
Put Result in
Integer 32 Variable
G-8 OptoControl Command Reference

G
3. Compare the calculated CRC against the value stored in element 0.

• Remember that the maximum size of the table (including the CRC value) is 32 elements.

See Also: Generate Forward CRC-16 on String (page G-3), Generate Reverse CCITT on String (page G-6),
Generate Reverse CRC-16 on String (page G-7), Generate Forward CCITT on String (page G-2)

Generating Interrupt?
Event/Reaction Condition

Function: To determine if a specific I/O unit is generating an interrupt.

Typical Use: In the Interrupt chart, to determine which I/O unit is generating an interrupt when more than one
is configured to do so.

Details: Evaluates True if the specified I/O unit is generating an interrupt, False if it’s not.

Arguments:

Standard
Example:

Is OVERTEMP_SENSOR G4 Digital Multifunction I/O Unit
Generating Interrupt?

OptoScript
Example:

IsGeneratingInterrupt(I/O Unit)
if (IsGeneratingInterrupt(OVERTEMP_SENSOR)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Clear I/O Unit Interrupt immediately after determining the interrupt is on.

Then use Event Occurred? for each event/reaction configured to interrupt.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can
be referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Occurred? (page E-22), Clear I/O Unit Interrupt (page C-27)

Argument 1
Is
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
G4 Analog Multifunction I/O Unit
G4 Digital Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Remote Simple Digital
OptoControl Command Reference G-9

Get & Clear Analog Filtered Value
Analog Point Action

Function: To read a digitally filtered input value from a specified analog channel, then set the filtered value
to the current value.

Typical Use: To restart digital filtering using the current value as the default.

Details: • Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The analog input point is sampled
10 times a second with the filtered value stored locally on the I/O unit.

• The unfiltered analog input is still available using standard analog commands.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Clear Analog Filtered Value
From Temp_Sensor Analog Input
Put in Filtered_Temp Float Variable

OptoScript
Example:

GetClearAnalogFilteredValue(From)
Filtered_Temp = GetClearAnalogFilteredValue(Temp_Sensor);

This is a function command; it returns the analog filtered value.The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Do not use this command for frequent reads (one per second or faster) since it continually
resets the averaging. Use Get Analog Filtered Value instead.

• To ensure that digital filtering will always be active, store changeable I/O unit values (such
as filter weight) in permanent memory at the I/O unit. (You can do so through Debug mode.)

Dependencies: Before using this command, Set Analog Filter Weight must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get Analog Filtered Value (page G-30), Set Analog Filter Weight (page S-2)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-10 OptoControl Command Reference

G
Get & Clear Analog Maximum Value
Analog Point Action

Function: To retrieve the peak value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the peak pressure over a given period of time.

Details: • The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built into the module. Check the specifications for the module to be used if
high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

Get & Clear Analog Maximum Value
From Pres_Sensor Analog Input
Put in MAX_KPA Float Variable

OptoScript
Example:

GetClearAnalogMaxValue(From)
MAX_KPA = GetClearAnalogMaxValue(Pres_Sensor);

This is a function command; it returns the maximum value of the input since its last reading. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: Use this command to clear the analog max value before actual readings commence.

Dependencies: If digital filtering is active (see Set Analog Filter Weight), min and max value detection is derived
from the filtered reading, which is only updated every 100 milliseconds. This could reduce the
ability to capture min and max values by several orders of magnitude.

Result Data: • The value returned will be the highest value recorded on this channel since the last time the
maximum value was cleared, or since the unit was turned on.

• Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Minimum Value (page G-12), Get Analog Minimum Value (page G-33), Set
Analog Filter Weight (page S-2)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-11

Get & Clear Analog Minimum Value
Analog Point Action

Function: To retrieve the lowest value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the lowest pressure over a given period of time.

Details: • The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built into the module. Check the specifications for the module to be used if
high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

Get & Clear Analog Minimum Value
From PRES_SENSOR Analog Input
Put in MIN_KPA Float Variable

OptoScript
Example:

GetClearAnalogMinValue(From)
MIN_KPA = GetClearAnalogMinValue(Pres_Sensor);

This is a function command; it returns the minimum value of the input since its last reading. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: Use this command to clear the analog min value before actual readings commence.

Dependencies: If digital filtering is active (see Set Analog Filter Weight), min and max value detection is derived
from the filtered reading, which is only updated every 100 milliseconds. This could reduce the
ability to capture min and max values by several orders of magnitude.

Result Data: • The value returned will be the lowest value recorded since the last time the minimum value
was reset or since the unit was turned on.

• Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Maximum Value (page G-11), Get Analog Maximum Value (page G-32), Set
Analog Filter Weight (page S-2)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-12 OptoControl Command Reference

G
Get & Clear Analog Totalizer Value
Analog Point Action

Function: To read and clear the totalized (integrated) value of a specified analog input.

Typical Use: To capture a flow total that has been accumulating at the I/O unit before it reaches its
maximum value.

Details: • Totalizing is performed at the I/O unit by sampling the input point and storing the total value
locally on the I/O unit. This command reads the current total, then clears it to zero.

• The sample rate is set using the Set Analog Totalizer Rate Command.
• Totalizing will be bidirectional if the input range is bidirectional, such as -10 to +10.
• Totalizing will stop when the total reaches either limit. Totalizing will resume after using

Get & Clear Analog Totalizer Value.
• Totalizing will stop when an input channel is too far under range. Totalizing will resume

when the input signal is back within range.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Clear Analog Totalizer Value
From Flow_Rate Analog Input
Put in Total_Barrels Float Variable

OptoScript
Example:

GetClearAnalogTotalizerValue(From)
Total_Barrels = GetClearAnalogTotalizerValue(Flow_Rate);

This is a function command; it returns the totalizer value for the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Before using this command, use Set Analog Totalizer Rate once to establish the sampling
rate and start the totalizer. Use this command to clear the total before actual readings start.

• Use Get Analog Totalizer Value periodically to simply “watch” the total. When it exceeds
30,000, use Get & Clear Analog Totalizer Value to capture the total to a float variable and
reset it to zero.

• Do not use this command frequently when the total is a small value. Doing so may degrade
the cumulative accuracy.

Dependencies: Before using this command, Set Analog Totalizer Rate must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: • The value returned will be an integer from -32,768 to 32,767.
• Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Totalizer Value (page G-36), , Set Analog Totalizer Rate (page S-6)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-13

Get & Clear Counter
Digital Point Action

Function: To read and clear a digital input counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.

Details: • Reads the current value of a digital input counter and places it in the Put In parameter.
• Sets the counter at the I/O unit to zero.
• Does not stop the counter from continuing to count.
• Valid range is 0 to 4,294,967,296 counts.

Arguments:

Standard
Example:

Get & Clear Counter
From Point Bottle_Counter Counter

Put in Number_of_Bottles Integer 32 Variable

OptoScript
Example:

GetClearCounter(From Point)
Number_of_Bottles = GetClearCounter(Bottle_Counter);

This is a function command; it returns the counter value from the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • The maximum speed at which the counter can operate is limited by the input module’s
turn-on and turn-off times. Check the specifications for the module to be used.

• Since 32-bit signed integers can only count up to 2,147,483,647, use a float to hold the
counts if exceeding this amount.

Dependencies: • Always use Start Counter once before using this command for the first time.
• Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: Get & Clear Counter (page G-14), Start Counter (page S-55), Stop Counter (page S-65), Clear
Counter (page C-25)

Argument 1
From Point
Counter

Argument 2
Put in
Float Variable
Integer 32 Variable
G-14 OptoControl Command Reference

G
Get & Clear Digital I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a digital I/O unit and optionally
to clear latches.

Typical Use: To read and clear all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once. The
command has no effect on output points.

• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These
quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

• Argument 5 determines which latches are cleared, as follows:

0 = No latches cleared
1 = All on-latches cleared
2 = All off-latches cleared
3 = Both on- and off-latches cleared

Arguments:

Arguments 2, 3, and 4 are returned as 32-bit masks. If the point or latch is on, a 1 appears in the
respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 26, 27, 29, and 30 are on.

Standard
Example:

Get & Clear Digital I/O Unit Latches
From I/O_Unit_A B3000 SNAP Mixed I/O
State Unit_A_State Integer 32 Variable

On-Latch Unit_A_On_Latches Integer 32 Variable
Off-Latch Unit_A_Off_Latches Integer 32 Variable
Clear Flag 3 Integer 32 Literal

Argument 1
From
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Argument 2
State
Integer 32 Variable

Argument 3
On-Latch
Integer 32 Variable

Argument 4
Off-Latch
Integer 32 Variable

Argument 5
Clear Flag
Integer 32 Literal
Integer 32 Variable

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-15

OptoScript
Example:

GetClearDigitalIoUnitLatches(From, State, On-Latch, Off-Latch, Clear Flag)
GetClearDigitalIoUnitLatches(I/O_Unit_A, Unit_A_State, Unit_A_On_Latches,

Unit_A_Off_Latches, 3);

This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs on SNAP, digital multifunction, and remote simple I/O units.

See Also: Get Off-Latch (page G-72), Clear Off-Latch (page C-28), Clear All Latches (page C-24), Get & Clear
Digital-64 I/O Unit Latches (page G-16), Get & Clear Simple-64 I/O Unit Latches (page G-22)

Get & Clear Digital-64 I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a digital 64 I/O unit (such as
an I/O unit with a SNAP-ENET-D64 brain) and optionally to clear latches.

Typical Use: To read and clear all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once. The
command has no effect on output points.

• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These
quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

• Argument 5 determines which latches are cleared, as follows:

0 = No latches cleared
1 = All on-latches cleared
2 = All off-latches cleared
3 = Both on- and off-latches cleared

Arguments: Argument 1
From
SNAP Digital 64

Argument 2
State
Integer 64 Variable

Argument 3
On-Latch
Integer 64 Variable

Argument 4
Off-Latch
Integer 64 Variable

Argument 5
Clear Flag
Integer 32 Literal
Integer 32 Variable
G-16 OptoControl Command Reference

G
Arguments 2, 3, and 4 are returned as 64-bit masks. If the point or latch is on, a 1 appears in
the respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 58, 59, 61, and 62 are on.

Standard
Example:

Get & Clear Digital-64 I/O Unit Latches
From I/O_Unit_A SNAP Digital 64
State Unit_A_State Integer 64 Variable

On-Latch Unit_A_On_Latches Integer 64 Variable
Off-Latch Unit_A_Off_Latches Integer 64 Variable
Clear Flag 3 Integer 64 Literal

OptoScript
Example:

GetClearDigital64IoUnitLatches(From, State, On-Latch, Off-Latch, Clear Flag)
GetClearDigital64IoUnitLatches(I/O_Unit_A, Unit_A_State,

Unit_A_On_Latches, Unit_A_Off_Latches, 3);

This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

See Also: Get Off-Latch (page G-72), Clear Off-Latch (page C-28), Clear All Latches (page C-24), Get & Clear
Digital I/O Unit Latches (page G-15), Get & Clear Simple-64 I/O Unit Latches (page G-22)

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-17

Get & Clear Event Latches
Event/Reaction Action

Function: Gets and clears all event latches in the specified group.

Typical Use: To get and clear all event latches in the specified group with one command rather than issuing a
separate command for each one.

Details: • There can be up to 16 event/reaction groups, each containing as many as 16 event latches. If
all related event latches are in the same group, this command could be quite useful.

• The value returned is an integer with the lower 16 bits representing the 16 latches in the
group. If the variable has a value greater than zero, one or more latches are set.

Arguments:

Standard
Example:

Get & Clear Event Latches
Event/Reaction Group ER_E_STOP_GROUP_A

Put in Group_Latch_Status Integer 32 Variable

OptoScript
Example:

GetClearEventLatches(E/R Group)
Group_Latch_Status = GetClearEventLatches(ER_E_STOP_GROUP_A);

This is a function command; it returns the status of all 16 event latches in the event/reaction
group, in the form of an integer with the lower 16 bits representing the latches. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Bit Test could be used to test each of the lower 16 bits numbered 0–15.

See Also: Get Event Latches (page G-55)

Argument 1
Event/Reaction Group
Event/Reaction Group

Argument 2
Put in
Integer 32 Variable
G-18 OptoControl Command Reference

G
Get & Clear Off-Latch
Digital Point Action

Function: To read and re-arm a high-speed off-latch associated with a digital input.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: • Reads and re-arms the off-latch of a single digital input.
• The next time the input channel changes from on to off, the off-latch will be set.
• Off-latches detect on-off-on input transitions that would otherwise occur too fast for the

controller to detect, since they are processed by the digital multifunction or remote simple
I/O units.

• If Argument 2 is a digital output and the latch is not set, the output will turn off. If the latch
is set, the output will turn on.

Arguments:

Standard
Example:

Get & Clear Off-Latch
From Point BUTTON_3_LATCH Digital Input

Put in ALARM_HORN Digital Output

OptoScript
Example:

GetClearOffLatch(From Point)
ALARM_HORN = GetClearOffLatch(BUTTON_3_Latch);

This is a function command; it returns a value of true (non-zero) or false (0) indicating whether
the off latch has been set. The returned value can be consumed by a digital output (as in the
example shown) or by a variable, control structure, etc. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs on digital multifunction and remote simple I/O units.

See Also: Get Off-Latch (page G-72), Clear Off-Latch (page C-28), Clear All Latches (page C-24)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable
OptoControl Command Reference G-19

Get & Clear On-Latch
Digital Point Action

Function: To read and re-arm a high-speed on-latch associated with a digital input.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: • Reads and re-arms the on-latch of a single digital input.
• The next time the input channel changes from off to on, the on-latch will be set.
• On-latches detect off-on-off input transitions that would otherwise occur too fast for the

controller to detect, since they are processed by the remote simple digital multifunction
I/O units.

• The value read is placed in the argument specified by the Put In parameter. If the latch is not
set, the argument will contain the value 0 (False). If the latch is set, the argument will be set
to -1 (True).

Arguments:

Standard
Example:

Get & Clear On-Latch
From Point E_STOP_BUTTON Digital Input

Put in LATCH_VAR Integer 32 Variable

OptoScript
Example:

GetClearOnLatch(From Point)
LATCH_VAR = GetClearOffLatch(E_STOP_BUTTON);

This is a function command; it returns a value of true (non-zero) or false (0) indicating whether
the on latch has been set. The returned value can be consumed by a variable (as in the example
shown) or by a digital output, control structure, etc. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the on-latch feature on remote simple and digital
multifunction I/O units.

See Also: Get On-Latch (page G-76), Clear On-Latch (page C-29), Clear All Latches (page C-24)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable
G-20 OptoControl Command Reference

G
Get & Clear Quadrature Counter
Digital Point Action

Function: To read and clear a quadrature counter value.

Typical Use: To read incremental encoders for positional or velocity measurement.

Details: • Reads the current value of a quadrature counter and places it in the Put In parameter.
• Resets the counter at the I/O unit to zero.
• Does not stop the quadrature counter from continuing to count.
• Valid range is -2,147,483,648 to 2,147,483,647 counts.
• A positive value indicates forward movement (phase B leads phase A), and a negative value

indicates reverse movement (phase A leads phase B).
• A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and
2, 3 and 4 are not.

Arguments:

Standard
Example:

Get & Clear Quadrature Counter
From Point ENCODER_1 Quadrature Counter

Put in TABLE_POSITION Integer 32 Variable

OptoScript
Example:

GetClearQuadratureCounter(From Point)
TABLE_POSITION = GetClearQuadratureCounter(ENCODER_1);

This is a function command; it returns the current value of the quadrature counter. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: • The maximum encoder RPM will be related to the number of pulses per revolution that the
encoder provides.

• Max Encoder RPM = (750,000 Pulses per Minute) / (Encoder Pulses [or lines] per Revolution).

Dependencies: • Always use Start Quadrature Counter once before using this command for the first time.
• Applies only to input channels configured with the quadrature feature on digital

multifunction I/O units.

See Also: Get Quadrature Counter (page G-95), Start Quadrature Counter (page S-61), Stop Quadrature
Counter (page S-67), Clear Quadrature Counter (page C-32)

Argument 1
From Point
Quadrature Counter

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-21

Get & Clear Simple-64 I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a SNAP Simple I/O unit and
optionally to clear latches.

Typical Use: To read and clear all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once. The
command has no effect on output points.

• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These
quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

• Argument 5 determines which latches are cleared, as follows:

0 = No latches cleared
1 = All on-latches cleared
2 = All off-latches cleared
3 = Both on- and off-latches cleared

Arguments:

Arguments 2, 3, and 4 are returned as 64-bit masks. If the point or latch is on, a 1 appears in
the respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 58, 59, 61, and 62 are on.

Standard
Example:

Get & Clear Simple-64 I/O Unit Latches
From I/O_Unit_A SNAP Simple 64
State Unit_A_State Integer 64 Variable

On-Latch Unit_A_On_Latches Integer 64 Variable
Off-Latch Unit_A_Off_Latches Integer 64 Variable
Clear Flag 3 Integer 32 Literal

OptoScript
Example:

GetClearSimple64IoUnitLatches(From, State, On-Latch, Off-Latch, Clear Flag)
GetClearSimple64IoUnitLatches(I/O_Unit_A, Unit_A_State,

Unit_A_On_Latches, Unit_A_Off_Latches, 3);

Argument 1
From
SNAP Simple 64

Argument 2
State
Integer 64 Variable

Argument 3
On-Latch
Integer 64 Variable

Argument 4
Off-Latch
Integer 64 Variable

Argument 5
Clear Flag
Integer 32 Literal
Integer 32 Variable

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
G-22 OptoControl Command Reference

G
This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl
User’s Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

See Also: Get Off-Latch (page G-72), Clear Off-Latch (page C-28), Clear All Latches (page C-24), Get & Clear
Digital-64 I/O Unit Latches (page G-16), Get & Clear Digital I/O Unit Latches (page G-15)

Get & Restart Off-Pulse Measurement
Digital Point Action

Function: To read and clear the off-time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete off-pulse applied to the digital input.
• Restarts the off-pulse measurement after reading the current value.
• Measurement starts on the first on-to-off transition and stops on the first off-to-on

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new off-pulse measurement is started.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Restart Off-Pulse Measurement
From Point STANDBY_SWITCH Off Pulse

Put in OFF_TIME Float Variable

OptoScript
Example:

GetRestartOffPulseMeasurement(From Point)
OFF_TIME = GetRestartOffPulseMeasurement(STANDBY_SWITCH);

This is a function command; it returns the duration of the first complete off-pulse. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: • Use Get Off-Pulse Measurement Complete Status first to see if a complete off-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-23

Dependencies: Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: Get Off-Pulse Measurement (page G-73), Get Off-Pulse Measurement Complete Status (page
G-74)

Get & Restart Off-Time Totalizer
Digital Point Action

Function: To read digital input total off time and restart.

Typical Use: To accumulate total off time of a device to possibly indicate down-time.

Details: • Reads the accumulated off time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Resets the total to zero after execution.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Restart Off-Time Totalizer
From Point Power_Status Off Totalizer

Put in System_Down_Time Integer 32 Variable

OptoScript
Example:

GetRestartOffTimeTotalizer(From Point)
System_Down_Time = GetRestartOffTimeTotalizer(Power_Status);

This is a function command; it returns the total off-time of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

• Use Get Off-Time Totalizer to read the totalized value without resetting it.

Dependencies: Applies only to inputs configured with the totalize-off feature on digital multifunction I/O units.

See Also: Get Off-Time Totalizer (page G-75)

Argument 1
From Point
Off Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable
G-24 OptoControl Command Reference

G
Get & Restart On-Pulse Measurement
Digital Point Action

Function: To read and clear the on-time duration of a digital input that has had an off-on-off transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete on-pulse applied to the digital input.
• Restarts the on-pulse measurement after reading the current value.
• Measurement starts on the first off-to-on transition and stops on the first on-to-off

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new on-pulse measurement is started.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Restart On-Pulse Measurement
From Point Standby_Switch On Pulse

Put in On_Time Float Variable

OptoScript
Example:

GetRestartOnPulseMeasurement(From Point)
On_Time = GetRestartOnPulseMeasurement(Standby_Switch);

This is a function command; it returns the duration of the first on-pulse. The returned value can
be consumed by a variable (as shown) or by another item, such as a mathematical expression or
a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Get On-Pulse Measurement Complete Status first to see if a complete on-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the on-pulse measurement feature on digital multifunction
I/O units.

See Also: Get On-Pulse Measurement (page G-77), Get On-Pulse Measurement Complete Status (page
G-78)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-25

Get & Restart On-Time Totalizer
Digital Point Action

Function: To read digital input total on time and restart.

Typical Use: To accumulate total on time of a device.

Details: • Reads the accumulated on time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Resets the total to zero after execution.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Restart On-Time Totalizer
From Point Circ_Motor_Pwr On Totalize

Put in Motor_Runtime Integer 32 Variable

OptoScript
Example:

GetRestartOnTimeTotalizer(From Point)
Motor_Runtime = GetRestartOnTimeTotalizer(Circ_Motor_Pwr);

This is a function command; it returns the total on-time of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

• Use Get On-Time Totalizer to read the totalized value without resetting it.

Dependencies: Applies only to inputs configured with the totalize-on feature on digital multifunction
I/O units.

See Also: Get On-Time Totalizer (page G-79)

Argument 1
From Point
On Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable
G-26 OptoControl Command Reference

G
Get & Restart Period
Digital Point Action

Function: To read and clear the elapsed time during an on-off-on or an off-on-off transition of a digital input.

Typical Use: To measure the period of a slow shaft rotation.

Details: • Reads the period value of a digital input and places it in the argument specified by the
Put In parameter.

• Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the
next transition of the same type (one complete cycle).

• Restarts the period measurement after reading.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get & Restart Period
From Point SHAFT_INPUT Period

Put in SHAFT_CYCLE Integer 32 Variable

OptoScript
Example:

GetRestartPeriod(From Point)
SHAFT_CYCLE = GetRestartPeriod(SHAFT_INPUT);

This is a function command; it returns the period. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command should be used to start the period measurement.
• This command measures the first complete period only and restarts.
• The accuracy of the value returned is limited by the input module’s turn-on and turn-off

times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the period feature on digital multifunction I/O units.

See Also: Get Period (page G-80)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-27

Get Active Interrupt Mask
Communication—Serial Action

Function: To determine on which port(s) the I/O unit that generated the interrupt is located.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit generated
the interrupt.

Details: Returns a bitmask of the active interrupts.

Arguments:

Standard
Example:

Get Active Interrupt Mask
Put in INTERRUPT_PORT_MASK Integer 32 Variable

The effect of this is illustrated below:

In this example, I/O units on controller COM ports 1 and 2 are generating interrupts.

OptoScript
Example:

GetActiveInterruptMask()
Interrupt_Port_Mask = GetActiveInterruptMask();

This is a function command; it returns a bitmask of the active interrupts. The returned value can
be consumed by a variable (as shown) or by another item, such as a mathematical expression.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Bit Test to examine individual bits.
• Use Generating Interrupt? to determine if a specified I/O unit has generated an interrupt.

See Also: Interrupt on Port0? (page I-4), Interrupt on Port1? (page I-4), Interrupt on Port2? (page I-5),
Interrupt on Port3? (page I-6), Interrupt on Port6? (page I-6), Generating Interrupt? (page G-9),
Event Occurred? (page E-22), Clear I/O Unit Interrupt (page C-27), Clear Event Latch (page C-26)

Argument 1
Put in
Integer 32 Variable

Port Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt_port
_mask

Binary 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Hex 0 0 0 6
G-28 OptoControl Command Reference

G
Get Address of I/O Unit Causing Current Error
Controller Action

Function: To return the address of the I/O unit that failed to respond if the top queue error is a 29.

Typical Uses: • Within an error handler, to log the date and time of a timeout error and the name of the I/O
unit that failed to respond.

• Within an error handler, to alert an operator as to which I/O units are offline.

Details: The controller generates a queue error 29 (timeout) whenever an I/O unit does not respond.
This command can be used to determine the address of the I/O unit that failed to respond.

Arguments:

Standard
Example:

Get Address of I/O Unit Causing Current Error
Put in IO_UNIT_ADDR Integer 32 Variable

OptoScript
Example:

GetAddressOfIoUnitCausingCurrentError()
IO_UNIT_ADDR = GetAddressOfIoUnitCausingCurrentError();

This is a function command; it returns the address of the I/O unit causing the top error in the error
queue. The returned value can be consumed by a variable (as shown) or by another item, such as
a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command is typically used in an error handling chart.
• In a system with many I/O units, this command can pinpoint exactly which I/O units are not

responding. The result can be put in an integer table or appended to an error message string
for display on an HMI screen.

• Always use Error on I/O Unit? to determine if the top error in the error queue is an I/O unit
error before using this command.

• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be a 29.

See Also: Get Port of I/O Unit Causing Current Error (page G-92), Error on I/O Unit? (page E-20), Remove
Current Error and Point to Next Error (page R-26)

Argument 1
Put in
Integer 32 Variable
OptoControl Command Reference G-29

Get Analog Filtered Value
Analog Point Action

Function: To read the digitally filtered input value of a specified analog channel.

Typical Use: To smooth noisy or erratic signals.

Details: • Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The analog input point is sampled
10 times a second with the filtered value stored locally on the I/O unit.

• The unfiltered analog input is still available using standard analog commands.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Analog Filtered Value
From TEMP_SENSOR Analog Input
Put in FILTERED_TEMP Float Variable

OptoScript
Example:

GetAnalogFilteredValue(From)
FILTERED_TEMP = GetAnalogFilteredValue(TEMP_SENSOR);

This is a function command; it returns the filtered value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Set Analog Filter Weight to restart filtering after a value of -32,768 is returned.
• To ensure that digital filtering will always be active, store changeable I/O unit values (such

as filter weight) in permanent memory at the I/O unit. (You can do so through Debug mode.)

Dependencies: Before using this command, Set Analog Filter Weight must be issued. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Filtered Value (page G-10), Set Analog Filter Weight (page S-2)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-30 OptoControl Command Reference

G
Get Analog Lower Clamp
Analog Point Action

Function: To read the lower clamp value for an analog point.

Typical Use: To make sure an out-of-range value is not sent to an analog output point.

Details: • This command reads the clamp values that were set when you configured the output point.
• This command applies to SNAP analog output modules only. Other module families do not

use clamping because modules with narrower ranges can be purchased.
• If no clamping has been applied to the point, then a 0.0 is returned.
• If scaling has also been applied to the point, the clamp value is returned as a scaled value.

Arguments:

Standard
Example:

Get Analog Lower Clamp
From Variable_Pump Analog Output
Put in Pump_Lower_Clamp Float Variable

OptoScript
Example:

GetAnalogLowerClamp(From)
Pump_Lower_Clamp = GetAnalogLowerClamp(Variable_Pump);

This is a function command; it returns the lower clamp value for the analog output. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

See Also: Get Analog Upper Clamp (page G-37),

Argument 1
From
Analog Output

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-31

Get Analog Maximum Value
Analog Point Action

Function: To retrieve the peak value of a specified analog input since its last reading.

Typical Use: To capture the peak pressure over a given period of time.

Details: • The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built into the module. Check the specifications for the module to be used if
high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

Get Analog Maximum Value
From PRES_SENSOR Analog Input
Put in MAX_KPA Float Variable

OptoScript
Example:

GetAnalogMaxValue(From)
MAX_KPA = GetAnalogMaxValue(PRES_SENSOR);

This is a function command; it returns the maximum value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Get & Clear Analog Maximum Value to clear the max value before actual readings
commence.

Dependencies: If digital filtering is active (see Set Analog Filter Weight), min and max value detection is derived
from the filtered reading, which is only updated every 100 milliseconds. This could reduce the
ability to capture min and max values by several orders of magnitude.

Result Data: • The value returned will be the highest value recorded on this channel since the last time the
maximum value was cleared, or since the unit was turned on.

• Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Maximum Value (page G-11), Get & Clear Analog Minimum Value (page
G-12), Get Analog Minimum Value (page G-33)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-32 OptoControl Command Reference

G
Get Analog Minimum Value
Analog Point Action

Function: To retrieve the lowest value of a specified analog input since its last reading.

Typical Use: To capture the lowest pressure over a given period of time.

Details: • The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built into the module. Check the specifications for the module to be used if
high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

Get Analog Minimum Value
From PRES_SENSOR Analog Input
Put in MIN_KPA Float Variable

OptoScript
Example:

GetAnalogMinValue(From)
MIN_KPA = GetAnalogMinValue(PRES_SENSOR);

This is a function command; it returns the minimum value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Get & Clear Analog Minimum Value to clear the min value before actual readings commence.

Dependencies: If digital filtering is active (see Set Analog Filter Weight), min and max value detection is derived
from the filtered reading, which is only updated every 100 milliseconds. This could reduce the
ability to capture min and max values by several orders of magnitude.

Result Data: • The value returned will be the lowest value recorded since the last time the minimum value
was reset or since the unit was turned on.

• Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Minimum Value (page G-12), Get & Clear Analog Maximum Value (page
G-11), Get Analog Maximum Value (page G-32)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-33

Get Analog Square Root Filtered Value
Analog Point Action

Function: To read and linearize the digitally filtered input value of a flow signal from a differential pressure
(DP) transmitter.

Typical Use: To smooth noisy or erratic signals from a DP transmitter connected to an orifice plate or
venturi tube.

Details: • Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

• Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The input point is sampled 10 times
a second.

• The unfiltered analog input is still available using standard analog commands.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Analog Square Root Filtered Value
From DP_FLOW_XMTR Analog Input
Put in Filtered_Flow Float Variable

OptoScript
Example:

GetAnalogSquareRootFilteredValue(From)
Filtered_Flow = GetAnalogSquareRootFilteredValue(DP_FLOW_XMTR);

This is a function command; it returns the square root of the filtered value. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Set Analog Filter Weight to restart filtering after a value of -32,768 is returned.
• To ensure that filtering will always be active, store the filter value in permanent memory at

the I/O unit. (You can do so through Debug mode.)
• Do not issue this command more than 10 times per second. Doing so will degrade the

performance speed of the analog I/O unit.

Dependencies: Before using this command, Set Analog Filter Weight must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Square Root Value (page G-35), Set Analog Filter Weight (page S-2)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-34 OptoControl Command Reference

G
Get Analog Square Root Value
Analog Point Action

Function: To read and linearize the analog input value of a flow signal from a differential pressure (DP)
transmitter.

Typical Use: To linearize flow signals from a DP transmitter connected to an orifice plate or venturi tube.

Details: • Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Analog Square Root Value
From DP_FLOW_XMTR Analog Input
Put in FLOW_RATE Float Variable

OptoScript
Example:

GetAnalogSquareRootValue(From)
FLOW_RATE = GetAnalogSquareRootValue(DP_FLOW_XMTR);

This is a function command; it returns the square root of the value from the analog input. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: Do not issue this command more than 10 times per second. Doing so will degrade the
performance speed of the analog I/O unit.

Result Data: Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Square Root Filtered Value (page G-34)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-35

Get Analog Totalizer Value
Analog Point Action

Function: To read the totalized (integrated) value of a specified analog input.

Typical Use: To examine a flow total that has been accumulating at the I/O unit to determine when to clear it.

Details: • Totalizing is performed at the I/O unit by sampling the input point and storing the total value
locally on the I/O unit.

• The sample rate is set using the Set Analog Totalizer Rate Command.
• Totalizing will be bidirectional if the input range is -10 to +10, for example.
• Totalizing will stop when the total reaches either limit. Totalizing will resume after using

Get & Clear Analog Totalizer Value.
• Totalizing will stop when an input channel is too far under range. Totalizing will resume

when the input signal is back within range.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Analog Totalizer Value
From Flow_Rate Analog Input
Put in Total_Barrels Float Variable

OptoScript
Example:

GetAnalogTotalizerValue(From)
Total_Barrels = GetAnalogTotalizerValue(Flow_Rate);

This is a function command; it returns the totalized value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See Notes for Set Analog Totalizer Rate before using this command.
• Use Get & Clear Analog Totalizer Value to clear the total before actual readings commence.
• Use this command periodically to simply “watch” the total. When it exceeds 30,000, use

Get & Clear Analog Totalizer Value to capture the total to a float variable and reset it to zero.

Dependencies: Before using this command, Set Analog Totalizer Rate must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: • The value returned will be an integer from -32,768 to 32,767.
• Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Totalizer Value (page G-13), Set Analog Totalizer Rate (page S-6)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable
G-36 OptoControl Command Reference

G
Get Analog Upper Clamp
Analog Point Action

Function: To read the upper clamp value for an analog point.

Typical Use: To make sure an out-of-range value cannot be sent to an analog output point.

Details: • This command reads the clamp values that were set when you configured the output point.
• This command applies to SNAP analog output modules only. Other module families do not

use clamping because modules with narrower ranges can be purchased.
• If no clamping has been applied to the point, then a 0.0 is returned.
• If scaling has also been applied to the point, the clamp value is returned as a scaled value.

Arguments:

Standard
Example:

Get Analog Upper Clamp
From Variable_Pump Analog Output
Put in Pump_Upper_Clamp Float Variable

OptoScript
Example:

GetAnalogUpperClamp(From)
Pump_Upper_Clamp = GetAnalogUpperClamp(Variable_Pump);

This is a function command; it returns the upper clamp value for the analog output. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

See Also: Get Analog Lower Clamp (page G-31)

Argument 1
From
Analog Output

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-37

Get ARCNET Host Destination Address
Communication—Network Action

Function: To get the source address of the last ARCNET host message waiting in the ARCNET receive
buffer or the destination address of the next host message to be sent.
NOTE: The newer command Get ARCNET Destination Address on Port is preferred, as it provides
the option to use other ports. This command is still supported for older strategies.

Typical Use: To log ARCNET activity complete with source and destination addresses when ARCNET is not the
host port.

Details: • When used after receiving an ARCNET host message, the source address of the message
received is returned.

• When used after the command Set ARCNET Host Destination Address, the destination
address is returned.

• All references to ARCNET host use port 4.

Arguments:

Standard
Example:

Get ARCNET Host Destination Address
Put in ARCNET_HOST Integer 32 Variable

OptoScript
Example:

GetArcnetHostDestAddress()
ARCNET_HOST = GetArcnetHostDestAddress();

This is a function command; it returns the address of the ARCNET host for the last message or
the next message. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use before Set ARCNET Host Destination Address, since this command will alter the value

returned.

See Also: Set ARCNET Host Destination Address (page S-9)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-38 OptoControl Command Reference

G
Get ARCNET Destination Address on Port
Communication—Network Action

Function: On the specified port, to get the source address of the last ARCNET message waiting in the
ARCNET receive buffer or the destination address of the next message to be sent.

Typical Use: To log ARCNET activity complete with source and destination addresses when ARCNET is not the
host port.

Details: • When used after receiving an ARCNET message, the source address of the message
received is returned.

• When used after the command Set ARCNET Destination Address on Port, the destination
address is returned.

Arguments:

Standard
Example:

Get ARCNET Destination Address on Port
On Port ARCNET_PORT Integer 32 Variable
Put in ARCNET_ADDR Integer 32 Variable

OptoScript
Example:

GetArcnetDestAddressOnPort(On Port)
ARCNET_ADDR = GetArcnetDestAddressOnPort(ARCNET_PORT);

This is a function command; it returns the address of the ARCNET host for the last message or
the next message on the port. The returned value can be consumed by a variable (as shown) or
by another item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use before Set ARCNET Destination Address on Port, since this command will alter the

value returned.

See Also: Set ARCNET Destination Address on Port (page S-10)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-39

Get ARCNET Peer Destination Address
Communication—Network Action

Function: To get the source address of the last peer message waiting in the ARCNET receive buffer or the
destination address of the next peer message to be sent.

Typical Use: To log peer activity complete with source and destination addresses.

Details: • When used after receiving a peer message, the source address of the message received is
returned.

• When used after the command Set ARCNET Peer Destination Address, the destination
address is returned.

• All references to peer use port 7, which is a special gateway to the ARCNET cable.

Arguments:

Standard
Example:

Get ARCNET Peer Destination Address
Put in PEER_ADDR Integer 32 Variable

OptoScript
Example:

GetArcnetPeerDestAddress()
PEER_ADDR = GetArcnetPeerDestAddress();

This is a function command; it returns the address of the ARCNET peer for the last message or
the next message. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use before Set ARCNET Peer Destination Address, since this command will alter the

value returned.

See Also: Set ARCNET Peer Destination Address (page S-13)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-40 OptoControl Command Reference

OptoControl Command Reference G-41

G
Get Chart Status
Chart Action

Function: To determine the current status of a specified chart.

Typical Use: To determine in detail the current status of a chart.

Details: • Status is returned as a 32-bit integer or float. Applicable bits are 0–3:
– Bit 0: Running Mode (0 = chart is stopped; 1 = chart is running)
– Bit 1: Suspended Mode (0 = chart is not suspended; 1 = chart is suspended)
– Bit 2: Step Mode (0 = chart is not being stepped through;

1 = chart is being stepped through)
– Bit 3: Break Mode (0 = chart does not have break points defined;

1 = chart has break points defined)
• Bits 4–31 are reserved for Opto 22 use.
• Running Mode is on whenever a chart is running.
• Suspended Mode is on whenever a chart is suspended from Running Mode.
• Step Mode is on whenever a chart is being automatically or manually stepped through.
• Break Mode is on whenever a chart has a break point defined in one or more of its blocks.
• A chart that has never been started is considered stopped. A chart that is not suspended is

either running or stopped.

Arguments:

Standard
Example:

Get Chart Status
Chart CHART_A Chart

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

GetChartStatus(Chart)
STATUS = GetChartStatus(CHART_A);

This is a function command; it returns the status of the chart. The returned value can be
consumed by a variable (as shown) or by another item, such as a control structure. See Chapter
11 of the OptoControl User’s Guide for more information.

Notes: • Bit testing (rather than number testing) should be used to determine the current status, since
a chart can simultaneously have multiple bits set at once. For example:

– Break Mode, Bit 3 = 1
– Step Mode, Bit 2 = 1
– Running Mode, Bit 0 = 1
– Reserved Bits, Bits 4–31 can have any value

• Avoid putting the returned status into a float variable, since the bits cannot be tested.

See Also: Chart Suspended? (page C-15), Chart Stopped? (page C-14), Chart Running? (page C-13),
Bit Test (page B-17)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Get Controller Address
Controller Action

Function: To obtain the controller’s assigned host port address.

Typical Use: To execute program logic branching based on the controller’s address or serial port message ID.

Details: The range of values returned is from 1 to 255.

Arguments:

Standard
Example:

Get Controller Address
Put in LC_ADDR Integer 32 Variable

OptoScript
Example:

GetControllerAddress()
LC_ADDR = GetControllerAddress();

This is a function command; it returns the controller’s assigned host port address. The returned
value can be consumed by a variable (as shown) or by another item, such as a control structure.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use to determine if messages received from a non-host serial port are for this controller.

Argument 1
Put in
Float Variable
Integer 32 Variable
G-42 OptoControl Command Reference

G
Get Controller Type
Controller Action

Function: Returns a numeric code unique to the controller type.

Typical Use: In programs that must configure themselves according to the controller type in which they are
running.

Details: Primarily used in factory QA testing.

Controller Type Code for OptoControl Code for Cyrano
G4LC32 (UVPROM) 216 200

G4LC32 (1 MB) 218 202
G4LC32 (4 MB) 222 206

G4LC32SX (UVPROM) 217 201
G4LC32SX (1 MB) 220 204
G4LC32SX (4 MB) 224 208

M4RTU/DAS (1 MB) 221 205
M4RTU/DAS (4 MB) 225 209
G4LC32ISA (1 MB) 219 203
G4LC32ISA (4 MB) 223 207

G4LC32ISA-LT (1 MB) 226 210
M4 (1 MB) 227 211
M4 (4 MB) 228 212

M4IO (1 MB) 229 213
M4IO (4 MB) 230 214
SNAP-LCM4 236
SNAP-LCSX 232

SNAP-LCSX-PLUS 234

Arguments:

Standard
Example:

Get Controller Type
Put in TYPE_CODE Integer 32 Variable

OptoScript
Example:

GetControllerType()
TYPE_CODE = GetControllerType();

This is a function command; it returns a value indicating the controller type. The returned value
can be consumed by a variable (as shown) or by another item, such as a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Get Firmware Version (page G-56)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-43

Get Counter
Digital Point Action

Function: To read a digital input counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.

Details: • Reads the current value of a digital input counter and places it in the Put In parameter.
• Does not reset the counter at the I/O unit to zero.
• Does not stop the counter from continuing to count.
• Valid range is 0 to 4,294,967,296 counts.

Arguments:

Standard
Example:

Get Counter
From Point Bottle_Counter Counter

Put in Number_of_Bottles Float Variable

OptoScript
Example:

GetCounter(From Point)
Number_of_Bottles = GetCounter(Bottle_Counter);

This is a function command; it returns the counter value of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • The maximum speed at which the counter can operate is limited by the input module’s
turn-on and turn-off times. Check the specifications for the module to be used.

• Since 32-bit signed integers can only count up to 2,147,483,647, use a float to hold the
counts if exceeding this amount.

Dependencies: • Always use Start Counter once before using this command for the first time.
• Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: Get & Clear Counter (page G-14), Start Counter (page S-55), Stop Counter (page S-65), Clear
Counter (page C-25)

Argument 1
From Point
Counter

Argument 2
Put in
Float Variable
Integer 32 Variable
G-44 OptoControl Command Reference

G
Get Day
Time/Date Action

Function: To read the day of the month (1 through 31) from the controller’s real-time clock/calendar and put
it into a numeric variable.

Typical Use: To trigger an event in an OptoControl program based on the day of the month.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2000, this action would place the value 2 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Day
Put In Day_of_Month Integer 32 Variable

OptoScript
Example:

GetDay()
Day_of_Month = GetDay();

This is a function command; it returns the numerical day of the month. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This is a one-time read of the day of the month. If the date changes, you will need to execute
this command again to get the current day of the month.

• To detect the start of a new day, use Get Day and put the result into a variable called
DAY_OF_MONTH. Do this once in the Powerup chart and then continually in another chart.
In this other chart, move DAY_OF_MONTH to LAST_DAY_OF_MONTH just before executing
Get Day, then compare DAY_OF_MONTH with LAST_DAY_OF_MONTH using Not Equal?
When they are not equal, midnight has just occurred.

See Also: Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page G-64), Get Month (page
G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day (page S-15), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-45

Get Day of Week
Time/Date Action

Function: To read the number of the day of the week (0 through 6) from the controller’s real-time
clock/calendar and put it into a numeric variable.

Typical Use: To trigger an event in an OptoControl program based on the day of the week.

Details: • The destination variable can be an integer or a float, although an integer is preferred.

Days are numbered as follows:

Sunday = 0
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6

• If the current day is a Wednesday, this action would place the value 3 into the Put In
parameter (Argument 1).

Arguments:

Standard
Example:

Get Day of Week
Put In Day_of_Week Integer 32 Variable

OptoScript
Example:

GetDayOfWeek()
Day_of_Week = GetDayOfWeek();

This is a function command; it returns a number indicating the day of the week. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: • This is a one-time read of the day of the week. If the day changes, you will need to execute
this command again to get the current day of the week.

• It is advisable to use this action once in the Powerup chart and once after midnight rollover
thereafter. See Notes for Get Day.

See Also: Get Day (page G-45), Get Hours (page G-59), Get Minutes (page G-64), Get Month (page G-66),
Get Seconds (page G-98), Get Year (page G-105), Set Day (page S-15), Set Day of Week (page
S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds (page
S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-46 OptoControl Command Reference

G
Get Default Host Port
Controller Action

Function: To read the host port configuration set by the jumpers (H0 and H1) on the controller.

Typical Use: To determine whether a controller’s default host port is set to Ethernet, ARCNET, or serial.

Details: • The default host port is set on the controller using jumpers H0 and H1. See the controller’s
installation guide for details.

• The returned value will be one of the following:

Arguments:

Standard
Example:

Get Default Host Port
Put In Host_Port Integer 32 Variable

OptoScript
Example:

GetDefaultHostPort()
Host_Port = GetDefaultHostPort();

This is a function command; it returns the configuration of the host port. The returned value can
be consumed by a variable (as shown) or by another item, such as a a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

0, 1, 2, or 3 for serial
4 for ARCNET
8 for Ethernet

Argument 1
Put in
Integer 32 Variable
OptoControl Command Reference G-47

Get Digital I/O Unit as Binary Value
I/O Unit Action

Function: To read the current on/off status of all channels on the specified digital I/O unit.

Typical Use: To efficiently read the status of all digital channels on a single I/O unit with one command.

Details: • Reads the current on/off status of all 16 channels on the digital I/O unit specified and
updates the IVALs and XVALs for all 16 channels. Reads outputs as well as inputs.

• Returns status (a 16-bit integer) to the numeric variable specified.
• If a channel is on, there will be a “1” in the respective bit. If the channel is off, there will be

a “0” in the respective bit. The least significant bit corresponds to channel zero.
• If a specific channel is disabled, it will not be read. If the entire I/O unit is disabled, none of

the channels will be read.

Arguments:

Standard
Example:

Get Digital I/O Unit as Binary Value
From Input_Board_1 G4 Digital Local Simple I/O Unit
Put in IN_BD1_STATUS Integer 32 Variable

The effect of this command is illustrated below:

In this example, channels 14, 13, 11, 10, 6, and 1 are currently on. The other channels are off.

OptoScript
Example:

GetDigitalIoUnitAsBinaryValue(I/O Unit)
IN_BD1_STATUS = GetDigitalIoUnitAsBinaryValue(Input_Board_1);

This is a function command; it returns the current on/off status of 16 digital points, in the form
of a bitmask. The returned value can be consumed by a variable (as shown) or by another item,
such as a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • For a 64-point digital I/O unit, do not use this command. Instead, use Get Digital-64 I/O Unit
as Binary Value.

• Use Bit Test to examine individual bits.

See Also: Set Digital I/O Unit from MOMO Masks (page S-17), Get Digital I/O Unit as Binary Value (page
G-48)

Argument 1
From
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Argument 2
Put in
Float Variable
Integer 32 Variable

Channel Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
G-48 OptoControl Command Reference

G
Get Digital-64 I/O Unit as Binary Value
I/O Unit Action

Function: To read the current on/off status of all channels on the specified 64-point digital I/O unit.

Typical Use: To efficiently read the status of all digital channels on a single 64-point I/O unit with one
command.

Details: • Reads the current on/off status of all 64 channels on the digital I/O unit specified and
updates the IVALs and XVALs for all 64 channels. Reads outputs as well as inputs.

• Returns status (a 64-bit integer) to the numeric variable specified.
• If a channel is on, there will be a “1” in the respective bit. If the channel is off, there will be

a “0” in the respective bit. The least significant bit corresponds to channel zero.
• If a specific channel is disabled, it will not be read. If the entire I/O unit is disabled, none of

the channels will be read.

Arguments:

Standard
Example:

Get Digital-64 I/O Unit as Binary Value
From INPUT_BOARD_2 SNAP Digital 64
Put in IN_BD2_STATUS Integer 64 Variable

The effect of this command is illustrated below:

To save space, the example shows only the first eight channels and the last eight channels on
the 64-channel I/O unit. Channels with a value of 1 are on; channels with a value of 0 are off.

OptoScript
Example:

GetDigital64IoUnitAsBinaryValue(I/O Unit)
IN_BD2_STATUS = GetDigital64UnitAsBinaryValue(Input_Board_2);

This is a function command; it returns the current on/off status of all 64 digital points, in the form
of a bitmask. The returned value can be consumed by a variable (as shown) or by another item,
such as a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Bit Test to examine individual bits.

See Also: Set Digital-64 I/O Unit from MOMO Masks (page S-18), Get Digital I/O Unit as Binary Value (page
G-48)

Argument 1
From
SNAP Digital 64

Argument 2
Put in
Integer 64 Variable

Channel Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-49

Get Digital I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a digital I/O unit.

Typical Use: To read all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once.
• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These

quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

Arguments:

Arguments 2, 3, and 4 are returned as 32-bit masks. If the point or latch is on, a 1 appears in the
respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 26, 27, 29, and 30 are on.

Standard
Example:

Get Digital I/O Unit Latches
From I/O_Unit_A B3000 SNAP Mixed I/O
State Unit_A_State Integer 32 Variable

On-Latch Unit_A_On_Latches Integer 32 Variable
Off-Latch Unit_A_Off_Latches Integer 32 Variable

OptoScript
Example:

GetDigitalIoUnitLatches(From, State, On-Latch, Off-Latch)
GetDigitalIoUnitLatches(I/O_Unit_A, Unit_A_State, Unit_A_On_Latches,

Unit_A_Off_Latches);

This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs on SNAP, digital multifunction, and remote simple I/O units.

See Also: Get & Clear Digital I/O Unit Latches (page G-15), Get Off-Latch (page G-72), Clear Off-Latch (page
C-28), Clear All Latches (page C-24)

Argument 1
From
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Argument 2
State
Integer 32 Variable

Argument 3
On-Latch
Integer 32 Variable

Argument 4
Off-Latch
Integer 32 Variable

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
G-50 OptoControl Command Reference

G
Get Digital-64 I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a digital 64 I/O unit (such as
an I/O unit with a SNAP-ENET-D64 brain).

Typical Use: To read all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once.
• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These

quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

Arguments:

Arguments 2, 3, and 4 are returned as 64-bit masks. If the point or latch is on, a 1 appears in
the respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 58, 59, 61, and 62 are on.

Standard
Example:

Get Digital-64 I/O Unit Latches
From I/O_Unit_A SNAP Digital 64
State Unit_A_State Integer 64 Variable

On-Latch Unit_A_On_Latches Integer 64 Variable
Off-Latch Unit_A_Off_Latches Integer 64 Variable

OptoScript
Example:

GetDigital64IoUnitLatches(From, State, On-Latch, Off-Latch)
GetDigital64IoUnitLatches(I/O_Unit_A, Unit_A_State, Unit_A_On_Latches,

Unit_A_Off_Latches);

This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

See Also: Get & Clear Digital-64 I/O Unit Latches (page G-16), Get Off-Latch (page G-72), Clear Off-Latch
(page C-28), Clear All Latches (page C-24)

Argument 1
From
SNAP Digital 64

Argument 2
State
Integer 64 Variable

Argument 3
On-Latch
Integer 64 Variable

Argument 4
Off-Latch
Integer 64 Variable

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-51

Get Error Code of Current Error
Controller Action

Function: To return the oldest error code in the error queue.

Typical Use: To allow a chart to perform error handling.

Details: • Returns a zero if the queue is empty.
• The same error code is read each time unless Remove Current Error and Point to Next Error

is used first.
• The error queue can hold up to 64 errors.
• See the Errors Appendix in the OptoControl User’s Guide for a list of errors that may appear

in the error queue.

Arguments:

Standard
Example:

Get Error Code of Current Error
Put in ERROR_CODE Integer 32 Variable

OptoScript
Example:

GetErrorCodeOfCurrentError()
ERROR_CODE = GetErrorCodeOfCurrentError();

This is a function command; it returns the code for the oldest error in the error queue. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use Remove Current Error and Point to Next Error to drop the oldest error from the queue so
the next error can be evaluated.

• Use Debug mode to view the error queue for detailed information.

See Also: Clear All Errors (page C-22), Get Error Count (page G-53), Remove Current Error and Point to Next
Error (page R-26)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-52 OptoControl Command Reference

G
Get Error Count
Controller Action

Function: To determine the number of errors in the queue.

Typical Use: To allow an error handling chart to determine that there are no more errors to process.

Details: Returns a zero if the queue is empty.

Arguments:

Standard
Example:

Get Error Count
Put in ERROR_COUNT Integer 32 Variable

OptoScript
Example:

GetErrorCount()
ERROR_COUNT = GetErrorCount();

This is a function command; it returns the number of errors in the error queue. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • To eliminate all errors from the queue, use Clear All Errors.
• Use Debug mode to view the error queue for detailed information.

See Also: Clear All Errors (page C-22), Get Error Code of Current Error (page G-52), Remove Current Error
and Point to Next Error (page R-26)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-53

Get Ethernet Session Name
Communication—Network Action

Function: Gets the full address (session name) that’s associated with the session number.

Typical Use: When the session name is no longer known or is in question.

Details: • If sent by the initiator (the node that used the command Open Ethernet Session), this
command returns a string containing the full address of the Ethernet node associated with
the session number, for example: T:10.192.56.192:2002.

• If sent by the acceptor (the node that used the command Accept Session on TCP Port), this
command returns only the session connection type: T.

Arguments:

Standard
Example:

Get Ethernet Session Name
Session Session_Number Integer 32 Variable
Put in Session_Name String Variable

Put Status in Ethernet_Status Integer 32 Variable

OptoScript
Example:

GetEthernetSessionName(Session, Put in)
Ethernet_Status = GetEthernetSessionName(Session_Number, Session_Name);

This is a function command; it returns a status code (see below for status code numbers). The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Dependencies: Must use Open Ethernet Session first.

Status Codes: 0 = No error.
-70 = No Ethernet card present.
-75 = Invalid session number—Use only session numbers that correspond to currently open
sessions.
-77 = This controller doesn’t support Ethernet.

See Also: Open Ethernet Session (page O-5), Accept Session on TCP Port (page A-2)

Argument 1
Session
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
String Variable

Argument 3
Put Status in
Integer 32 Variable
G-54 OptoControl Command Reference

G
Get Event Latches
Event/Reaction Action

Function: Gets all event latches in the specified group.

Typical Use: To get all event latches in the specified group with one command rather than issuing a separate
command for each one.

Details: • There can be up to 16 event/reaction groups, each containing as many as 16 event latches. If
all related event latches are in the same group, this command could be quite useful.

• The value returned is an integer with the lower 16 bits representing the 16 latches in the
group. If the variable has a value greater than zero, one or more latches are set.

Arguments:

Standard
Example:

Get Event Latches
Event/Reaction Group ER_E_STOP_GROUP_A

Put in Group_Latch_Status Integer 32 Variable

OptoScript
Example:

GetEventLatches(E/R Group)
Group_Latch_Status = GetEventLatches(ER_E_STOP_GROUP_A);

This is a function command; it returns a bitmask representing the status of event latches in the
event/reaction group. The returned value can be consumed by a variable (as shown) or by another
item, such as a control structure. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: Bit Test could be used to test each of the lower 16 bits numbered 0–15.

See Also: Get & Clear Event Latches (page G-18), Clear All Event Latches (page C-23)

Argument 1
Event/Reaction Group
Event/Reaction Group

Argument 2
Put in
Integer 32 Variable
OptoControl Command Reference G-55

Get Firmware Version
Controller Action

Function: Returns a string containing the firmware (kernel) version.

Typical Use: In programs that must configure themselves according to the firmware version under which they
are running.

Details: Primarily used in factory QA testing.

Arguments:

Standard
Example:

Get Firmware Version
Put in REV_CODE String Variable

OptoScript
Example:

GetFirmwareVersion(Put in)
GetFirmwareVersion(REV_CODE);

This is a procedure command; it does not return a value.

See Also: Get Controller Type (page G-43)

Argument 1
Put in
String Variable
G-56 OptoControl Command Reference

G
Get Frequency
Digital Point Action

Function: To read digital input frequency value.

Typical Use: To read the speed of rotating machinery, velocity encoders, etc.

Details: • Reads the current frequency of a digital input and places it in the Put In parameter.
• Returns an integer value from 0 to 65,535 (see Notes below).
• Resolution is 1 Hertz.

Arguments:

Standard
Example:

Get Frequency
From Point SHAFT_PICKUP Frequency

Put in MOTOR_SPEED Integer 32 Variable

OptoScript
Example:

GetFrequency(From Point)
MOTOR_SPEED = GetFrequency(SHAFT_PICKUP);

This is a function command; it returns th frequency value of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Since the resolution is 1 Hertz, significant errors may be encountered at frequencies less
than 100 Hertz. Use Get Period, then divide 1 by the period to get the frequency with
resolution to 0.2 Hertz at 60 Hertz.

• The maximum frequency that can be read is limited by the input module’s turn-on and
turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the frequency feature on digital multifunction I/O units.

Argument 1
From Point
Frequency

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-57

Get High Bits of Integer 64
Logical Action

Function: To read only the upper 32 bits of a 64-bit integer and place them in a 32-bit integer.

Typical Use: To convert half of a 64-bit integer into a 32-bit integer for faster manipulation. Often used when
only part of a 64-point digital rack is populated with points.

Details: • Returns the upper 32 bits, which represent the upper 32 channels on a 64-channel
digital-only rack, to the numeric variable specified.

• The least significant bit corresponds to channel 32; the most significant bit corresponds to
channel 63.

Arguments:

Standard
Example:

Get High Bits of Integer 64
High Bits From INPUT_BOARD_2 Integer 64 Variable

Put in IN_BD2_HIGH Integer 32 Variable

OptoScript
Example:

GetHighBitsOfInt64(High Bits From)
IN_BD2_HIGH = GetHighBitsOfInt64(INPUT_BOARD_2);

This is a function command; it returns the upper 32 bits of a 64-bit integer. The returned value
can be consumed by a variable (as shown) or by another item, such as a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: This command is useful if you want to get information from a digital-only SNAP-ENET-D64
Ethernet I/O brain, which uses “integer 64” commands, into a program that doesn’t directly
support 64-bit integers. Such programs include OptoDisplay, OptoServer, and third-party
products.

See Also: Get Low Bits of Integer 64 (page G-63), Make Integer 64 (page M-1)

Argument 1
High Bits From
Integer 64 Variable

Argument 2
Put in
Integer 32 Variable
G-58 OptoControl Command Reference

G
Get Hours
Time/Date Action

Function: To read the hour (0 through 23) from the controller’s real-time clock/calendar and put it into a
numeric variable.

Typical Use: To trigger an event in an OptoControl program based on the hour of the day, or to log an event.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,

and 11:59:00 p.m. = 23:59:00.
• If the current time is 2:35 p.m. (14:35:00), this action would place the value 14 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Hours
Put In HOURS Integer 32 Variable

OptoScript
Example:

GetHours()
HOURS = GetHours();

This is a function command; it returns the hour of the day (0 through 23) from the controller’s
real-time clock. The returned value can be consumed by a variable (as shown) or by another item,
such as a mathematical expression or a control structure. See Chapter 11 of the OptoControl
User’s Guide for more information.

Notes: • This is a one-time read of the hour. If the hour changes, you will need to execute this
command again to get the current hour.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current hour.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Minutes (page G-64), Get Month (page
G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day (page S-15), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-59

Get ID of Block Causing Current Error
Controller Action

Function: Gets the ID number of the block that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors in a string table.

Details: Only works when the top queue error is not an I/O unit error (queue errors over 29).

Arguments:

Standard
Example:

Get Id of Block Causing Current Error
Put in Error_Block_ID Integer 32 Variable

OptoScript
Example:

GetIdOfBlockCausingCurrentError()
Error_Block_ID = GetIdOfBlockCausingCurrentError();

This is a function command; it returns the ID number of the block that caused the top error in the
error queue. The returned value can be consumed by a variable (as shown) or by another item,
such as a mathematical expression or a control structure. See Chapter 11 of the OptoControl
User’s Guide for more information.

Notes: Blocks are numbered starting with zero.

Dependencies: The top queue error must not be an I/O unit error.

See Also: Get Name of Chart Causing Current Error (page G-67), Get Name of I/O Unit Causing Current Error
(page G-68)

Argument 1
Put in
Integer 32 Variable
G-60 OptoControl Command Reference

G
Get Julian Day
Time/Date Action

Function: Gets the number of days starting with January 1 up to and including today’s date.

Typical Use: Wherever Julian dates are required.

Details: Value returned will be from 1 to 366. For example, January 1 will always be Julian day 1.
December 31 will be Julian day 365 (or 366 in a leap year).

Arguments:

Standard
Example:

Get Julian Day
Put in Todays_Julian_Day Integer 32 Variable

OptoScript
Example:

GetJulianDay()
Todays_Julian_Day = GetJulianDay();

This is a function command; it returns the number of the current day, computed since the
beginning of the year. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

See Also: Copy Date to String (MM/DD/YY) (page C-61)

Argument 1
Put in
Integer 32 Variable
OptoControl Command Reference G-61

Get Length of Table
Miscellanous Action

Function: To obtain the declared length (size) of a float or integer table.

Typical Use: To determine the last index when reading or writing to a numeric table.

Details: A size of 10, for example, means there are 10 elements numbered 0–9.

Arguments:

Standard
Example:

Get Length of Table
Table Config_Data Integer 32 Table
Put in Config_Data_Size Integer 32 Variable

OptoScript
Example:

GetLengthOfTable(Table)
Config_Data_Size = GetLengthOfTable(Config_Data);

This is a function command; it returns the length of the table. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Always use to determine table size when program logic must act on all elements of a table. Then
if the size of the table is later changed, the program will automatically adjust to the new size.

Argument 1
Table
Float Table
Integer 32 Table
Integer 64 Table
Pointer Table
String Table

Argument 2
Put in
Float Variable
Integer 32 Variable
G-62 OptoControl Command Reference

G
Get Low Bits of Integer 64
Logical Action

Function: To read only the lower 32 bits of a 64-bit integer and place them in a 32-bit integer.

Typical Use: To convert half of a 64-bit integer into a 32-bit integer for faster manipulation. Often used when
only part of a 64-point digital rack is populated with points.

Details: • Returns the lower 32 bits, which represent the lower 32 channels on a 64-channel
digital-only rack, to the numeric variable specified.

• The least significant bit corresponds to channel zero; the most significant bit corresponds to
channel 32.

Arguments:

Standard
Example:

Get Low Bits of Integer 64
Low Bits From INPUT_BOARD_2 Integer 64 Variable

Put in IN_BD2_LOW Integer 32 Variable

OptoScript
Example:

GetLowBitsOfInt64(Integer 64)
IN_BD2_LOW = GetLowBitsOfInt64(INPUT_BOARD_2);

This is a function command; it returns the lower 32 bits of a 64-bit integer. The returned value
can be consumed by a variable (as shown) or by another item, such as a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: This command is useful if you want to get information from a digital-only SNAP-ENET-D64
Ethernet I/O brain, which uses “integer 64” commands, into a program that doesn’t directly
support 64-bit integers. Such programs include OptoDisplay, OptoServer, and third-party
products.

See Also: Get High Bits of Integer 64 (page G-58), Make Integer 64 (page M-1)

Argument 1
Low Bits From
Integer 64 Variable

Argument 2
Put in
Integer 32 Variable
OptoControl Command Reference G-63

Get Minutes
Time/Date Action

Function: To read the minute (0 through 59) from the controller’s real-time clock/calendar and put it into a
numeric variable.

Typical Use: To trigger an event in an OptoControl program based on minutes past the hour, or to log an event.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,

and 11:59:00 p.m. = 23:59:00.
• If the current time is 2:35 p.m. (14:35:00), this action would place the value 35 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Minutes
Put In MINUTES Integer 32 Variable

OptoScript
Example:

GetMinutes()
MINUTES = GetMinutes();

This is a function command; it returns the current minute (0 through 59) from the controller’s
real-time clock. The returned value can be consumed by a variable (as shown) or by another item,
such as a mathematical expression or a control structure. See Chapter 11 of the OptoControl
User’s Guide for more information.

Notes: • This is a one-time read of the minutes. If the minute changes, you will need to execute this
command again to get the current minute value.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current minute value.

See Also: Get Day (page G-45), Get Hours (page G-59), Get Day of Week (page G-46), Get Month (page
G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day (page S-15), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-64 OptoControl Command Reference

G
Get Mixed I/O Unit as Binary Value
I/O Unit Action

Function: To read the current on/off status of all digital channels on the specified mixed I/O unit.

Typical Use: To efficiently read the status of all digital channels on a single mixed I/O unit with one command.

Details: • Reads the current on/off status of all 32 digital channels on the mixed I/O unit specified.
• Updates the IVALs and XVALs for all 32 channels.
• Reads outputs as well as inputs. Does not read analog channels at any position on the rack.
• Returns status (a 32-bit integer) to the numeric variable specified.
• If a channel is on, there will be a “1” in the respective bit. If the channel is off, there will be

a “0” in the respective bit.
• If the channel is analog, there will be a “0” in the respective bit.
• If a specific channel is disabled, it will not be read.
• If the entire I/O unit is disabled, none of the channels will be read.
• The least significant bit corresponds to channel zero.

Arguments:

Standard
Example:

Get Mixed I/O Unit as Binary Value
From INPUT_BOARD_2 B3000 SNAP Mixed I/O
Put in IN_BD2_STATUS Integer 32 Variable

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital channels on the
mixed I/O unit. Channels with a value of 1 are on; channels with a value of 0 are off if digital, or
they are analog channels.

OptoScript
Example:

GetMixedIoUnitAsBinaryValue(I/O Unit)
IN_BD2_STATUS = GetMixedIoUnitAsBinaryValue(INPUT_BOARD_2);

This is a function command; it returns the on/off status of all digital points on the I/O unit, in the
form of a bitmask. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

Notes: Use Bit Test to examine individual bits.

See Also: Set Mixed I/O Unit from MOMO Masks (page S-24)

Argument 1
From
B3000 SNAP Mixed I/O

Argument 2
Put in
Integer 32 Variable

Channel Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-65

Get Month
Time/Date Action

Function: To read the month value (1 through 12) from the controller’s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To determine when to begin and end Daylight Savings Time.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2000, this action would place the value 3 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Month
Put In MONTH Integer 32 Variable

OptoScript
Example:

GetMonth()
MONTH = GetMonth();

This is a function command; it returns a value representing the current month (1 through 12).
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • This is a one-time read of the month. If the month changes, you will need to execute this
command again to get the value of the current month.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current month value.

See Also: Get Day (page G-45), Get Hours (page G-59), Get Minutes (page G-64), Get Day of Week (page
G-46), Get Seconds (page G-98), Get Year (page G-105), Set Day (page S-15), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-66 OptoControl Command Reference

G
Get Name of Chart Causing Current Error
Controller Action

Function: Gets the name of the chart that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors in a string table.

Details: Only works when the top queue error is not an I/O unit error (queue errors over 29).

Arguments:

Standard
Example:

Get Name of Chart Causing Current Error
Put in CHART_NAME String Variable

OptoScript
Example:

GetNameOfChartCausingCurrentError(Put in)
GetNameOfChartCausingCurrentError(CHART_NAME);

This is a procedure command; it does not return a value.

Notes: String length for name should be at least 50.

Dependencies: The top queue error must not be an I/O unit error.

See Also: Get ID of Block Causing Current Error (page G-60), Get Name of I/O Unit Causing Current Error
(page G-68)

Argument 1
Put in
String Variable
OptoControl Command Reference G-67

Get Name of I/O Unit Causing Current Error
Controller Action

Function: Gets the name of the I/O unit that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors in a string table.

Details: Only works when the top queue error is an I/O unit error (queue errors under 30).

Arguments:

Standard
Example:

Get Name of I/O Unit Causing Current Error
Put in IO_UNIT_NAME String Variable

OptoScript
Example:

GetNameOfIoUnitCausingCurrentError(Put in)
GetNameOfIoUnitCausingCurrentError(IO_UNIT_NAME);

This is a procedure command; it does not return a value.

Notes: String length for name should be at least 50.

Dependencies: The top queue error must be an I/O unit error.

See Also: Get ID of Block Causing Current Error (page G-60), Get Name of Chart Causing Current Error (page
G-67)

Argument 1
Put in
String Variable
G-68 OptoControl Command Reference

G
Get Nth Character
String Action

Function: To get the decimal ASCII value for a character in a string.

Typical Use: To examine characters in a string one by one, especially when the characters may not be
printable ASCII.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Valid range for the Index parameter (Argument 2) is 1 to the string length.
• A negative result (-46) indicates an error in the value of the Index parameter used.

Arguments:

Standard
Example:

The following example gets the decimal ASCII value for a character in the string “ABC.” If the
Index is 1, the returned value will be 65 (the decimal ASCII value for “A”). Quotes are shown in
the example for clarity only; do not use quotes in standard commands.

Get Nth Character
From String “ABC” String Literal

Index INDEX Integer 32 Variable
Put Result in ASCII_VALUE Integer 32 Variable

OptoScript
Example:

GetNthCharacter(From String, Index)
ASCII_VALUE = GetNthCharacter("ABC”, INDEX);

This is a function command; it returns the ASCII value for a character within a string. Quotes are
required in OptoScript code. The returned value can be consumed by a variable (as shown) or by
another item, such as a control structure. See Chapter 11 of the OptoControl User’s Guide for
more information.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use to search a string for a particular character, such as a carriage return (character 13).
• To avoid searching past the end of the string, use Get String Length to determine the end of

the string.

Status Codes: -46 = Bad limit—index was negative or greater than the string length.

See Also: Get Substring (page G-103), Append Character to String (page A-8), Get String Length (page
G-102)

Argument 1
From String
String Literal
String Variable

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-69

Get Number of Characters Waiting on Serial or ARCNET Port
Communication—Serial Action

Function: To get the number of characters in the receive buffer of a communication port and put it into a
numeric variable.

Typical Use: To determine if there are any characters or a particular number of characters in the receive buffer
before actually receiving them.

Details: • A value of 0 means the receive buffer is empty. A negative value indicates an error.
• Each character counts as one regardless of what it is.
• As characters are received on ports 0–3, the count will increase.
• For ports 4 and 7–10, any value greater than zero means that a complete message is waiting

in the receive buffer.
• For ports 4 and 7 (ARCNET), only four messages can be in the receive buffer.
• For this command to be meaningful, the port should not be in use by any other chart.

Arguments:

Standard
Example:

Get Number of Characters Waiting on Serial or ARCNET Port
On Port 1 Integer 32 Literal
Put in CHAR_COUNT Integer 32 Variable

OptoScript
Example:

GetNumCharsWaitingOnPort(On Port)
CHAR_COUNT = GetNumCharsWaitingOnPort(1);

This is a function command; it returns the number of characters in the receive buffer. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use to determine if the number of characters expected equals the number of characters

actually received in the buffer.
• If result > 0, there are characters in the receive buffer.
• If result = 0, there are no characters in the receive buffer.
• If result < 0, there was an error executing this command. There may or may not be any

characters in the receive buffer.

Queue Errors: -40 = Timeout—specified port already in use.
-51 = Invalid port number—use ports 0–10.

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Float Variable
Integer 32 Variable
G-70 OptoControl Command Reference

G
Get Number of Characters Waiting on Ethernet Session
Communication—Network Action

Function: To get the number of characters waiting on an Ethernet session and put it into a numeric variable.

Typical Use: To determine if there are any characters or a particular number of characters waiting before
actually receiving them.

Details: • A value of 0 means the receive buffer is empty.
• Each character counts as one regardless of what it is.
• A negative value indicates an error.
• This function can be used to determine whether a session is closed.

Arguments:

Standard
Example:

Get Number of Characters Waiting on Ethernet Session
On Session SESSION Integer 32 Variable

Put in CHAR_COUNT Integer 32 Variable

OptoScript
Example:

GetNumCharsWaitingOnEnetSession(On Session)
CHAR_COUNT = GetNumCharsWaitingOnEnetSession(SESSION);

This is a function command; it returns the number of characters waiting on an Ethernet session.
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use to determine if the number of characters expected equals the number of characters
actually received in the buffer.

• If result > 0, there are characters waiting.
• If result = 0, there are no characters waiting.
• If result < 0, there was an error executing this command. There may or may not be any

characters waiting.

Queue Errors: -42 = Receive timeout.
-74 = Session not open.
-75 = Invalid session number—use 0–127.
-77 = Controller doesn’t support Ethernet.

Argument 1
On Session
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-71

Get Off-Latch
Digital Point Action

Function: To read the state of an off-latch.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: • Reads an off-latch of a single digital input. Off-latches detect on-to-off input transitions that
would otherwise occur too fast for the controller to detect, since they are processed locally
by the digital multifunction I/O unit.

• Places the value read into the argument specified by the Put In parameter. The argument will
contain the value -1 (True) if the latch is set and 0 (False) if the latch is not set.

Arguments:

Standard
Example:

Get Off-Latch
From Point START_BUTTON Digital Input

Put in RELEASED Float Variable

OptoScript
Example:

For OptoScript, use the command Off-Latch Set? instead.

Notes: The ability to detect fast input transitions is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the off-latch feature on digital multifunction I/O units.

See Also: Get & Clear Off-Latch (page G-19), Clear Off-Latch (page C-28), Clear All Latches (page C-24),
Off-Latch Set? (page O-2)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable
G-72 OptoControl Command Reference

G
Get Off-Pulse Measurement
Digital Point Action

Function: To read the off-time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete off-pulse applied to the digital input.
• Measurement starts on the first on-to-off transition and stops on the first off-to-on

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Off-Pulse Measurement
From Point Overheat_Switch Off Pulse

Put in OFF_TIME Float Variable

OptoScript
Example:

GetOffPulseMeasurement(From Point)
OFF_TIME = GetOffPulseMeasurement(Overheat_Switch);

This is a function command; it returns the duration of the first off-pulse for the digital input. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use Get Off-Pulse Measurement Complete Status first to see if a complete off-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: Get & Restart Off-Pulse Measurement (page G-23), Get Off-Pulse Measurement Complete Status
(page G-74)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-73

Get Off-Pulse Measurement Complete Status
Digital Point Action

Function: To read the completion status of an off-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of an off-pulse measurement and stores it in the Put In
parameter. The argument will contain a -1 (True) if the measurement is complete or a 0
(False) if it is incomplete.

• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Off-Pulse Measurement Complete Status
From Point Overheat_Switch Off Pulse

Put in Pulse_Complete Integer 32 Variable

OptoScript
Example:

GetOffPulseMeasurementCompleteStatus(From Point)
Pulse_Complete = GetOffPulseMeasurementCompleteStatus(Overheat_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use this command to see if a complete off-pulse measurement has occurred. The command
will not interfere with a current off-pulse measurement.

• Once the completion status is True, use Get Off-Pulse Measurement or Get & Restart
Off-Pulse Measurement to read the value.

Dependencies: Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: Get Off-Pulse Measurement (page G-73), Get & Restart Off-Pulse Measurement (page G-23)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
G-74 OptoControl Command Reference

G
Get Off-Time Totalizer
Digital Point Action

Function: To read digital input total off time.

Typical Use: To accumulate the total off time of a device to possibly indicate downtime.

Details: • Reads the accumulated off time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Does not reset the total.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Off-Time Totalizer
From Point Heater_Output Off Totalizer

Put in Heater_Down_Time Float Variable

OptoScript
Example:

GetOffTimeTotalizer(From Point)
Heater_Down_Time = GetOffTimeTotalizer(Heater_Output);

This is a function command; it returns the total time the digital input was off. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • To ensure the totalizer is cleared at start-up, use Get & Restart Off-Time Totalizer once
before using this command for the first time.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the totalize-off feature on digital multifunction I/O units.

See Also: Get & Restart Off-Time Totalizer (page G-24)

Argument 1
From Point
Off Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-75

Get On-Latch
Digital Point Action

Function: To read the state of an on-latch.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: • Reads an on-latch of a single digital input. On-latches detect off-to-on input transitions that
would otherwise occur too fast for the controller to detect, since they are processed locally
by the digital multifunction I/O unit.

• Places the value read into the argument specified by the Put In parameter. The argument will
contain the value -1 (True) if the latch is set and 0 (False) if the latch is not set.

Arguments:

Standard
Example:

Get On-Latch
From Point ESTOP_BUTTON Smart Digital Input

Put in EMERGENCY_STOP Float Variable

OptoScript
Example:

For OptoScript, use the command On-Latch Set? instead.

Notes: The ability to detect fast input transitions is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the on-latch feature on digital multifunction I/O units.

See Also: Get & Clear On-Latch (page G-20), Clear On-Latch (page C-29), Clear All Latches (page C-24),
On-Latch Set? (page O-4)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable
G-76 OptoControl Command Reference

G
Get On-Pulse Measurement
Digital Point Action

Function: To read the on-time duration of a digital input that has had an off-on-off transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete on-pulse applied to the digital input.
• Measurement starts on the first off-to-on transition and stops on the first on-to-off

transition.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get On-Pulse Measurement
From Point Overspeed_Switch On Pulse

Put in On_Time Float Variable

OptoScript
Example:

GetOnPulseMeasurement(From Point)
On_Time = GetOnPulseMeasurement(Overspeed_Switch);

This is a function command; it returns the duration of the first on-pulse for the digital input.
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use Get On-Pulse Measurement Complete Status first to see if a complete on-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the on-pulse measurement feature on digital multifunction
I/O units.

See Also: Get & Restart On-Pulse Measurement (page G-25), Get On-Pulse Measurement Complete Status
(page G-78)

Argument 1
From Point
On Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-77

Get On-Pulse Measurement Complete Status
Digital Point Action

Function: To read the completion status of an on-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of an on-pulse measurement and stores it in the Put In
parameter. The argument will contain a -1 (True) if the measurement is complete or a 0
(False) if it is incomplete.

• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get On-Pulse Measurement Complete Status
From Point Pressure_Switch On Pulse

Put in Pulse_Complete Integer 32 Variable

OptoScript
Example:

GetOnPulseMeasurementCompleteStatus(From Point)
Pulse_Complete = GetOnPulseMeasurementCompleteStatus(Pressure_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use this command to see if a complete on-pulse measurement has occurred. The command
will not interfere with a current on-pulse measurement.

• Once the completion status is True, use Get On-Pulse Measurement or Get & Restart
On-Pulse Measurement to read the value.

Dependencies: Applies only to inputs configured with the on-pulse measurement feature on digital multifunction
I/O units.

See Also: Get & Restart On-Pulse Measurement (page G-25), Get On-Pulse Measurement (page G-77)

Argument 1
From Point
On Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable
G-78 OptoControl Command Reference

G
Get On-Time Totalizer
Digital Point Action

Function: To read digital input total on time.

Typical Use: To accumulate total on time of a device.

Details: • Reads the accumulated on time of a digital input since it was last read.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Does not reset the total.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get On-Time Totalizer
From Point Pump_Power On Totalizer

Put in Pump_Runtime Float Variable

OptoScript
Example:

GetOnTimeTotalizer(From Point)
Pump_Runtime = GetOnTimeTotalizer(Pump_Power);

This is a function command; it returns the total time the digital input was on. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • To ensure the totalizer is cleared at start-up, use Get & Restart On-Time Totalizer once
before using this command for the first time.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the totalize-on feature on digital multifunction I/O units.

See Also: Get & Restart On-Time Totalizer (page G-26)

Argument 1
From Point
On Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-79

Get Period
Digital Point Action

Function: To read the elapsed time during an on-off-on or an off-on-off transition of a digital input.

Typical Use: To measure the period of a slow shaft rotation.

Details: • Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the
next transition of the same type (one complete cycle).

• Does not restart the period measurement.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Period
From Point SHAFT_INPUT Period

Put in SHAFT_CYCLE Float Variable

OptoScript
Example:

GetPeriod(From Point)
SHAFT_CYCLE = GetPeriod(SHAFT_INPUT);

This is a function command; it returns the period for the digital input. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This command measures the first complete period only. No period measurement is
performed after the first measurement until the Get & Restart Period command is used.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • The Get & Restart Period command must be used to start the measurement.
• Applies only to inputs configured with the period feature on digital multifunction I/O units.

See Also: Get & Restart Period (page G-27)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable
G-80 OptoControl Command Reference

G
Get Period Measurement Complete Status
Digital Point Action

Function: To read the completion status of a period measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of a period measurement and stores it in the Put In parameter.
The argument will contain a -1 (True) if the measurement is complete or a 0 (False) if it
is incomplete.

• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Get Period Measurement Complete Status
From Point Pressure_Switch Period

Put in Period_Complete Integer 32 Variable

OptoScript
Example:

GetPeriodMeasurementCompleteStatus(From Point)
Period_Complete = GetPeriodMeasurementCompleteStatus(Pressure_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the OptoControl User’s Guide
for more information.

Notes: • Use this command to see if a complete period measurement has occurred. The command
will not interfere with a current period measurement.

• Once the completion status is True, use Get Period or Get & Restart Period to read the value.

Dependencies: Applies only to inputs configured with the period measurement feature on digital multifunction
I/O units.

See Also: Get & Restart Period (page G-27), Get Period (page G-80)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-81

Get PID Control Word
PID Action

Function: Reads the bits that represent the PID configuration.

Typical Use: To verify the PID configuration when troubleshooting.

Details: Bit assignments:
11 1 = Use SqRt value from input channel. 0 = Use actual input value.
10 1 = Setpoint was above high clamp. Write zero to clear.
9 1 = Setpoint was below low clamp. Write zero to clear.
8 1 = Input channel under-range. Write zero to clear.
7 1 = Loop active. 0 = Loop reset (stopped).
6 1 = Loop in auto mode. 0 = Loop in manual mode.
5 1 = Output enabled. 0 = Output disabled (disconnected).
4 1 = Output tracks input in manual mode. 0 = no action.
3 1 = Setpoint tracks input in manual mode. 0 = no action.
2 1 = Input from host. 0 = Input from channel.
1 1 = Setpoint from channel. 0 = Setpoint from host.
0 1 = Use filtered value from input channel. Must have filtering active on the input channel.

0 = Use current value of input channel.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Control Word
From PID Loop Extruder_Zone08 PID Loop

Put in PID_CTRL_WORD Integer 32 Variable

OptoScript
Example:

GetPidControlWord(From PID Loop)
PID_CTRL_WORD = GetPidControlWord(Extruder_Zone08);

This is a function command; it returns the bits that represent the PID configuration. The returned
value can be consumed by a variable (as in the example shown) or by a control structure, etc. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The PID Control Word is actually a 16-bit number. The four most significant bits are reserved.

See Also: Set PID Control Word (page S-29)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Integer 32 Variable
G-82 OptoControl Command Reference

G
Get PID D Term
PID Action

Function: Reads the derivative value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the derivative value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID D Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_DTerm Float Variable

OptoScript
Example:

GetPidDTerm(From PID Loop)
Zone08_DTerm = GetPidDTerm(Extruder_Zone08);

This is a function command; it returns the derivative value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set PID D Term (page S-30)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-83

Get PID I Term
PID Action

Function: Reads the Integral value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the Integral value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID I Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_ITerm Float Variable

OptoScript
Example:

GetPidITerm(From PID Loop)
Zone08_ITerm = GetPidITerm(Extruder_Zone08);

This is a function command; it returns the integral value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set PID I Term (page S-31)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
G-84 OptoControl Command Reference

G
Get PID Input
PID Action

Function: To read the input value (also known as the process variable) of the PID.

Typical Use: To verify that the input to the PID is within the working range.

Details: • The value read has the same engineering units as the specified PID input channel.
• A value of -32,768 means the input is out of range and the PID output is no longer

being updated.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Input
From PID Loop HEATER_3 PID Loop

Put in PID_INPUT_VALUE Float Variable

OptoScript
Example:

GetPidInput(From PID Loop)
PID_INPUT_VALUE = GetPidInput(HEATER_3);

This is a function command; it returns the input value of the PID loop. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use to detect bad or out-of-range PID input values. When such a value is found, use the

Move command to change the PID output as required.

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-85

Get PID Mode
PID Action

Function: Gets the auto/manual mode of the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads auto/manual mode from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• Checks bit 6 of the PID control word. Returns a -1 (logical True) if in auto, otherwise a zero
(logical False) is returned.

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Mode
From PID Loop Extruder_Zone08 PID Loop

Put in ZONE08_MODE Integer 32 Variable

OptoScript
Example:

GetPidMode(From PID Loop)
ZONE08_MODE = GetPidMode(Extruder_Zone08);

This is a function command; it returns a -1 if the PID loop is in auto mode or a zero if the PID loop
is in manual mode. The returned value can be consumed by a variable (as in the example shown)
or by a mathematical expression, a control structure, etc. See Chapter 11 of the OptoControl
User’s Guide for more information.

See Also: Set PID Mode to Auto (page S-33), Set PID Mode to Manual (page S-34)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
G-86 OptoControl Command Reference

G
Get PID Output
PID Action

Function: To read the output value of the PID.

Typical Use: To read the PID output and send it to a digital time proportional output (TPO) on a digital I/O unit.

Details: • The value read has the same engineering units as the specified PID output channel.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Output
From PID Loop HEATER_3 PID Loop

Put in PID_OUTPUT_VALUE Float Variable

OptoScript
Example:

GetPidOutput(From PID Loop)
PID_OUTPUT_VALUE = GetPidOutput(HEATER_3);

This is a function command; it returns the output value of the PID loop. The returned value can
be consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Define the output channel as one of the upper eight channels (these channels do not have to

physically exist).
• Scale this output channel 0–100, since the digital TPO wants to see a range of 0–100.
• Use Set TPO Percent to send the value read from the PID output to the digital TPO. Do this

based on elapsed time. For example, if the TPO period is five seconds, send the value read at
least every five seconds.

• This command can also be used to detect when the PID output is updated (which is always
at the end of the scan period).

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set TPO Percent (page S-44), Set TPO Period (page
S-45)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-87

Get PID Output Rate of Change
PID Action

Function: To read the output rate-of-change limit of the PID.

Typical Use: To verify that the output rate-of-change limit is as expected.

Details: • The output rate-of-change value defines how much the PID output can change per scan
period. The units are the same as those defined for the PID output channel.

• The default value is the span of the output channel. This allows the PID output to move as
much as 100 percent per scan period. For example, if the PID output channel is 4–20 mA,
16.00 would be returned by default, representing 100 percent of the span.

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Output Rate of Change
From PID Loop HEATER_3 PID Loop

Put in PID_RATE_LIMIT Float Variable

OptoScript
Example:

GetPidOutputRateOfChange(From PID Loop)
PID_RATE_LIMIT = GetPidOutputRateOfChange(HEATER_3);

This is a function command; it returns the output rate-of-change limit of the PID loop. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270) or consult Opto 22 Product Support.

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Output Rate of Change (page S-35), Set
PID Scan Rate (page S-37)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
G-88 OptoControl Command Reference

G
Get PID P Term
PID Action

Function: Reads the gain value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the gain value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID P Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_PTerm Float Variable

OptoScript
Example:

GetPidPTerm(From PID Loop)
Zone08_PTerm = GetPidPTerm(Extruder_Zone08);

This is a function command; it returns the gain value from the PID. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set PID P Term (page S-36)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-89

Get PID Scan Rate
PID Action

Function: Gets the PID calculation interval.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the Scan Rate value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Scan Rate
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_Scan_Rate Float Variable

OptoScript
Example:

GetPidScanRate(From PID Loop)
Zone08_Scan_Rate = GetPidScanRate(Extruder_Zone08);

This is a function command; it returns the PID calculation interval (scan rate) for the PID loop. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more
information.

Notes: Always use a float variable to store the result.

See Also: Set PID Scan Rate (page S-37)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
G-90 OptoControl Command Reference

G
Get PID Setpoint
PID Action

Function: To read the setpoint value of the PID.

Typical Use: To verify that the setpoint of the PID is as expected and to store the setpoint for later use.

Details: • The value read has the same engineering units as the specified PID setpoint.
• The setpoint can be an analog channel, or it can come from the program in the controller

using Set PID Setpoint.
• This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Arguments:

Standard
Example:

Get PID Setpoint
From PID Loop Heater_3 PID Loop

Put in Pid_Setpoint_Value Float Variable

OptoScript
Example:

GetPidSetpoint(From PID Loop)
PID_Setpoint_Value = GetPidSetpoint(Heater_3);

This is a function command; it returns the setpoint value of the PID loop. The returned value can
be consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Can be used to detect and log changes made to the PID setpoint.

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Setpoint (page S-38)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-91

Get Port of I/O Unit Causing Current Error
Controller Action

Function: To return the port number of the I/O unit that failed to respond if the top queue error is a 29.

Typical Use: Within an error handler in conjunction with Get Address of I/O Unit Causing Current Error, to log
the date and time of a timeout error as well as the name and port number of the I/O unit that
failed to respond. Use only when there are several I/O units with the same address on different
ports.

Details: The controller generates a queue error 29 (timeout) whenever an I/O unit does not respond.
This command can be used to determine the port number of the I/O unit that failed to respond.

Arguments:

Standard
Example:

Get Port of I/O Unit Causing Current Error
Put in IO_UNIT_PORT Integer 32 Variable

OptoScript
Example:

GetPortOfIoUnitCausingCurrentError()
IO_UNIT_PORT = GetPortOfIoUnitCausingCurrentError();

This is a function command; it returns the port number of the I/O unit that caused the top error
in the error queue. The returned value can be consumed by a variable (as in the example shown)
or by a mathematical expression, a control structure, etc. See Chapter 11 of the OptoControl
User’s Guide for more information.

Notes: • This command is typically used in an error handling chart.
• In a system with many I/O units, this command can pinpoint exactly which I/O units are not

responding. The result can be put in an integer table or appended to an error message string
for display on an HMI screen.

• Always use Error on I/O Unit? to determine if the top error in the error queue is an I/O unit
error before using this command.

• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be a 29.

See Also: Get Address of I/O Unit Causing Current Error (page G-29), Error on I/O Unit? (page E-20), Remove
Current Error and Point to Next Error (page R-26)

Argument 1
Put in
Integer 32 Variable
G-92 OptoControl Command Reference

G
Get Priority
Chart Action

Function: Returns the current priority of the chart using this command.

Typical Use: To determine the priority prior to changing it, so that it can be restored to its former value.
Primarily used in a subroutine that increases its own priority while running and restores the
priority of the chart that called it prior to ending.

Details: • The default priority of all charts is 1.
• Since charts with different priorities can call the same subroutine, this command allows the

subroutine to save and restore the priority if the subroutine needs to change it.

Arguments:

Standard
Example:

Get Priority
Put in PRIORITY Integer 32 Variable

OptoScript
Example:

GetPriority()
PRIORITY = GetPriority();

This is a function command; it returns the priority of the chart in which the command exists. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more
information.

See Also: Get Priority of Host Task (page G-94), Set Priority (page S-39)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-93

Get Priority of Host Task
Chart Action

Function: Returns the current priority of the specified host task.

Typical Use: To determine the priority of a host task prior to changing it so that it can be restored to its
former value.

Details: The default priority of all tasks is 1.

Arguments:

Standard
Example:

Get Priority of Host Task
On Port 0 Integer 32 Literal
Put in PRIORITY Integer 32 Variable

OptoScript
Example:

GetPriorityOfHostTask(On Port)
PRIORITY = GetPriorityOfHostTask(0);

This is a function command; it returns the priority of the host task. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Get Priority (page G-93), Set Priority of Host Task (page S-40)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Integer 32 Variable
G-94 OptoControl Command Reference

G
Get Quadrature Counter
Digital Point Action

Function: To read a quadrature counter value.

Typical Use: To read incremental encoders for positional or velocity measurement.

Details: • Reads the current value of a quadrature counter and places it in an argument specified by
the Put In parameter.

• Does not reset the counter at the I/O unit to zero.
• Does not stop the quadrature counter from continuing to count.
• Valid range is -2,147,483,648 to 2,147,483,647 counts.
• A positive value indicates forward movement (phase B leads phase A) and a negative value

indicates reverse movement (phase A leads phase B).
• A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and
2, 3 and 4 are not.

Arguments:

Standard
Example:

Get Quadrature Counter
From Point ENCODER_1 Quadrature Counter

Put in TABLE_POSITION Integer 32 Variable

OptoScript
Example:

GetQuadratureCounter(From Point)
TABLE_POSITION = GetQuadratureCounter(ENCODER_1);

This is a function command; it returns the value of the quadrature counter. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • The maximum encoder RPM will be related to the number of pulses per revolution that the
encoder provides.

• The maximum input frequency is 12,500 Hz (pulses per second). Converting to minutes
results in (12,500 pulses per second) * (60 seconds per minute) = 750,000 pulses per minute.

• Max Encoder RPM = (750,000 Pulses per Minute) / (Encoder Pulses [or lines] per Revolution)

Dependencies: • Always use Start Quadrature Counter once before using this command for the first time.
• Applies only to input channels configured with the quadrature feature on digital

multifunction I/O units.

See Also: Get & Clear Quadrature Counter (page G-21), Start Quadrature Counter (page S-61), Stop
Quadrature Counter (page S-67), Clear Quadrature Counter (page C-32)

Argument 1
From Point
Quadrature Counter

Argument 2
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-95

Get RTU/M4IO Temperature
Controller Action

Function: To obtain the temperature inside the M4RTU or M4IO controller case.

Typical Use: To determine if heating or cooling is required or has failed.

Details: • The temperature is reported in either Celsius or Fahrenheit depending on how I/O unit 1 on
the local bus is configured.

• The temperature range is -40°C to 125°C (-40°F to 257°F).

Arguments:

Standard
Example:

Get RTU/M4IO Temperature
Put in RTU_TEMP Float Variable

OptoScript
Example:

GetRtuM4IoTemperature()
RTU_TEMP = GetRtuM4IoTemperature();

This is a function command; it returns the temperature inside the controller case. The returned
value can be consumed by a variable (as in the example shown) or by a mathematical expression,
a control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • If I/O unit 1 is not configured, this command returns the temperature in degrees Celsius.
• To read temperature in degrees Fahrenheit, make sure TEMP CNV is set to Degrees F when

configuring I/O unit 1. (To verify, select I/O Unit from the Configurator’s Configure menu,
select the I/O unit, and click CHANGE.)

• Accuracy is:
±0.5°C from 0°C to 70°C
±1°C from -40°C to 0°C and from 70°C to 85°C
±2°C from -55°C to -40°C and from 85°C to 125°C

Dependencies: An M4RTU or M4IO must be in use.

Result Data: If this command is used for a controller other than an M4RTU or M4IO, an error value of
-32,768 is returned.

See Also: Get RTU/M4IO Voltage (page G-97)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-96 OptoControl Command Reference

G
Get RTU/M4IO Voltage
Controller Action

Function: To read the input voltage furnished to the M4RTU or M4IO power supply.

Typical Use: To monitor battery voltage supplied to the M4RTU or M4IO power supply to determine if it’s
getting low.

Details: • Reads voltage supplied to the input terminals by others.
• Accuracy is plus or minus five percent.
• Works with both AC and DC.

Arguments:

Standard
Example:

Get RTU/M4IO Voltage
Put in RTU_VOLTAGE Float Variable

OptoScript
Example:

GetRtuM4IoVoltage()
RTU_VOLTAGE = GetRtuM4IoVoltage();

This is a function command; it returns the input voltage supplied to the the controller’s power
supply. The returned value can be consumed by a variable (as in the example shown) or by a
mathematical expression, a control structure, etc. See Chapter 11 of the OptoControl User’s
Guide for more information.

Dependencies: An M4RTU or M4IO must be in use.

Result Data: If this command is used for a controller other than an M4RTU or M4IO, an error value of -32,768
is returned.

See Also: Get RTU/M4IO Temperature (page G-96)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-97

Get Seconds
Time/Date Action

Function: To read the second (0 through 59) from the controller’s real-time clock/calendar and put it into a
numeric variable.

Typical Use: To use seconds information in an OptoControl program.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current time is 08:51:26, this action would place the value 26 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Seconds
Put In SECONDS Integer 32 Variable

OptoScript
Example:

GetSeconds()
SECONDS = GetSeconds();

This is a function command; it returns the second (0 through 59) from the controller’s real-time
clock. The returned value can be consumed by a variable (as in the example shown) or by a
mathematical expression, a control structure, etc. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: • This is a one-time read of the second. If the second changes, you will need to execute this
command again to get the value of the current second.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current seconds value.

See Also: Get Day (page G-45), Get Hours (page G-59), Get Minutes (page G-64), Get Month (page G-66),
Get Day of Week (page G-46), Get Year (page G-105), Set Day (page S-15), Set Day of Week (page
S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds (page
S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-98 OptoControl Command Reference

G
Get Seconds Since Midnight
Time/Date Action

Function: Gets the number of seconds since midnight.

Typical Use: In place of timers to determine time between events or to time stamp an event with a number
rather than a string.

Details: Value returned is an integer from 0 to 86,400.

Arguments:

Standard
Example:

Get Seconds Since Midnight
Put in TIME_IN_SECONDS Integer 32 Variable

OptoScript
Example:

GetSecondsSinceMidnight()
TIME_IN_SECONDS = GetSecondsSinceMidnight();

This is a function command; it returns the number of seconds since midnight. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: To find elapsed time in HOURS, MINUTES, SECONDS since midnight using standard commands:

Move the seconds to an integer 32 variable: TEMP_VAR
Divide TEMP_VAR by: 3600 and move to: HOURS
MODULO TEMP_VAR by: 3600 and move to: TEMP_VAR
Divide TEMP_VAR by: 60 and move to: MINUTES
MODULO TEMP_VAR by: 60 and move to: SECONDS.

To find the same thing using OptoScript code:
TEMP_VAR = GetSecondsSinceMidnight();

HOURS = TEMP_VAR / 3600;

MINUTES = (TEMP_VAR % 3600 / 60;
SECONDS = (TEMP_VAR % 3600) % 60;

See Also: Get Seconds (page G-98)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-99

Get Simple-64 I/O Unit as Binary Value
I/O Unit Action

Function: To read the current on/off status of all digital channels on the specified SNAP Simple I/O unit.

Typical Use: To efficiently read the status of all digital channels on a single I/O unit with one command.

Details: • Reads the current on/off status of all 64 digital channels on the SNAP Simple I/O unit
specified.

• Updates the IVALs and XVALs for all 64 channels.
• Reads outputs as well as inputs. Does not read analog channels at any position on the rack.
• Returns status (a 64-bit integer) to the numeric variable specified.
• If a channel is on, there will be a “1” in the respective bit. If the channel is off, there will be

a “0” in the respective bit. If the channel is analog, there will be a “0” in the respective bit.
• If a specific channel is disabled, it will not be read. If the entire I/O unit is disabled, none of

the channels will be read.
• The least significant bit corresponds to channel zero.

Arguments:

Standard
Example:

Get Simple-64 I/O Unit as Binary Value
From INPUT_BOARD_2 SNAP Simple 64
Put in IN_BD2_STATUS Integer 64 Variable

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital channels on the
I/O unit. Channels with a value of 1 are on; channels with a value of 0 are off if digital, or they
are analog channels.

OptoScript
Example:

GetSimple64IoUnitAsBinaryValue(I/O Unit)
IN_BD2_STATUS = GetSimple64IoUnitAsBinaryValue(INPUT_BOARD_2);

This is a function command; it returns the on/off status of all digital points on the I/O unit, in the
form of a bitmask. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the
OptoControl User’s Guide for more information.

Notes: Use Bit Test to examine individual bits.

See Also: Set Simple-64 I/O Unit from MOMO Masks (page S-42)

Argument 1
From
SNAP Simple 64

Argument 2
Put in
Integer 64 Variable

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
G-100 OptoControl Command Reference

G
Get Simple-64 I/O Unit Latches
I/O Unit Action

Function: To read all on and off latches (as well as the state of all points) on a SNAP Simple I/O unit.

Typical Use: To read all point states and all latches in a bank, instead of individually.

Details: • Reads the states of all points and the states of all on-latches and off-latches at once.
• Off-latches detect on-off-on input transitions; on-latches detect off-on-off transitions. These

quick transitions occur too fast for the controller to detect otherwise, since they are
processed by the I/O unit.

Arguments:

Arguments 2, 3, and 4 are returned as 64-bit masks. If the point or latch is on, a 1 appears in
the respective bit. If the point or latch is off, a 0 appears. For example:

To save space, this example shows only the first eight points and the last eight points. You can
see that the points (or latches) 1, 6, 58, 59, 61, and 62 are on.

Standard
Example:

Get Simple-64 I/O Unit Latches
From I/O_Unit_A SNAP Simple 64
State Unit_A_State Integer 64 Variable

On-Latch Unit_A_On_Latches Integer 64 Variable
Off-Latch Unit_A_Off_Latches Integer 64 Variable

OptoScript
Example:

GetSimple64IoUnitLatches(From, State, On-Latch, Off-Latch)
GetSimple64IoUnitLatches(I/O_Unit_A, Unit_A_State, Unit_A_On_Latches,

Unit_A_Off_Latches);

This is a procedure command; it does not return a value. See Chapter 11 of the OptoControl User’s
Guide for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

See Also: Get & Clear Simple-64 I/O Unit Latches (page G-22), Get Off-Latch (page G-72), Clear Off-Latch
(page C-28), Clear All Latches (page C-24)

Argument 1
From
SNAP Simple 64

Argument 2
State
Integer 64 Variable

Argument 3
On-Latch
Integer 64 Variable

Argument 4
Off-Latch
Integer 64 Variable

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Bit
mask

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
OptoControl Command Reference G-101

Get String Length
String Action

Function: To get the length of a string.

Typical Use: To determine if a string is empty prior to searching it for a character.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• An empty string has a length of zero.
• The string length is not the same as the width. Width is the maximum string length and is

set in the OptoControl Configurator; it does not change at run time. String length, on the
other hand, may change dynamically as the string is modified at run time.

• Spaces and nulls count as part of the length.
• A string with width 10 containing “Hello ” has a length of six (five for “Hello” plus one for

the trailing space).

Arguments:

Standard
Example:

The following example gets the length of the string MY STRING (for example, if MY STRING is
“ABC” then STRING LEN is 3):

Get String Length
Of String MY_STRING String Literal

Put Result in STRING_LEN Integer 32 Variable

OptoScript
Example:

GetStringLength(Of String)
STRING_LEN = GetStringLength(MY_STRING);

This is a function command; it returns the length of the string. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use before Get Nth Character to stay within the string length.

See Also: Get Nth Character (page G-69)

Argument 1
Of String
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable
G-102 OptoControl Command Reference

G
Get Substring
String Action

Function: To copy a portion of a string.

Typical Uses: To parse or extract data from a string, to skip leading or trailing characters, or to extract data from
strings that may contain starting and ending character sequences generated by barcode readers
or scales.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Valid range for Start At Index (Argument 2) is 1 to the string length. If it is less than 1, 1 will

be assumed.
• If the combination of the Start At Index (Argument 2) and Num. Characters (Argument 3)

extend beyond the length of the source string, only the available portion of the source string
will be returned.

• The following are examples of this command applied to the string “MONTUEWEDTHRFRI”:
Start At Number of Characters Substring Returned

1 3 “MON”
4 3 “TUE”
1 4 “MONT”

14 3 “RI”
16 5 “”

Arguments:

Standard
Example:

The following example gets a single day from the string “MONTUEWEDTHRFRI”; quotes are
shown here for clarity only. Do not use them in standard commands.

Get Substring
From String “MONTUEWEDTHRFRI” String Literal

Start at Index INDEX Integer 32 Variable
Num. Characters 3 Integer 32 Literal

Put Result in STRING String Variable

OptoScript
Example:

GetSubstring(From String, Start at Index, Num. Characters, Put Result in)
GetSubstring("MONTUEWEDTHRFRI", INDEX, 3, STRING);

This is a procedure command; it does not return a value. Quotes are required in OptoScript code.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• You can get text that follows a delimiter (such as a space) within a string. Create a loop that

first uses Get Nth Character to extract a character, then compares it to the delimiter
(character 32 in the case of a space). If the character is equal to the delimiter, add 1 to the N
argument and use the new N as the Start At parameter above.

• See Move from String Table for a similar example.

See Also: Get Nth Character (page G-69)

Argument 1
From String
String Literal
String Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Num. Characters
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
String Variable
OptoControl Command Reference G-103

Get System Time
Time/Date Action

Function: Gets the number of seconds since the controller has been turned on.

Typical Use: Accumulate “up-time.”

Details: Value returned is an integer from zero to two billion.

Arguments:

Standard
Example:

Get System Time
Put in TIME_IN_SECONDS Integer 32 Variable

OptoScript
Example:

GetSystemTime()
TIME_IN_SECONDS = GetSystemTime();

This is a function command; it returns the number of seconds since the controller was last turned
on. The returned value can be consumed by a variable (as in the example shown) or by a
mathematical expression, a control structure, etc. See Chapter 11 of the OptoControl User’s
Guide for more information.

See Also: Get Seconds Since Midnight (page G-99)

Argument 1
Put in
Float Variable
Integer 32 Variable
G-104 OptoControl Command Reference

G
Get Year
Time/Date Action

Function: To read the year value (00 through 99) from the controller’s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To use year information in an OptoControl program.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2000, this action would place the value 00 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

Get Year
Put In YEAR Integer 32 Variable

OptoScript
Example:

GetYear()
YEAR = GetYear();

This is a function command; it returns the last two digits of the year (00 through 99). The returned
value can be consumed by a variable (as in the example shown) or by a mathematical expression,
a control structure, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • This is a one-time read of the year. If the year changes, you will need to execute this
command again to get the value of the current year.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current year value.

See Also: Get Day (page G-45), Get Hours (page G-59), Get Minutes (page G-64), Get Month (page G-66),
Get Seconds (page G-98), Get Day of Week (page G-46), Set Day (page S-15), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
Put in
Float Variable
Integer 32 Variable
OptoControl Command Reference G-105

Greater?
Logical Condition

Function: To determine if one numeric value is greater than another.

Typical Use: To determine if a counter has reached an upper limit.

Details: • Determines if Argument 1 is greater than Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 False
-1 0 False
-1 -3 True

22.221 22.220 True

• Evaluates True if Argument 1 is greater than Argument 2, False otherwise.

Arguments:

Standard
Example:

Is CALCULATED_VALUE Integer 32 Variable
Greater?

Than 1000 Integer 32 Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the > operator.
if (CALCULATED_VALUE > 1000) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Use Within Limits? to test for an approximate match. To test for less than or equal, use
either Less Than or Equal? or the false exit.

See Also: Less? (page L-1), Not Equal? (page N-4), Greater Than or Equal? (page G-107), Less Than or Equal?
(page L-2), Within Limits? (page W-1)

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
Than
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
G-106 OptoControl Command Reference

G
Greater Than or Equal?
Logical Condition

Function: To determine if one numeric value is greater than or equal to another.

Typical Use: To determine if a value has reached an upper limit.

Details: • Determines if Argument 1 is greater than or equal to Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 True
1 0 True

-32768 -32767 False
22221 2222 True

• Evaluates True if the first value is greater than or equal to the second, False otherwise.

Arguments:

Standard
Example:

Is ROOM_TEMP Analog Input
Greater Than or Equal?

To 78.5000 Float Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the >= operator.
if (ROOM_TEMP >= 78.5000) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Use Within Limits? to test for an approximate match. To test for less than, use either Less?
or the False exit.

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
OptoControl Command Reference G-107

• When using analog values or digital features in this command, be sure to take into
consideration the units that the value is read in and adjust the test values accordingly.

See Also: Less? (page L-1), Not Equal? (page N-4), Less Than or Equal? (page L-2), Within Limits? (page
W-1)

Greater Than or Equal to Table Element?
Logical Condition

Function: To determine if a numeric value is greater than or equal to a specified value in a float or
integer table.

Typical Use: To store peak values.

Details: • Determines if one value (Argument 1) is greater than or equal to another (a value at index
Argument 2 in float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 True
22.22 22.222 False

-32768 -32767 False
22221 2222 True

• Evaluates True if the first value is greater than or equal to the second, False otherwise.

Arguments: Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
G-108 OptoControl Command Reference

G
Standard
Example:

Is THIS_READING Float Variable
Greater Than or Equal to Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the >= operator.
if (THIS_READING >= TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• To test for less than, use either Less Than Table Element? or the False exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to table size.

See Also: Less Than Table Element? (page L-5), Not Equal to Table Element? (page N-5), Less Than or Equal
to Table Element? (page L-3)

Greater Than Table Element?
Logical Condition

Function: To determine if a numeric value is greater than a specified value in a float or integer table.

Typical Use: To store peak values.

Details: • Determines if one value (Argument 1) is greater than another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 True
-98.765 -98.765 False

1 0 True
22221 2222 True

• Evaluates True if the first value is greater than the second, False otherwise.
OptoControl Command Reference G-109

Arguments:

Standard
Example:

Is THIS_READING Float Variable
Greater Than Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the > operator.
if (THIS_READING > TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• To test for less than or equal to, use either Less Than or Equal to Table Element? or the False
exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Less Than Table Element? (page L-5), Not Equal to Table Element? (page N-5), Greater Than or
Equal to Table Element? (page G-108), Less Than or Equal to Table Element? (page L-3)

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
G-110 OptoControl Command Reference

H
 H
Host Task Received a Message?
Chart Condition

Function: To determine if a message has been received on the specified host port.

Typical Use: To determine if OptoDisplay has stopped communicating with the controller.

Details: Evaluates True if a message has been received on the specified host port since the last use of
this command, False otherwise.

Arguments:

Standard
Example:

On Port 4 Integer 32 Literal
Host Task Received a Message?

OptoScript
Example:

HasHostTaskReceivedMessage(On Port)
if (HasHostTaskReceivedMessage(4)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

Queue Errors: 30 = Incorrect port number—use zero to four or eight.

See Also: ARCNET Node Present? (page A-12) ARCNET Message Address Equal to? (page A-11)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference H-1

Hyperbolic Cosine
Mathematical Action

Function: To derive the hyperbolic cosine of a value.

Typical Use: To solve hyperbolic calculations.

Details: • Calculates the hyperbolic cosine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a value from -88.33654 to 88.72283.

Arguments:

Standard
Example:

Hyperbolic Cosine
Of 2.0 Float Literal

Put Result in ANSWER Float Variable

OptoScript
Example:

HyperbolicCosine(Of)
ANSWER = HyperbolicCosine(2.0);

This is a function command; it returns the hyperbolic cosine of the value. The returned value can
be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Queue Errors: 33 = Overflow error—result too large.

See Also: Hyperbolic Sine (page H-3), Hyperbolic Tangent (page H-4)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
H-2 OptoControl Command Reference

H
Hyperbolic Sine
Mathematical Action

Function: To derive the hyperbolic sine of a value.

Typical Use: To solve hyperbolic calculations.

Details: • Calculates the hyperbolic sine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a value from -88.33654 to 88.72283.

Arguments:

Standard
Example:

Hyperbolic Sine
Of 2.0 Float Literal

Put Result in ANSWER Float Variable

OptoScript
Example:

HyperbolicSine(Of)
ANSWER = HyperbolicSine(2.0);

This is a function command; it returns the hyperblic sine of the value. The returned value can be
consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Queue Errors: 33 = Overflow error—result too large.

See Also: Hyperbolic Cosine (page H-2), Hyperbolic Tangent (page H-4)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference H-3

Hyperbolic Tangent
Mathematical Action

Function: To derive the hyperbolic tangent of a value.

Typical Use: To solve hyperbolic calculations.

Details: • Calculates the hyperbolic tangent of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a value between -8.21 and 8.665.
• The result is a value ranging from -1.0 to 1.0.

Arguments:

Standard
Example:

Hyperbolic Tangent
Of 2.0 Float Literal

Put Result in ANSWER Float Variable

OptoScript
Example:

HyperbolicTangent(Of)
ANSWER = HyperbolicTangent(2.0);

This is a function command; it returns the hyperbolic tangent of the value. The returned value can
be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Hyperbolic Cosine (page H-2), Hyperbolic Sine (page H-3)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
H-4 OptoControl Command Reference

I
 I
Increment Variable
Mathematical Action

Function: To increase the value specified by 1.

Typical Use: To control loop counters and other counting applications.

Details: Same as adding 1: 8 becomes 9, -1 becomes 0, 12.33 becomes 13.33, etc.

Arguments:

Standard
Example:

Increment Variable
LOOP_COUNTER Integer 32 Variable

OptoScript
Example:

IncrementVariable(Variable)
IncrementVariable(LOOP_COUNTER);

This is a procedure command; it does not return a value.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Executes faster than adding 1.

See Also: Decrement Variable (page D-1),

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable
OptoControl Command Reference I-1

Interrupt Disabled for Event?
Event/Reaction Condition

Function: To determine if the interrupt for a specific event/reaction is inactive.

Typical Use: To verify the active/inactive state of the interrupt for a specific event/reaction.

Details: • Evaluates True if the interrupt for the specified event/reaction is not active, False if it is
active.

• Event/reactions still occur when the interrupt is disabled as long as they are active.

Arguments:

Standard
Example:

Event/Reaction Sequence_Finished
Interrupt Disabled for Event?

OptoScript
Example:

IsInterruptDisabledForEvent(Event/Reaction)
if (IsInterruptDisabledForEvent(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Enable Interrupt on Event (page E-10), Interrupt Enabled for Event? (page I-3)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
I-2 OptoControl Command Reference

I
Interrupt Enabled for Event?
Event/Reaction Condition

Function: To determine if the interrupt for a specific event/reaction is active.

Typical Use: To verify the active/inactive state of the interrupt for a specific event/reaction.

Details: • Evaluates True if the interrupt for the specified event/reaction is active, False if it is
not active.

• Event/reactions still occur when the interrupt is disabled as long as they are active.

Arguments:

Standard
Example:

Event/Reaction Sequence_Finished
Interrupt Enabled for Event?

OptoScript
Example:

IsInterruptEnabledForEvent(Event/Reaction)
if (IsInterruptEnabledForEvent(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can
be referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Enable Interrupt on Event (page E-10), Interrupt Disabled for Event? (page I-2)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction
OptoControl Command Reference I-3

Interrupt on Port0?
Communication—Serial Condition

Function: To determine if the I/O unit that generated the interrupt is connected to COM Port 0 of
the controller.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit may have
triggered the interrupt.

Details: Evaluates True if the I/O unit that generated the interrupt is on COM Port 0, False otherwise.

Arguments: None.

Standard
Example:

Interrupt on Port0?

OptoScript
Example:

IsInterruptOnPort0()
if (IsInterruptOnPort0()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Generating Interrupt? to determine which I/O unit on COM Port 0 generated
the interrupt.

• See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Interrupt on Port1? (page I-4), Interrupt on Port2? (page I-5), Interrupt on Port3? (page I-6),
Interrupt on Port6? (page I-6), Generating Interrupt? (page G-9), Get Active Interrupt Mask (page
G-28)

Interrupt on Port1?
Communication—Serial Condition

Function: To determine if the I/O unit that generated the interrupt is connected to COM Port 1 of
the controller.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit may have
triggered the interrupt.

Details: Evaluates True if the I/O unit that generated the interrupt is on COM Port 1, False otherwise.

Arguments: None.

Standard
Example:

Interrupt on Port1?
I-4 OptoControl Command Reference

I
OptoScript

Example:
IsInterruptOnPort1()
if (IsInterruptOnPort1()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Generating Interrupt? to determine which I/O unit on COM Port 1 generated
the interrupt.

• See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Interrupt on Port0? (page I-4), Interrupt on Port2? (page I-5), Interrupt on Port3? (page I-6),
Interrupt on Port6? (page I-6), Generating Interrupt? (page G-9), Get Active Interrupt Mask (page
G-28)

Interrupt on Port2?
Communication—Serial Condition

Function: To determine if the I/O unit that generated the interrupt is connected to COM Port 2 of
the controller.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit may have
triggered the interrupt.

Details: Evaluates True if the I/O unit that generated the interrupt is on COM Port 2, False otherwise.

Arguments: None.

Standard
Example:

Interrupt on Port2?

OptoScript
Example:

IsInterruptOnPort2()
if (IsInterruptOnPort2()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Generating Interrupt? to determine which I/O unit on COM Port 2 generated
the interrupt.

• See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Interrupt on Port1? (page I-4), Interrupt on Port0? (page I-4), Interrupt on Port3? (page I-6),
Interrupt on Port6? (page I-6), Generating Interrupt? (page G-9), Get Active Interrupt Mask (page
G-28)
OptoControl Command Reference I-5

Interrupt on Port3?
Communication—Serial Condition

Function: To determine if the I/O unit that generated the interrupt is connected to COM Port 3 of
the controller.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit may have
triggered the interrupt.

Details: Evaluates True if the I/O unit that generated the interrupt is on COM Port 3, False otherwise.

Arguments: None.

Standard
Example:

Interrupt on Port3?

OptoScript
Example:

IsInterruptOnPort3()
if (IsInterruptOnPort3()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Generating Interrupt? to determine which I/O unit on COM Port 3 generated
the interrupt.

• See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Interrupt on Port1? (page I-4), Interrupt on Port2? (page I-5), Interrupt on Port0? (page I-4),
Interrupt on Port6? (page I-6), Generating Interrupt? (page G-9), Get Active Interrupt Mask (page
G-28)

Interrupt on Port6?
Communication—Serial Condition

Function: To determine if the I/O unit that generated the interrupt is connected to COM Port 6 of
the controller.

Typical Use: To reduce the number of I/O units that must be polled to determine which I/O unit may have
triggered the interrupt.

Details: Evaluates True if the I/O unit that generated the interrupt is on COM Port 6, False otherwise.

Arguments: None.

Standard
Example:

Interrupt on Port6?
I-6 OptoControl Command Reference

I
OptoScript

Example:
IsInterruptOnPort6()
if (IsInterruptOnPort6()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Use Generating Interrupt? to determine which I/O unit on COM Port 6 generated
the interrupt.

• See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Interrupt on Port1? (page I-4), Interrupt on Port2? (page I-5), Interrupt on Port3? (page I-6),
Interrupt on Port0? (page I-4), Generating Interrupt? (page G-9), Get Active Interrupt Mask (page
G-28)

I/O Point Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified I/O point
is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

I/O Point PUMP_3_STATUS Analog Input
I/O Point Communication Enabled?

OptoScript
Example:

IsIoPointCommEnabled(I/O Point)
if (IsIoPointCommEnabled(PUMP_3_STATUS)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: I/O Unit Communication Enabled? (page I-8)

Argument 1
I/O Point
Analog Input
Analog Output
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference I-7

I/O Unit Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified I/O unit
is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

I/O Unit PUMP_HOUSE B3000 SNAP Digital
I/O Unit Communication Enabled?

OptoScript
Example:

IsIoUnitCommEnabled(I/O Unit)
if (IsIoUnitCommEnabled(PUMP_HOUSE)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: I/O Point Communication Enabled? (page I-7), I/O Unit Ready? (page I-9)

Argument 1
I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
I-8 OptoControl Command Reference

I
I/O Unit Ready?
I/O Unit Condition

Function: Tests communication with the specified I/O unit.

Typical Use: To determine if the I/O unit is operational and that communication with it is functional.

Details: Evaluates True if the test communication to the I/O unit was successful.

Arguments:

Standard
Example:

Is PUMP_HOUSE B3000 SNAP Digital
I/O Unit Ready?

OptoScript
Example:

IsIoUnitReady(I/O Unit)
if (IsIoUnitReady(PUMP_House)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Ideal for determining “System Ready” status.
• With Ethernet, if power goes off, the I/O unit will not be ready. If you have just disabled the

unit, however, it will show as ready because the session is still open, even though it is not
communicating. Use Enable Communication to I/O Unit to open a new session.

See Also: I/O Point Communication Enabled? (page I-7), I/O Unit Communication Enabled? (page I-8)

Argument 1
Is
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
OptoControl Command Reference I-9

IVAL Set Analog from Table
Simulation Action

Function: Writes to the internal value (IVAL) of all 16 analog channels.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows all 16 IVALs to be modified as if they were being changed by
real I/O.

Arguments:

Standard
Example:

IVAL Set Analog from Table
Start at Index 0 Integer 32 Literal

Of Table TEST_TABLE Float Table
On I/O Unit AI_101 G4 Analog Multifunction I/O Unit

OptoScript
Example:

IvalSetAnalogFromTable(Start at Index, Of Table, On I/O Unit)
IvalSetAnalogFromTable(0, TEST_TABLE, AI_101);

This is a procedure command; it does not return a value.

Notes: Primarily used to write to inputs.

Dependencies: Communication to the specified I/O unit must be disabled for this command to
work properly.

See Also: IVAL Set Analog Point (page I-11), Disable Communication to All I/O Units (page D-5),
Disable Communication to I/O Unit (page D-9)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table

Argument 3
On I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
I-10 OptoControl Command Reference

I
IVAL Set Analog Point
Simulation Action

Function: Writes to the internal value (IVAL) of an analog input or output.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Analog Point
To 5.63 Float Literal

On Point PROCESS_PH Analog Input

OptoScript
Example:

IvalSetAnalogPoint(To, On Point)
IvalSetAnalogPoint(5.63, PROCESS_PH);

This is a procedure command; it does not return a value.

Notes: Primarily used to write to inputs.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
Analog Output
OptoControl Command Reference I-11

IVAL Set Counter
Simulation Action

Function: Writes to the internal value (IVAL) of a counter digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Counter
To 2484 Integer 32 Literal

On Point PROCESS_FLOW_TOTAL Counter

OptoScript
Example:

IvalSetCounter(To, On Point)
IvalSetCounter(2484, PROCESS_FLOW_TOTAL);

This is a procedure command; it does not return a value.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Counter
I-12 OptoControl Command Reference

I
IVAL Set Digital Binary
Simulation Action

Function: Writes to the internal value (IVAL) of all 16 digital outputs on the specified I/O unit.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified I/O unit is disabled.
This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Digital Binary
On Mask PUMPS_ON_MASK Integer 32 Variable
Off Mask 0 Integer 32 Literal

On I/O Unit PUMP_CTRL B3000 SNAP Digital

OptoScript
Example:

IvalSetDigitalBinary(On Mask, Off Mask, On I/O Unit)
Ival SetDigitalBinary(PUMPS_ON_MASK, 0, PUMP_CTRL);

This is a procedure command; it does not return a value.

Dependencies: Communication to the I/O unit must be disabled for this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
On I/O Unit
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital
OptoControl Command Reference I-13

IVAL Set Frequency
Simulation Action

Function: Writes to the internal value (IVAL) of a digital frequency input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Frequency
To 400 Integer 32 Literal

On Point Process_Flow_Rate Frequency

OptoScript
Example:

IvalSetFrequency(To, On Point)
IvalSetFrequency(400, Process_Flow_Rate);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–65535.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Frequency
I-14 OptoControl Command Reference

I
IVAL Set Off-Latch
Simulation Action

Function: Writes to the internal value (IVAL) of a digital latch input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed
by real I/O.

• Any non-zero value sets the latch; zero clears the latch.

Arguments:

Standard
Example:

IVAL Set Off-Latch
To -1 Integer 32 Literal

On Point Process_Stop_Button Digital Input

OptoScript
Example:

IvalSetOffLatch(To, On Point)
IvalSetOffLatch(-1, Process_Stop_Button);

This is a procedure command; it does not return a value.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Input
OptoControl Command Reference I-15

IVAL Set Off-Pulse
Simulation Action

Function: Writes to the internal value (IVAL) of a digital pulse input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Off-Pulse
To 150000 Integer 32 Literal

On Point TIME_PULSE_INPUT Off Pulse

OptoScript
Example:

IvalSetOffPulse(To, On Point)
IvalSetOffPulse(150000, TIME_PULSE_INPUT);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Off Pulse
I-16 OptoControl Command Reference

I
IVAL Set Off-Totalizer
Simulation Action

Function: Writes to the internal value (IVAL) of a digital totalizer input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Off-Totalizer
To 36000000 Integer 32 Literal

On Point PUMP_OFF_TIME Totalizer Off

OptoScript
Example:

IvalSetOffTotalizer(To, On Point)
IvalSetOffTotalizer(36000000, PUMP_OFF_TIME);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Off Totalizer
OptoControl Command Reference I-17

IVAL Set On-Latch
Simulation Action

Function: Writes to the internal value (IVAL) of a digital latch input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed
by real I/O.

• Any non-zero value sets the latch; zero clears the latch.

Arguments:

Standard
Example:

IVAL Set On-Latch
To 0 Integer 32 Literal

On Point Process_Start_Button Digital Input

OptoScript
Example:

IvalSetOnLatch(To, On Point)
IvalSetOnLatch(0, Process_Start_Button);

This is a procedure command; it does not return a value.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Input
I-18 OptoControl Command Reference

I
IVAL Set On-Pulse
Simulation Action

Function: Writes to the internal value (IVAL) of a digital pulse input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set On-Pulse
To 133300 Integer 32 Literal

On Point TIME_PULSE_INPUT On Pulse

OptoScript
Example:

IvalSetOnPulse(To, On Point)
IvalSetOnPulse(133300, TIME_PULSE_INPUT);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
On Pulse
OptoControl Command Reference I-19

IVAL Set On-Totalizer
Simulation Action

Function: Writes to the internal value (IVAL) of a digital totalizer input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set On-Totalizer
To 72000000 Integer 32 Literal

On Point PUMP_ON_TIME On Totalizer

OptoScript
Example:

IvalSetOnTotalizer(To, On Point)
IvalSetOnTotalizer(72000000, PUMP_ON_TIME);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
On Totalizer
I-20 OptoControl Command Reference

I
IVAL Set Period
Simulation Action

Function: Writes to the internal value (IVAL) of a digital input configured to measure a time period.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Period
To 5.63 Float Literal

On Point Pump_On_Time Period

OptoScript
Example:

IvalSetPeriod(To, On Point)
IvalSetPeriod(5.63, Pump_On_Time);

This is a procedure command; it does not return a value.

Notes: Value to write is in seconds.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Get Period (page G-80), Disable Communication to All I/O Units (page D-5), Disable
Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Period
OptoControl Command Reference I-21

IVAL Set PID Control Word
Simulation Action

Function: Writes to the internal value (IVAL) of the bits that represent the PID configuration.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: Bit assignments:
11 1 = Use SqRt value from input channel.
10 1 = Setpoint was above high clamp. Write zero to clear.
9 1 = Setpoint was below low clamp. Write zero to clear.
8 1 = Input channel under-range. Write zero to clear.
7 1 = Loop active. 0 = Loop stopped.
6 1 = Loop in auto mode. 0 = Loop in manual mode.
5 1 = Output active. 0 = Output disconnected.
4 1 = Output tracks input in manual mode. 0 = no action.
3 1 = Setpoint tracks input in manual mode. 0 = no action.
2 1 = Input from host. 0 = Input from channel.
1 1 = Setpoint from channel. 0 = Setpoint from host.
0 1 = Use filtered value from input channel. Must have filtering active on the input channel.

0 = Use current value of input channel.
To set any bit(s) put a 1 for each bit to set in the MOMO On parameter. To clear any bit(s) put
a 1 for each bit to clear in the MOMO Off parameter. All MOMO bit positions with zeros will leave
the corresponding PID control word bit unchanged.

Arguments:

Standard
Example:

IVAL Set PID Control Word
On Mask PID_CTRL_SET Integer 32 Variable
Off Mask PID_CTRL_CLEAR Integer 32 Variable

For PID Loop EXTRUDER_ZONE08 PID Loop

OptoScript
Example:

IvalSetPidControlWord(On Mask, Off Mask, For PID Loop)
IvalSetPidControlWord(PID_CTRL_SET, PID_CTRL_CLEAR, EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
For PID Loop
PID Loop
I-22 OptoControl Command Reference

I
IVAL Set PID Process Term
Simulation Action

Function: Writes to the internal value (IVAL) of a PID input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set PID Process Term
To 1500 Integer 32 Literal

On PID Loop Influent_Flow_Controller PID Loop

OptoScript
Example:

IvalSetPidProcessTerm(To, On PID Loop)
IvalSetPidProcessTerm(1500, Influent_Flow_Controller);

This is a procedure command; it does not return a value.

Notes: Valid range is equal to the scaling of the PID input channel.

Dependencies: Communication to the specified PID or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
OptoControl Command Reference I-23

IVAL Set Quadrature Counter
Simulation Action

Function: Writes to the internal value (IVAL) of a digital quadrature counter input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set Quadrature Counter
To 63489 Integer 32 Literal

On Point Process_Flow_Total Quadrature Counter

OptoScript
Example:

IvalSetQuadratureCounter(To, On Point)
IvalSetQuadratureCounter(63489, Process_Flow_Total);

This is a procedure command; it does not return a value.

Notes: Valid range is 0 to ±2 billion.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Quadrature Counter
I-24 OptoControl Command Reference

I
IVAL Set TPO Percent
Simulation Action

Function: Writes to the internal value (IVAL) of a digital TPO output.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set TPO Percent
To 43.66 Float Literal

On Point ZONE_3_HEATER TPO

OptoScript
Example:

IvalSetTpoPercent(To, On Point)
IvalSetTpoPercent(43.66, ZONE_3_HEATER);

This is a procedure command; it does not return a value.

Notes: Valid range is 0.0 to 100.0.

Dependencies: Communication to the specified TPO or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO
OptoControl Command Reference I-25

IVAL Set TPO Period
Simulation Action

Function: Writes to the internal value (IVAL) of a digital TPO period.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Set TPO Period
Value 1.00 Float Literal

To ZONE_3_HEATER TPO

OptoScript
Example:

IvalSetTpoPeriod(Value, On Point)
IvalSetTpoPeriod(1.00, ZONE_3_HEATER);

This is a procedure command; it does not return a value.

Notes: Valid range is 0.1 to 429,496.7 seconds with resolution to 100 microseconds.

Dependencies: Communication to the specified TPO or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
Value
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
TPO
I-26 OptoControl Command Reference

I
IVAL Turn Off
Simulation Action

Function: Writes to the internal value (IVAL) of a digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Turn Off
Process_Start_Button Digital Input

OptoScript
Example:

IvalTurnOff(Point)
IvalTurnOff(Process_Start_Button);

This is a procedure command; it does not return a value.

Notes: Turns Off the IVAL for the specified point.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
[Value]
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference I-27

IVAL Turn On
Simulation Action

Function: Writes to the internal value (IVAL) of a digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

IVAL Turn On
PROCESS_START_BUTTON Digital Input

OptoScript
Example:

IvalTurnOn(Point)
IvalTurnOn(Process_Start_Button);

This is a procedure command; it does not return a value.

Notes: Turns On the IVAL for the specified point.

Dependencies: Communication to the specified point or to the I/O unit on which it resides must be disabled for
this command to work properly.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-9)

Argument 1
[Value]
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
I-28 OptoControl Command Reference

L
 L
Less?
Logical Condition

Function: To determine if one numeric value is less than another.

Typical Use: To determine if a value is too low.

Details: • Determines if Argument 1 is less than Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 False
-1 0 True
-1 -3 False

22.221 22.220 False

• Evaluates True if the first value is less than the second, False otherwise.

Arguments:

Standard
Example:

Is TANK_LEVEL Analog Input
Less?

Than FILL_SETPOINT Float Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the < operator.
if (TANK_LEVEL < FILL_SETPOINT) then

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
Than
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
OptoControl Command Reference L-1

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the < operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Use Within Limits? to test for an approximate match.
• To test for greater than or equal to, use either Greater Than or Equal? or the False exit.

See Also: Greater? (page G-106), Not Equal? (page N-4), Greater Than or Equal? (page G-107), Equal? (page
E-16)

Less Than or Equal?
Logical Condition

Function: To determine if one numeric value is less than or equal to another.

Typical Use: To determine if a value is too low.

Details: • Determines if Argument 1 is less than or equal to Argument 2. Examples:
Argument 1 Argument 2 Result

0 0 True
-1 0 True
-1 -3 False

22.221 22.220 False

• Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments: Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
L-2 OptoControl Command Reference

L
Standard
Example:

Is TEMPERATURE Float Variable
Less Than or Equal?

To 98.60 Float Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <= operator.
if (TEMPERATURE <= 98.60) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the < operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Use Within Limits? to test for an approximate match.
• To test for greater than, use either the Greater? condition or the False exit.

See Also: Greater? (page G-106), Not Equal? (page N-4), Greater Than or Equal? (page G-107), Within
Limits? (page W-1)

Less Than or Equal to Table Element?
Logical Condition

Function: To determine if a numeric value is less than or equal to a specified value in a float or integer
table.

Typical Use: To store low values.

Details: • Determines if one value (Argument 1) is less than or equal to another (a value at index
Argument 2 in float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 False
22.22 22.222 True

-32768 -32767 True
22221 2222 False

• Evaluates True if the first value is less than or equal to the second, False otherwise.
OptoControl Command Reference L-3

Arguments:

Standard
Example:

Is THIS_READING Float Variable
Less Than or Equal to Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <= operator.
if (THIS_READING <= TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the <= operator. For more information on
comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• To test for greater than, use either Greater Than Table Element? or the False exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Greater Than Table Element? (page G-109), Not Equal to Table Element? (page N-5), Greater Than
or Equal to Table Element? (page G-108), Equal to Table Element? (page E-18)

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
L-4 OptoControl Command Reference

L
Less Than Table Element?
Logical Condition

Function: To determine if a numeric value is less than a specified value in a float or integer table.

Typical Use: To store low values.

Details: • Determines if one value (Argument 1) is less than another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 False
-98.766 -98.765 True
-32768 -32767 True
22221 2222 False

• Evaluates True if the first value is less than the second, False otherwise.

Arguments:

Standard
Example:

Is THIS_READING Float Variable
Less Than Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the < operator.
if (THIS_READING < TABLE_OF_READINGS[TABLE_INDEX]) then

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
OptoControl Command Reference L-5

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the < operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

To test for greater than or equal to, use either Greater Than or Equal to Table Element? or the
False exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to table size.

See Also: Greater Than Table Element? (page G-109), Not Equal to Table Element? (page N-5), Greater Than
or Equal to Table Element? (page G-108), Equal to Table Element? (page E-18)

Low RAM Backup Battery?
Controller Condition

Function: To determine if the battery backing up the static RAM on the controller is weak.

Typical Use: To determine if the battery needs to be replaced.

Details: Evaluates True if the voltage for the battery backing up static RAM is low, False otherwise.

Arguments: None.

Standard
Example:

Low RAM Backup Battery?

OptoScript
Example:

IsRamBackupBatteryLow()
if (IsRamBackupBatteryLow()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: On the LC32, if the keypad (port 5) is in use by a chart, this condition will return False.

Queue Errors: 39 = Port already in use—LC32 keypad (port 5) is in use by another chart.
29 = Timeout—LC32 keypad (port 5) does not respond.

See Also: Get RTU/M4IO Voltage (page G-97)
L-6 OptoControl Command Reference

M
 M
Make Integer 64
Logical Action

Function: To combine two 32-bit integers into a single 64-bit integer.

Typical Use: To put the two halves of a 64-bit integer back together after separating them for faster individual
manipulation.

Details: • Places one 32-bit integer in the upper half of a 64-bit integer and the other 32-bit integer in
the lower half.

• When the integer 64 is made, the least significant bit corresponds to point zero and the most
significant bit corresponds to point 64 on a 64-point digital rack.

Arguments:

Standard
Example:

Make Integer 64
High Integer IN_BD2_HIGH Integer 32 Variable
Low Integer IN_BD2_LOW Integer 32 Variable

Put in IN_BD2_STATUS Integer 64 Variable

OptoScript
Example:

MakeInt64(High Integer, Low Integer)
IN_BD2_STATUS = MakeInt64(IN_BD2_HIGH, IN_BD2_LOW);

This is a function command; it returns the 64-bit integer. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. It cannot be consumed by an I/O unit, however. See Chapter 11 of the OptoControl
User’s Guide for more information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the same
thing by using OptoScript code such as the following:
nnTemp1 = MakeInt64(nHiPart, nLoPart);

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, MyDig64);

Notes: This command is useful if you want to get information from a program that doesn’t directly
support 64-bit integers, such as OptoDisplay, OptoServer, and third-party products, and use that
information in a digital-only SNAP-ENET-D64 Ethernet I/O brain.

See Also: Get High Bits of Integer 64 (page G-58), Get Low Bits of Integer 64 (page G-63)

Argument 1
High Integer
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Integer
Integer 32 Literal
Integer 32 Variable

Argument 3
Put in
Integer 64 Variable
SNAP Digital 64*

* Standard commands only
OptoControl Command Reference M-1

Maximum
Mathematical Action

Function: To select the greater of two values.

Typical Use: To select the higher pressure or temperature reading.

Details: The greater of the two values is selected.

Arguments:

Standard
Example:

Maximum
Compare Pressure_A Analog Input

With Pressure_B Analog Input
Put Maximum in Highest_Pressure Float Variable

OptoScript
Example:

Max(Compare, With)
Highest_Pressure = Max(Pressure_A, Pressure_B);

This is a function command; it returns the greater of the two values. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Minimum (page M-3)

Argument 1
Compare
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
With
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Maximum in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
M-2 OptoControl Command Reference

M
Minimum
Mathematical Action

Function: To select the lesser of two values.

Typical Use: To select the lower pressure or temperature reading.

Details: The lesser of the two values is selected.

Arguments:

Standard
Example:

Minimum
Compare Pressure_A Analog Input

With Pressure_B Analog Input
Put Minimum in Lowest_Pressure Float Variable

OptoScript
Example:

Min(Compare, With)
Lowest_Pressure = Min(Pressure_A, Pressure_B);

This is a function command; it returns the lesser value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Maximum (page M-2)

Argument 1
Compare
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
With
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Minimum in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
OptoControl Command Reference M-3

Modulo
Mathematical Action

Function: To generate the remainder resulting from integer division.

Typical Use: To capture the remainder whenever integer modulo calculations are needed.

Details: • Always results in an integer value. Examples: 40 modulo 16 = 8, 8 modulo 8 = 0.
• If any arguments are floats, they are rounded to integers before the division occurs.

Arguments:

Standard
Example:

Modulo
Num_Parts_Produced Integer 32 Variable

By Minutes_Elapsed Integer 32 Variable
Put Result in Productivity_Remainder Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the % operator.
Productivity_Remainder = Num_Parts_Produced % Minutes_Elapsed;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the % operator can be used in several ways. For more information on

mathematical expressions in OptoScript code, see Chapter 11 of the OptoControl User’s
Guide.

See Also: Divide (page D-21), Multiply (page M-27)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
By
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
M-4 OptoControl Command Reference

M
Move
Miscellaneous Action

Function: To copy a digital, analog, or numeric value to another location.

Typical Use: To copy values between objects, even if they are dissimilar types.

Details: OptoControl automatically converts the type of Argument 1 to match that of Argument 2.
The following rules are employed when copying values between objects of different types:
• From Float to Integer: Floats are rounded up for fractions of 0.5 or greater, otherwise they

are rounded down.
• From Integer to Float: Integer values are converted directly to floats.
• From Digital Input or Output: A value of -1 is returned for on, 0 for off.
• From Latch: A value of -1 is returned for set latches, 0 for latches that are not set.
• To Digital Output: A value of 0 turns the output off. Any non-zero value turns the output on.
• To Analog Output: Values are sent as is. Expect some rounding consistent with the analog

resolution of the I/O unit. If the value sent is outside the allowable range for the point, the
output will go to the nearest range limit, either zero or full scale.

Arguments:

Standard
Example:

Move
From DIG1 Digital Input

To DIG1_STATUS Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
DIG1_STATUS = DIG1;

Argument 1
From
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
To
Analog Output
Digital Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
TPO
Up Timer Variable
OptoControl Command Reference M-5

Notes: • In OptoScript code, simply make assignments where you would use the Move command.
• After you move a new value to an analog output, anywhere from 0–50 milliseconds will

elapse before the analog output is actually updated. Reading the output value during this
period will show the previous value. This limitation may be improved in future versions of
analog I/O units.

• You can use Move with timers as the equivalent of two other commands:
– With up timers, Move is the same as using Set Up Timer Target Value and Start Timer.

The value moved is the target value, and it overwrites any target value already in place.
The up timer starts immediately from zero.

– With down timers, Move is the same as using Set Down Timer Preset Value and Start
Timer. The value moved is the preset value the timer will start from, and it overwrites any
preset value previously set. The timer starts immediately from the preset value.

Queue Errors: 33 = Overflow error—integer or float value was too large.

See Also: Move String (page M-15), and all Move to or Move from Table commands.

Move 32 Bits
Logical Action

Function: To move the internal bit pattern of an integer 32 into a float, or to move a float into an integer 32.

Typical Use: To help parse or create binary data when communicating with other devices.

Arguments:

Standard
Example:

Move 32 Bits
From Source_Data Integer 32 Variable

To Float Float Variable

OptoScript
Example:

Move32Bits(From, To)
Move32Bits(Source_Data, Float);

This is a procedure command; it does not return a value.

Notes: See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

Argument 1
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
Float Variable
Integer 32 Variable
M-6 OptoControl Command Reference

M
Move Analog I/O Unit to Table
I/O Unit Action

Function: To read all 16 points of an analog I/O unit and move the returned values to a float table (of 16
elements or more).

Typical Use: To efficiently read all 16 points of analog data on a single I/O unit with one command.

Details: • This command is four times faster than using Move 16 times.
• Reads both inputs and outputs.
• Updates the IVALs and XVALs for all 16 points.
• Transfers 16 points of float data (in engineering units) from the analog I/O unit to a float

table beginning at the index specified. If there are fewer than 16 elements of data from the
specified index to the end of the table, no data will be written to the table and a 32 will be
placed in the error queue.

• Points that are not configured will return a value of 0.0.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be read.

Arguments:

Standard
Example:

Move Analog I/O Unit to Table
From ANALOG_UNIT_255 G4 Analog Multifunction I/O Unit

To Index 2 Integer 32 Literal
Of Table DATA_TABLE Float Table

OptoScript
Example:

MoveAnalogIoUnitToTable(I/O Unit, To Index, Of Table)
MoveAnalogIoUnitToTable(ANALOG_UNIT_255, 2, DATA_TABLE);

This is a procedure command; it does not return a value.

Notes: To speed up analog logic execution, use Disable Communication to I/O Unit after this command.
This forces all references to points on the I/O unit to use IVAL data rather than getting data from
the I/O unit one point at a time. If this procedure is followed, use Enable Communication to I/O
Unit before using this command again. See Notes under Move Table to Analog I/O Unit for more
information.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move Table to Analog I/O Unit (page M-17)

Argument 1
From
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
G4 Analog Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
OptoControl Command Reference M-7

Move Digital I/O Unit to Table
I/O Unit Action

Function: To read the current on/off status of all points on the specified digital I/O unit and to move the
state of each point into consecutive indices of a table.

Typical Use: To efficiently read the status of all digital points on a single I/O unit with one command.

Details: • Reads the current on/off status of all 16 points on the digital I/O unit specified.
• Updates the IVALs and XVALs for all 16 points.
• Reads inputs as well as outputs.
• If a point is on, there will be a “-1” in the respective table element.
• If a point is off, there will be a “0” in the respective table element.
• Point 0 corresponds to the beginning table element.
• If a specific point is disabled, it will not be read.
• If the entire I/O unit is disabled, none of the points will be read.
• Returns status to the integer table beginning at the index specified. If there are fewer than

16 elements of data from the specified index to the end of the table, no data will be written
to the table and a 32 will be placed in the error queue.

Arguments:

Standard
Example:

Move Digital I/O Unit to Table
From INLET_VALVE_CTRL G4 Digital Multifunction I/O Unit

Starting Index 1 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table

OptoScript
Example:

MoveDigitalIoUnitToTable(I/O Unit, Starting Index, Of Table)
MoveDigitalIoUnitToTable(INLET_VALVE_CTRL, 1, IO_STATUS_TABLE);

This is a procedure command; it does not return a value.

Notes: In the above example, point 0 of the I/O unit will map to index 1 of the table, point 1 of the I/O
unit will map to index 2 of the table, etc. (point 15 of the I/O unit will map to index 16 of the table).

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Get Digital I/O Unit as Binary Value (page G-48), Move Table to Digital I/O Unit (page M-19)

Argument 1
From
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Argument 2
Starting Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Integer 32 Table
M-8 OptoControl Command Reference

M
Move Digital I/O Unit to Table Element
I/O Unit Action

Function: To read the current on/off status of all points on the specified digital I/O unit and to move the
state of each point into a single element of a table.

Typical Use: To efficiently read the status of all digital points on a single I/O unit with one command.

Details: • Reads the current on/off status of all 16 points on the digital I/O unit specified.
• Updates the IVALs and XVALs for all 16 points.
• Reads inputs as well as outputs.
• Returns status (a 16-bit integer) to the integer table at the index specified.
• If a point is on, there will be a “1” in the respective bit of the table element.
• If a point is off, there will be a “0” in the respective bit of the table element.
• The least significant bit corresponds to point 0 on the I/O unit.
• If a specific point is disabled, it will not be read.
• If the entire I/O unit is disabled, none of the points will be read.
• Returns status to the integer table at the index specified.

Arguments:

Standard
Example:

Move Digital I/O Unit to Table Element
From INLET_VALVE_CTRL G4 Digital Multifunction I/O Unit

To Index 1 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table

OptoScript
Example:

OptoScript does not have an exact equivalent to this command. However, you can achieve the
same result by using the command GetDigitalIoUnitAsBinaryValue and placing the result
in the table element, like this:
IO_STATUS_TABLE[1] = GetDigitalIoUnitAsBinaryValue(INLET_VALVE_CTRL);

Notes: In the above example, point 0 of the I/O unit will map to bit 0 of the table element, point 1 of the
I/O unit will map to bit 1 of the table, etc.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move Digital I/O Unit to Table (page M-8), Get Digital I/O Unit as Binary Value (page G-48)

Argument 1
From
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Integer 32 Table
OptoControl Command Reference M-9

Move from Pointer Table Element
Pointers Action

Function: To move an object from a pointer table to a pointer variable.

Typical Use: To retrieve objects from pointer tables.

Details: • This command allows you to retrieve objects from a pointer table and place them into
pointer variables of the same type.

• Operations cannot be performed on objects from within a pointer table.

Arguments:

Standard
Example:

Move From Pointer Table Element
Index CURRENT_INDEX Integer 32 Variable

Of Table IO_POINTERS Pointer Table
To Pointer TANK_SWITCH Pointer Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
TANK_SWITCH = IO_POINTERS[CURRENT_INDEX];

Notes: • In OptoScript code, simply make an assignment from the table element.
• Be sure to move the object from the table into a pointer of the same type. If the types are

different, an error will be posted to the error queue.

Queue Errors: 60 = Wrong object type.
61 = NULL object error, caused by the table entry at that index being null. Use Move to Pointer
Table to initialize the table entry.

See Also: Move to Pointer (page M-23)

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table

Argument 3
To Pointer
Pointer Variable
M-10 OptoControl Command Reference

M
Move from String Table
String Action

Function: To copy a string from a string table.

Typical Uses: • To create a numeric-to-string lookup table.
• To retrieve strings from a table for further processing.

Details: • Quotes (“”) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

• Valid range for Index (Argument 1) is zero to the table length - 1 (size - 1).

Arguments:

Standard
Example:

The following example performs a numeric-to-string-table lookup. Given the numeric value for
the day of week, the command below gets the name of the day of week from a string table.
Use Get Day of Week to get the value to use for From Index.

Move from String Table
From Index INDEX Integer 32 Variable

Of Table STRING_TABLE String Table
To STRING String Variable

The results of this command are as follows:
INDEX STRING

0 “SUN”
1 “MON”
2 “TUE”
3 “WED”
4 “THU”
5 “FRI”
6 “SAT”

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
STRING = STRING_TABLE[INDEX];

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, simply make an assignment to the string.
• A string table is a good way to correlate a number to a string.
• Use Move to String Table or the Init utility to load the table with data.
• Multiple string tables can be used to create small databases of information. For example,

one string table could contain a product name and another could contain the product ID code
or barcode. It is essential to keep all related information at the same Index in each table.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move to String Table (page M-25), String Equal to String Table Element? (page S-70), Get
Substring (page G-103), Get Length of Table (page G-62)

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
String Table

Argument 3
To
String Variable
OptoControl Command Reference M-11

Move from Table Element
Miscellaneous Action

Function: To copy one value from either an integer or float table.

Typical Use: To copy a numeric table value to an I/O point or another numeric variable.

Details: • All numeric type conversions are automatically handled according to the rules detailed for
the Move command.

• The valid range for the index is zero to the table length - 1 (size - 1).

Arguments:

Standard
Example:

Move from Table Element
From Index 0 Integer 32 Literal

Of Table LOOK_UP_TABLE Float Table
To PRESS_OUT Analog Output

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
PRESS_OUT = LOOK_UP_TABLE[0];

Notes: In OptoScript code, simply make an assignment from the table element.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move Table Element to Table (page M-17), Move to Table Element (page M-26), Shift Table
Elements (page S-50)

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 3
To
Analog Output
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
TPO
M-12 OptoControl Command Reference

M
Move Mixed I/O Unit to Table
I/O Unit Action

Function: To read the current status or value of all points on the specified mixed I/O unit and to move them
into consecutive indices of a table.

Typical Use: To efficiently read the status or value of all analog and digital points on a single I/O unit with one
command.

Details: • Reads the current status of all 64 points on the mixed I/O unit specified.
• Updates the IVALs for all 64 points.
• Reads inputs as well as outputs.
• If a digital point is on, there will be a “-1” in the respective table element.
• If a digital point is off, there will be a “0” in the respective table element.
• For analog points, the analog value is written to the respective table element.
• Point 0 corresponds to the beginning table element.
• If a specific point is disabled, it will not be read.
• If the entire I/O unit is disabled, none of the points will be read.
• Returns status to the table beginning at the index specified. If there are fewer than 16

elements of data from the specified index to the end of the table, no data will be written to
the table and a 32 will be placed in the error queue.

Arguments:

Standard
Example:

Move Mixed I/O Unit to Table
From VALVE_CTRL B3000 SNAP Mixed I/O

Starting Index 4 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table

OptoScript
Example:

MoveMixedIoUnitToTable(I/O Unit, Starting Index, Of Table)
MoveMixedIoUnitToTable(VALVE_CTRL, 4, IO_STATUS_TABLE);

This is a procedure command; it does not return a value.

Notes: In the above example, point 0 of the I/O unit will map to index 4 of the table, point 1 of the I/O
unit will map to index 5 of the table, and so on.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move Table to Mixed I/O Unit (page M-20)

Argument 1
From
B3000 SNAP Mixed I/O

Argument 2
Starting Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
OptoControl Command Reference M-13

Move Simple-64 I/O Unit to Table
I/O Unit Action

Function: To read the current status or value of all points on the specified SNAP Simple I/O unit and to move
them into consecutive indices of a table.

Typical Use: To efficiently read the status or value of all analog and digital points on a single I/O unit with one
command.

Details: • Reads the current status of all 64 points on the SNAP Simple I/O unit specified.
• Updates the IVALs for all 64 points.
• Reads inputs as well as outputs.
• If a digital point is on, there will be a “-1” in the respective table element. If a digital point is

off, there will be a “0” in the respective table element.
• For analog points, the analog value is written to the respective table element.
• Point 0 corresponds to the beginning table element.
• If a specific point is disabled, it will not be read. If the entire I/O unit is disabled, none of the

points will be read.
• Returns status to the table beginning at the index specified. If there are fewer than 16

elements of data from the specified index to the end of the table, no data will be written to
the table and a 32 will be placed in the error queue.

Arguments:

Standard
Example:

Move Simple-64 I/O Unit to Table
From VALVE_CTRL SNAP Simple 64

Starting Index 4 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table

OptoScript
Example:

MoveSimple64IoUnitToTable(I/O Unit, Starting Index, Of Table)
MoveSimple64IoUnitToTable(VALVE_CTRL, 4, IO_STATUS_TABLE);

This is a procedure command; it does not return a value.

Notes: In the above example, point 0 of the I/O unit will map to index 4 of the table, point 1 of the I/O
unit will map to index 5 of the table, and so on.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move Table to Simple-64 I/O Unit (page M-21)

Argument 1
From
SNAP Simple 64

Argument 2
Starting Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
M-14 OptoControl Command Reference

M
Move String
String Action

Function: To copy the contents of one string to another.

Typical Use: To save, initialize, or clear strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• If the width of the destination string variable is less than the width of the source, the

remaining portion of the source string (characters on the right) will be discarded.
• The contents of the destination string are replaced with the source string.
• The length of the destination string will become that of the source string unless the declared

width of the destination is less than the length of the source, in which case the length of the
destination will match its declared width.

Arguments:

Standard
Example:

The following example initializes a string variable to “Hello”; quotes are shown for clarity only;
do not use them in standard commands.

Move String “Hello” String Literal
To HELLO_STRING String Variable

The following example clears a string variable; again, quotes are shown for clarity, but do not use
them.

Move String
From “” String Literal

Move to MY_STRING String Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator. Remember that
quotes are required in OptoScript code.
HELLO_STRING = "Hello";

MY_STRING = "";

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, simply make an assignment to the string.

Dependencies: The destination string variable must be wide enough to hold the source string.

See Also: Append String to String (page A-9), Copy Time to String (page C-62)

Argument 1
Move String
String Literal
String Variable

Argument 2
To
String Variable
OptoControl Command Reference M-15

Move Table Element to Digital I/O Unit
I/O Unit Action

Function: To control multiple digital output points on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: • This command is 16 times faster than using Turn On or Turn Off 16 times.
• Updates the IVALs and XVALs for all 16 points. Affects all output points. Does not affect

input points.
• Uses only the lowest (least significant) 16 bits of the table element. Point zero corresponds

to bit 0 (least significant bit) of the table element.
• A point is selected for deactivation by setting the respective bit of the table element

to “0.” A point is selected for activation by setting the respective bit of the table element to
“1.”

• If a specific point is disabled, only its internal value (IVAL) will be written to. If the entire I/O
unit is disabled, only the internal values (IVALS) on all 16 points will be written to.

Arguments:

Standard
Example:

Move Table Element to Digital I/O Unit
From Index 17 Integer 32 Literal

Of Table IO_STATUS_TABLE Integer 32 Table
Move to INLET_VALVE_CTRL G4 Digital Multifunction I/O Unit

OptoScript
Example:

MoveTableElementToDigitalIoUnit(From Index, Of Table, Move to)
MoveTableElementToDigitalIoUnit(17, IO_STATUS_TABLE, INLET_VALVE_CTRL);

This is a procedure command; it does not return a value.

Notes: In the above example, bit 0 of the element at index 17 of the table will map to point 0 of the I/O
unit, bit 1 of the element at index 17 will map to point 1 of the I/O unit, etc.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move Digital I/O Unit to Table Element (page M-9), Set Digital I/O Unit from MOMO Masks (page
S-17)

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Integer 32 Table

Argument 3
Move to
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital
M-16 OptoControl Command Reference

M
Move Table Element to Table
Miscellaneous Action

Function: To copy a single value from one table to another or from one table element to another table
element within the same table.

Typical Use: To reorder the way data are arranged or to copy temporary values to a final location.

Details: • The two tables can be the same table, different types, or the same type.
• Any value sent to an invalid index is discarded, and an error 32 is added to the error queue.
• The valid range for each index is zero to the table length - 1 (size - 1).

Arguments:

Standard
Example:

Move Table Element to Table
From Index 17 Integer 32 Literal

Of Table I/O_STATUS_TABLE Integer 32 Table
To Index 27 Integer 32 Literal
Of Table I/O_STATUS_TABLE Integer 32 Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
I/O_STATUS_TABLE[27] = I/O_STATUS_TABLE[17];

Notes: • In OptoScript code, simply make an assignment to the table element.
• To move several values, put this command in a loop using variables for both indexes.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move to Table Element (page M-26)

Move Table to Analog I/O Unit
I/O Unit Action

Function: To write values in a float table to all 16 points of an analog I/O unit.

Typical Use: To efficiently write all 16 points of analog data on a single I/O unit with one command.

Details: • This command is four times faster than using Move 16 times.
• Updates the IVALs and XVALs for all 16 points except XVALs for input points.
• Transfers 16 points of data from the float table beginning at the index specified to the

analog I/O unit. If there are fewer than 16 elements of data from the specified index to the

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 3
To Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
Float Table
Integer 32 Table
Integer 64 Table
OptoControl Command Reference M-17

end of the table, no data will be written to the I/O unit and a 32 will be placed in the error
queue.

• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values
(IVALs) will be written.

• Caution: writes to IVALs of input points.

Arguments:

Standard
Example:

Move Table to Analog I/O Unit
Start at Index 16 Integer 32 Literal

Of Table DATA_TABLE Float Table (holds 16 values)
Move to ANALOG_UNIT_255 G4 Analog Multifunction I/O Unit

OptoScript
Example:

MoveTableToAnalogIoUnit(Start at Index, Of Table, Move to)
MoveTableToAnalogIoUnit(16, DATA_TABLE, ANALOG_UNIT_255);

This is a procedure command; it does not return a value.

Notes: If analog I/O units are disabled using Disable Communication to I/O Unit to speed up analog logic
execution, perform the following in the order shown:

1. Move Analog I/O Unit to Table (with the I/O unit still disabled)—Copies output IVALs
updated by program.

2. Enable Communication to I/O Unit—Re-establishes communications.

3. Move Table to Analog I/O Unit: Writes to the table Moved to above—Updates analog
outputs.

4. Move Analog I/O Unit to Table—Updates analog input IVALs.

5. Disable Communication to I/O Unit—Disconnects communications.

6. Program logic . . . (not for use with commands that access MIN, MAX, AVERAGE, etc.)

7. Repeat 1 through 6.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Move Analog I/O Unit to Table (page M-7)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table

Argument 3
Move to
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
G4 Analog Multifunction I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
M-18 OptoControl Command Reference

M
Move Table to Digital I/O Unit
I/O Unit Action

Function: To control multiple digital output points on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: • This command is 16 times faster than using Turn On or Turn Off 16 times.
• Updates the IVALs and XVALs for all 16 points.
• Affects all output points. Does not affect input points.
• A point is selected for deactivation by setting the respective table element to 0. A point is

selected for activation by setting the respective table element to 1.
• Point zero corresponds to the first specified table element.
• If a specific point is disabled, only its internal value (IVAL) will be written to. If the entire I/O

unit is disabled, only the internal values (IVALS) on all 16 points will be written to.

Arguments:

Standard
Example:

Move Table to Digital I/O Unit
Start at Index 17 Integer 32 Literal

Of Table IO_STATUS_TABLE Integer 32 Table
Move to INLET_VALVE_CTRL G4 Digital Multifunction I/O Unit

OptoScript
Example:

MoveTableToDigitalIoUnit(Start at Index, Of Table, Move to)
MoveTableToDigitalIoUnit(17, IO_STATUS_TABLE, INLET_VALVE_CTRL);

This is a procedure command; it does not return a value.

Notes: In the above example, index 17 of the table will map to point 0 of the I/O unit, index 18 will map
to point 1 of the I/O unit, etc.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Set Digital I/O Unit from MOMO Masks (page S-17), Move Digital I/O Unit to Table (page M-8)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Integer 32 Table

Argument 3
Move to
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital
OptoControl Command Reference M-19

Move Table to Mixed I/O Unit
I/O Unit Action

Function: To control multiple analog and digital output points on the same I/O unit simultaneously with a
single command.

Typical Use: To efficiently control a selected group of analog and digital outputs with one command.

Details: • This command is much faster than using Turn On, Turn Off, or Move for each point.
• Updates the IVALs and XVALs for all 64 points. Affects all output points. Does not affect

input points.
• A digital point is turned off by setting the respective table element to 0. A digital point is

turned on by setting the respective table element to non-zero.
• An analog point is set by the value in the respective table element.
• Point zero corresponds to the first specified table element.
• If a specific point is disabled, only its internal value (IVAL) will be written to. If the entire I/O

unit is disabled, only the internal values (IVALS) on all 64 points will be written to.

Arguments:

Standard
Example:

Move Table to Mixed I/O Unit
Start at Index 4 Integer 32 Variable

Of Table IO_STATUS_TABLE Integer 32 Table
Move to VALVE_CONTROL B3000 SNAP Mixed I/O

OptoScript
Example:

MoveTableToMixedIoUnit(Start at Index, Of Table, Move to)
MoveTableToMixedIoUnit(4, IO_STATUS_TABLE, VALVE_CONTROL);

This is a procedure command; it does not return a value.

Notes: In the above example, index 4 of the table will map to point 0 of the I/O unit, index 5 will map to
point 1 of the I/O unit, and so on.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move Mixed I/O Unit to Table (page M-13)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
Move to
B3000 SNAP Mixed I/O
M-20 OptoControl Command Reference

M
Move Table to Simple-64 I/O Unit
I/O Unit Action

Function: To control multiple analog and digital output points on the same SNAP Simple I/O unit
simultaneously with a single command.

Typical Use: To efficiently control a selected group of analog and digital outputs with one command.

Details: • This command is much faster than using Turn On, Turn Off, or Move for each point.
• Updates the IVALs and XVALs for all 64 points. Affects all output points. Does not affect

input points.
• A digital point is turned off by setting the respective table element to 0. A digital point is

turned on by setting the respective table element to non-zero.
• An analog point is set by the value in the respective table element.
• Point zero corresponds to the first specified table element.
• If a specific point is disabled, only its internal value (IVAL) will be written to. If the entire I/O

unit is disabled, only the internal values (IVALS) on all 64 points will be written to.

Arguments:

Standard
Example:

Move Table to Simple-64 I/O Unit
Start at Index 4 Integer 32 Variable

Of Table IO_STATUS_TABLE Integer 32 Table
Move to VALVE_CONTROL SNAP Simple 64

OptoScript
Example:

MoveTableToSimple64IoUnit(Start at Index, Of Table, Move to)
MoveTableToSimple64IoUnit(4, IO_STATUS_TABLE, VALVE_CONTROL);

This is a procedure command; it does not return a value.

Notes: In the above example, index 4 of the table will map to point 0 of the I/O unit, index 5 will map to
point 1 of the I/O unit, and so on.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move Simple-64 I/O Unit to Table (page M-14)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
Move to
SNAP Simple 64
OptoControl Command Reference M-21

Move Table to Table
Miscellaneous Action

Function: To copy values from one table to another.

Typical Use: To copy temporary values to a final location.

Details: • The two tables must be of the same type and must be different tables. They can be different
sizes, but make sure the Length parameter is not too long for either table.

• The valid range for each table index is zero to the table length minus 1 (size - 1).

Arguments:

Standard
Example:

Move Table to Table
From Table Temp_Table Integer 32 Table
From Index 0 Integer 32 Literal

To Table Status_Table Integer 32 Table
To Index 16 Integer 32 Literal
Length 8 Integer 32 Literal

OptoScript
Example:

MoveTableToTable(From Table, From Index, To Table, To Index, Length)
MoveTableToTable(Temp_Table, 0, Status_Table, 16, 8);

This is a procedure command; it does not return a value.

Queue Errors: -6 = Data field error. Source and destination tables must be different.
-12 = Invalid table index or length
-29 = Wrong object type. Arguments 1 and 3 must both be tables and of the same type.

See Also: Move to Table Element (page M-26)

Argument 1
From Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 2
From Index
Integer 32 Literal
Integer 32 Variable

Argument 3
To Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 4
To Index
Integer 32 Literal
Integer 32 Variable

Argument 5
Length
Integer 32 Literal
Integer 32 Variable
M-22 OptoControl Command Reference

M
Move to Pointer
Pointers Action

Function: To assign an object to a pointer.

Typical Use: To initialize a pointer.

Details: The pointer will point to the object specified. Any operation that can be performed on the object
can likewise be performed on the pointer. When you perform an operation on a pointer, you are
actually performing the operation on the object.

Arguments:

Standard
Example:

Move To Pointer
Object PUMP_VALVE Digital Output
Pointer IO_POINTER Pointer Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the & operator to get the address
of the object and use the = operator to make the assignment:
IO_POINTER =& PUMP_VALVE;

Notes: • In OptoScript code, simply make an assignment to the pointer.
• For standard commands, the Move To Pointer command will be validated when the OK

button in the Add Instruction dialog box is pressed. For OptoScript code, the type will be
validated by the compiler.

See Also: Clear Pointer (page C-30), Pointer Equal to NULL? (page P-3)

Argument 1
Object
Analog Event/Reaction
Analog Input
Analog Output
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
Chart
Counter
Digital Event/Reaction
Digital Input
Digital Output
Down Timer Variable
Event/Reaction Group
Float Table
Float Variable
Frequency
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit

HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
Integer 32 Table
Integer 32 Variable
Integer 64 Table
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
PID Loop
Pointer Variable
Quadrature Counter
SNAP Digital 64
SNAP Remote Simple Digital
String Table
String Variable
TPO
Up Timer Variable

Argument 2
Pointer
Pointer Variable
OptoControl Command Reference M-23

Move to Pointer Table
Pointers Action

Function: To assign an object to a pointer table element.

Typical Use: To initialize a pointer table with objects of various types.

Details: • This command takes the pointer for the object being pointed to and moves it to the
table element.

• You cannot have pointers pointing to pointers. If you move a pointer to an element of a
pointer table, the object being pointed to gets put in the table element.

Arguments:

Standard
Example:

Move to Pointer Table
Object Valve_One Integer 32 Variable
Index Current_Index Integer 32 Variable

Of Table Digital_Outputs Pointer Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the & operator to get the address
of the object and use the = operator to make the assignment:
Digital_Outputs[Current_Index] =& Valve_One;

Notes: In OptoScript code, simply make an assignment to the pointer table.

See Also: Move from Pointer Table Element (page M-10), Pointer Table Element Equal to NULL? (page P-4)

Argument 1
Object
Analog Event/Reaction
Analog Input
Analog Output
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
Chart
Counter
Digital Event/Reaction
Digital Input
Digital Output
Down Timer Variable
Event/Reaction Group
Float Table
Float Variable
Frequency
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit

HRD Analog Thermocouple/mV Input
I/O Unit

HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O
Unit

Integer 32 Table
Integer 32 Variable
Integer 64 Table
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
PID Loop
Quadrature Counter
SNAP Digital 64
SNAP Remote Simple Digital
String Table
String Variable
TPO
Up Timer Variable

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Pointer Table
M-24 OptoControl Command Reference

M
Move to String Table
String Action

Function: To put a string into a string table.

Typical Use: To load strings into a table for later retrieval.

Details: • Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Valid range for Index (Argument 2) is zero to the table length - 1 (size - 1).
• Strings with a length greater than the width of the table will be truncated to fit.

Arguments:

Standard
Example:

In the following example, quotes are shown for clarity only. Do not use them in standard
commands.
Move to String Table

From “MON” String Literal
To Index INDEX Integer 32 Variable
Of Table STRING_TABLE String Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator. Remember that
quotes are required in OptoScript code.
STRING_TABLE[INDEX] = "MON";

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, simply make an assignment to the table element.
• Use to log key events or application errors as if the string table were a “virtual line printer.”

For example, a string table called EVENT_LOG could be used as a circular buffer to store
strings containing the time, the date, and a description such as “12-25-96, 1:00:00, Clogged
chimney alarm.” An integer variable would also be required to “remember” the next
available Index (where the next entry goes).

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Move from String Table (page M-11), Get Length of Table (page G-62)

Argument 1
From
String Literal
String Variable

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table
OptoControl Command Reference M-25

Move to Table Element
Miscellaneous Action

Function: To copy a value from virtually any source to a table element.

Typical Use: To create a list of various values in a table.

Details: • All numeric type conversions are automatically handled according to the rules detailed for
the Move command.

• Any value sent to an invalid index is discarded, and an error 32 is added to the error queue.
• The valid range for each index is zero to the table length - 1 (size - 1).

Arguments:

Standard
Example:

Move to Table Element
From 0 Integer 32 Literal

To Index 27 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
IO_STATUS_TABLE[27] = 0;

Notes: • In OptoScript code, simply make an assignment to the table element.
• To move the same value to several table elements, put this command in a loop using a

variable for the index.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.
33 = Overflow—integer or float value was too large.

See Also: Move from Table Element (page M-12)

Argument 1
From
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
M-26 OptoControl Command Reference

M
Multiply
Mathematical Action

Function: To multiply two numeric values.

Typical Use: To multiply two numbers to get a third number or to modify one of the original numbers.

Details: • Multiplies Argument 1 and Argument 2 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .

Arguments:

Standard
Example:

Multiply
Ingredient_1_Weight Analog Input

Times Temperature_Adjust Float Variable
Put Result in Corrected_Weight Analog Output

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the * operator.
Corrected_Weight = Ingredient_1_Weight * Temperature_Adjust;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the * operator can be used in many ways. For more information on

mathematical expressions in OptoScript code, see Chapter 11 of the OptoControl User’s
Guide.

• Speed Tip: Use Bit Shift instead for integer math where the multiplier is 2, 4, 8, 16, 32, 64,
and so on.

Queue Errors: 33 = Overflow error—result too large.

See Also: Divide (page D-21), Bit Shift (page B-15)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Times
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
OptoControl Command Reference M-27

M-28 OptoControl Command Reference

N
 N
Natural Log
Mathematical Action

Function: To calculate the natural log (base e) of a value.

Typical Use: To solve natural log calculations.

Details: Takes the natural log of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

Natural Log
Of Fermentation_Rate Float Variable

Put Result in Rate_Calculation Float Variable

OptoScript
Example:

NaturalLog(Of)
Rate_Calculation = NaturalLog(Fermentation_Rate);

This is a function command; it returns the natural log of the value. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: OptoControl only implements a natural logarithm command. However, there is a simple way to
compute logarithms for bases other than base e. Here’s how to compute a logarithm for base x
using only the natural logarithm command:

Just remember that the range of the logarithm argument is a number greater than zero. A
controller error will be flagged if the argument is less than or equal to zero.
To get a log10, divide the result of this command by 2.302585, which is ln(10).

NUMBER LOGe LOG10
1 0 0
10 2.302585 1
100 4.605170 2

1000 6.907755 3

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Logbase(number) = ln(number)
ln(base)

For example: Log10(100) = ln(100) = 2 ln(10)
OptoControl Command Reference N-1

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Raise to Power (page R-2)

NOT
Logical Action

Function: To perform a logical NOT (True/False toggle) on any allowable value.

Typical Uses: • To invert the logical state of an integer variable.
• To toggle the state of a digital output.
• To have a digital output assume the inverse state of a digital input.

Details: • Performs a logical NOT on Argument 1 and puts result in Argument 2. Examples:
Argument 1 Argument 2

0 -1
-1 0
22 0

• Performs this action on a copy of Argument 1, then moves the copy to Argument 2.
• If Argument 1 is True (non-zero), the result will be False (0). If Argument 1 is False (0), the

result will be True (-1).

Arguments:

Standard
Example:

NOT
Current_State Integer 32 Variable

Put Result in DOUT1 Digital Output

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the not operator.
DOUT1 = not Current_State;

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the not operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital channels with this command.
• To invert the True/False state of Argument 1, make both arguments the same.

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
N-2 OptoControl Command Reference

N
• To toggle all 32 bits, use Bit NOT.

See Also: Bit NOT (page B-5)

NOT?
Logical Condition

Function: To determine if a value is False (zero, off).

Typical Use: To perform False testing.

Details: • Determines if Argument 1 is False. Examples:
Argument 1 Result

0 True
-1 False
22 False

• Evaluates True if Argument 1 is False (zero, off). Evaluates False if Argument 1 is True
(non-zero, on).

• Functionally equivalent to Variable False?

Arguments:

Standard
Example:

Is CURRENT_STATE Integer 32 Variable
NOT?

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the not operator.
if (not Current_State) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the not operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital channels with this command.
• To determine whether a value is True (non-zero), use either Variable True? or the False exit.

See Also: AND? (page A-7), OR? (page O-8), XOR? (page X-3), Variable True? (page V-2)

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference N-3

Not Equal?
Logical Condition

Function: To determine if two values are different.

Typical Use: To perform reverse logic.

Details: • Determines if Argument 1 is different from Argument 2. Evaluates True if the two values are
different, False otherwise. Examples:

Argument 1 Argument 2 Result
0 0 False
-1 0 True

255 65280 True
22.22 22.22 False

Arguments:

Standard
Example:

Is BATCH_STEP Integer 32 Variable
Not Equal?

To 4 Integer 32 Literal

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <> operator.
if (BATCH_STEP <> 4) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. In OptoScript code,
the <> operator can be used in several ways. For more information on comparison
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• Use Within Limits? to test for an approximate match. To test for equality, use either Equal?
or the False exit.

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable
N-4 OptoControl Command Reference

N
See Also: Greater? (page G-106), Less? (page L-1), Less Than or Equal? (page L-2),

Greater Than or Equal? (page G-107), Equal? (page E-16), Within Limits? (page W-1)

Not Equal to Table Element?
Logical Condition

Function: To determine if a numeric value is different from a specified value in a float or integer table.

Typical Use: To perform reverse logic.

Details: • Determines if one value (Argument 1) is different from another (a value at index Argument 2
in float or integer table Argument 3). Examples:

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 True
-98.765 -98.765 False
-32768 -32768 False
2222 2222 False

• Evaluates True if the two values are different, False otherwise.

Arguments:

Standard
Example:

Is This_Reading Float Variable
Not Equal to Table Element?

At Index Table_Index Integer 32 Variable
Of Table Table_of_Readings Float Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <> operator.
if (This_Reading <> Table_of_Readings[Table_Index]) then

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table
OptoControl Command Reference N-5

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the <> operator can be used in several ways. For more information on

comparison operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.
• To test for equality, use either Equal to Table Element? or the False exit.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to table size.

See Also: Greater Than Table Element? (page G-109), Less Than Table Element? (page L-5), Less Than or
Equal to Table Element? (page L-3), Greater Than or Equal to Table Element? (page G-108), Equal
to Table Element? (page E-18)
N-6 OptoControl Command Reference

O
 O
Off?
Digital Point Condition

Function: To determine if a digital input or output is off.

Typical Use: To determine the status of a digital input or output point.

Details: • Evaluates True if the specified point is off, False if the point is on.
• Speed Tip: Use Get Digital I/O Unit as Binary Value to get the state of all 16 points at once.

Then use Bit Test to determine the state of individual points.

Arguments:

Standard
Example:

Is Safety_Interlock Local Simple Digital Input
Off?

OptoScript
Example:

IsOff(Point)
if (IsOff(Safety_Interlock)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: May be used with either input or output points.

Dependencies: Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: On? (page O-3)

Argument 1
Is
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference O-1

Off-Latch Set?
Digital Point Condition

Function: Checks the status of the specified Off Latch.

Typical Use: To determine if a button was pressed or an object passed by a sensor.

Details: Evaluates True if the latch is set, which indicates that the specified input changed from On to Off.

Arguments:

Standard
Example:

On Point PUMP3_STOP_BUTTON
Off-Latch Set?

OptoScript
Example:

IsOffLatchSet(On Point)
if (IsOffLatchSet(PUMP3_STOP_BUTTON)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Clear Off-Latch if True to reset the latch for next time.

See Also: On-Latch Set? (page O-4)

Argument 1
On Point
Digital Input
O-2 OptoControl Command Reference

O
On?
Digital Point Condition

Function: To determine if a digital input or output is on.

Typical Use: To determine the status of a digital input or output point.

Details: Evaluates True if the specified point is on, False if the point is off.

Arguments:

Standard
Example:

Is Motor_Power Local Simple Digital Input
On?

OptoScript
Example:

IsOn(Point)
if (IsOn(Motor_Power)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • May be used with either input or output points.
• Speed Tip: Use Get Digital I/O Unit as Binary Value to get the state of all 16 points at once.

Then use Bit Test to determine the state of individual points.

Dependencies: Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: Off? (page O-1)

Argument 1
Is
Digital Input
Digital Output
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference O-3

On-Latch Set?
Digital Point Condition

Function: Checks the status of the specified On Latch.

Typical Use: To determine if a button was pressed or an object passed by a sensor.

Details: Evaluates True if the latch is set, which indicates that the specified input changed from Off to On.

Arguments:

Standard
Example:

On Point Clip_Missing_Prox
On-Latch Set?

OptoScript
Example:

IsOnLatchSet(On Point)
if (IsOnLatchSet(Clip_Missing_Prox)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Use Clear On-Latch if True to reset the latch for next time.

See Also: Off-Latch Set? (page O-2)

Argument 1
On Point
Digital Input
O-4 OptoControl Command Reference

O
Open Ethernet Session
Communication—Network Action

Function: To establish a dedicated link with another Ethernet node.

Typical Use: To communicate to other devices via Ethernet or to establish peer-to-peer communication
between two or more controllers using Ethernet.

Details: • The full address (also called session name) of the other node must be known. Aliases can be
used if supported by the network.

• You must prefix the address with [T:].
• Valid ports are 8, 9, and 10. If the host port is Ethernet, do not use port 8 for peer-to-peer

communication, since it is the host port.

Arguments:

Standard
Example:

Open Ethernet Session
Session Name MIS_LINK String Literal

On Port 9 Integer 32 Literal
Put Result in PEER3_SESSION_NUMBER Integer 32 Variable

OptoScript
Example:

OpenEthernetSession(Session Name, On Port)
PEER3_SESSION_NUMBER = OpenEthernetSession(MIS_LINK, 9);

This is a function command; it returns either the session number (0–127) or a status code as
defined below.

Notes: • An Ethernet session is a logical link (a virtual dedicated cable) between two nodes.
Up to 32 sessions total can be concurrently established on the three logical Ethernet ports 8,
9, and 10 to talk peer-to-peer or host. These three ports use the same Ethernet card.
Controller Port # Typical Use TCP/IP Port #

8 Host Port 2001
9 Peer Port 2002

10 Peer Port 2003

• The remaining sessions (up to a total of 128) are used for I/O units. Up to 100 Ethernet I/O
unit sessions are supported per controller.

• Upon success, a session number of 0-127 is returned as a local alias for the session name.
The session number is used thereafter. Assigning the number may take as long as 15
seconds for a local node, much longer for a distant node. A negative value indicates failure
(see Status Codes, below).

• Initialize the result variable with a negative number to avoid confusion with a successful
returned value (zero is a valid session number).

• When connecting over a busy network or through switches, make sure the session is open
by adding a delay (for example, 10 milliseconds) to the chart and checking the status of the
session using Get Number of Characters Waiting on Ethernet Session. The amount of delay

Argument 1
Session Name
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Integer 32 Variable
OptoControl Command Reference O-5

needed depends on your network. See additional suggestions in the section on Ethernet
peer-to-peer communication in the OptoControl User’s Guide, Chapter 10.

• It can take up to two minutes for the controller’s Ethernet adapter card to finish built-in
TCP/IP communication retries, depending on how retries are set for the card. (See Opto 22
form 1156, the M4SENET-100 Installation Guide, for more information.) If you use Open
Ethernet Session again too soon, the resulting multiple attempts to open the session can
completely clog the queue. In your strategy, put in a delay between attempts to open an
Ethernet session.

• To open a session with a specific port of another device (for example, to establish
peer-to-peer communications with the Ethernet peer port of another Opto 22 controller), the
port number must be appended to the session name string. For example, if the TCP/IP
address is 10.192.53.85 and the peer port is 2002, then the session name string would be
T:10.192.53.85:2002.

• To find out a session number when another controller has initiated the link, use the
command Accept Session on TCP Port.

Result Data: 0-127 = Session number, which is assigned as a local alias for the session name.

Status Codes: -40 = Timeout—specified port already in use.
-51 = Invalid port number—use 8, 9, or 10.
-70 = No Ethernet card present.
-71 = All 32 sessions are in use.
-72 = Timeout—Couldn’t open the session.
-77 = This controller doesn’t support Ethernet.
-79 = Open request has timed out. Make sure IP address is correct and cables are connected.

See Also: Close Ethernet Session (page C-34), Accept Session on TCP Port (page A-2)

OR
Logical Action

Function: To perform a logical OR on any two allowable values.

Typical Use: To use the True state of either value to control an output or set an alarm.

Details: • Performs a logical OR on Argument 1 and Argument 2 and puts result in Argument 3. The
result is -1 (True) if either value is non-zero, 0 (False) otherwise.Examples:

Argument 1 Argument 2 Argument3
0 0 0
-1 0 -1
0 -1 -1
-1 -1 -1

• The result can be sent directly to a digital output if desired.
O-6 OptoControl Command Reference

O
Arguments:

Standard
Example:

OR
LIMIT_SWITCH1 Local Simple Digital Input

With LIMIT_SWITCH2 Local Simple Digital Output
Put Result in MOTOR1_OUTPUT Digital Output

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the or operator.
MOTOR1_OUTPUT = LIMIT_SWITCH1 or LIMIT_SWITCH2;

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the or operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• In OptoScript code, you can combine logical operators and OR multiple variables, for

example: x = a or b or c or d;
• In standard OptoControl code, to OR multiple variables (such as A, B, C, and D) into one

variable (such as RESULT), do the following:

1. OR A with B, Move To RESULT.

2. OR C with RESULT, Move To RESULT.

3. OR D with RESULT, Move To RESULT.
• To test or manipulate individual bits, use Bit OR.

See Also: Bit OR (page B-10)

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
OptoControl Command Reference O-7

OR?
Logical Condition

Function: To determine if either or both of two values are True.

Typical Use: To OR? two values within an AND? type condition block.

Details: • Determines if Argument 1 or Argument 2 is non-zero. Examples:
Argument 1 Argument 2 Result

0 0 False
-1 0 True
0 -1 True
-1 -1 True

• Evaluates True if either argument is True (non-zero, on). Evaluates False if both arguments
are False (zero, off).

Arguments:

Standard
Example:

Is LIMIT_SWITCH1 Local Simple Digital Input
OR?

LIMIT_SWITCH2 Digital Input

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the or operator.
if (LIMIT_SWITCH1 or LIMIT_SWITCH2) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the or operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• To determine whether both values are False (zero, off), use either Variable False? or the

False exit.
• Multiple uses of OR? within a condition block result in the OR? pairs being AND?ed.

See Also: NOT (page N-2), AND? (page A-7) XOR? (page X-3)

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
O-8 OptoControl Command Reference

P
 P
Pause Timer
Miscellaneous Action

Function: To pause a timer variable.

Typical Use: Used with the Continue Timer command to trade on or off time of a variable or I/O point.

Details: • The timer must have been started with either the Start Timer or Move commands.
• To continue a paused timer from the value it was paused at, use the command Continue

Timer.

Arguments:

Standard
Example:

Pause Timer
Timer OVEN_TIMER Down Timer Variable

OptoScript
Example:

PauseTimer(Timer)
PauseTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on using timers.

See Also: Start Timer (page S-62), Stop Timer (page S-68), Continue Timer (page C-45), Set Down Timer
Preset Value (page S-19), Set Up Timer Target Value (page S-46)

Argument 1
Timer
Down Timer Variable
Up Timer Variable
OptoControl Command Reference P-1

PID Loop Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified PID loop
is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

PID Loop FACTORY_HEAT_2BA
PID Loop Communication Enabled?

OptoScript
Example:

IsPidLoopCommEnabled(PID Loop)
if (IsPidLoopCommEnabled(FACTORY_HEAT_2BA)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

See Also: I/O Point Communication Enabled? (page I-7)

Argument 1
PID Loop
PID Loop
P-2 OptoControl Command Reference

P
Pointer Equal to NULL?
Pointers Condition

Function: To determine if a pointer is pointing to an object.

Typical Use: To verify that a pointer is pointing to an object (to prevent an undefined pointer).

Details: Evaluates False if the pointer is pointing to an object, True otherwise.

Arguments:

Standard
Example:

Pointer IO_Pointer Pointer Variable
Pointer Equal to NULL?

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == and null operators.
if (IO_Pointer == null) then

Notes: • The example shown is only one way to use these operators. For more information on
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• If you try to perform an operation on a NULL pointer, an error 61 will be posted in the error
queue.

See Also: Clear Pointer (page C-30), Move to Pointer (page M-23)

Argument 1
Pointer
Pointer Variable
OptoControl Command Reference P-3

Pointer Table Element Equal to NULL?
Pointers Condition

Function: To determine if a specific element of a pointer table contains an object.

Typical Use: To verify that an element in a pointer table is pointing to an object (to prevent an undefined
pointer).

Details: Evaluates False if the specified element is pointing to an object, True otherwise.

Arguments:

Standard
Example:

Index Current_Index Integer 32 Variable
Pointer Table Element Equal to NULL?

Of Table IO_Table Pointer Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == and null operators.
if (IO_Table[Current_Index] == null) then

Notes: • The example shown is only one way to use these operators. For more information on
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• If you try to perform an operation on a NULL pointer, an error 61 will be posted in the error
queue.

See Also: Clear Pointer Table Element (page C-31), Move to Pointer Table (page M-24)

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table
P-4 OptoControl Command Reference

R
 R
Raise e to Power
Mathematical Action

Function: To raise the constant e to a specified power.

Typical Use: To solve mathematical equations where the constant e is required.

Details: • Raises e to the power specified in Argument 1.
• The constant e, the base of the natural system of logarithms, has a value of 2.7182818.
• The power (Argument 1) must be between -88.33654 and 88.72283.

Arguments:

Standard
Example:

Raise e to Power
Exponent Gas_Pressure Analog Input

Put Result in Pressure_Calculation Float Variable

OptoScript
Example:

RaiseEToPower(Exponent)
Pressure_Calculation = RaiseEToPower(Gas_Pressure);

This is a function command; it returns the result of the mathematical computation. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.

Queue Errors: 33 = Overflow error—result too large.

See Also: Natural Log (page N-1), Raise to Power (page R-2)

Argument 1
Exponent
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference R-1

Raise to Power
Mathematical Action

Function: To raise a value to a specified power.

Typical Use: To solve exponentiation calculations.

Details: • Raises Argument 1 to the power specified by Argument 2 and places the result in
Argument 3.

• For use with positive numbers only.

Arguments:

Standard
Example:

Raise to Power
Raise 10 Integer 32 Literal
To the 2 Integer 32 Literal

Put Result in TEN_SQUARED Integer 32 Variable

OptoScript
Example:

Power(Raise, To the)
TEN_SQUARED = Power(10, 2);

This is a function command; it returns the result of the mathematical computation. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Multiplying a number by itself is faster than raising a number to the power of 2.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Raise e to Power (page R-1), Square Root (page S-52)

Argument 1
Raise
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
To the
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
R-2 OptoControl Command Reference

R
Ramp Analog Output
Analog Point Action

Function: To change an analog output value to a new value at a constant rate.

Typical Use: To raise or lower oven temperature from point A to point B at a specified rate.

Details: • When the I/O unit receives this command, it will assume control of the analog
output channel.

• Ramping starts from the current output value and proceeds toward the specified
endpoint value.

• The ramp rate is specified in engineering units per second. A rate of zero is illegal
(returns a queue error 7).

• Updates to the current output value will be made at 50-millisecond intervals.
• If this command is executed while the output is ramping, the ramp rate will be changed. If

this command is executed too frequently, the output will not get a chance to ramp at all.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Ramp Analog Output
Ramp Endpoint SOAK_TEMP Float Variable

Units/Sec RAMP_RATE Float Variable
Point to Ramp TEMP_CONTROL Analog Output

OptoScript
Example:

RampAnalogOutput(Ramp Endpoint, Units/Sec, Point to Ramp)
RampAnalogOutput(SOAK_TEMP, RAMP_RATE, TEMP_CONTROL);

This is a procedure command; it does not return a value.

Notes: • To stop the ramp at any time, use Move (or an assignment in OptoScript code) to send the
desired “static” value to the analog output channel.

• Use this command only to change or start the ramp.
• Be sure the analog output value is at the desired starting point before using this command.
• If the output value must be changed, wait at least 50 milliseconds before using this

command.

Queue Errors: 7 = Value sent to I/O unit is out of range.

Argument 1
Ramp Endpoint
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Units/Sec
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Point to Ramp
Analog Output
OptoControl Command Reference R-3

Read Byte from PC Memory (ISA only)
Controller Action

Function: Read one byte from memory on another card in the PC.

Typical Use: To get eight-bit data from other cards plugged into the PC bus via the assigned memory address
for the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command
executes immediately.

• The value read is treated as an unsigned short.

Arguments:

Standard
Example:

Read Byte from PC Memory (ISA only)
From Address 851968 Integer 32 Literal

Put in Byte_Read Integer 32 Variable

OptoScript
Example:

ReadByteFromPcMemory(From Address)
Byte_Read = ReadByteFromPcMemory(851968);

This is a function command; it returns the byte read from the other card. The returned value can
be consumed by a variable (as shown) or by another item, such as a math expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• Memory on the PC motherboard cannot be accessed.
• A -1 is returned if the DMA channel in the PC has not been configured.
• A value of 255 is returned when there is no card present at the address specified.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to
use the chosen DMA channel. See the ISA controller manual for details.

See Also: Read Word from PC Memory (ISA only) (page R-12), Read Byte from PC Port (ISA only) (page R-5)

Argument 1
From Address
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Integer 32 Variable
R-4 OptoControl Command Reference

R
Read Byte from PC Port (ISA only)
Controller Action

Function: Read one byte from a port in the PC.

Typical Use: To get eight-bit data from other cards plugged into the PC bus via the assigned port address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command
executes immediately.

• The value read is treated as an unsigned short.

Arguments:

Standard
Example:

Read Byte from PC Port (ISA only)
From Address 744 Integer 32 Literal

Put in BYTE_READ Integer 32 Variable

OptoScript
Example:

ReadByteFromPcPort(From Address)
BYTE_READ = ReadByteFromPcPort(744);

This is a function command; it returns the byte read from the PC port. The returned value can be
consumed by a variable (as shown) or by another item, such as a math expression or a control
structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up DMA
channels.

• PC port addresses range from 000 to 3FF hex.
• A -1 is returned if the DMA channel in the PC has not been configured and must be entered

in decimal.
• A value of 255 is returned when there is no card present at the port address specified.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to
use the chosen DMA channel. See the ISA controller manual for details.

See Also: Read Word from PC Port (ISA only) (page R-13), Read Byte from PC Memory (ISA only) (page R-4)

Argument 1
From Address
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Integer 32 Variable
OptoControl Command Reference R-5

Read Event/Reaction Hold Buffer
Event/Reaction Action

Function: To get a value that was stored at the I/O unit as a reaction to a specific event.

Typical Use: To capture a counter value at the moment a digital input turned on (or off).

Details: • There are 256 32-bit holding buffers, one for each event/reaction. If a channel is configured
as a counter and the reaction is to send its value to the hold buffer, the counts will be in the
hold buffer for the specified event/reaction.

• Other values, such as period measurements and analog inputs, may also be captured.

Arguments:

Standard
Example:

Read Event/Reaction Hold Buffer
Event/Reaction Sequence_Finished Analog Event/Reaction

Put in Counter_Value Integer 32 Variable

OptoScript
Example:

ReadEventReactionHoldBuffer(Event/Reaction)
Counter_Value = ReadEventReactionHoldBuffer(Sequence_Finished);

This is a function command; it returns the value in the event/reaction hold buffer. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Event Occurred? to determine if there is a value to be read.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

Read Numeric Table from I/O Memory Map
Communication—I/O Action

Function: Read a range of values from an Opto 22 SNAP Ethernet I/O memory map and store them into an
integer 32 or float table.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: • This command works with SNAP Ethernet I/O units that have been configured in
OptoControl. The controller must be connected to the I/O unit for this command to work.

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Argument 2
Put in
Float Variable
Integer 32 Variable
R-6 OptoControl Command Reference

R
• Argument 1, Length, is the length of data in the memory map in quads (groups of four

bytes) and also the number of table elements. Maximum length is 64 quadlets (256 bytes).
• Argument 4, Mem address, includes only the last eight digits of the memory map address

(the lower 32 bits).

Arguments:

Standard
Example:

Read Numeric Table from I/O Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem address 0xFFFFFFFF Integer 32 Literal
To MYINTTABLE Integer 32 Table

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

ReadNumTableFromIoMemMap(Length, Start Index, I/O Unit, Mem address, To)
STATUS = ReadNumTableFromIoMemMap(0x10, 0x5, MYIOUNIT, OxFFFFFFFF,

MYINTTABLE);

This is a function command; it returns a status code as listed below.
In OptoScript code, you can use hex in some arguments and another format in others, for
example:
STATUS = ReadNumTableFromIoMemMap(16, 5, MYIOUNIT, OxFFFFFFFF,

MYINTTABLE);

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses. When
you display integers in hex, note that the length of data and start index arguments are also
in hex.

• The controller does not convert the table type to match the area of the memory map being
read. The controller has no knowledge of which memory map areas are integers and which
are floats. You must write the correct type of data to the specified memory map address.

For example, unpredictable results would occur if you try to read an integer 32 table from the
analog bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to determine
the data types for specific areas of the memory map.

Status Codes: 32 = Bad table index value—index was negative or greater than the table size.
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read Numeric Variable from I/O Memory Map (page R-8), Write Numeric Table to I/O Memory
Map (page W-6), Write Numeric Variable to I/O Memory Map (page W-8)

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 4
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 5
To
Float Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable
OptoControl Command Reference R-7

Read Numeric Variable from I/O Memory Map
Communication—I/O Action

Function: Read a value from an Opto 22 SNAP Ethernet I/O memory map and store that value in an integer
32 or float variable.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: This command works with SNAP Ethernet I/O units that have been configured in OptoControl.
The controller must be connected to the I/O unit for this command to work.

Arguments:

Standard
Example:

Read Numeric Variable from I/O Memory Map
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem address 0xFFFFFFFF Integer 32 Literal
To MYINTVAR Integer 32 Variable

Put Status In STATUS Integer 32 Variable

OptoScript
Example:

ReadNumVarFromIoMemMap(I/O Unit, Mem address, To)
STATUS = ReadNumVarFromIoMemMap(MYIOUNIT, OxFFFFFFFF, MYINTVAR);

This is a function command; it returns a status code as listed below.

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses.
• The controller does not convert the variable type to match the area of memory map being

read. The controller has no knowledge of which memory map areas are integers and which
are floats. You must write the correct type of data to the specified memory map address.

For example, unpredictable results would occur if you try to read an integer 32 variable from
the analog point area of the memory map. A float variable should be used instead. See the
SNAP Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: -47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read Numeric Table from I/O Memory Map (page R-6), Write Numeric Table to I/O Memory Map
(page W-6), Write Numeric Variable to I/O Memory Map (page W-8)

Argument 1
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 2
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 3
To
Float Variable
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable
R-8 OptoControl Command Reference

R
Read String Table from I/O Memory Map
Communication—I/O Action

Function: Read a range of values from an Opto 22 SNAP Ethernet I/O memory map and store them in a
string table.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: • This command works with SNAP Ethernet I/O units that have been configured in
OptoControl. The controller must be connected to the I/O unit for this command to work.

• Argument 1, Length, is the number of bytes to read in the memory map. Data is read in block
sizes that are multiples of four.

• Argument 4, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

Arguments:

Standard
Example:

Read String Table from I/O Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem address 0xFFFFFFFF Integer 32 Literal
To MYSTRINGTABLE String Table

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

ReadStrTableFromIoMemMap(Length, Start Index, I/O Unit, Mem address, To)
STATUS = ReadStrTableFromIoMemMap(0x10, 0x5, MYIOUNIT, 0xFFFFFFFF,

MYSTRINGTABLE);

This is a function command; it returns a status code as listed below.
In OptoScript, you can use hex in some arguments and another format in others, for example:
STATUS = ReadStrTableFromIoMemMap(16, 5, MYIOUNIT, OxFFFFFFFF,

MYSTRINGTABLE);

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses. When
you display integers in hex, note that the length of data and start index arguments are also
in hex.

• The controller does not convert the table type to match the area of the memory map being
read. The controller has no knowledge of which memory map areas are strings and which
are other formats. You must read the correct type of data from the specified memory map
address.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 4
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 5
To
String Table

Argument 6
Put Status in
Integer 32 Variable
OptoControl Command Reference R-9

For example, unpredictable results would occur if you try to read a string table from the
analog bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to determine
the data types for specific areas of the memory map.

• The string table width needs to be at least 4. Since the command reads in quads (4-byte
elements), the width of the string table is rounded down to even quads to make sure data
will fit. You can read a total number of bytes not divisible by four; the remainder goes into
the last table element. For example, to read 35 bytes into a table that’s 7 bytes wide and 10
elements long, 4 bytes are read into each of the elements 0–7 (width is rounded down from
7 to 4 bytes), and the remaining 3 bytes go into element 8.

Status Codes: 32 = Bad table index value—index was negative or greater than the table size.
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read String Variable from I/O Memory Map (page R-11), Write String Table to I/O Memory Map
(page W-9), Write String Variable to I/O Memory Map (page W-11)
R-10 OptoControl Command Reference

R
Read String Variable from I/O Memory Map
Communication—I/O Action

Function: Read a value from an Opto 22 SNAP Ethernet I/O memory map and store that value in a string
variable.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: This command works with SNAP Ethernet I/O units that have been configured in OptoControl.
The controller must be connected to the I/O unit for this command to work.

Arguments:

Standard
Example:

Read String Variable from I/O Memory Map
Length 20 Integer 32 Literal
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem address 0xFFFFFFFF Integer 32 Literal
To MYSTRINGVAR String Variable

Put Status In STATUS Integer 32 Variable

OptoScript
Example:

ReadStrVarFromIoMemMap(Length, I/O Unit, Mem address, To)
STATUS = ReadStrVarFromIoMemMap(20, MYIOUNIT, 0xFFFFFFFF, MYSTRINGVAR);

This is a function command; it returns a status code as listed below.

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses.
• The controller does not convert the variable type to match the area of memory map being

read. The controller doesn’t know which memory map areas are strings and which are other
formats. You must read the correct type of data from the specified memory map address.

For example, unpredictable results would occur if you try to read a string variable from the
analog point area of the memory map. A float variable should be used instead. See the
SNAP Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: -47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read String Table from I/O Memory Map (page R-9), Write String Table to I/O Memory Map
(page W-9), Write String Variable to I/O Memory Map (page W-11)

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
I/O Unit
B3000 SNAP Mixed
I/O
SNAP Digital 64

Argument 3
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 4
To
String Variable

Argument 5
Put Status in
Integer 32 Variable
OptoControl Command Reference R-11

Read Word from PC Memory (ISA only)
Controller Action

Function: Read two bytes from memory on another card in the PC.

Typical Use: To get 16-bit data from other cards plugged into the PC bus via the assigned memory address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command
executes immediately.

• The value read is treated as an unsigned word.

Arguments:

Standard
Example:

Read Word from PC Memory (ISA only)
From Address 851968 Integer 32 Literal

Put in WORD_READ Integer 32 Variable

OptoScript
Example:

ReadWordFromPcMemory(From Address)
WORD_READ = ReadWordFromPcMemory(851968);

This is a function command; it returns the two bytes read from the other card. The returned value
can be consumed by a variable (as shown) or by another item, such as a math expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• Memory on the PC motherboard cannot be accessed.
• A -1 is returned if the DMA channel in the PC has not been configured.
• A value of 65535 is returned when there is no card present at the address specified.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to
use the chosen DMA channel. See the ISA controller manual for details.

See Also: Read Byte from PC Memory (ISA only) (page R-4), Read Word from PC Port (ISA only) (page R-13))

Argument 1
From Address
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Integer 32 Variable
R-12 OptoControl Command Reference

R
Read Word from PC Port (ISA only)
Controller Action

Function: Reads two bytes from a port in the PC.

Typical Use: To get 16-bit data from other cards plugged into the PC bus via the assigned port address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command
executes immediately.

• The value read is treated as an unsigned word.

Arguments:

Standard
Example:

Read Word from PC Port (ISA only)
From Address 744 Integer 32 Literal

Put in WORD_READ Integer 32 Variable

OptoScript
Example:

ReadWordFromPcPort(From Address)
WORD_READ = ReadWordFromPcPort(744);

This is a function command; it returns the two bytes read from the PC port. The returned value
can be consumed by a variable (as shown) or by another item, such as a math expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• PC port addresses range from 000 to 3FF hex.
• A -1 is returned if the DMA channel in the PC has not been configured.
• A value of 65535 is returned when there is no card present at the port address specified.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to
use the chosen DMA channel. See the ISA controller manual for details.

See Also: Read Byte from PC Port (ISA only) (page R-5), Read Word from PC Memory (ISA only) (page R-12))

Argument 1
From Address
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Integer 32 Variable
OptoControl Command Reference R-13

Receive Character via Serial Port
Communication—Serial Action

Function: To get a single character from the receive buffer of a communication port and move it to a
numeric variable.

Typical Use: To get a message from another device one character at a time. Use Append Character to String
to append these characters (selectively if desired) to a string variable.

Details: • Removes the oldest character from the receive buffer. Character values will be 0–255.
• If there are no characters in the receive buffer, a timeout error (-42) will eventually occur.
• A character 0 (ASCII null) will have a value of zero; a character 48 (ASCII zero) will have a

value of 48. These values will appear in the numeric variable. When appending a character
48 to a string variable, the number 0 will appear in the string.

Arguments:

Standard
Example:

Receive Character via Serial Port
From Port 1 Integer 32 Literal

Put in CHAR Integer 32 Variable

OptoScript
Example:

ReceiveCharViaSerialPort(From Port)
CHAR = ReceiveCharViaSerialPort(1);

This is a function command; it returns the oldest character in the receive buffer. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use command Get Number of Characters Waiting on Serial or ARCNET Port before

this command to avoid unnecessary timeout errors.

Dependencies: Ports 0–3: baud rate, parity, number of data bits, number of stop bits.

Queue Errors: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—probably didn’t use the command Get Number of Characters Waiting on Serial
or ARCNET Port before this command (see Configure Port Timeout Delay also).
-51 = Invalid port number—use ports 0–10.

See Also: Configure Port (page C-41), Append Character to String (page A-8)

Argument 1
From Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put in
Float Variable
Integer 32 Variable
R-14 OptoControl Command Reference

R
Receive N Characters via ARCNET
Communication—Network Action

Function: Gets a specified number of characters from the ARCNET receive buffer.

Typical Use: To move an entire message from the receive buffer to a string when the message contains
multiple carriage returns. Can also be used to receive the message a piece at a time, especially
when the message is longer than a single string can hold.

Details: • If N is greater than the number of characters in the receive buffer, all the characters will be
returned along with a substring (-42).

• If N is greater than the string length, as many characters as will fit will be returned along
with a String Too Short error (-48).

Arguments:

Standard
Example:

Receive N Characters via ARCNET
Put in RECV_MSG String Variable

Number of Characters QTY_CHARS Integer 32 Variable
From Port 4 Integer 32 Literal

Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveNCharsViaArcnet(Put in, Number of Characters, From Port)
RECV_STATUS = ReceiveNCharsViaArcnet(RECV_MSG, QTY_CHARS, 4);

This is a function command; it returns one of the status codes listed below.

Notes: • To avoid losing additional incoming messages, “receive” the entire message as quickly as
possible. This makes the receive buffer available for the next message. The receive buffer
only holds four messages, regardless of their length. The length of the string variable should
be greater than the longest expected string by at least 2.

• Use Receive String via ARCNET to get carriage return delimited pieces of the message in the
receive buffer. Use Configure Port Timeout Delay to change the timeout time.

• Valid ports are 4 (also called ARCNET port) and 7 (also called peer port), as well as 12–19,
which are twisted-pair ARCNET ports.

• All messages in the ARCNET receive buffer are 16-bit CRC error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—response not received with allotted time (see Configure Port Timeout Delay).
-48 = String too short to hold response.
-51 = Invalid port number—use 4 or 7.

See Also: Receive String via ARCNET (page R-19), Transmit String via ARCNET (page T-19), Transmit Table
via ARCNET (page T-23)

Argument 1
Put in
String Variable

Argument 2
Number of Characters
Integer 32 Literal
Integer 32 Variable

Argument 3
From Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference R-15

Receive N Characters via Ethernet
Communication—Network Action

Function: Gets a specified number of characters from the Ethernet receive buffer.

Typical Use: To move an entire message from the receive buffer to a string when the message contains
multiple carriage returns. Can also be used to receive the message one piece at a time, especially
when the message is longer than a single string can hold.

Details: • If N is greater than the number of characters in the receive buffer, all the characters will be
returned along with a substring (-42).

• If N is greater than the string length, as many characters as will fit will be returned along
with a String Too Short error (-48).

Arguments:

Standard
Example:

Receive N Characters via Ethernet
Put in RECV_MSG String Variable

Number of Characters QTY_CHARS Integer 32 Variable
From Session SESSION_NUMBER Integer 32 Variable
Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveNCharsViaEthernet(Put in, Num. Characters, From Session)
RECV_STATUS = ReceiveNCharsViaEthernet(RECV_MSG, QTY_CHARS,

SESSION_NUMBER);

This is a function command; it returns one of the status codes listed below.

Notes: • The length of the string variable should be greater than the longest expected string by at
least 2.

• Use Receive String via Ethernet to get carriage return delimited pieces of the message in the
receive buffer. Use Configure Port Timeout Delay to change the timeout time.

• All messages in the Ethernet receive buffer are 16-bit CRC error checked.

Dependencies: • Must have previously used Open Ethernet Session to establish a session, or Accept Session
on TCP Port to accept a session initiated by a peer.

• Before using this command, use Get Number of Characters Waiting on Ethernet Session to
see if there is a message.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—insufficient characters available within allotted time
(see Configure Port Timeout Delay).
-48 = String too short to hold response.
-70 = No Ethernet card present.

Argument 1
Put in
String Variable

Argument 2
Number of Characters
Integer 32 Literal
Integer 32 Variable

Argument 3
From Session
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable
R-16 OptoControl Command Reference

R
-74 = Session wasn’t open.
-75 = Invalid session number—use 0–127.
-77 = This controller doesn’t support Ethernet.

See Also: Receive String via Ethernet (page R-20), Transmit String via Ethernet (page T-20), Transmit Table
via Ethernet (page T-24)
OptoControl Command Reference R-17

Receive N Characters via Serial Port
Communication—Serial Action

Function: Gets a specific number of characters from the receive buffer of the specified serial port.

Typical Use: To move an entire message from the receive buffer to a string when the message contains
multiple carriage returns. Can also be used to receive the message a piece at a time, especially
when the message is longer than a single string can hold.

Details: • If N is greater than the number of characters in the receive buffer, all the characters will be
returned along with a timeout error (-42).

• If N is greater than the string length, as many characters as will fit will be returned along
with a String Too Short error (-48).

Arguments:

Standard
Example:

Receive N Characters via Serial Port
Put in RECV_MSG String Variable

Number of Characters QTY_CHARS Integer 32 Variable
From Port 4 Integer 32 Literal

Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveNCharsViaSerialPort(Put in, Num. Characters, From Port)
RECV_STATUS = ReceiveNCharsViaSerialPort(RECV_MSG, QTY_CHARS, 4);

This is a function command; it returns one of the status codes listed below.

Notes: • Valid ports are 0-3. The length of the string variable should be greater than the longest
expected string by at least 2. Use Receive String via Serial Port to get carriage return
delimited pieces of the message in the receive buffer.

• Messages in the serial receive buffer are not error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—insufficient characters available within allotted time (see Configure Port Timeout
Delay).
-48 = String too short to hold response.
-51 = Invalid port number—use 0–3.

See Also: Receive String via Serial Port (page R-21), Receive Character via Serial Port (page R-14), Transmit
String via Serial Port (page T-22)

Argument 1
Put in
String Variable

Argument 2
Number of Characters
Integer 32 Literal
Integer 32 Variable

Argument 3
From Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
R-18 OptoControl Command Reference

R
Receive String via ARCNET
Communication—Network Action

Function: Gets the first carriage return delimited string found in the ARCNET receive buffer.

Typical Use: To parse the message in the receive buffer when the message contains multiple carriage return
delimited strings.

Details: • All characters up to the first carriage return are moved from the receive buffer to the string.
The carriage return is discarded. If there is no carriage return in the receive buffer, all the
characters that will fit in the string will be returned along with a substring (-42). The
characters remaining in the receive buffer will be discarded.

• If the carriage return delimited string is longer than the destination string length, as many
characters as will fit will be returned along with a String Too Short error (-48). The
characters remaining in the receive buffer up to the next carriage return will be discarded.

Arguments:

Standard
Example:

Receive String via ARCNET
Put in RECV_MSG String Variable

From Port 7 Integer 32 Literal
Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveStringViaArcnet(Put in, From Port)
RECV_STATUS = ReceiveStringViaArcnet(RECV_MSG, 7);

This is a function command; it returns one of the status codes listed below.

Notes: • To avoid losing additional incoming messages, “receive” the entire message as quickly as
possible to make the receive buffer available for the next message. The receive buffer only
holds one message regardless of length. Do not use to receive binary messages since there
may be random carriage returns within the message. Use Receive N Characters via ARCNET
instead.

• The string variable should be longer than the longest expected string by at least 2.
• Use Configure Port Timeout Delay to change the timeout time.
• Valid ports are 4 (also called ARCNET port) and 7 (also called peer port). When port 4 is not

used as a host port, it is available for use as a standard ARCNET port.
• All messages in the ARCNET receive buffer are 16-bit CRC error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—no carriage return found in the receive buffer with allotted time
(see Configure Port Timeout Delay).
-48 = String too short to hold response.

Argument 1
Put in
String Variable

Argument 2
From Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference R-19

-51 = Invalid port number—use 4 or 7.

See Also: Receive Table via ARCNET (page R-23), Transmit String via ARCNET (page T-19), Transmit Table
via ARCNET (page T-23)

Receive String via Ethernet
Communication—Network Action

Function: Gets the first carriage return delimited string found in the Ethernet receive buffer.

Typical Use: To parse the message in the receive buffer when the message contains multiple carriage return
delimited strings.

Details: • All characters up to the first carriage return are moved from the receive buffer to the string.
The carriage return is discarded. If there is no carriage return in the receive buffer, all the
characters that will fit in the string will be returned and error code - 42 will be put in the
status variable. The characters remaining in the receive buffer will be discarded.

• If the carriage return delimited string is longer than the destination string length, as many
characters as will fit will be returned, and error code - 48 will be put in the status variable.
The characters remaining in the receive buffer up to and including the first carriage return
will be discarded.

Arguments:

Standard
Example:

Receive String via Ethernet
Put in RECV_MSG String Variable

From Session SESSION_NUMBER Integer 32 Variable
Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveStringViaEthernet(Put in, From Session)
RECV_STATUS = ReceiveStringViaEthernet(RECV_MSG, SESSION_NUMBER);

This is a function command; it returns one of the status codes listed below.

Notes: • Do not use to receive binary messages, since there may be random carriage returns within
the message. Use Receive N Characters via Ethernet instead.

• The string variable should be longer than the longest expected string by at least 2.
• Use Configure Port Timeout Delay to change the timeout time.
• All messages in the Ethernet receive buffer are 16-bit CRC error checked.

Dependencies: • Must have previously used Open Ethernet Session to establish a session, or Accept Session
on TCP Port to accept a session initiated by a peer.

• Before using this command, use Get Number of Characters Waiting on Ethernet Session to
see if there is a message.

Argument 1
Put in
String Variable

Argument 2
From Session
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
R-20 OptoControl Command Reference

R
Status Codes: 0 = No error.

-40 = Timeout—specified port already in use.
-42 = Timeout—no carriage return received within allotted time
(see Configure Port Timeout Delay).
-48 = String too short to hold response.
-70 = No Ethernet card present.
-74 = Session not open.
-75 = Invalid session number—use 0–127.
-77 = This controller doesn’t support Ethernet.

See Also: Receive Table via Ethernet (page R-24), Transmit String via Ethernet (page T-20), Transmit Table
via Ethernet (page T-24)

Receive String via Serial Port
Communication—Serial Action

Function: To get a message from the receive buffer of a communication port and move it to a string variable.

Typical Use: To get ASCII messages from weigh scales, barcode readers, data entry terminals, and
other controllers.

Details: • The message is expected to end with a carriage return (character 13).
• The string variable length must be at least two characters longer than the length of the

longest message expected.
• The carriage return in the receive buffer is deleted as the message is moved to the string

variable.
• For ports 0–3, multiple messages can be in the receive buffer as long as each is delimited by

a carriage return.
• The status is an error code that indicates how successful this command was. A zero

indicates OK; any negative value indicates an error.
• If the first set of characters in the receive buffer that is equal in length to the string variable

does not contain a carriage return, these characters will be moved to the string variable
without error. In addition, all remaining characters up to and including the first carriage
return encountered (if any) will be deleted from the receive buffer.

• If the number of characters in the receive buffer is less than the length of the string variable
and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the string variable.
If this happens frequently, use Configure Port Timeout Delay to increase the timeout value.
See Notes below.

• If the communication port is already in use, this command will wait for it to become
available until a port-in-use timeout error (-40) occurs.
OptoControl Command Reference R-21

Arguments:

Standard
Example:

Receive String via Serial Port
Put in RECEIVED_MESSAGE String Variable

From Port 1 Integer 32 Literal
Put Status in ERROR_CODE Integer 32 Variable

OptoScript
Example:

ReceiveStringViaSerialPort(Put in, From Port)
ERROR_CODE = ReceiveStringViaSerialPort(RECEIVED_MESSAGE, 1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use Clear Receive Buffer once before using this command for the first time.
• Always use Configure Port Timeout Delay once before using this command. As a minimum,

use the result of this formula: (longest message length/baud rate) * 40. For example, a
24-character message at 9600 baud results in a delay of 0.1 seconds.

• Always use the command Get Number of Characters Waiting on Serial or ARCNET Port
before this command to avoid an unnecessary timeout error (-42).

• When there is a single response terminated by a carriage return and a line feed (character
10), use Clear Receive Buffer after this command to drop the line feed character.

• When there are multiple responses terminated by a carriage return and a line feed
(character 10), all responses received starting with the second response will have a line feed
as the first character in the string variable. To remove it, get the first character of the string
variable using Get Nth Character where n=1. If the nth character is equal to 10, use Get
Substring with Start At set to 2 and Number Of set greater than or equal to the number of
characters expected.

• If a timeout error (-42) occurs and a partial string is received and this was unexpected, delay
for one second or so, then use Clear Receive Buffer. This puts the receive buffer back to a
known state.

• Do not use this command for binary messages, since they may contain numerous carriage
returns at unpredictable locations.

Dependencies: Ports 0–3: baud rate, parity, number of data bits, number of stop bits.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—no carriage return found in the receive buffer within allotted time (see Configure
Port Timeout Delay).
-48 = String variable is too short. The length of the string variable must be longer than the
received string by two characters.
-51 = Invalid port number—use port 0–3.

See Also: Receive Character via Serial Port (page R-14), Configure Port (page C-41)

Argument 1
Put in
String Variable

Argument 2
From Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
R-22 OptoControl Command Reference

R
Receive Table via ARCNET
Communication—Network Action

Function: Moves the first 128 bytes in the receive buffer to an integer numeric table.

Typical Use: Efficient method of numeric data transfer from one controller to another.

Details: The 128 bytes represent 32 consecutive integer numeric table values sent by another controller.
These values can be put in any integer numeric table starting at any index. If the table will not
hold all 32 values, the remaining values are discarded.

Arguments:

Standard
Example:

Receive Table via ARCNET
Start at Index 0 Integer 32 Literal

Of Table PEER_DATA_TABLE Float Table
From Port 7 Integer 32 Literal

Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveTableViaArcnet(Start at Index, Of Table, From Port)
RECV_STATUS = ReceiveTableViaArcnet(0, PEER_DATA_TABLE, 7);

This is a function command; it returns one of the status codes listed below.

Notes: • To avoid losing additional incoming messages, “receive” the entire message as quickly as
possible. This makes the receive buffer available for the next message. The receive buffer
only holds four messages, regardless of their length.

• Valid ports are 4 (also called ARCNET port) and 7 (also called ARCNET peer port), as well as
12–19, which are twisted-pair ARCNET ports.

• All messages in the ARCNET receive buffer are 16-bit CRC error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—no carriage return found in the receive buffer with allotted time
(see Configure Port Timeout Delay).
-51 = Invalid port number—use 4 or 7.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Receive String via ARCNET (page R-19), Transmit String via ARCNET (page T-19), Transmit Table
via ARCNET (page T-23)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
From Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference R-23

Receive Table via Ethernet
Communication—Network Action

Function: Moves the first 128 bytes in the receive buffer to an integer numeric table.

Typical Use: Efficient method of numeric data transfer from one controller to another.

Details: The 128 bytes represent 32 consecutive integer numeric table values sent by another controller.
These values can be put in any integer numeric table starting at any index. If the table will not
hold all 32 values, the remaining values are discarded.

Arguments:

Standard
Example:

Receive Table via Ethernet
Start at Index 0 Integer 32 Literal

Of Table PEER_DATA_TABLE Float Table
From Session SESSION_NUMBER Integer 32 Variable
Put Status in ETHERNET_RECV_STATUS Integer 32 Variable

OptoScript
Example:

ReceiveTableViaEthernet(Start at Index, Of Table, From Session)
ETHERNET_RECV_STATUS = ReceiveTableViaEthernet(0, PEER_DATA_TABLE,

SESSION_NUMBER);

This is a function command; it returns one of the status codes listed below.

Notes: All messages in the Ethernet receive buffer are 16-bit CRC error checked.

Dependencies: • Must have previously used Open Ethernet Session to establish a session, or Accept Session
on TCP Port to accept a session initiated by a peer.

• Before using this command, use Get Number of Characters Waiting on Ethernet Session to
see if there is a message.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—insufficient characters available within allotted time
(see Configure Port Timeout Delay).
-70 = No Ethernet card present.
-74 = Session not open.
-75 = Invalid session number—use 0–127.
-77 = This controller doesn’t support Ethernet.

Queue Error: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Receive String via Ethernet (page R-20)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
From Session
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable
R-24 OptoControl Command Reference

R
Receive Table via Serial Port
Communication—Serial Action

Function: To get 32 numeric table values from a communication port.

Typical Uses: • To receive shared numeric table data from another controller.
• To get large amounts of numeric table data efficiently.

Details: • Gets 128 bytes from the receive buffer and puts them directly in memory.
• If the table does not have at least 32 elements starting from the specified index, only a

portion of the 128 bytes will be written to memory. Remaining bytes will be discarded.
• Valid table indices range from 0 to the declared table length.
• All remaining characters in the receive buffer will be discarded.

Arguments:

Standard
Example:

Receive Table via Serial Port
Start at Index INDEX Integer 32 Variable

Of Table MY_TABLE Integer 32 Float
From Port 1 Integer 32 Literal

Put Status in ERROR_CODE Integer 32 Variable

OptoScript
Example:

ReceiveTableViaSerialPort(Start at Index, Of Table, From Port)
ERROR_CODE = ReceiveTableViaSerialPort(INDEX, MY_TABLE, 1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use Get Number of Characters Waiting on Serial or ARCNET Port to determine if the

entire 128-byte packet is in the receive buffer. This number will be higher if an index or other
data is sent as well. For example, if an index of 32 followed by a carriage return (character
13) was sent along with the 128 bytes, the total number of characters will be at least 131
(128+2+1).

• Do not use this command unless there are at least 128 bytes in the receive buffer, as the
command will result in a timeout error (-42).

• If the data received must be put in the table at a different index each time, the index must be
sent by the other controller before the data is sent. An easy way to do this is to send the
index as an integer followed by a carriage return (character 13), then send the 128 bytes.
Use Receive String via Serial Port to get the index. Then use Convert String to Integer 32 to
put the index into an integer variable. Finally, get the table data.

• Be sure to put float data into a float table, integer data into an integer table. Otherwise,
data values will be interpreted incorrectly.

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
From Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference R-25

• Use error-checked communications or calculate the CRC on the data to ensure the integrity
of the 128-byte packet before putting it in the destination table. Since it must be received
first, put it into a “holding table,” check the CRC, then copy it to the final destination table.

• Use Transmit Table via Serial Port in the other controller to send this data.

Dependencies: Ports 0–3: baud rate, parity, number of data bits, number of stop bits.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—probably didn’t use the command Get Number of Characters Waiting on Serial
or ARCNET Port before this command (see Configure Port Timeout Delay also).
-51 = Invalid port number— use ports 0–3.

See Also: Receive Table via Serial Port (page R-25), Configure Port (page C-41)

Remove Current Error and Point to Next Error
Controller Action

Function: To drop the oldest error from the queue and bring the next error to the top of the queue.

Typical Use: To access items in the error queue during error handling within the OptoControl strategy.

Details: • Must use before the next error in the queue can be evaluated.
• Once this command is executed, the previous error can no longer be accessed.
• Commands that have the word Error in their name always evaluate the top (oldest) error in

the queue.

Arguments: None.

Standard
Example:

Remove Current Error and Point to Next Error

OptoScript
Example:

RemoveCurrentError()
RemoveCurrentError();

This is a procedure command; it does not return a value.

Notes: • Always use the condition Error? to determine if there are errors in the queue before using
this command.

• Use Debug mode to view the error queue for detailed information.

Dependencies: At least one error must exist in the error queue.

See Also: Error? (page E-19), Get Error Count (page G-53), Get Error Code of Current Error (page G-52), Get
Name of Chart Causing Current Error (page G-67), Get Name of I/O Unit Causing Current Error
(page G-68)
R-26 OptoControl Command Reference

R
Reset Controller
Controller Action

Function: Causes an immediate reboot of the controller.

Typical Use: In an error handler when the program CRC has been found to be compromised and the controller
is configured to run from ROM.

Details: If the program integrity is suspect and the controller is configured to run from ROM, rebooting
will cause a fresh copy of the program to be loaded from ROM to RAM.

Arguments: None.

Standard
Example:

Reset Controller

OptoScript
Example:

ResetController()
ResetController();

This is a procedure command; it does not return a value.

Notes: The controller should be configured for Autoboot and a new strategy download.

See Also: Calculate Strategy CRC (page C-5), Retrieve Strategy CRC (page R-28)
OptoControl Command Reference R-27

Retrieve Strategy CRC
Controller Action

Function: Returns the 16-bit CRC originally calculated on the program in RAM during the last download.

Typical Use: Periodically used in an error handler to check the integrity of the running program.

Details: Use the returned value to compare with a newly calculated CRC that was obtained by using
Calculate Strategy CRC. These two values should match exactly.

Arguments:

Standard
Example:

Retrieve Strategy CRC
Put in ORIGINAL_CRC Integer 32 Variable

OptoScript
Example:

RetrieveStrategyCrc()
ORIGINAL_CRC = RetrieveStrategyCrc();

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the OptoControl User’s Guide for more information.

See Also: Calculate Strategy CRC (page C-5), Reset Controller (page R-27)

Argument 1
Put in
Integer 32 Variable
R-28 OptoControl Command Reference

R
Round
Mathematical Action

Function: To round up or down to the nearest integer value.

Typical Use: To discard a fractional part of a number that isn’t meaningful while still keeping the number as a
float type.

Details: Fractional values less than 0.5 cause no change to the whole number. Fractional values of 0.5 and
greater cause the whole number to be incremented by 1.

Arguments:

Standard
Example:

Round
Boiler_Avg_Temp Float Variable

Put Result in Boiler_Working_Temp Float Variable

OptoScript
Example:

Round(Value)
Boiler_Working_Temp = Round(Boiler_Avg_Temp);

This is a function command; it returns the rounded integer value. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: Using Move (or an assignment in OptoScript code) to copy a float value to an integer variable will
round automatically.

See Also: Truncate (page T-36)

Argument 1
[Value]
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference R-29

R-30 OptoControl Command Reference

S
 S
Seed Random Number
Mathematical Action

Function: To set a random starting point for the random number generator.

Typical Use: • To ensure the random number generator does not generate the same sequence of numbers
each time it is started.

• To switch random number sequences on-the-fly by “re-seeding” the random number
generator.

Details: This command seeds the random number generator with a millisecond time value which will be
unique each time the command is issued.

Arguments: None.

Standard
Example:

Seed Random Number

OptoScript
Example:

SeedRandomNumber()
SeedRandomNumber();

This is a procedure command; it does not return a value.

See Also: Generate Random Number (page G-5)
OptoControl Command Reference S-1

Set Analog Filter Weight
Analog Point Action

Function: To activate digital filtering and set the amount of filtering to use on an analog input point.

Typical Use: To smooth noisy or erratic input signals.

Details: • Not available on SNAP Ethernet brains.
• When issued, this command copies the current input value to the filtered value to initialize

it. Thereafter, a percentage of the difference between the current input value and the last
filtered value is added to the last filtered value at the rate of 10 times per second.

• To read the filtered value, use Get Analog Filtered Value, Get & Clear Analog Filtered Value,
or Get Analog Square Root Filtered Value. All other commands will read the unfiltered value!

• The digital filtering algorithm is an implementation of a first-order lag filter: New Filtered
Value = ((Current Reading - Old Filter Value) / Filter Weight) + Old Filter Value.

• To calculate the filter weight value that will result in a particular time constant value,
use: Filter Weight = (Time Constant [in seconds] + 0.1) * 10.
A one-second time constant requires a filter weight of 11.

• To calculate the time constant that a particular filter weight will result in, use:
Time Constant (in seconds) = (Filter Weight / 10) - 0.1.

• With a filter weight of 11, an input value that suddenly changes from 0 percent to 100
percent (a 100 percent step change) will take over five seconds to be fully recognized.
This is considered to be a time constant of one second (which is the time it takes for the
input to reach 63.21 percent of its final value), as shown below:

 100% Step Change, Filter Weight Of 11
Input Value Time In Seconds Value Read

100% 0 0%
100% 1 63.21%
100% 2 86.47%
100% 3 95.02%
100% 4 98.17%
100% 5 99.33%

• A filter weight value of zero specifies digital filtering is to be discontinued.
• The filter weight will be used until power is removed from the I/O unit, or it will always be

used if it is stored in permanent memory at the I/O unit.

Arguments:

Standard
Example:

Set Analog Filter Weight
To FILTER_WEIGHT Integer 32 Variable

On Point TEMP_IN1 Analog Input

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
S-2 OptoControl Command Reference

S
OptoScript

Example:
SetAnalogFilterWeight(To, On Point)
SetAnalogFilterWeight(FILTER_WEIGHT, TEMP_IN1);

This is a procedure command; it does not return a value.

Notes: • Do not continually issue this command, since it resets the filtered value to the current value.
• To ensure that digital filtering will always be active, store this and other changeable I/O unit

values in permanent memory at the I/O unit. (You can do so through Debug mode.)

See Also: Get Analog Filtered Value (page G-30), Get & Clear Analog Filtered Value (page G-10), Get Analog
Square Root Filtered Value (page G-34)
OptoControl Command Reference S-3

Set Analog Gain
Analog Point Action

Function: To improve accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input

Details: • For help in setting offset and gain, see Opto 22 form #1359, Using Offset and Gain Technical
Note, available on our Web site at www.opto22.com.

• Always use Set Analog Offset before using this command.
• The default gain value is 1.0. The valid range for gain is 0.0003 to 16.0. For example, for a G4

analog input, a gain of 4.0 will cause a 25 percent input value to read 100 percent (full
scale).

• The calculated gain will be used until power is removed from the I/O unit, or it will always
be used if the gain is stored in permanent memory at the I/O unit.

Arguments:

Standard
Example:

Set Analog Gain
To GAIN_COEFFICIENT Float Variable

On Point PRESS_IN Analog Input

OptoScript
Example:

SetAnalogGain(To, On Point)
SetAnalogGain(GAIN_COEFFICIENT, PRESS_IN);

This is a procedure command; it does not return a value.

Notes: • This procedure should only have to be performed once.
• To ensure that the gain will always be used, store this and other changeable I/O unit values

in permanent memory at the I/O unit. (You can do so through Debug mode.)

Dependencies: Must use Set Analog Offset first.

See Also: Set Analog Offset (page S-5), Calculate & Set Analog Gain (page C-1)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
S-4 OptoControl Command Reference

S
Set Analog Offset
Analog Point Action

Function: To improve the accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input.

Details: • For help in setting offset and gain, see Opto 22 form #1359, Using Offset and Gain Technical
Note, available on our Web site at www.opto22.com.

• Always use Set Analog Gain after using this command.
• The default offset value is 0. The valid range for offset varies by type, as shown below:

• For non-Ethernet brains, offset and gain are in units of raw counts. For example, for a G4
analog input, an offset of -1,024 causes a 25 percent input value to read 0 percent (zero
scale).

• For Ethernet brains, offset and gain are in engineering units. For example, an offset of 1
affects actual input by one degree F. or C.

• The calculated offset will be used until power is removed from the I/O unit, or it will always
be used if the offset is stored in permanent memory at the I/O unit.

Arguments:

Standard
Example:

Set Analog Offset
To OFFSET Integer 32 Variable

On Point PRESS_IN Analog Input

OptoScript
Example:

SetAnalogOffset(To, On Point)
SetAnalogOffset(OFFSET, PRESS_IN);

This is a procedure command; it does not return a value.

Notes: • This procedure should only have to be performed once.
• To ensure that the offset will always be used, store this and other changeable I/O unit

values in permanent memory at the I/O unit. (You can do so through Debug mode.)

See Also: Set Analog Gain (page S-4), Calculate & Set Analog Offset (page C-3)

G4 analog (not high density) -4,095 to 4,095 (integer values only)

G4 high density (such as G4HDAR) 0 to 65,535

Serial SNAP brains -25,000 to +25,000

SNAP Ethernet brains Any floating point number

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
OptoControl Command Reference S-5

Set Analog Totalizer Rate
Analog Point Action

Function: To start the totalizer and to establish the sampling rate.

Typical Use: To accumulate total flow based on a varying flow rate signal.

Details: • The specified analog input point is sampled at the end of each time interval.
• The sampled value is added to the previous accumulated total.
• Valid range for the sampling rate is 0.0 to 3276.7 seconds.
• Setting the sampling rate to 0.0 seconds will discontinue totalizing.
• Totalizing will be bidirectional if the input range is bidirectional, such as -10 to +10.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Set Analog Totalizer Rate
To (Seconds) TOTALIZE_RATE Float Variable

On Point FUEL_FLOW Analog Input

OptoScript
Example:

SetAnalogTotalizerRate(To Seconds, On Point)
SetAnalogTotalizerRate(TOTALIZE_RATE, FUEL_FLOW);

This is a procedure command; it does not return a value.

Notes: • Use Get Analog Totalizer Value to “watch” the total accumulate. Wait for a reasonable value
to accumulate (the greater the better, but less than 32,767) before proceeding.

• Use Get & Clear Analog Totalizer Value to move the accumulated total to a temporary float
variable. Divide the temporary float variable by the appropriate divisor from the conversion
table below, putting the result in the temporary float variable. Finally, add the temporary
float variable to the cumulative total float variable. The following table uses a sampling rate
of 1.0 seconds. (For other sample rates, divide these numbers by the sample rate.)

Flow Rate Units Divisor (Float Literal)
PER SECOND 1.0
PER MINUTE 60.0
PER HOUR 3600.0
PER DAY 86400.0

• The following series of commands reads the accumulated total from the I/O unit, scales it,
then adds the result to a float variable representing the total number of liters. The flow
signal is scaled 0–1,000 liters per minute.

Get & Clear Analog Totalizer Value
From FLOW_RATE Analog Input
Put in TEMP_FLOAT1 Float Variable

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
S-6 OptoControl Command Reference

S
Divide Temp_Float1

By 60.0
Put Result in TEMP_FLOAT1 Float Variable

Do Add Temp_Float1
Plus LITERS

Put Result in LITERS Float Variable

See Also: Get Analog Totalizer Value (page G-36), Get & Clear Analog Totalizer Value (page G-13)
OptoControl Command Reference S-7

Set Analog TPO Period
Analog Point Action

Function: To set the time proportional output period of an analog point where the analog TPO module
is used.

Typical Use: To control the duty cycle of resistive heating elements used for temperature control.

Details: • Analog points will not function as TPOs until this command is issued.
• For a G4DA9 module, TPO periods are multiples of 2.048 seconds (for example, 2.048, 4.096,

6.144,) ranging from 2.048 to 522.2 seconds. If the value entered is not an exact multiple of
2.048 seconds, it is rounded to the nearest period value.

• For a SNAP-AOD-29 module, TPO periods are multiples of 0.251 seconds, ranging from 0.251
to 64.25 seconds. If the value entered is not an exact multiple, it is rounded to the nearest
period value.

• The time proportion period specifies the total time the output is varied.
• Use Move to set the percent of on time by moving a value from 0–100 to the analog

output point.
• Always use 0–100 for the analog TPO scaling.
• PID outputs can be analog TPO points.

Arguments:

Standard
Example:

This example sets the period for the TPO point named TPO OUTPUT to 6.144 seconds (the value
6.0 is rounded automatically to the nearest period value, 6.144). If Move is used to set a 50
percent duty cycle (by Moving 50.0 to TPO OUTPUT), then the analog output will repeatedly cycle
on for 3.072 seconds and off for 3.072 seconds.

Set Analog TPO Period
To (Seconds) 6.0 Float Literal

On Point TPO_OUTPUT Analog Input

OptoScript
Example:

SetAnalogTpoPeriod(To, On Point)
SetAnalogTpoPeriod(6.0, TPO_OUTPUT);

This is a procedure command; it does not return a value.

Notes: • To ensure that the TPO period will always be correct, store this and other changeable I/O
unit values in permanent memory at the I/O unit. (You can do so through Debug mode.)

• If the TPO period is not stored in permanent memory at the I/O unit, use Set Analog TPO
Period immediately before Moving a new value to the TPO every time. This ensures that the
TPO period will be configured properly if the I/O unit has experienced loss of power. Do not,

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Output
S-8 OptoControl Command Reference

S
however, issue these commands more frequently than necessary since this can be
counterproductive.

Dependencies: This command is valid only when used on a properly configured time proportional output module.

Set ARCNET Host Destination Address
Communication—Network Action

Function: To set the destination address of the next ARCNET message to be sent to the host.
NOTE: The newer command Set ARCNET Destination Address on Port is preferred, as it provides
the option to use other ports. This command is still supported for older strategies.

Typical Use: To direct an ARCNET host message to an address other than the address of the last ARCNET host
message received.

Details: • No need to use this command when the destination is the same as the last ARCNET host
message received.

• All references to ARCNET host use port 4.

Arguments:

Standard
Example:

Set ARCNET Host Destination Address
To ARCNET_HOST Integer 32 Variable

OptoScript
Example:

SetArcnetHostDestAddress(To)
SetArcnetHostDestAddress(ARCNET_HOST);

This is a procedure command; it does not return a value.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use this command after receiving an ARCNET host message unless responding to

the source of the message.

See Also: Get ARCNET Host Destination Address (page G-38)

Argument 1
To
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-9

Set ARCNET Destination Address on Port
Communication—Network Action

Function: On the specified port, to set the destination address of the next ARCNET message to be sent.

Typical Use: To direct an ARCNET message to an address other than the address of the last ARCNET message
received.

Details: No need to use this command when the destination is the same as the last ARCNET message
received.

Arguments:

Standard
Example:

Set ARCNET Destination Address on Port
To Address ARCNET_DEST Integer 32 Variable

On Port ARCNET_PORT Integer 32 Variable

OptoScript
Example:

SetArcnetDestAddressOnPort(To Address, On Port)
SetArcnetDestAddressOnPort(ARCNET_DEST, ARCNET_PORT);

This is a procedure command; it does not return a value.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use this command after receiving an ARCNET message unless responding to the

source of the message.

See Also: Get ARCNET Destination Address on Port (page G-39)

Argument 1
To Address
Integer 32 Literal
Integer 32 Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable
S-10 OptoControl Command Reference

S
Set ARCNET Mode Raw
Communication—Network Action

Function: Switches to a lower-level mode where the user has full access to the ARCNET packet header
bytes.

Typical Use: To enable the controller to act as a network master or as an ARCNET pass-through device.

Details: While in raw mode, you must send the following bytes. Also, these bytes will be in any message
received on either port 4 or port 7.
• First byte is the Opto 22 vendor ID. It must be DA hex (218 decimal).
• Second byte is:

0 = normal. Use when originating or responding to a PC or to port 4 on another controller.

1 = normal with packet ID numbers. Use when sending to a PC or to port 4 on another
controller. Not for use with peer mode.

7 = peer. Use when sending to the peer port on another controller.

-x = normal response error code. Type is a signed short integer. Not for use with peer.
• Third byte is the packet ID only if the second byte = 1.

Arguments:

Standard
Example:

Set ARCNET Mode Raw
Put Result in MODE_STATUS Integer 32 Variable

OptoScript
Example:

SetArcnetModeRaw()
MODE_STATUS = SerArcnetModeRaw();

This is a function command; it returns one of the status codes listed below.

Notes: Use Set ARCNET Mode Standard to switch modes.

Status Codes: 0 = No error
-40 = Lock Port Timeout
-82 = No ARCNET card

See Also: Set ARCNET Mode Standard (page S-12)

Argument 1
Put Result in
Float Variable
Integer 32 Variable
OptoControl Command Reference S-11

Set ARCNET Mode Standard
Communication—Network Action

Function: Switches to the normal higher-level mode where the ARCNET packet header bytes are handled
automatically.

Typical Use: This is the factory default mode.

Details: Under normal conditions this mode is the desired mode since all the details are handled
automatically.

Arguments:

Standard
Example:

Set ARCNET Mode Standard
Put Result in MODE_STATUS Integer 32 Variable

OptoScript
Example:

SetArcnetModeStandard()
MODE_STATUS = SetArcnetModeStandard();

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error
-40 = Lock Port Timeout
-82 = No ARCNET card

Notes: Use Set ARCNET Mode Raw to switch modes.

See Also: Set ARCNET Mode Raw (page S-11)

Argument 1
Put Result in
Float Variable
Integer 32 Variable
S-12 OptoControl Command Reference

S
Set ARCNET Peer Destination Address
Communication—Network Action

Function: To set the destination address of the next peer message to be sent.

Typical Use: To direct a peer message to an address other than the address of the last peer message received.

Details: • No need to use this command when the destination is the same as the last peer message
received.

• All references to peer use port 7, which is a special gateway to the ARCNET cable.

Arguments:

Standard
Example:

Set ARCNET Peer Destination Address
To PEER_DEST Integer 32 Variable

OptoScript
Example:

SetArcnetPeerDestAddress(To)
SetArcnetPeerDestAddress(PEER_DEST);

This is a procedure command; it does not return a value.

Notes: • See “Communication—Network Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use this command after receiving a peer message unless responding to the source of

the message.

See Also: Get ARCNET Peer Destination Address (page G-40)

Argument 1
To
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-13

Set Date
Time/Date Action

Function: To set the date in the controller’s real-time clock/calendar to the value contained in a string
variable, using the standard United States format mm/dd/yy, where mm = month (01–12),
dd = day (01–31), and yy = year (00–99).

Typical Use: To set the date from an OptoControl program.

Details: • The destination can be a string variable or a string literal.
• If the desired date to set is March 1, 2000, the To parameter (Argument 1) should contain the

string “03/01/00.”
• Executing this command would set the controller’s real-time clock/calendar to March 1,

2000.
• Updates day of week also.
• All erroneous date strings are ignored.

Arguments:

Standard
Example:

Set Date
To US_DATE_STRING String Variable

OptoScript
Example:

SetDate(To)
SetDate(US_DATE_STRING);

This is a procedure command; it does not return a value.

Notes: • In Debug mode OptoControl always sets the date, time, and day of week to the PC clock at
the end of a download.

• To change the date, use an integer variable as a change trigger. Set the trigger variable True
after the date string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

• The controller’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Copy Date to String (DD/MM/YY) (page C-60), Copy Date to String (MM/DD/YY) (page C-61),
Copy Time to String (page C-62)

Argument 1
To
String Literal
String Variable
S-14 OptoControl Command Reference

S
Set Day
Time/Date Action

Function: To set the day of the month (1 through 31) in the controller’s real-time clock/calendar.

Typical Use: To set the day of the month from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• If the desired day of the month to set is March 2, 1999, the To parameter (Argument 1)

should contain the value 2.
• Executing this command would then set the day of the month in the controller’s real-time

clock/calendar.
• Updates day of week also.
• All erroneous day values are ignored.

Arguments:

Standard
Example:

Set Day
To DAY_OF_MONTH Integer 32 Variable

OptoScript
Example:

SetDay(To)
SetDay(DAY_OF_MONTH);

This is a procedure command; it does not return a value.

Notes: • Use to change the DAY to test program logic. Use an integer variable as a change trigger.
Set the trigger variable True after the DAY_OF_MONTH variable has the desired value.
When the trigger is True, the program executes this command, then sets the trigger variable
False.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-15

Set Day of Week
Time/Date Action

Function: To set the day of the week value (0 through 6) in the controller’s real-time clock/calendar. (This
command does not work with OptoRuntimePC.)

Typical Use: To set the day of the week from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Days are numbered as follows:

• If the desired day of week to set is Wednesday, then the To parameter (Argument 1) should
contain the value 3.

• Executing this command would set the day of the week in the controller’s real-time
clock/calendar.

• All erroneous day-of-week values are ignored.

Arguments:

Standard
Example:

Set Day of Week
To DAY_OF_WEEK Integer 32 Variable

OptoScript
Example:

SetDayOfWeek(To)
SetDayOfWeek(DAY_OF_WEEK);

This is a procedure command; it does not return a value.

Notes: • Use to change the day of the week to test program logic. Use an integer variable as a
change trigger. Set the trigger variable True after the To parameter (DAY_OF_WEEK, in the
example above) has the desired value. When the trigger is True, the program executes this
command, then sets the trigger variable False.

• Do not issue this command continuously.
• Use this command with extreme care and only for testing. When finished testing, make sure

the day of the week matches what it should be for the actual date.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day (page
S-15), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds (page
S-41) Set Year (page S-49)

Sunday = 0
Monday = 1
Tuesday = 2
Wednesday = 3

Thursday = 4
Friday = 5
Saturday = 6

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
S-16 OptoControl Command Reference

S
Set Digital I/O Unit from MOMO Masks
I/O Unit Action

Function: To control multiple digital output points on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: • This command is 16 times faster than using Turn On or Turn Off 16 times.
• Updates the IVALs and XVALs for all 16 points. Affects only selected output points. Does not

affect input points.
• Uses only the lowest (least significant) 16 bits of the integer. The least significant bit

corresponds to point zero.
• A point is selected for activation by setting the respective bit in the 16-bit data field of

argument 1 (the must-on bit mask) to a value of “1.” A point is selected for deactivation by
setting the respective bit in the 16-bit data field of argument 2 (the must-off bit mask) to a
value of “1.” Any bits set to a value of 0 in both arguments 1 and 2 will leave those points
unaffected.

• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values
(IVALs) will be written.

Arguments:

Standard
Example:

Set Digital I/O Unit from MOMO Masks
Must On Mask PUMPS_ON_MASK Integer 32 Variable
Must Off Mask 3840 Integer 32 Literal
Digital I/O Unit PUMP_CTRL B3000 SNAP Digital

The effect of this command is illustrated below:

In this example, points 4, 5, 6, and 7 will be turned on. Points 8, 9, 10, and 11 will be turned off.
Points 0, 1, 2, 3, 12, 13, 14, and 15 are not changed.

OptoScript
Example:

SetDigitalIoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital I/O Unit)
SetDigitalIoUnitFromMomo(PUMPS_ON_MASK, 3840, PUMP_CTRL);

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Digital I/O Unit
B100 Digital Multifunction I/O Unit
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
SNAP Remote Simple Digital

Point Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Hex 0 0 F 0

Must-off
Bit Mask

Binary 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Hex 0 F 0 0
OptoControl Command Reference S-17

This is a procedure command; it does not return a value.

Notes: • For a 64-point digital-only rack, use the command Set Digital-64 I/O Unit from MOMO
Masks.

• Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get Digital I/O Unit as Binary Value (page G-48)

Set Digital-64 I/O Unit from MOMO Masks
I/O Unit Action

Function: To control multiple digital output points on the same 64-point digital-only I/O unit simultaneously
with a single command.

Typical Use: To efficiently control all digital outputs on a 64-point digital rack with one command.

Details: • This command is 64 times faster than using Turn On or Turn Off 64 times.
• Updates the IVALs and XVALs for all 64 points. Affects only selected output points. Does not

affect input points.
• A point is selected for activation by setting the respective bit in the 64-bit data field of

argument 1 (the must-on bit mask) to a value of “1.” A point is selected for deactivation by
setting the respective bit in the 64-bit data field of argument 2 (the must-off bit mask) to a
value of “1.” Any bits set to a value of 0 in both arguments 1 and 2 will leave those points
unaffected.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Set Digital-64 I/O Unit from MOMO Masks
Must On Mask PUMPS_ON_MASK Integer 64 Variable
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Digital-64 I/O Unit PUMP_CTRL_UNIT SNAP Digital 64
The effect of this command is illustrated below:

Argument 1
Must On Mask
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 64 Literal
Integer 64 Variable

Argument 3
Digital-64 I/O Unit
SNAP Digital 64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-18 OptoControl Command Reference

S
To save space, the example shows only the first eight points and the last eight points on the
rack. For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5
will be turned off. Other points shown are not changed.

OptoScript
Example:

SetDigital64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital-64 I/O Unit)
SetDigital64IoUnitFromMomo(PUMPS_ON_MASK, 0xB0F240010308A020i64,

PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.

Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get Digital-64 I/O Unit as Binary Value (page G-49)

Set Down Timer Preset Value
Miscellaneous Action

Function: To set the value from which a down timer counts down.

Typical Use: To initialize a down timer.

Details: • This command sets the value from which a down timer counts down, but it does not start the
timer. To start the timer counting down, use the command Start Timer.

• The preset value will be persistent between calls to Start Timer.
• Argument 1 must be a positive number in seconds.

Arguments:

Standard
Example:

Set Down Timer Preset Value
Target Value 60.0 Float Literal
Down Timer OVEN_TIMER Down Timer Variable

OptoScript
Example:

SetDownTimerPreset(Target Value, Down Timer)
SetDownTimerPreset(60.0, OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: • See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on using timers.

• To set the preset value and start the timer in one step, use the Move command to move the
preset value to the timer. The timer will immediately start counting down from the value
moved to it. Using Move overwrites any preset value previously set, so subsequent Start
Timer commands will start from the value most recently moved.

See Also: Start Timer (page S-62), Stop Timer (page S-68), Continue Timer (page C-45), Pause Timer (page
P-1), Down Timer Expired? (page D-22)

Argument 1
Target Value
Float Literal
Float Variable

Argument 2
Down Timer
Down Timer Variable
OptoControl Command Reference S-19

Set End-of-Message Terminator
Communication—Serial Action

Function: Defines the character that will be used to determine end-of-message for a specific chart.

Typical Use: Used by Receive String via Serial Port and Transmit/Receive String via Serial Port to determine
end-of-message.

Details: • A carriage return (character 13) is the factory default end-of-message terminator. If the
equipment you use requires a different terminator, use this command to change it. Valid
range is 0–255.

• The end-of-message terminator is discarded as the message is removed from the receive
buffer.

• This command only needs to be used once in the specified chart that contains the serial
commands Receive String via Serial Port and Transmit/Receive String via Serial Port. The
command applies to the whole chart, not to a specific piece of equipment.

Arguments:

Standard
Example:

Set End-of-Message Terminator
To Character 10 Integer 32 Literal

OptoScript
Example:

SetEndOfMessageTerminator(To Character)
SetEndOfessageTerminator(10);

This is a procedure command; it does not return a value.

Notes: • When receiving messages that are terminated with a carriage return (character 13) and a
line feed (character 10), use 10 for the terminator.

• This command is NOT global to the entire program. Typically, this command is used in Block
0 of the appropriate chart or charts. It applies to the whole chart in which it is used, not to an
individual piece of equipment. If necessary, use one chart or a subroutine for one piece of
equipment.

• The host task always uses a carriage return as a terminator. You cannot change the
terminator for a host task.

See Also: Receive String via Serial Port (page R-21), Transmit/Receive String via Serial Port (page T-34)

Argument 1
To Character
Integer 32 Literal
Integer 32 Variable
S-20 OptoControl Command Reference

S
Set Hours
Time/Date Action

Function: To set the hours value (0 through 23) in the controller’s real-time clock/calendar.

Typical Use: To set the hours value from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and

11:59:00 p.m. = 23:59:00.
• If the desired hour to set is 2 p.m. (14:00:00), the To parameter (Argument 1) should contain

the value 14.
• Executing this command would set the hours value in the controller’s real-time

clock/calendar.
• The controller’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous hour values are ignored.

Arguments:

Standard
Example:

Set Hours
To HOURS Integer 32 Variable

OptoScript
Example:

SetHours(To)
SetHour(HOURS);

This is a procedure command; it does not return a value.

Notes: • Use to change the HOUR to test program logic. Use an integer variable as a change trigger.
Set the trigger variable True after the HOURS variable has the desired value. When the
trigger is True, the program executes this command, then sets the trigger variable False.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Day (page S-15), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-21

Set I/O Unit Configured Flag
I/O Unit Action

Function: Sets a flag internal to the controller to indicate that the I/O unit has been initialized by the
controller.

Typical Use: Where there is a standby controller configured to take over communication to the I/O units in the
event of a primary controller failure.

Details: • This command should be issued for each I/O unit, preferably in the Powerup chart. Use it in
both the primary and standby controller programs to keep them the same.

• By default, the controller assumes it is the only controller attached to the I/O and therefore
must configure each I/O unit. This command makes the standby controller think it has
already configured all the I/O units, which allows it to begin communicating with the I/O
units immediately and without disrupting any control being performed by the I/O units
(assuming it has just taken over as the primary). This command has no effect in a controller
that has already established communication with the I/O units.

Arguments:

Standard
Example:

Set I/O Unit Configured Flag
For I/O Unit FURNACE_PID G4 Digital Remote Simple I/O Unit

OptoScript
Example:

SetIoUnitConfiguredFlag(For I/O Unit)
SetIOUnitConfiguredFlag(FURNACE_PID);

This is a procedure command; it does not return a value.

Notes: Any I/O units that actually need configuring will still be configured since they notify the controller
of the need.

See Also: Configure I/O Unit (page C-40)

Argument 1
For I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
S-22 OptoControl Command Reference

S
Set Minutes
Time/Date Action

Function: To set the minutes value (0 through 59) in the controller’s real-time clock/calendar.

Typical Use: To set the minutes value from an OptoControl program.

Detail: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
• If the desired time to set is 2:35 p.m. (14:35:00), the To parameter (Argument 1) should

contain the value 35.
• Executing this command would set the minutes value in the controller’s real-time

clock/calendar.
• The controller’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous values for minutes are ignored.

Arguments:

Standard
Example:

Set Minutes
To MINUTES Integer 32 Variable

OptoScript
Example:

SetMinutes(To)
SetMinutes(MINUTES);

This is a procedure command; it does not return a value.

Notes: • Use to change the MINUTES to test program logic. Use an integer variable as a change
trigger. Set the trigger variable True after the MINUTES variable has the desired value.
When the trigger is True, the program executes this command, then sets the trigger
variable False.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Hours (page S-21), Set Day (page S-15), Set Month (page S-25), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-23

Set Mixed I/O Unit from MOMO Masks
I/O Unit Action

Function: To control multiple digital output points on the same mixed I/O unit simultaneously with a single
command.

Typical Use: To efficiently control all digital outputs on a mixed I/O rack with one command.

Details: • This command is 32 times faster than using Turn On or Turn Off 32 times.
• Updates the IVALs and XVALs for all 32 digital points. Affects only selected digital output

points. Does not affect digital input points. Does not affect analog points in any position on
the rack.

• A point is selected for activation by setting the respective bit in the 32-bit data field of
Argument 1 (the must-on bit mask) to a value of “1.” A point is selected for deactivation by
setting the respective bit in the 32-bit data field of Argument 2 (the must-off bit mask) to a
value of “1.” Any bits set to a value of 0 in both arguments 1 and 2 will leave those points
unaffected.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Set Mixed I/O Unit from MOMO Masks
Must On Mask PUMPS_ON_MASK Integer 32 Variable
Must Off Mask 0xB001A020 Integer 32 Literal
Mixed I/O Unit PUMP_CTRL_UNIT B3000 SNAP Mixed I/O

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital points on the rack.
For the points shown, points 26, 25, 7, 6, and 1 will be turned on. Points 31, 29, 28, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetMixedIoUnitFromMomo(Must-On Mask, Must-Off Mask, Mixed I/O Unit)
SetMixedIoUnitFromMomo(PUMPS_ON_MASK, 0xB001A020, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value.

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Mixed I/O Unit
B3000 SNAP Mixed I/O

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-24 OptoControl Command Reference

S
Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get Mixed I/O Unit as Binary Value (page G-65)

Set Month
Time/Date Action

Function: To set the month value (1 through 12) in the controller’s real-time clock/calendar.

Typical Use: To set the month from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• If the desired month to set is March, the To parameter (Argument 1) should contain the

value 3.
• Executing this command would set the month in the controller’s real-time clock/calendar.
• The controller’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous month values are ignored.

Arguments:

Standard
Example:

Set Month
To MONTH Integer 32 Variable

OptoScript
Example:

SetMonth(To)
SetMonth(MONTH);

This is a procedure command; it does not return a value.

Notes: • Use to change the MONTH to test program logic. Use an integer variable as a change
trigger. Set the trigger variable True after the MONTH variable has the desired value. When
the trigger is True, the program executes this command, then sets the trigger variable False.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Day (page S-15), Set Seconds
(page S-41) Set Year (page S-49)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-25

Set Nth Character
String Action

Function: Changes a character within a string.

Typical Use: When building communication strings prior to sending.

Details: • The character can be written to any position from 1 up to the current string length.
• Valid range for the character is 0–255.

Arguments:

Standard
Example:

Set Nth Character
To 62 Integer 32 Literal

In String MSG_RECEIVED String Variable
At Index POSITION Integer 32 Variable

Put Status In STATUS Integer 32 Variable

OptoScript
Example:

SetNthCharacter(To, In String, At Index)
STATUS = SetNthCharacter(62, MSG_RECEIVED, POSITION);

This is a function command; it returns one of the status codes listed below.

Notes: • A status of zero indicates success.
• The string could initially be filled with nulls or spaces up to its declared length to avoid

“string too short” errors.

Status Codes: 0 = Command successful
-46 = Incorrect limit

See Also: Find Character in String (page F-1), Get Nth Character (page G-69)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
In String
String Variable

Argument 3
At Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Float Variable
Integer 32 Variable
S-26 OptoControl Command Reference

S
Set Number of Retries to All I/O Units
I/O Unit Action

Function: To change the factory default retry setting.

Typical Use: To change the number of retries performed when there is a communication error.

Details: • The factory default is two retries, which results in a total of three attempts in succession
before reporting an error.

• This setting affects all communication ports simultaneously.
• This setting has no effect on Ethernet I/O units. Retries are built into Ethernet TCP/IP.

Arguments:

Standard
Example:

Set Number of Retries to All I/O Units
To 3 Integer 32 Literal

OptoScript
Example:

SetNumberOfRetriesToAllIoUnits(To)
SetNumberOfRetriesToAllIoUnits(3);

This is a procedure command; it does not return a value.

Notes: • See “I/O Unit Commands” in Chapter 10 of the OptoControl User’s Guide.
• The default number of retries (two) is more than adequate for most situations.
• Before using this command, make sure the timeout value is long enough. See Notes under

Configure Port Timeout Delay for details.

See Also: Configure Port Timeout Delay (page C-42)

Argument 1
To
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-27

Set PC Byte Swap Mode (ISA only)
Controller Action

Function: Changes the mode of the ISA controller PC bus driver to accommodate certain PC bus
peculiarities.

Typical Use: The need for this command will present itself when it is discovered that writes to odd addresses
over the PC bus don’t work properly, while writes to even addresses work OK.

Details: Issuing this command once at the start of the user program will alleviate the problem. For PCs
that don’t require any modification to the bus driver, use Clear PC Byte Swap Mode (ISA only) or
use nothing at all.

Arguments: None.

Standard
Example:

Set PC Byte Swap Mode (ISA only)

OptoScript
Example:

SetPcByteSwapMode()
SetPcByteSwapMode();

This is a procedure command; it does not return a value.

See Also: Clear PC Byte Swap Mode (ISA only) (page C-30)
S-28 OptoControl Command Reference

S
Set PID Control Word
PID Action

Function: Change the bits that control the PID operation.

Typical Use: To alter the PID configuration.

Details: • Bit assignments:

11 1 = Use SqRt value from input point.

10 1 = Setpoint was above high clamp. Write zero to clear.

9 1 = Setpoint was below low clamp. Write zero to clear.

8 1 = Input point under-range. Write zero to clear.

7 1 = Loop active. 0 = Loop stopped.

6 1 = Loop in auto mode. 0 = Loop in manual mode.

5 1 = Output active. 0 = Output disconnected.

4 1 = Output tracks input in manual mode. 0 = no action.

3 1 = Setpoint tracks input in manual mode. 0 = no action.

2 1 = Input from host. 0 = Input from point.

1 1 = Setpoint from point. 0 = Setpoint from host.

0 1 = Use filtered value from input point. Must have filtering active on the input point.

0 = Use current value of input point.
• To set any bit(s) put a 1 for each bit to set in the On Mask parameter. To clear any bit(s) put a

1 for each bit to clear in the Off Mask parameter. All mask bit positions with zeros will leave
the corresponding PID control word bit unchanged.

• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Control Word
On Mask PID_CTRL_SET Integer 32 Variable
Off Mask PID_CTRL_CLEAR Integer 32 Variable

For PID Loop EXTRUDER_ZONE08 PID Loop

OptoScript
Example:

SetPidControlWord(On-Mask, Off-Mask, For PID Loop)
SetPidControlWord(PID_CTRL_SET, PID_CTRL_CLEAR, EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Note: The PID Control Word is actually a 16-bit number. The four most significant bits are reserved.

See Also: Get PID Control Word (page G-82)

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
For PID Loop
PID Loop
OptoControl Command Reference S-29

Set PID D Term
PID Action

Function: To change the derivative value of the PID.

Typical Use: To improve PID performance in systems with long delays.

Details: • The derivative is used to determine how much effect the change-in-slope of the PID input
should have on the PID output.

• Derivative is useful in predicting the future value of the PID input based on the change in
trend of the PID input as recorded during the last three scan periods.

• Derivative is used in systems with long delays between the time that the PID output changes
and the time that the PID input responds to the change.

• Too much derivative results in excessive amounts of PID output change.
• Too little derivative results in a PID output that is always out of phase with the PID input in

systems with long delays.
• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID D Term
To D_TERM_VALUE Float Variable

On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidDTerm(To, On PID Loop)
SetPidDTerm(D_TERM_VALUE, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Leave the derivative at zero unless you are sure you need it and until the gain and integral

have been determined.
• The derivative is multiplied by the gain. Hence, for example, if the gain is doubled, you may

wish to cut the derivative in half to keep its effect the same.
• Typical derivative values range from 0.001 to 20.
• Use sparingly. A little derivative goes a long way!

Dependencies: • The P term (gain) must not be zero.
• Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
S-30 OptoControl Command Reference

S
Set PID I Term
PID Action

Function: To change the integral value of the PID.

Typical Use: To improve PID performance in systems with steady-state errors.

Details: • The integral is used to reduce the error between the PID setpoint and the PID input to zero
under steady-state conditions. Its value determines how much the error affects the PID
output.

• Always use a positive integral value. Do not use zero.
• Too much integral results in excessive amounts of PID output change.
• Too little integral results in long lasting errors between the PID input and the PID setpoint.
• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID I Term
To I_TERM_VALUE Float Variable

On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidITerm(To, On PID Loop)
SetPidITerm(I_TERM_VALUE, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use an initial value of 1.0 until a better value is determined.
• The integral is multiplied by the gain. Hence, for example, if the gain is doubled, you may

wish to cut the integral in half to keep its effect the same.
• Typical integral values range from 0.1 to 20.

Dependencies: • P term (gain) must not be zero.
• Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
OptoControl Command Reference S-31

Set PID Input
PID Action

Function: To send an input value (also known as the process variable) to the PID when its input does not
come from an analog input point on the same I/O unit.

Typical Use: To get an input from another I/O unit and forward it to the PID.

Details: • Use this command based on a timed interval. For example, if the PID scan rate is 1 second,
send the input value to the PID approximately every second (anywhere from 0.9 seconds to
1.0 seconds would be adequate).

• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Input
To INPUT_VALUE Float Variable

On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidInput(To, On PID Loop)
SetPidInput(IMPUT_VALUE, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Do not send the input value to the PID any slower than the PID scan rate, since this will

adversely affect the PID performance.
• Sending the input value to the PID more than 10 times per second can slow the performance

of event/reactions on the I/O unit.

Dependencies: • Must configure the PID input to be From Host.
• Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Scan Rate (page S-37)

Argument 1
To
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
S-32 OptoControl Command Reference

S
Set PID Mode to Auto
PID Action

Function: To change the mode of the PID to auto.

Typical Use: To put the PID in auto mode from manual mode.

Details: • While in auto mode, the PID output functions normally.
• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Mode to Auto
On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidModeToAuto(On PID Loop)
SetPidModeToAuto(HEATER_3);

This is a procedure command; it does not return a value.

Notes: • Use Set PID Setpoint after using this command to restore the PID setpoint to its original
value. This assumes that “setpoint tracking” is enabled (as it is by factory default) and that
the original setpoint was saved prior to switching to manual mode.

• Even when the PID is in auto mode, the PID output can be changed manually. Use the Move
command, Debug mode, or OptoDisplay to write directly to the PID output analog point. The
new PID output value will be the starting value used at the end of the next PID scan period.
This procedure can be helpful in presetting the PID output where it needs to be.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Mode to Manual (page S-34)

Argument 1
On PID Loop
PID Loop
OptoControl Command Reference S-33

Set PID Mode to Manual
PID Action

Function: To change the mode of the PID to manual.

Typical Use: To put the PID in manual mode for maintenance, for testing, or simply to turn it off.

Details: • While in manual mode, the PID output is not updated by the PID calculation. Instead, it
retains its last value.

• To change the PID output value, wait at least 10 milliseconds; then use the Move command,
Debug mode, or OptoDisplay to write directly to the PID output analog point. The new PID
output value will be the starting value when the PID is changed to auto mode.

• While in manual mode, the PID setpoint is changed to match the PID input value. Although
this provides for a “bumpless transfer” when switching back to auto mode, the original PID
setpoint is lost. This feature can be disabled by changing the PID control word. See the
Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult Opto 22 Product
Support.

• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Mode to Manual
On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidModeToManual(On PID Loop)
SetPidModeToManual(HEATER_3);

This is a procedure command; it does not return a value.

Notes: Use Get PID Setpoint first to save the PID setpoint to a float variable.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Mode to Auto (page S-33)

Argument 1
On PID Loop
PID Loop
S-34 OptoControl Command Reference

S
Set PID Output Rate of Change
PID Action

Function: To change the output rate-of-change limit of the PID.

Typical Use: To slow down the PID output rate-of-change as it responds to large input or setpoint changes.

Details: • Slows the PID output rate-of-change when a large change occurs to the setpoint or
the input.

• The output rate-of-change value defines how much the PID output can change per scan
period. The units are the same as those defined for the PID output point.

• The default value is the span of the output point. This allows the PID output to move as
much as 100 percent per scan period. For example, if the PID output point is 4–20 mA, 16.00
would be returned by default, representing 100 percent of the span.

• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Output Rate of Change
To PID_RATE_LIMIT Float Variable

On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidOutputRateOfChange(To, On PID Loop)
SetPidOutputRateOfChange(PID_RATE_LIMIT, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Tune the loop before reducing the output rate-of-change.
• Set the output rate-of-change back to 100 percent before retuning the PID.
• Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270) or consult the Opto 22 BBS.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Get PID Output Rate of Change (page G-88), Set
PID Scan Rate (page S-37)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
OptoControl Command Reference S-35

Set PID P Term
PID Action

Function: To change the gain value of the PID.

Typical Use: To tune the PID for more or less aggressive performance.

Details: • Gain is the inverse of “proportional band,” a term used in many PID applications.
• Gain is used to determine the amount of PID output response to a change in PID input or

PID setpoint.
• Always use a non-zero gain value.
• Gain has a direct multiplying effect on the integral and derivative values.
• Use a negative gain to reverse the direction of the PID output

(typical for cooling applications).
• Too much gain results in excessive amounts of PID output change.
• Too little gain results in long lasting errors between the PID input and the PID setpoint.
• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID P Term
To GAIN Float Variable

On PID Loop HEATER_3 PID Loop

OptoScript
Example:

SetPidPTerm(To, On PID Loop)
SetPidPTerm(GAIN, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use an initial value of 1.0 or -1.0 until a better value is determined.
• Typical gain values range from 1 to 40 and -1 to -40.
• Use more gain to improve response to step changes.
• Use less gain to improve stability.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
S-36 OptoControl Command Reference

S
Set PID Scan Rate
PID Action

Function: To change the scan rate (update period) for a PID calculation.

Typical Use: To adapt a PID to the characteristics of the closed-loop control system under program control.

Details: • This is the most important parameter of all the configurable PID parameters. Note that the
loop may be impossible to tune if the scan rate is significantly different from the loop dead
time.

• The value to send is in seconds. Values range from 0.1 to 6553.5 seconds in 0.1 second
increments. The default is 0.1 seconds.

• This command is useful for adapting a PID to work for either heating or cooling when the
heat mode has a different loop dead time than the cool mode.

• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Scan Rate
To Scan_Rate Float Variable

On PID Loop Heater_3 PID Loop

OptoScript
Example:

SetPidScanRate(To, On PID Loop)
SetPidScanRate(Scan_Rate, Heater_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Do not use frequently since this will adversely affect the PID performance.
• This command will reinitialize the PID loop.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop
OptoControl Command Reference S-37

Set PID Setpoint
PID Action

Function: To change the setpoint value of the PID.

Typical Use: To raise or lower the setpoint or to restore it to its original value.

Details: • The value to send has the same engineering units as the specified PID input.
• Values are the same as those for the PID input.
• This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Arguments:

Standard
Example:

Set PID Setpoint
To PID_Setpoint_Value Float Variable

PID Loop Heater_3 PID Loop

OptoScript
Example:

SetPidSetpoint(To, On PID Loop)
SetPidSetpoint(PID_Setpoint_Value, Heater_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the OptoControl User’s Guide.
• Sending the setpoint value to the PID more than 10 times per second can slow the

performance of event/reactions on the I/O unit.
• Send a new setpoint value only when necessary.

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: Enable Communication to PID Loop (page E-7), Set PID Setpoint (page S-38)

Argument 1
To
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
PID Loop
PID Loop
S-38 OptoControl Command Reference

S
Set Priority
Chart Action

Function: To increase the relative percentage of execution time for the chart using this command.

Typical Use: To improve performance of the Interrupt chart or any time-sensitive task.

Details: • The new priority takes effect immediately.
• Valid priority settings range from 1 to 255.
• The priority can be changed on-the-fly to instantly adjust allocated time to a specific portion

of a chart.
• Increasing a chart’s priority will give it more time to execute while giving all other charts less

time to execute.

Arguments:

Standard
Example:

Set Priority
To Priority Integer 32 Variable

OptoScript
Example:

SetPriority(To)
SetPriority(Priority);

This is a procedure command; it does not return a value.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Unless you have a specific timing problem to resolve, there is no benefit to changing the

priority from its default value of 1.
• Warning: Setting the priority too high in a chart that runs in a loop will severely limit the

capability of the host task to communicate with OptoControl in Debug mode or with
OptoDisplay. It is advisable to use priority values of 5 or less for charts that run continuously.

• Interrupt chart usage: Put in Block 0 to give it increased priority (if needed) when it runs.
The suggested value is 50.

• Host task usage: See Set Priority of Host Task.

See Also: Set Priority of Host Task (page S-40)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-39

Set Priority of Host Task
Chart Action

Function: To increase the relative percentage of execution time for the host task.

Typical Use: To improve communication performance to anything connected to a host port.

Details: • The new priority takes effect at the next scheduled time in the 32-task queue for the
host task.

• Valid priority settings range from 1 to 255.
• Increasing the host task priority will give it more time to execute while giving all other charts

less time to execute.
• Valid range for the On Port parameter (Argument 2) is 0, 1, 2, 3, 4, 5, or 8, to be used as

follows: 0, 1, 2, or 3 = serial COM ports
4 = ARCNET host port
5 = ISA bus port for G4LC32ISA and G4LC32ISA-LT controllers
8 = Ethernet. Due to the way Ethernet is processed, however, this command has little effect
on Ethernet host ports.

Arguments:

Standard
Example:

Set Priority of Host Task
To 5 Integer 32 Literal

On Port 4 Integer 32 Literal

OptoScript
Example:

SetPriorityOfHostTask(To, On Port)
SetPriorityOfHostTask(5, 4);

This is a procedure command; it does not return a value.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Increase the host task priority to 5 to improve communication performance to an HMI.
• Warning: Setting the host task priority too high will severely limit the capability of all other

charts. It is advisable to use priority values of 10 or less.

See Also: Set Priority (page S-39)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable
S-40 OptoControl Command Reference

S
Set Seconds
Time/Date Action

Function: To set the seconds value (0 through 59) in the controller’s real-time clock/calendar.

Typical Use: To set the seconds from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
• If the desired time to set is 2:35:26 p.m., then the To parameter (Argument 1) should contain

the value 26.
• Executing this command would set the seconds value in the controller’s real-time

clock/calendar.
• The controller’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous values for seconds are ignored.

Arguments:

Standard
Example:

Set Seconds
To SECONDS Integer 32 Variable

OptoScript
Example:

SetSeconds(To)
SetSeconds(SECONDS);

This is a procedure command; it does not return a value.

Notes: • Use to change the SECONDS to test program logic. Use an integer variable as a change
trigger. Set the trigger variable True after the SECONDS variable has the desired value.
When the trigger is True, the program executes this command, then sets the trigger
variable False.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Day
(page S-15) Set Year (page S-49)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-41

Set Simple-64 I/O Unit from MOMO Masks
I/O Unit Action

Function: To control multiple digital output points on the same 64-point SNAP Simple I/O unit
simultaneously with a single command.

Typical Use: To efficiently control all digital outputs on a 64-point rack with one command.

Details: • This command is 64 times faster than using Turn On or Turn Off 64 times.
• Updates the IVALs and XVALs for all digital points. Affects only selected digital output

points. Does not affect digital input points. Does not affect analog points in any position on
the rack.

• A point is selected for activation by setting the respective bit in the 64-bit data field of
argument 1 (the must-on bit mask) to a value of “1.” A point is selected for deactivation by
setting the respective bit in the 64-bit data field of argument 2 (the must-off bit mask) to a
value of “1.” Any bits set to a value of 0 in both arguments 1 and 2 will leave those points
unaffected.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Set Simple-64 I/O Unit from MOMO Masks
Must On Mask PUMPS_ON_MASK Integer 64 Variable
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Simple-64 I/O Unit PUMP_CTRL_UNIT SNAP Simple 64
The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetSimple64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Simple-64 I/O Unit)
SetSimple64IoUnitFromMomo(PUMPS_ON_MASK, 0xB0F240010308A020i64,

PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.

Argument 1
Must On Mask
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 64 Literal
Integer 64 Variable

Argument 3
Simple-64 I/O Unit
SNAP Simple 64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-42 OptoControl Command Reference

S
Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get Simple-64 I/O Unit as Binary Value (page G-100)

Set Time
Time/Date Action

Function: To set the time in the controller’s real-time clock/calendar from a string variable.

Typical Use: To set the time from an OptoControl program.

Details: • The From parameter (Argument 1) can be a constant or string variable, although a string
variable is preferred.

• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,
and 11:59:00 p.m. = 23:59:00.

• If the desired time to set is 2:35:00 p.m., the From parameter (Argument 1) should contain
the string “14:35:00.”

• Executing this command would set the time value in the controller’s real-time
clock/calendar.

• The controller’s real-time clock/calendar will automatically increment the time and date
after they are set.

• All erroneous time strings are ignored.

Arguments:

Standard
Example:

Set Time
From TIME_STRING String Variable

OptoScript
Example:

SetTime(To)
SetTime(TIME_STRING);

This is a procedure command; it does not return a value.

Notes: • In Debug mode OptoControl always sets the date, time, and day of week to the PC clock at
the end of a download.

• To change the time, use an integer variable as a change trigger. Set the trigger variable True
after the time string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

• The controller’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Copy Date to String (DD/MM/YY) (page C-60), Copy Date to String (MM/DD/YY) (page C-61),
Copy Time to String (page C-62), Set Date (page S-14).

Argument 1
From
String Literal
String Variable
OptoControl Command Reference S-43

Set TPO Percent
Digital Point Action

Function: To set the on time of an output point as a percentage.

Typical Use: To vary the net output percentage over time. Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: • Sets the percentage of on time for an output configured as a TPO.
• Valid range is 0 (always off) to 100 (always on).
• A TPO period of 10 seconds and an output of 20 percent will cause the output point to go on

for 2.0 seconds (10 seconds x .20) and off for 8.0 seconds at 10-second intervals.

Arguments:

Standard
Example:

Set TPO Percent
To (Percent) New_Output Integer 32 Literal

On Point Heater_Output Time Proportional Output

OptoScript
Example:

SetTpoPercent(To Percent, On Point)
SetTpoPercent(New_Output, Heater_Output);

This is a procedure command; it does not return a value.

Notes: • When using the output of a PID to drive a digital TPO, scale the analog output point (for the
PID) to 0–100. (This analog point does not have to exist physically, but must be one of the 16
points on the I/O unit.) Use Move to copy the PID analog output value to the digital TPO point
periodically.

• At low percentages, the output module’s minimum turn-on and turn-off times may affect the
accuracy of control. Check the specifications for the module to be used.

• Setting the value of a digital TPO overrides any prior Turn On or Turn Off command for the
digital point.

Dependencies: • A Set TPO Period command must be used at least once before this command to define the
time period.

• Applies only to output points configured with the TPO feature on digital multifunction
I/O units.

See Also: Set TPO Period (page S-45)

Argument 1
To (Percent)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO
S-44 OptoControl Command Reference

S
Set TPO Period
Digital Point Action

Function: To set the time proportional output (TPO) period of an output point.

Typical Use: To vary the percentage of on time (duty cycle). Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: • Sets the period of a TPO to the specified value.
• The period is specified from 0.1 to 429,496.7000 seconds (4.97 days), with a resolution of

100 microseconds.
• This command must be used before the Set TPO Percent command.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Set TPO Period
To (Seconds) 60.0 Float Literal

On Point Heater_Output Time Proportional Output

OptoScript
Example:

SetTpoPeriod(To Seconds, On Point)
setTpoPeriod(60.0, Heater_Output);

This is a procedure command; it does not return a value.

Notes: • The time proportion period specifies only the total time over which the output is varied. Set
TPO Percent sets the on and off time within this period. For example, a TPO period of 30
seconds and an output of 25 percent will cause the output point to go on for 7.5 seconds (30
seconds x .25) and off for 22.5 seconds at 30-second intervals.

• Although the minimum TPO period is 0.1 seconds (and the resolution is 100 microseconds),
at low percentages the minimum turn-on and turn-off times of the digital output module may
be greater. Check the specifications for the module to be used.

• To ensure that the TPO period will always be correct, store this and other changeable I/O
unit values in permanent memory at the I/O unit. (You can do so through Debug mode.)

• If the TPO period is not stored in permanent memory at the I/O unit, use this command
immediately before Set TPO Percent every time. This ensures that the TPO period will be
configured properly if the I/O unit has experienced loss of power. However, do not issue
these commands more frequently than necessary, since this can be counterproductive.

Dependencies: Applies only to output points configured with the TPO feature on digital multifunction
I/O units.

See Also: Set TPO Percent (page S-44)

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO
OptoControl Command Reference S-45

Set Up Timer Target Value
Miscellaneous Action

Function: To set the target value of an up timer.

Typical Use: Used to compare actual elapsed time with a target time for sequential control.

Details: • This command sets the target value but does not start the timer. All up timers automatically
start from zero as soon as the strategy begins to run.

• Up timers do not stop timing when they reach their target value. Use the Up Timer Target
Time Reached? command to determine if the target time has been reached.

• The target value must be a positive number.

Arguments:

Standard
Example:

Set Up Timer Target Value
Target Value 60.0 Float Literal

Up Timer OVEN_TIMER Up Timer Variable

OptoScript
Example:

SetUpTimerTarget(Target Value, Up Timer)
SetUpTimerTarget(60.0, Oven_Timer);

This is a procedure command; it does not return a value.

Notes: • See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on timers.

• To set the target value and start the timer in one step, use the Move command to move the
target value to the timer. The timer will immediately start from zero. Using the Move
command overwrites any target value previously set.

See Also: Start Timer (page S-62), Stop Timer (page S-68), Pause Timer (page P-1), Continue Timer (page
C-45), Up Timer Target Time Reached? (page U-1)

Argument 1
Target Value
Float Literal
Float Variable

Argument 2
Up Timer
Up Timer Variable
S-46 OptoControl Command Reference

S
Set Variable False
Logical Action

Function: To move a False (0) value into an allowable value.

Typical Use: To clear a variable after it has been used for program logic.

Details: All numeric variables are False by default unless initialized by the user to a non-zero value.

Arguments:

Standard
Example:

Set Variable False
Flag_Hopper_Full Integer 32 Variable

OptoScript
Example:

SetVariableFalse(Variable)
SetVariableFalse(Flag_Hopper_Full);

This is a procedure command; it does not return a value.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Speed Tip: This command is faster than Move for moving a zero to a variable.

See Also: Set Variable True (page S-48)

Argument 1
[Value]
Float Variable
Integer 32 Variable
OptoControl Command Reference S-47

Set Variable True
Logical Action

Function: To move a True (-1) value into an allowable value.

Typical Use: To set a variable to -1.

Details: All numeric variables are False by default unless initialized to a non-zero value.

Arguments:

Standard
Example:

Set Variable True
FLAG_JOB_DONE Integer 32 Variable

OptoScript
Example:

SetVariableTrue(Variable)
SetVariableTrue(FLAG_JOB_DONE);

This is a procedure command; it does not return a value.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Speed Tip: This command is faster than Move for moving a -1 to a variable.

See Also: Set Variable False (page S-47)

Argument 1
[Value]
Float Variable
Integer 32 Variable
S-48 OptoControl Command Reference

S
Set Year
Time/Date Action

Function: To set the year value (00 through 99) in the controller’s real-time clock/calendar.

Typical Use: To set the year from an OptoControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• If the desired year to set is 2000, the To parameter (Argument 1) should contain the value 00.
• Executing this command would set the year (00 through 99) in the controller’s real-time

clock/calendar.
• The controller’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous month values are ignored.

Arguments:

Standard
Example:

Set Year
To YEAR Integer 32 Variable

OptoScript
Example:

SetYear(To)
SetYear(YEAR);

This is a procedure command; it does not return a value.

Notes: • In Debug mode OptoControl always sets the date, time, and day of week to the PC clock at
the end of a download.

• To change the year, use an integer variable as a change trigger. Set the trigger variable True
after the year variable has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

• The controller’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Get Day (page G-45), Get Day of Week (page G-46), Get Hours (page G-59), Get Minutes (page
G-64), Get Month (page G-66), Get Seconds (page G-98), Get Year (page G-105), Set Day of Week
(page S-16), Set Hours (page S-21), Set Minutes (page S-23), Set Month (page S-25), Set Seconds
(page S-41) Set Day (page S-15)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference S-49

Shift Table Elements
Miscellanous Action

Function: To shift numeric table elements up or down.

Typical Use: To follow items on a conveyor.

Details: • For positive shift counts, entries shift toward the end of the table. For negative shift counts,
entries shift toward the beginning (index zero) of the table.

• Entries at the beginning or end of the table are lost when shifted beyond those limits.
• Zeros are written to entries left empty by shifting.

Arguments:

Standard
Example:

Shift Table Elements
Shift Count -5 Integer 32 Literal

Table MY_TABLE Float Table

OptoScript
Example:

ShiftTableElements(Shift Count, Table)
ShiftTableElements(-5, MY_TABLE);

This is a procedure command; it does not return a value.

Notes: • Use Move from Table Element before this command to capture values that will be shifted
out of the table, if they need to be used.

• Use Move to Table Element (for example) after this command to fill vacated entries, if
desired.

See Also: Move Table Element to Table (page M-17), Move from Table Element (page M-12), Move to Table
Element (page M-26)

Argument 1
Shift Count
Integer 32 Literal
Integer 32 Variable

Argument 2
Table
Float Table
Integer 32 Table
S-50 OptoControl Command Reference

S
Sine
Mathematical Action

Function: To derive the sine of an angle.

Typical Use: Trigonometric function for computing triangular height of the angle.

Details: • Calculates the sine of Argument 1 and places the result in Argument 2.
• Argument 1 has a range of -infinity to +infinity.
• The range of Argument 2 is -1.0 to 1.0, inclusive.
• The following are examples of sine calculations:

Radians Degrees Result
0.0 0.0 0.0

0.785398 45 0.707106
1.570796 90 1.0
2.356194 135 0.707106
3.141592 180 0.0
3.926991 225 -0.707106
4.712388 270 -1.0
5.497787 315 -0.707106
6.283185 360 0.0

Arguments:

Standard
Example:

Sine
Of Radians Float Variable

Put Result in SINE Float Variable

OptoScript
Example:

Sine(Of)
SINE = Sine(Radians);

This is a function command; it returns the sine of the angle. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, mathematical expression, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578.
• Use Arcsine if the sine is known and the angle is desired.

Queue Errors: 35 = Not a number—result invalid.

See Also: Arccosine (page A-13), Cosine (page C-63), Tangent (page T-4)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
OptoControl Command Reference S-51

Square Root
Mathematical Action

Function: To calculate the square root of a value.

Typical Use: To solve square root calculations.

Details: Takes the square root of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

Square Root
Of 4 Integer 32 Literal

Put Result in TWO Integer 32 Variable

OptoScript
Example:

SquareRoot(Of)
TWO = SquareRoot(4);

This is a function command; it returns square root of the value. The returned value can be
consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Executes faster than raising a number to the 0.5 power.
• Taking the square root of a negative value will result in zero.
• To convert a differential pressure value representing flow to the proper engineering units,

convert its current value to a number between 0 and 1, take the square root of this number,
then convert it to the desired engineering units. For example: A 0–100" flow signal that
represents 0–50,000 CFH has a value of 50. 50/100 = 0.5. The square root of 0.5 is 0.7071.
0.7071 times 50,000 = 35355 CFH.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Raise to Power (page R-2)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
S-52 OptoControl Command Reference

S
Start Chart
Chart Action

Function: To request that a stopped chart begin executing at Block 0 or to request that a suspended chart
continue executing from the point at which it was suspended.

Typical Use: In the Powerup chart, to start all other charts that need to run. Also used by a main chart to start
event-driven charts.

Details: • This command is only a request.
• If the chart is stopped and fewer than 32 tasks are running, then this chart will be added to

the 32-task queue and this command will succeed. Otherwise, it has no effect. If the chart is
suspended, then the chart is already part of the 32-task queue and this command will
continue the chart from the point at which it is suspended.

• Upon success, the chart will start at its next scheduled time in the 32-task queue.

Arguments:

Standard
Example:

Start Chart
Chart CHART_B Chart

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

StartChart(Chart)
STATUS = StartChart(CHART_B);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubt or concerns, check the STATUS variable.
• Use Stop Chart to stop the Interrupt chart (if it’s not in use) to free up a task in the 32-task

queue, if desired.

Dependencies: If the chart is stopped, then a task must be available in the 32-task queue.

Status Codes: -1 = success
0 = failure

See Also: Continue Chart (page C-44), Stop Chart (page S-63), Start Default Host Task (page S-56)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference S-53

Start Continuous Square Wave
Digital Point Action

Function: To generate a square wave on an output point.

Typical Use: To drive stepper motor controllers, pulse indicator lamps, or horns or counters connected to
digital outputs.

Details: • Generates a digital waveform on the specified digital output point. On Time specifies the
amount of time in seconds that the point will remain on during each pulse; Off Time
specifies the amount of time the point will remain off.

• The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz.

• The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
• Timing begins with the off state. If a square wave is already running when this command is

used, the new timing will become effective on the next transition (on-to-off or off-to-on).
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Start Continuous Square Wave
On Time (Seconds) 0.100 Integer 32 Literal
Off Time (Seconds) 0.500 Integer 32 Literal
On Point BLINKING_LAMP Digital Output

Standard
Example:

StartContinuousSquareWave(On Time (Seconds), Off Time (Seconds), On Point)
StartContinuousSquareWave(0.100, 0.500, BLINKING_LAMP);

This is a procedure command; it does not return a value.

Notes: • Once the pulse train has started, the digital I/O unit maintains the waveform indefinitely.
• Use only to start or change the square wave.
• To stop a currently executing pulse train, use Turn Off.
• The minimum on or off time is 0.001 second; however, the digital output module’s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to be
used.

Dependencies: Applies only to outputs on digital multifunction I/O units.

See Also: Turn Off (page T-37), Generate N Pulses (page G-4)

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On Point
Digital Output
S-54 OptoControl Command Reference

S
Start Counter
Digital Point Action

Function: To activate a digital input counter.

Typical Use: Once at the beginning of a program to activate a digital input counter.

Details: • Must be used to activate counter inputs on all I/O units except SNAP Ethernet I/O units. On
SNAP Ethernet I/O units, counters start as soon as they are configured. (Start Counter is only
used after you have used the command Stop Counter.)

• Does not reset the counter to zero.
• Retains any previously accumulated counts.

Arguments:

Standard
Example:

Start Counter
On Point BAGGAGE_COUNTER Counter

OptoScript
Example:

StartCounter(On Point)
StartCounter(BAGGAGE_COUNTER);

This is a procedure command; it does not return a value.

Notes: • To keep a counter active after a power failure at the I/O unit, use Debug mode to write or
“burn” the current I/O unit configuration to EEPROM after the counter is started.

• Use Clear Counter to clear a counter to zero.

Dependencies: Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: Get Counter (page G-44), Get & Clear Counter (page G-14), Stop Counter (page S-65), Clear
Counter (page C-25)

Argument 1
On Point
Counter
OptoControl Command Reference S-55

Start Default Host Task
Chart Action

Function: To request that the default host task leave the suspended state and continue executing.

Typical Use: To resume use of the host task protocol on the default host port after the default host task was
suspended to allow the port to be used for something else.

Details: • This command is only a request.
• If the default host task is suspended, this command will succeed. Otherwise, it has no

effect.
• Upon success, the host task will run at its next scheduled time.

Arguments:

Standard
Example:

Start Default Host Task
Put Status in STATUS Integer 32 Variable

OptoScript
Example:

StartDefaultHostTask()
STATUS = StartDefaultHostTask();

This is a function command; it returns one of the status codes listed below.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in

most cases.
• The default host task cannot be stopped, but it can be suspended so the port can be used for

other purposes and protocols. While it is suspended, no debugging can be done unless
another host task is running on another port.

Dependencies: A task must be available in the 32-task queue.

Status Codes: -1 = success
0 = failure

See Also: Suspend Default Host Task (page S-74), Stop Host Task (page S-66), Start Host Task (ASCII) (page
S-57), Start Host Task (Binary) (page S-58)

Argument 1
Put Status in
Float Variable
Integer 32 Variable
S-56 OptoControl Command Reference

S
Start Host Task (ASCII)
Chart Action

Function: To request an additional host task on a port other than that of the default host task.

Typical Use: To connect a modem or radio to a host port for remote debugging or for use with the HMI.

Details: • Starts an additional host task that uses ASCII mode rather than binary mode.
• This command is only a request.
• If the task is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
• Upon success, the host task is put into the 32-task queue and will start at its next scheduled

time.
• The host task cannot be suspended; it can only be stopped using Stop Host Task.
• For Ethernet or ARCNET communication, you can use either this command or Start Host Task

(Binary).

Arguments:

Standard
Example:

Start Host Task (ASCII)
On Port 1 Integer 32 Literal

 Put Status in STATUS Integer 32 Variable

OptoScript
Example:

StartHostTaskAscii(On Port)
STATUS = StartHostTaskAscii(1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubts or concerns, check the STATUS variable.
• If a PC running OptoControl in Debug mode or a PC running OptoDisplay is connected via

modem or radio, it must also be in ASCII mode.

Dependencies: A task must be available in the 32-task queue.

Status Codes: -1 = success.
0 = failure.

See Also: Start Chart (page S-53), Set Priority (page S-39), Stop Host Task (page S-66), , Start Host Task
(Binary) (page S-58)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference S-57

Start Host Task (Binary)
Chart Action

Function: To request an additional host task on a port other than that of the default host task.

Typical Use: To connect a PC running OptoControl in Debug mode via a serial port while a PC running
OptoDisplay is connected via ARCNET.

Details: • Starts an additional host task that uses binary mode rather than ASCII mode.
• This command is only a request.
• If the task is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
• Upon success, the task is put into the 32-task queue and will start at its next

scheduled time.
• This task cannot be suspended; it can only be stopped using Stop Host Task.
• For Ethernet or ARCNET communication, you can use either this command or Start Host Task

(ASCII). Ethernet and ARCNET always use binary mode; serial can use either binary or ASCII.

Arguments:

Standard
Example:

Start Host Task (Binary)
On Port 1 Integer 32 Literal

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

StartHostTaskBinary(On Port)
STATUS = StartHostTaskBinary(1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubts or concerns, check the STATUS variable.
• Debug mode must also be in binary mode.

Dependencies: A task must be available in the 32-task queue.

Status Codes: -1 = success.
0 = failure.

See Also: Start Chart (page S-53), Set Priority (page S-39), Stop Host Task (page S-66), , Start Host Task
(ASCII) (page S-57)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
S-58 OptoControl Command Reference

S
Start Off-Pulse
Digital Point Action

Function: To turn off a digital output for a specified time or to delay turning it on.

Typical Uses: • To serve as an alternative to the Turn On command.
• To “reset” another device.

Details: • Same as using Turn Off followed by a delay followed by Turn On, or if the output was off
already, same as a delay followed by Turn On.

• After the off time expires, this command leaves the point on.
• The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds.
• During the execution of this command, if another Start Off-Pulse is performed, the current

off-pulse is canceled and the new off-pulse is generated.
• The output does not have to be configured with a feature to use this command.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Start Off-Pulse
Off Time (Seconds) RESET_TIME Float Literal
On Point PUMP_2_STOP Digital Output

OptoScript
Example:

StartOffPulse(Off Time (Seconds), On Point)
StartOffPulse(RESET_TIME, PUMP_2_STOP);

This is a procedure command; it does not return a value.

Notes: • A Turn On command may be used to abort an off-pulse before the end of the off time.
• The minimum off time is 0.0005 seconds; however, the digital output module’s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to
be used.

• Caution: If this command is used more frequently than the specified delay, the output will
remain off.

Dependencies: Applies only to outputs on digital multifunction I/O units.

See Also: Start On-Pulse (page S-60), Turn Off (page T-37), Turn On (page T-40)

Argument 1
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Output
OptoControl Command Reference S-59

Start On-Pulse
Digital Point Action

Function: To turn on a digital output for a specified period or to delay turning it off.

Typical Uses: • As an alternative to the Turn Off command.
• To “reset” another device.
• To increment a counter.
• To latch devices connected to digital outputs that require a minimum pulse duration to latch,

such as motor starters and latching relays.

Details: • Same as using Turn On followed by a delay followed by Turn Off, or if the output was on
already, same as a delay followed by Turn Off.

• After the on time expires, this command leaves the point off.
• The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds.
• During the execution of this command, if another Start On-Pulse is performed, the current

on-pulse is cancelled and the new On-pulse is generated.
• The output does not have to be configured with a feature to use this command.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

Start On-Pulse
On Time (Seconds) MIN_LATCH_TIME Float Variable

On Point PUMP_2_RUN Digital Output

OptoScript
Example:

StartOnPulse(On Time (Seconds), On Point)
StartOnPulse(MIN_LATCH_TIME, PUMP_2_RUN);

This is a procedure command; it does not return a value.

Notes: • A Turn Off command may be used to abort an on-pulse before the end of the on time.
• The minimum on time is 0.0005 seconds; however, the digital output module’s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to
be used.

• Caution: If this command is used more frequently than the specified delay, the output will
remain on.

Dependencies: Applies only to outputs on digital multifunction I/O units.

See Also: Start Off-Pulse (page S-59), Turn Off (page T-37), Turn On (page T-40)

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Output
S-60 OptoControl Command Reference

S
Start Quadrature Counter
Digital Point Action

Function: To activate a digital input quadrature counter.

Typical Use: Once at the beginning of a program to activate a quadrature counter.

Details: • Must be used to activate quadrature counter inputs on all I/O units except SNAP Ethernet
I/O units. On SNAP Ethernet I/O units, counters start as soon as they are configured. (Start
Quadrature Counter is only used after you have used the command Stop Quadrature
Counter.)

• Does not reset the quadrature counter to zero.
• Retains any previously accumulated counts.
• A quadrature counter occupies two adjacent points. Input module pairs specifically made for

quadrature counting must be used. The first point must be an even point number on the
digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2, 3
and 4 are not.

Arguments:

Standard
Example:

Start Quadrature Counter
On Point Encoder_1 Quadrature Counter

OptoScript
Example:

StartQuadratureCounter(On Point)
StartQuadratureCounter(Encoder_1);

This is a procedure command; it does not return a value.

Notes: • Before using a quadrature counter, you must activate it with the Start Quadrature Counter
command or no additional counts will accumulate.

• Use Clear Quadrature Counter to set the counts to zero.

Dependencies: Applies only to input points configured with the quadrature feature on digital multifunction I/O
units.

See Also: Get Quadrature Counter (page G-95), Get & Clear Quadrature Counter (page G-21), Clear
Quadrature Counter (page C-32), Stop Quadrature Counter (page S-67)

Argument 1
On Point
Quadrature Counter
OptoControl Command Reference S-61

Start Timer
Miscellaneous Action

Function: To start a timer variable.

Typical Use: To measure time elapsed since an event occurred.

Details: • When you use this command, up timer variables start from 0 and count up.
• Down timer variables start from their preset value and count down to 0. Since the default

preset value for a down timer is zero, nothing will happen if you start the timer without first
using the Set Down Timer Preset Value command.

Arguments:

Standard
Example:

Start Timer
Timer Oven_Timer Down Timer Variable

OptoScript
Example:

StartTimer(Timer)
StartTimer(Oven_Timer);

This is a procedure command; it does not return a value.

Notes: • See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on timers.

• To set the target value (for an up timer) or the preset value (for a down timer) and start the
timer at the same time, use the Move command.

• Start Timer always starts up timers from zero and down timers from their preset value. To
restart a timer from the value where it was paused, use the command Continue Timer
instead.

See Also: Continue Timer (page C-45), Stop Timer (page S-68), Pause Timer (page P-1), Set Down Timer
Preset Value (page S-19), Set Up Timer Target Value (page S-46)

Argument 1
Timer
Down Timer Variable
Up Timer Variable
S-62 OptoControl Command Reference

S
Stop Chart
Chart Action

Function: To stop a specified chart.

Typical Use: To stop another chart or the chart in which the command appears.

Details: • Unconditionally stops any chart that is either running or suspended.
• Removes the stopped chart from the 32-task queue, making another task available.
• A chart can stop itself or any other chart.
• A chart that stops itself will immediately give up the remaining time allocated in its

time slice(s).
• Stopping another chart won’t take effect immediately but will take effect at the beginning of

that chart’s scheduled time in the queue.
• Charts that are stopped or suspended cannot start or continue themselves (nor can they do

anything else).
• Stopped charts cannot be continued; they can only be started again (that is, their execution

will begin again at Block 0, not at the point at which they were stopped).

Arguments:

Standard
Example:

Stop Chart
Chart CHART_B Chart

OptoScript
Example:

StopChart(Chart)
StopChart(CHART_B);

This is a procedure command; it does not return a value.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use Suspend Chart if you want to continue a chart from where it left off.

See Also: Chart Stopped? (page C-14), Start Chart (page S-53), Suspend Chart (page S-72)

Argument 1
Chart
Chart
OptoControl Command Reference S-63

Stop Chart on Error
Chart Action

Function: To stop the chart that caused the error at the top of the error queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the error queue and takes appropriate action. Utilizing this command, the error handler
chart can stop any chart that causes an error.

Details: • Since OptoControl is a multitasking environment in the controller, an error handler chart
cannot stop another chart instantaneously with this command (since the error handler chart
itself only executes periodically). The actual time required depends on how many charts are
running simultaneously as well as on the priority of each.

• See the Errors Appendix in the OptoControl User’s Guide for a list of errors that may appear
in the Error Queue.

Arguments: None.

Standard
Example:

Stop Chart on Error

OptoScript
Example:

StopChartOnError()
StopChartOnError();

This is a procedure command; it does not return a value.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• To get to each error in the error queue, the top error must be discarded, bringing the next

error to the top. Use Remove Current Error and Point to Next Error to do this.

See Also: Remove Current Error and Point to Next Error (page R-26), Get Error Count (page G-53), Suspend
Chart on Error (page S-73)
S-64 OptoControl Command Reference

S
Stop Counter
Digital Point Action

Function: To deactivate a digital input counter.

Typical Use: To inhibit a counter until further notice.

Details: • Deactivates the specified counter.
• Stops counting incoming pulses to the digital input point until Start Counter is used.
• Does not reset the counter to zero.
• Retains any previously accumulated counts.

Arguments:

Standard
Example:

Stop Counter
On Point BEAN_COUNTER Counter

OptoScript
Example:

StopCounter(On Point)
StopCounter(BEAN_COUNTER);

This is a procedure command; it does not return a value.

Notes: Use Clear Counter to set counts to zero.

Dependencies: Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: Get Counter (page G-44), Get & Clear Counter (page G-14), Start Counter (page S-55), Clear
Counter (page C-25)

Argument 1
On Point
Counter
OptoControl Command Reference S-65

Stop Host Task
Chart Action

Function: To stop any additional host task or suspend the default host task.

Typical Use: To temporarily use the default host port to communicate with a non-host protocol device, such
as a hand-held terminal.

Details: • The default host task can only be suspended, not stopped, so it will never lose its place in
the 32-task queue.

• A non-default host task will be removed from the 32-task queue, making another task
available.

• Unconditionally suspends the default host task or stops a non-default host task.
• Does not take effect immediately, but takes effect at the beginning of the task’s scheduled

time in the queue.

Arguments:

Standard
Example:

Stop Host Task
On Port 4 Integer 32 Literal

OptoScript
Example:

StopHostTask(On Port)
StopHostTask(4);

This is a procedure command; it does not return a value.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Start Chart (page S-53), Start Default Host Task (page S-56), Start Host Task (ASCII) (page S-57),
Start Host Task (Binary) (page S-58)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable
S-66 OptoControl Command Reference

S
Stop Quadrature Counter
Digital Point Action

Function: To deactivate a quadrature counter.

Typical Use: To inhibit a quadrature counter until further notice.

Details: • Stops the specified quadrature counter.
• Stops counting incoming quadrature pulses until Start Quadrature Counter is used.
• Does not reset the quadrature counter to zero.
• Retains any previously accumulated counts.
• A quadrature counter occupies two adjacent points. Input module pairs specifically made for

quadrature counting must be used. The first point must be an even point number on the
digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2, 3
and 4 are not.

Arguments:

Standard
Example:

Stop Quadrature Counter
On Point TABLE_POSITION Quadrature Counter

OptoScript
Example:

StopQuadratureCounter(On Point)
StopQuadratureCounter(TABLE_POSITION);

This is a procedure command; it does not return a value.

Notes: Use Clear Quadrature Counter to set quadrature counts to zero.

Dependencies: Applies only to input points configured with the quadrature feature on digital multifunction I/O
units.

See Also: Get Quadrature Counter (page G-95), Get & Clear Quadrature Counter (page G-21), Clear
Quadrature Counter (page C-32), Start Quadrature Counter (page S-61)

Argument 1
On Point
Quadrature Counter
OptoControl Command Reference S-67

Stop Timer
Miscellaneous Action

Function: To stop a timer variable.

Typical Use: To stop timing an event.

Details: • Once an up timer or a down timer has been stopped, it is at zero. If you stop a timer and
move the value to a variable, you will always get 0.0.

• To store the timer’s value at the time it was stopped, or to be able to continue a timer, use
the command Pause Timer instead.

Arguments:

Standard
Example:

Stop Timer
Timer OVEN_TIMER Down Timer Variable

OptoScript
Example:

StopTimer(Timer)
StopTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on timers.

See Also: Start Timer (page S-62), Continue Timer (page C-45), Pause Timer (page P-1), Set Down Timer
Preset Value (page S-19), Set Up Timer Target Value (page S-46)

Argument 1
Timer
Down Timer Variable
Up Timer Variable
S-68 OptoControl Command Reference

S
String Equal?
String Condition

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: • Determines if strings in Argument 1 and Argument 2 are equal. Examples:
Argument 1 Argument 2 Result

“OPTO” “OPTO” True
“OPTO” “Opto” False

“22” “22” True
“2 2” “22” False

• Evaluates True if both strings are exactly the same, False otherwise.
• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• Functionally equivalent to the Test Equal Strings action.
• Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.

Arguments:

Standard
Example:

Is NEW_ENTRY String Variable
String Equal?

To PASSWORD String Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (NEW_ENTRY == PASSWORD) then

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• The example shown is only one way to use the == operator. For more information on using

comparison operators and strings in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide

• Use String Equal to String Table Element? to compare with strings in a table.

See Also: Test Equal Strings (page T-7), String Equal to String Table Element? (page S-70)

Argument 1
Is
String Literal
String Variable

Argument 2
To
String Literal
String Variable
OptoControl Command Reference S-69

String Equal to String Table Element?
String Condition

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match with an entry in a string table.

Details: • Determines if one string (Argument 1) is equal to another (a string at index Argument 2 in
string table Argument 3). Examples:

String 1 String 2 Result
“OPTO” “OPTO” True
“OPTO” “Opto” False

“22” “22” True
“2 2” “22” False

• Evaluates True if both strings are exactly the same, False otherwise.
• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.
• A valid range for the At Index parameter (Argument 2) is zero to the table length (size).
• Functionally equivalent to the Test Equal Strings action.
• Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.

Arguments:

Standard
Example:

The following example compares a new barcode to a string in a string table. This could be done
in a loop to see if the new barcode exists in a table.

Is NEW_BARCODE String Variable with Barcode
String Equal to String Table Element?

At Index Loop_Index Integer 32 Variable
Of Table Current_Products String Table

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (NEW_BARCODE == Current_Products[Loop_Index]) then

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• The example shown is only one way to use the == operator. For more information on using

comparison operators and strings in OptoScript code, see Chapter 11 of the OptoControl
User’s Guide

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Test Equal Strings (page T-7), String Equal? (page S-69)

Argument 1
Is
String Literal
String Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table
S-70 OptoControl Command Reference

S
Subtract
Mathematical Action

Function: To find the difference between two numeric values.

Typical Use: To subtract two numbers to get a third number, or to reduce the first number by the amount of
the second.

Details: • Subtracts Argument 2 from Argument 1 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument.

Arguments:

Standard
Example:

Subtract
Num_Widgets_to_Produce Integer 32 Variable

Minus Num_Widgets_Produced Integer 32 Variable
Put Result in Num_Widgets_Left_to_Make Integer 32 Variable

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the – operator.
Num_Widgets_Left_to_Make = Num_Widgets_to_Produce – Num_Widgets_Produced;

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• In OptoScript code, the – operator has many uses. For more information on mathematical

expressions in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

Queue Errors: 33 = Overflow error—result too large.

See Also: Decrement Variable (page D-1), Add (page A-3)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Minus
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
OptoControl Command Reference S-71

Suspend Chart
Chart Action

Function: To suspend a specified chart.

Typical Use: To suspend another chart or the chart in which the command appears.

Details: • Unconditionally suspends any chart that is running.
• Does not remove the suspended chart from the 32-task queue.
• A chart can suspend itself or any other chart.
• A chart that suspends itself will immediately give up the remaining time allocated in its time

slice(s) and will no longer use a time slice.
• Suspending another chart won’t take effect immediately but will take effect at the beginning

of that chart’s scheduled time in the queue.
• Charts that are suspended cannot start or continue themselves (nor can they do

anything else).
• Suspended charts can be continued from the point at which they were suspended (using

either Start Chart or Continue Chart), or they can be stopped (using Stop Chart).

Arguments:

Standard
Example:

Suspend Chart
Chart CHART_B Chart

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

SuspendChart(Chart)
STATUS = SuspendChart(CHART_B);

This is a function command; it returns one of the status codes listed below.

Notes: See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.

Status Codes: -1 = success.
0 = failure.

See Also: Chart Suspended? (page C-15), Start Chart (page S-53), Continue Chart (page C-44)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable
S-72 OptoControl Command Reference

S
Suspend Chart on Error
Chart Action

Function: To suspend the chart that caused the error at the top of the error queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the error queue and takes appropriate action. Utilizing this command, the error handler
chart can suspend any chart that causes an error.

Details: • Since OptoControl is a multitasking environment in the controller, an error handler chart
cannot suspend another chart instantaneously with this command (since the error handler
chart itself only executes periodically). The actual time required depends on how many
charts are running simultaneously as well as on the priority of each.

• See the Errors Appendix in the OptoControl User’s Guide for a list of errors that may appear
in the Error Queue.

Arguments:

Standard
Example:

Suspend Chart on Error
Put Status in STATUS Integer 32 Variable

OptoScript
Example:

SuspendChartOnError()
STATUS = SuspendChartOnError();

This is a function command; it returns one of the status codes listed below.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• To get to each error in the error queue, the top error must be discarded, which brings the

next error to the top. Use Remove Current Error and Point to Next Error to do this.

Status Codes: -1 = success
0 = failure

See Also: Remove Current Error and Point to Next Error (page R-26), Get Error Count (page G-53), Stop Chart
on Error (page S-64)

Argument 1
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference S-73

Suspend Default Host Task
Chart Action

Function: To suspend the default host task.

Typical Use: To temporarily use the default host port to communicate with a non-host protocol device, such
as a hand-held terminal.

Details: • Unconditionally suspends the default host task. This does not take effect immediately, but
takes effect at the beginning of the task’s scheduled time in the queue.

• The STATUS variable indicates success (-1) or failure (0).
• A failure indicates only that the default host task is already suspended.
• After this command has executed, the port that the default host task was using will become

available for general use.

Arguments:

Standard
Example:

Suspend Default Host Task
Put Status in STATUS Integer 32 Variable

OptoScript
Example:

SuspendDefaultHostTask()
STATUS = SuspendDefaultHostTask();

This is a function command; it returns a -1 indicating success or a 0 indicating failure.

Notes: • See “Chart Commands” in Chapter 10 of the OptoControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in

most cases.
• If the port configuration (baud rate, etc.) is changed, be sure to return to the original

configuration before executing the Start Default Host Task command.

See Also: Start Default Host Task (page S-56), Start Host Task (ASCII) (page S-57), Start Host Task (Binary)
(page S-58)

Argument 1
Put Status in
Float Variable
Integer 32 Variable
S-74 OptoControl Command Reference

T
 T
Table Element Bit Clear
Logical Action

Function: To clear a specific bit (set it to 0) at the specified index in an integer table.

Typical Use: To clear a bit in an integer table that is used as a flag.

Details: Valid range for the bit to clear is 0–31.

Arguments:

Standard
Example:

Table Element Bit Clear
Element Index 4 Integer 32 Literal

Of Integer Table PUMP_CTRL_BITS Integer 32 Table
Bit To Clear 15 Integer 32 Literal

OptoScript
Example:

TableElementBitClear(Element Index, Of Integer Table, Bit to Clear)
TableElementBitClear(4, PUMP_CTRL_BITS, 15);

This is a procedure command; it does not return a value.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Bit Clear (page B-4), Table Element Bit Set (page T-2), Table Element Bit Test (page T-3)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table

Argument 3
Bit To Clear
Integer 32 Literal
Integer 32 Variable
OptoControl Command Reference T-1

Table Element Bit Set
Logical Action

Function: To set a specific bit (set it to 1) at the specified index in an integer table.

Typical Use: To set a bit in an integer table that is used as a flag.

Details: Valid range for the bit to set is 0–31.

Arguments:

Standard
Example:

Table Element Bit Set
Element Index 4 Integer 32 Literal

Of Integer Table PUMP_CTRL_BITS Integer 32 Table
Bit to Set 15 Integer 32 Literal

OptoScript
Example:

TableElementBitSet(Element Index, Of Integer Table, Bit to Set)
TableElementBitSet(4, PUMP_CTRL_BITS, 15);

This is a procedure command; it does not return a value.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Bit Set (page B-14), Table Element Bit Clear (page T-1), Table Element Bit Test (page T-3)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table

Argument 3
Bit to Set
Integer 32 Literal
Integer 32 Variable
T-2 OptoControl Command Reference

T
Table Element Bit Test
Logical Action

Function: To test a specific bit at the specified index in an integer table to see if it is set or not.

Typical Use: To test a bit in an integer table that is used as a flag.

Details: • A logical True (-1) is returned if the bit is set, otherwise a logical False (0) is returned.
• Valid range for the bit to test is 0–31.

Arguments:

Standard
Example:

Table Element Bit Test
Element Index 4 Integer 32 Literal

Of Integer Table Pump_Ctrl_Bits Integer 32 Table
Bit to Test 15 Integer 32 Literal

Put Result in RESULT Integer 32 Variable

OptoScript
Example:

TableElementBitTest(Element Index, Of Integer Table, Bit to Test)
RESULT = TableElementBitTest(4, Pump_Ctrl_Bits, 15);

This is a function command; it returns the status of the bit, either set (-1) or not set (0). The
returned value can be consumed by a variable (as in the example shown) or by a control structure,
I/O point, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: The value returned is the bit status.

Queue Errors: 32 = Bad table index value—index was negative or greater than the table size.

See Also: Table Element Bit Set (page T-2), Table Element Bit Clear (page T-1)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table

Argument 3
Bit to Test
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
OptoControl Command Reference T-3

Tangent
Mathematical Action

Function: To derive the tangent of an angle.

Typical Use: Trigonometric function for computing angular rise.

Details: • Computes the tangent (in radians) of Argument 1 and places the result in Argument 2.
• Tangent produces a result ranging from zero to two times pi, or 6.283185.
• Range of Argument 1 is -infinity to +infinity.
• Range of Argument 2 is from -infinity to +infinity.
• Computing a tangent at pi / 2 ± n * pi intervals results in an error 33 (result too large).
• Tangent is sin (angle) / cos (angle).

Arguments:

Standard
Example:

Tangent
Of RADIANS Float Variable

Put Result in TANGENT Float Variable

OptoScript
Example:

Tangent(Of)
TANGENT = Tangent(RADIANS);

This is a function command; it returns the tangent of the angle. The returned value can be
consumed by a control structure (as in the example shown) or by a variable, I/O point, etc. See
Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the OptoControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578.
• Use Arctangent if the tangent is known and the angle is desired.

Queue Errors: 33 = Overflow error—result too large.
35 = Not a number—result invalid.

See Also: Arctangent (page A-15), Cosine (page C-63), Sine (page S-51)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable
T-4 OptoControl Command Reference

T
Test Equal
Logical Action

Function: To determine if two values are equal.

Typical Use: To perform logic branching based on whether an argument equals a set value.

Details: • Determines if Argument 1 is equal to Argument 2 and puts result in Argument 3. The result
is -1 (True) if both values are the same, 0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
0 0 -1
-1 0 0

255 65280 0
22.22 22.22 -1

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Equal
TOP_LEVEL Integer 32 Variable

With 1000 Integer 32 Literal
Put Result in FLAG_AT_THE_TOP Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

Argument 1
[Value]
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
With
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
OptoControl Command Reference T-5

• When working with floats, this command is useful for determining if two numeric values are
exactly the same. However, in many cases it may be safer to use Test Greater or Equal or
Test Less or Equal instead, since exact matches of non-integer types are rare.

See Also: Test Greater (page T-8), Test Greater or Equal (page T-9), Test Less (page T-10), Test Less or Equal
(page T-12), Test Not Equal (page T-13), Test Within Limits (page T-14)
T-6 OptoControl Command Reference

T
Test Equal Strings
String Action

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: • Determines if Argument 1 and Argument 2 are equal and puts result in Argument 3. The
result is -1 (True) if both strings are exactly the same, 0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
“OPTO” “OPTO” -1
“OPTO” “Opto” 0

“22” “22” -1
“2 2” “22” 0

• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• The result can be sent directly to a digital output if desired.
• This action is functionally equivalent to the String Equal? condition.
• Quotes (“”) are used in OptoScript code, but not in standard OptoControl code.

Arguments:

Standard
Example:

The following example compares a password variable to a string constant. The resulting value in
IS_AUTHORIZED could be used at several points in the program to determine if the user has
sufficient authorization. Quotes are shown for clarity only; do not use them in standard
commands.
Test Equal Strings

Compare Password String Variable
With “LISA” String Literal

Put Result in IS_AUTHORIZED Integer 32 Variable
The following example compares a barcode to a string retrieved from a string table. This
instruction would be in a loop that retrieves each entry from a string table and compares it.
Test Equal Strings

Compare BARCODE String Variable
With BARCODE_FROM_LIST String Variable

Put Result In IS_IN_LIST Integer 32 Variable

OptoScript: For an OptoScript equivalent, see the String Equal? command.

Notes: • See “String Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use String Equal to String Table Element? to compare with strings in a table.

See Also: String Equal? (page S-69) String Equal to String Table Element? (page S-70)

Argument 1
Compare
String Literal
String Variable

Argument 2
With
String Literal
String Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
OptoControl Command Reference T-7

Test Greater
Logical Action

Function: To determine if one value is greater than another.

Typical Use: To determine if a counter has reached an upper limit or if an analog value is too high.

Details: • Determines if Argument 1 is greater than Argument 2 and puts result in Argument 3. The
result is -1 (True) if Argument 1 is greater than Argument 2, 0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
0 0 0
-1 0 0
-1 -3 -1

22.221 22.220 -1

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Greater
Is MY_DATA_COUNT Counter

Greater than 1000 Integer 32 Literal
Put Result in FLAG_MY_DATA_IS_DONE Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Greater? command.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Consider using Test Greater or Equal instead.

See Also: Test Equal (page T-5), Test Greater or Equal (page T-9), Test Less (page T-10), Test Less or Equal
(page T-12), Test Not Equal (page T-13), Test Within Limits (page T-14)

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
Greater than
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
T-8 OptoControl Command Reference

T
Test Greater or Equal
Logical Action

Function: To determine if one value is greater than or equal to another.

Typical Use: To determine if an analog value has reached a maximum allowable value.

Details: • Determines if Argument 1 is greater than or equal to Argument 2 and puts result in
Argument 3. The result is -1 (True) if Argument 1 is greater than or equal to Argument 2,
0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
0 0 -1
1 0 -1

-32768 -32767 0
22221 2222 -1

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Greater or Equal
Is ROOM_TEMP Analog Input

> or = 78.5000 Float Literal
Put Result in FLAG_ROOM_TEMP_OK Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Greater Than or Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
> or =
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
OptoControl Command Reference T-9

• When using analog values or digital features in this command, be sure to take into
consideration the units that the value is read in and adjust the test values accordingly.

See Also: Test Greater (page T-8), Test Equal (page T-5), Test Less (page T-10), Test Less or Equal (page
T-12), Test Not Equal (page T-13), Test Within Limits (page T-14)

Test Less
Logical Action

Function: To determine if one value is less than another.

Typical Use: To determine if a tank needs to be filled.

Details: • Determines if Argument 1 is less than Argument 2 and puts result in Argument 3. The result
is -1 (True) if Argument 1 is less than Argument 2, 0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
0 0 0
-1 0 -1
-1 -3 0

22.221 22.220 0

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Less
Is TANK_LEVEL Analog Input

Less than FULL_TANK_LEVEL Integer 32 Variable
Put Result in FLAG_TANK_FILL_VALVELocal Simple Digital Output

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
Less than
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
T-10 OptoControl Command Reference

T
OptoScript

Example:
For an OptoScript equivalent, see the Less? command.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Consider using Test Less or Equal instead.

See Also: Test Greater (page T-8), Test Greater or Equal (page T-9), Test Equal (page T-5), Test Less or Equal
(page T-12), Test Not Equal (page T-13), Test Within Limits (page T-14)
OptoControl Command Reference T-11

Test Less or Equal
Logical Action

Function: To determine if one value is less than or equal to another.

Typical Use: To determine if a temperature is below or the same as a certain value.

Details: • Determines if Argument 1 is less than or equal to Argument 2 and puts result in Argument 3.
The result is -1 (True) if Argument 1 is less than or equal to Argument 2, 0 (False) otherwise.
Examples:

Argument 1 Argument 2 Argument 3
0 0 -1
-1 0 -1
-1 -3 0

22.221 22.220 0

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Less or Equal
Is TEMPERATURE Float Variable

< or = 98.6 Float Literal
Put Result in FLAG_TEMP_OK Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Less Than or Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
< or =
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
T-12 OptoControl Command Reference

T
• When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: Test Greater (page T-8), Test Greater or Equal (page T-9), Test Less (page T-10), Test Equal (page
T-5), Test Not Equal (page T-13), Test Within Limits (page T-14)

Test Not Equal
Logical Action

Function: To determine if two values are different.

Typical Use: To check a counter.

Details: • Determines if Argument 1 is different from Argument 2 and puts result in Argument 3. The
result is -1 (True) if both values are not the same, 0 (False) otherwise. Examples:

Argument 1 Argument 2 Argument 3
0 0 0
-1 0 -1

255 65280 -1
22.22 22.22 0

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Test Not Equal
Is COUNTER_VALUE Integer 32 Variable

Not Equal to 100 Integer 32 Literal
Put Result in FLAG_NOT_DONE Integer 32 Variable

Argument 1
Is
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 2
Not Equal to
Analog Input
Analog Output
Counter
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
Quadrature Counter
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Local Simple Digital Output
Up Timer Variable
OptoControl Command Reference T-13

OptoScript
Example:

For an OptoScript equivalent, see the Not Equal? command.

Notes: See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.

See Also: Test Greater (page T-8), Test Greater or Equal (page T-9), Test Less (page T-10), Test Less or Equal
(page T-12), Test Equal (page T-5), Test Within Limits (page T-14)

Test Within Limits
Logical Action

Function: To determine if a value is greater than or equal to a low limit and less than or equal to a high limit.

Typical Use: To check if a temperature is within an acceptable range.

Details: A logical True (-1) is returned if within limits, otherwise a logical False (0) is returned.

Arguments:

Standard
Example:

Test Within Limits
Is CURRENT_TEMP Float Variable
>= COLDEST_TEMP Float Variable

And <= HOTTEST_TEMP Float Variable
Put Result in RESULT Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Within Limits? command.

See Also: Test Greater (page T-8), Test Greater or Equal (page T-9), Test Less (page T-10), Test Less or Equal
(page T-12), Test Not Equal (page T-13), Test Equal (page T-5)

Argument 1
Is
Analog Input
Analog Output
Counter
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Off Pulse
On Pulse
Period
TPO
Up Timer Variable

Argument 2
>=
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
And <=
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 4
Put Result in
Float Variable
Integer 32 Variable
T-14 OptoControl Command Reference

T
Timer Expired?
Miscellaneous Condition

Function: To determine if the specified timer has reached its target value. For down timers, the target value
is zero. For up timers, it is the value set by the command Set Up Timer Target Value.

Typical Use: To determine if it is time to take an appropriate action.

Details: Evaluates True if the specified timer has reached its target value, False otherwise.

Arguments:

Standard
Example:

Is EGG_TIMER Down Timer Variable
Timer Expired?

OptoScript
Example:

HasTimerExpired(Timer)
if (HasTimerExpired(EGG_TIMER)) then

This is a function command; it returns a -1 (True) if the timer has expired, 0 (False) if not. The
returned value can be consumed by a control structure (as in the example shown) or by a variable,
I/O point, etc. See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • Although the timer resolution is 1 millisecond, the accuracy of a time period is limited by the
number of charts running concurrently as well as by the priorities of the charts.

• See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on using timers.

• This command can be used the same as Down Timer Expired? and Up Timer Target Time
Reached?

See Also: Set Down Timer Preset Value (page S-19), Set Up Timer Target Value (page S-46), Start Timer
(page S-62), Up Timer Target Time Reached? (page U-1), Down Timer Expired? (page D-22)

Argument 1
Is
Down Timer Variable
Up Timer Variable
OptoControl Command Reference T-15

Transmit Character via Serial Port
Communication—Serial Action

Function: To send a single character to a communication port.

Typical Uses: • To send a message to another device one character at a time.
• To send a line feed (character 10) to a serial printer.

Details: • Character values sent will be 0–255 (decimal). Only the last eight bits are sent when the
value is >255.

• A value of 256 will be sent as a zero. A value of 257 will be sent as a 1.
• To send an ASCII null, use zero. To send an ASCII zero, use 48.
• Ports 0–3 (RS-232 mode only): Turns RTS on and leaves it on. CTS is on by default except for

COM0 of the M4RTU or M4IO. If CTS is off or the timeout is too short (see Configure Port
Timeout Delay), one character will be moved to the transmit buffer. When CTS turns on, the
character will be sent. Sending more than one character with CTS off will eventually result
in a -41 error. If CTS is enabled, the command does not transmit until CTS is raised high.

Arguments:

Standard
Example:

Transmit Character via Serial Port
From 10 Integer 32 Literal

On Port 1 Integer 32 Literal
Put Status in ERROR_CODE Integer 32 Variable

OptoScript
Example:

TransCharViaSerialPort(Character, On Port)
ERROR_CODE = TransCharViaSerialPort(10, 1);

This is a function command; it returns one of the status codes listed below.
In OptoScript code, you can also use a character literal for Argument 1. For example, you could
use TransCharViaSerialPort('a', 1); rather than having to use
TransCharViaSerialPort(97, 1); making the code more readable. Unprintable character
codes would still require a number, however.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Ports 0–3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU or M4IO

unless RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

• Use Transmit String via Serial Port instead when there are a lot of characters to send or
when using modems that require RTS-CTS handshaking.

• If sending an eight-bit checksum, no need to Bit AND the checksum value with 255.

Argument 1
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
T-16 OptoControl Command Reference

T
• Use Turn Off RTS After Next Character before this command to automatically lower RTS

after the character is sent. When wiring RS-485 in 2-wire mode, this is necessary in order to
be able to receive again after this command. This is also true if using RS-232 and the 2w/4w
is inadvertently set to 2w.

• If talking to devices such as radio modems that require a delay between receiving a
message and lowering RTS, use Turn Off RTS when necessary. You can also use Turn On RTS
before this command.

Dependencies: • Ports 0–3: baud rate, parity, number of data bits, number of stop bits.
• Ports 4, 6, and 7: Must use Transmit NewLine via Serial Port to actually send the message.
• Ports 8–10: Use either Transmit NewLine via Serial Port or Transmit String via Ethernet to

send the message.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off or timeout is too short (see Configure Port Timeout Delay). For
ports 4 and 7–10, this error indicates the transmit buffer is full.
-51 = Invalid port number—use port 0–10.

See Also: Configure Port (page C-41), Turn On RTS (page T-41), Turn Off RTS (page T-38)

Transmit NewLine via Serial Port
Communication—Serial Action

Function: This command has two context-sensitive functions:
• Ports 0–3: To send a carriage return (character 13) and a line feed (character 10) to a port.
• Ports 4 and 6–10: To send the message in the transmit buffer of the ARCNET port (port 4),

the local port (port 6), or the peer port (port 7). For ports 4 and 7, a carriage return (character
13) is appended to the message sent. For 8–10, no carriage return is appended.

Typical Uses: • To send a carriage return/line feed to a serial printer.
• To send anything to ports 4 and 6–10.

Details: • Ports 0–3: Sends two ASCII characters (13 and 10) to the specified port.
• Ports 0–3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU or M4IO. If CTS is off or the
timeout is too short (see Configure Port Timeout Delay), this command will eventually time
out and return a -41 error.

• Ports 4, 6, and 7: Must use this command to actually send what was “sent” by any other
command. Anything “sent” to one of these ports is held in the transmit buffer of the port
until this command is used. An acknowledgment is expected from the destination. For ports
4 and 7, this acknowledgment is an automatic feature of ARCNET. This command will wait
up to the port timeout value for the acknowledgment. Retries will also be performed up to
OptoControl Command Reference T-17

the retry limit. If no acknowledgment is received, this command will eventually time out and
return a -41 error.

• Ports 4 and 7–10: All communications are 16-bit CRC error checked.
• Ports 8–10: This command can be used to send what is in the transmit buffer.
• Caution: The message could be sent and acknowledged but discarded by the destination

with no error if a message is already held in its receive buffer.

Arguments:

Standard
Example:

Transmit NewLine via Serial Port
On Port 1 Integer 32 Variable

Put Status in ERROR_CODE Integer 32 Variable

OptoScript
Example:

TransNewLineViaSerialPort(On Port)
ERROR_CODE = TransNewLineViaSerialPort(1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Ports 0–3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU or M4IO

unless RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

• Ports 4 and 7: To be sure that a message sent was actually received, configure the
destination device to reply with an “ACK” or an empty string immediately after receiving the
message. Wait for this “ACK” for a second or so to verify receipt of the message.

Dependencies: • Ports 0–3: baud rate, parity, number of data bits, number of stop bits.
• Ports 4 and 7: Must use Set ARCNET Destination Address for port 4 or Set ARCNET Peer

Destination Address for port 7 before using this command.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off (ports 0–3), timeout is too short (see Configure Port Timeout
Delay), or there is no response from peer. For ports 4 and 7, this error indicates the transmit buffer
is full.
-51 = Invalid port number—use port 0–7.

See Also: Configure Port (page C-41)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
T-18 OptoControl Command Reference

T
Transmit String via ARCNET
Communication—Network Action

Function: Sends a message to another ARCNET device.

Typical Use: Sending messages and data to other controllers via the peer port.

Details: • If the transmit buffer of the specified port has any characters in it (previously placed there by
Transmit Character via Serial Port), they will be sent first, followed by any characters that
may be in the string, for a total of 251 characters.

• If the string is empty, the transmit buffer contents will be sent. Transmit NewLine via Serial
Port can also be used to send the transmit buffer contents.

• If both the string and the transmit buffer are empty, an empty message will be sent, which is
useful as a user-generated “ACK.”

• Consider using a carriage return as a delimiter between data sets or types when
appropriate. Sending one long packet is more efficient than sending several short packets.

• The message sent will have a carriage return automatically appended.

Arguments:

Standard
Example:

Transmit String via ARCNET
From XMIT_MSG String Variable

On Port 7 Integer 32 Literal
Put Status in XMIT_STATUS Integer 32 Variable

OptoScript
Example:

TransStringViaArcnet(String, On Port)
XMIT_STATUS = TransStringViaArcnet(XMIT_MSG, 7);

This is a function command; it returns one of the status codes listed below.

Notes: • An ARCNET level acknowledgment is expected from the destination. This is an automatic
feature of ARCNET. This command will wait up to the port timeout value for the
acknowledgment. Retries will also be performed up to the retry limit. If no acknowledgment
is received, this command will eventually time out and return a -41 error. CAUTION: The
message could be sent and acknowledged at the ARCNET level but discarded by the
receiving controller without notification if its receive buffer is full.

• The ARCNET receive buffer can hold four messages of up to 251 characters each. After this
message has been completely “received” by the user program, another message will be
accepted into the receive buffer. To avoid message loss by the intended receiver, send one
message at a time, waiting for a user generated “ACK” from the receiver before sending
another message to the same receiver.

• Valid ports are 4 (also called ARCNET port) and 7 (also called peer port), as well as 12–19,
which are twisted-pair ARCNET ports.

• Use Configure Port Timeout Delay to change the timeout time.

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-19

• All messages sent via ARCNET are 16-bit CRC error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—timeout is too short (use Configure Port Timeout Delay),
or there is no response from the receiver, or the transmit buffer is full.
-51 = Invalid port number—use 4 or 7.

See Also: Receive String via ARCNET (page R-19), Transmit Character via Serial Port (page T-16)

Transmit String via Ethernet
Communication—Network Action

Function: Sends a message to another device via Ethernet.

Typical Use: Sending messages and data to other controllers via Ethernet ports 9 and 10 (peer ports).

Details: • If the transmit buffer of the specified port has any characters in it (previously placed there by
Transmit Character via Serial Port), they will be sent first, followed by any characters that
may be in the string, for a total of 1500 characters.

• If the string is empty, the transmit buffer contents will be sent.
• If both the string and the transmit buffer are empty, the Ethernet packet will not be sent.
• Consider using a carriage return as a delimiter between data sets or types when

appropriate. Sending one long packet is more efficient than sending several short packets.
• Terminate the message with a carriage return when sending it to another controller.

Arguments:

Standard
Example:

Transmit String via Ethernet
From XMIT_MSG String Variable

Via Session SESSION_NUMBER Integer 32 Variable
On Port 9 Integer 32 Literal

Put Status in ETHERNET_STATUS Integer 32 Variable

OptoScript
Example:

TransStringViaEthernet(String, Via Session, On Port)
ETHERNET_STATUS = TransStringViaEthernet(XMIT_MSG, SESSION_NUMBER, 9);

This is a function command; it returns one of the status codes listed below.

Notes: • An Ethernet level acknowledgment is expected from the destination. This is an automatic
feature of Ethernet. This command will wait up to the port timeout value for the
acknowledgment. Retries will also be performed up to the retry limit. If no acknowledgment
is received, this command will eventually time out and return a -41 error. CAUTION: The
message could be sent and acknowledged at the Ethernet level but never processed by the

Argument 1
From
String Literal
String Variable

Argument 2
Via Session
Integer 32 Literal
Integer 32 Variable

Argument 3
On Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable
T-20 OptoControl Command Reference

T
application program in the receiving controller. Therefore, the receiving application
program should acknowledge receipt of the message.

• The Ethernet receive buffer can hold up to 1,500 characters.
• An Ethernet session is a logical link (a virtual dedicated cable) between two nodes. Up to 32

sessions total can be concurrently established on the three logical Ethernet ports—8, 9, and
10. These three ports use the same Ethernet card.
Controller Port # Typical Use TCP/IP Port #

8 Host Port 2001
9 Peer Port 2002

10 Peer Port 2003

• Use Configure Port Timeout Delay to change the timeout time.
• All messages sent via Ethernet are 16-bit CRC error checked.

Dependencies: Must first use Open Ethernet Session to establish a session, or Accept Session on TCP Port to
accept a session initiated by a peer.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—timeout is too short (use Configure Port Timeout Delay),
or there is no response from the receiver or the transmit buffer is full.
-51 = Invalid port number—use 8, 9, or 10.
-70 = No Ethernet card present.
-72 = Timeout—Couldn’t open the session.
-74 = Session not open.
-75 = Invalid session number—Use 0–127.
-77 = This controller doesn’t support Ethernet.

See Also: Receive String via Ethernet (page R-20)
OptoControl Command Reference T-21

Transmit String via Serial Port
Communication—Serial Action

Function: To send a message to a communication port.

Typical Uses: • To send data to another device or to send an alarm message to a serial printer.

Details: • If you have any controller except the G4 series, COM0 is set up by default to use CTS. If the
CTS signal is not received or the timeout is too short (see Configure Port Timeout Delay), this
command will eventually time out and return a -41 error. A partial message may be sent if
the timeout is too short. If the CTS signal is not received, however, no message will be sent.

• If you are using ports 0–3 in RS-232 mode, this command turns RTS on, and then turns RTS
off when finished. If CTS is enabled, the command does not transmit until CTS is raised high.

Arguments:

Standard
Example:

Transmit String via Serial Port
From Message1 String Variable

On Port 1 Integer 32 Literal
Put Status in Error_Code Integer 32 Variable

OptoScript
Example:

TransStringViaSerialPort(String, On Port)
Error_Code = TransStringViaSerialPort(Message1, 1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Ports 0–3 (RS-232 mode only): If you are using any controller (except the G4 series) with a

modem, printer, or other device that requires RTS/CTS flow control, make sure RTS and CTS
are connected between the controller and the device. Otherwise, connect RTS to CTS on
COM0 of the controller. Never connect RTS and CTS to a device unless the device requires
RTS/CTS flow control.

• If you are communicating from one Opto 22 controller to another, you can optimize
communications by adding a message delimiter before sending the message. First use the
Append Character to String command to append a carriage return (character 13) to the
message. Then transmit the message using this command. On the other controller, use
Receive String via Serial Port to receive the message.

Dependencies: Ports 0–3: baud rate, parity, number of data bits, number of stop bits.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off or timeout is too short (see Configure Port Timeout Delay).
-51 = Invalid port number—use port 0–3.

See Also: Transmit Character via Serial Port (page T-16), Configure Port (page C-41)

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
T-22 OptoControl Command Reference

T
Transmit Table via ARCNET
Communication—Network Action

Function: Sends 32 consecutive numeric table values (128 bytes) to another controller.

Typical Use: Efficient method of numeric data transfer from one controller to another.

Details: • If the table does not have 32 consecutive values starting with the specified index,
128 characters are still sent. Nulls are used as fill characters.

• The message sent will have a carriage return automatically appended.

Arguments:

Standard
Example:

Transmit Table via ARCNET
Start at Index 0 Integer 32 Literal

Of Table PEER_DATA_TABLE Float Table
On Port 7 Integer 32 Literal

Put Status in XMIT_STATUS Integer 32 Variable

OptoScript
Example:

TransTableViaArcnet(Start at Index, Of Table, On Port)
XMIT_STATUS = TransTableViaArcnet(0, PEER_DATA_TABLE, 7);

This is a function command; it returns one of the status codes listed below.

Notes: • Use Transmit Character via Serial Port first to add a destination index, table ID, etc. if
desired. These values could be sent as fixed length or carriage return delimited.

• An ARCNET level acknowledgment is expected from the destination. This is an automatic
feature of ARCNET. This command will wait up to the port timeout value for the
acknowledgment. Retries will also be performed up to the retry limit. If no acknowledgment
is received, this command will eventually time out and return a -41 error. CAUTION: The
message could be sent and acknowledged at the ARCNET level but discarded by the
receiving controller without notification if too many messages are already held in its receive
buffer.

• The ARCNET receive buffer can hold four messages of up to 251 characters each. After this
message has been completely “received” by the user program, another message will be
accepted into the receive buffer. To avoid message loss by the intended receiver, send one
message at a time waiting for a user-generated “ACK” from the receiver before sending
another message to the same receiver.

• Valid ports are 4 (also called ARCNET port) and 7 (also called ARCNET peer port), as well as
ports 12–19, which are twisted-pair ARCNET ports.

• All messages sent via ARCNET are 16-bit CRC error checked.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
On Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-23

-41 = Send timeout—timeout is too short (use Configure Port Timeout Delay), or there is no
response from the receiver, or the transmit buffer is full.
-51 = Invalid port number—use 4 or 7.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Receive Table via ARCNET (page R-23), Transmit String via ARCNET (page T-19)

Transmit Table via Ethernet
Communication—Network Action

Function: Sends 32 consecutive numeric table values (128 bytes) to another controller.

Typical Use: Efficient method of numeric data transfer from one controller to another.

Details: If the table does not have 32 consecutive values starting with the specified index, 128 characters
are still sent. Nulls are used as fill characters.

Arguments:

Standard
Example:

Transmit Table via Ethernet
Start at Index 0 Integer 32 Literal

Of Table Peer_data_table Float Table
Via Session Session_num Integer 32 Variable

On Port 9 Integer 32 Literal
Put Status in Xmit_status Integer 32 Variable

OptoScript
Example:

TransTableViaEthernet(Start at Index, Of Table, Via Session, On Port)
Xmit_status = TransTableViaEthernet(0, Peer_data_table, Session_num, 9);

This is a function command; it returns one of the status codes listed below.

Notes: • An Ethernet session is a logical link (a virtual dedicated cable) between two nodes. Up to 32
sessions total can be concurrently established on the three logical Ethernet ports—8, 9, and
10. These three ports use the same Ethernet card.
Controller Port# Typical Use TCP/IP Port #

8 Host Port 2001
9 Peer Port 2002

10 Peer Port 2003

• Use Transmit Character via Serial Port first to send a destination index, table ID, etc. if
desired. These values could be sent as fixed length or carriage return delimited.

• An Ethernet level acknowledgment is expected from the destination. This is an automatic
feature of Ethernet. This command will wait for the Ethernet TCP/IP acknowledgment. If no
acknowledgment is received, this command will eventually time out and return a -41 error.
Because of standard TCP/IP settings, this process could take about one minute. CAUTION:

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
Via Session
Integer 32 Literal
Integer 32 Variable

Argument 4
On Port
Integer 32 Literal
Integer 32 Variable

Argument 5
Put Status is
Float Variable
Integer 32 Variable
T-24 OptoControl Command Reference

T
The message could be sent and acknowledged at the Ethernet level but never processed
by the application program in the receiving controller. Therefore, the receiving application
program should acknowledge receipt of the message.

• The Ethernet receive buffer can hold up to 1500 characters.
• All messages sent via Ethernet are 16-bit CRC error checked.

Dependencies: Must first use Open Ethernet Session to establish a session, or Accept Session on TCP Port to
accept a session initiated by a peer.

Status Codes: 0 = No error.
30 = Invalid port number for this session. Port number may be different from the open port, or the
receiving end may have closed the session.
-40 = Timeout—specified port already in use.
-41 = Send timeout—timeout is too short (use Configure Port Timeout Delay), or there is no
response from the receiver, or the transmit buffer is full.
-51 = Invalid port number—use 8, 9, or 10.
-70 = No Ethernet card present.
-72 = Timeout—Couldn’t open the session.
-74 = Session not open.
-75 = Invalid session number—Use 0–127.
-77 = This controller doesn’t support Ethernet.

See Also: Receive Table via Ethernet (page R-24), Transmit String via Ethernet (page T-20)

Transmit Table via Serial Port
Communication—Serial Action

Function: Sends 32 numeric table values to a communication port.

Typical Use: To share numeric table data with another controller. To send large amounts of numeric table data
efficiently.

Details: • Sends up to 32 table values directly from memory.
• If the table does not have at least 32 elements starting from the specified index, zeros will

be sent for the missing elements.
• 128 bytes will be sent, four bytes per value. Since the values are sent directly from memory,

it doesn’t matter if the data is integer or float.
• Valid table indices range from 0 to the declared table length.
• Ports 0–3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU or M4IO. If CTS is off or the
timeout is too short (see Configure Port Timeout Delay), this command will eventually time
out and return a -41 error. No message will be sent if CTS is off. A partial message may be
sent if the timeout is too short.
OptoControl Command Reference T-25

Arguments:

Standard
Example:

Transmit Table via Serial Port
Start at Index INDEX Integer 32 Variable

Of Table My_table Integer 32 Table
On Port 1 Integer 32 Literal

Put Status in Error_Code Integer 32 Variable

OptoScript
Example:

TransTableViaSerialPort(Start at Index, Of Table, On Port)
Error_Code = TransTableViaSerialPort(Index, My_table, 1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Ports 0–3 (NRS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU or

M4IO unless RTS and CTS must be connected to a modem, printer, or other device. Never
connect anything to CTS unless it must be used to handshake with another device.

• Use Move Analog I/O Unit to Table to read all 16 points of an I/O unit and put the result in a
float table.

• Use Receive Table via Serial Port to receive this data in the other controller.
• Always send the starting table index before sending the values so that the receiving

controller will know where to put the data. If there is only one block of data that always has
the same starting index, there is no need to send the starting index separately.

• If sending both integer and float values, be sure to send a type code first so that the
receiving controller will know what type of table to store the values in. If the values are
stored in the wrong type of table, their value will be interpreted incorrectly.

• Use error-checked communications or calculate and send a CRC first to ensure the integrity
of the 128-byte packet.

Dependencies: Ports 0–3: baud rate, parity, number of data bits, number of stop bits.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off or timeout is too short (see Configure Port Timeout Delay).
-51 = Invalid port number—use port 0, 1, 2, 3, or 6.

See Also: Configure Port (page C-41)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
On Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
T-26 OptoControl Command Reference

T
Transmit/Receive Mistic I/O Hex String with Checksum
Communication—I/O Action

Function: Sends a binary string with checksum to a local simple I/O unit. Waits for and verifies the
response.

Typical Use: Functional testing of local simple I/O units.

Details: • A zero result indicates the message was sent and the reply was received with no errors.
• Use Get Nth Character and/or Get Substring to parse the response.

Arguments:

Standard
Example:

Transmit/Receive Mistic I/O Hex String with Checksum
From IO_Command String Variable

On Port 2 Integer 32 Literal
Put Result in Response String Variable
Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

TransReceMisticIoHexStringWithChecksum(Hex String, On Port, Put Result in)
RECV_STATUS = TransReceMisticIoHexStringWithChecksum(IO_Command, 2,

Response);

This is a function command; it returns one of the status codes listed below.

Notes: For use with local simple I/O units only.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—response not received within the allotted time (see Configure Port Timeout
Delay).
-43 = Too few characters received.
-45 = Checksum verification failed.
-48 = String too short to hold response.
-51 = Invalid port number—use port 0–3.

See Also: Transmit/Receive Mistic I/O Hex String with CRC (page T-28)

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-27

Transmit/Receive Mistic I/O Hex String with CRC
Communication—I/O Action

Function: Aids in sending custom commands using hex to an I/O unit configured for binary CRC mode.

Typical Use: Reading a group of 16 event latches from a multifunction I/O unit.

Details: • This command sends a hex string in mistic I/O format. The string is sent in Argument 1. The
Argument 1 string must start with the address field and include everything up to the CRC
(DVF) field. Do NOT include the CRC (DVF) field. Example: 000341 sends a powerup clear
command to the brain at address 00. For details, see Opto 22 form #270. Look for the
command you want to send, and then review the binary example of that command.

• This comand automatically calculates and appends the CRC to the command being
transmitted, so you don’t have to include it. The command sends the command string, gets
the response, and verifies the CRC. A zero result indicates the response was received and
verified.

• Hex is used to make the command string and the response string more readable.
Communication to and from the I/O unit is binary CRC.

Arguments:

Standad
Example:

Transmit/Receive Mistic I/O Hex String with CRC
From IO_Command String Variable

On Port 2 Integer 32 Literal
Put Result in Response String Variable
Put Status in RECV_STATUS Integer 32 Variable

OptoScript
Example:

TransReceMisticIoHexStringWithCrc(Hex String, On Port, Put Result in)
RECV_STATUS = TransReceMisticIoHexStringWithCrc(IO_Command, 2, Response);

This is a function command; it returns one of the status codes listed below.

Notes: • For use only with I/O units in binary CRC mode.
• Use Convert Hex String to Number when the response represents a count or bit pattern.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-42 = Timeout—response not received within allotted time (see Configure Port Timeout Delay).
-43 = Too few characters received.
-45 = CRC verification failed.
-48 = String too short to hold response.
-51 = Invalid port number—use port 0–3.

See Also: Transmit/Receive Mistic I/O Hex String with Checksum (page T-27)

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
T-28 OptoControl Command Reference

T
Transmit/Receive OPTOMUX String
Communication—I/O Action

Function: To communicate as a master with an OPTOMUX device using a communication port.

Typical Use: To communicate with OPTOMUX I/O.

Details: • For use with ports 0–3 only.
• Adds a leading “>“ (character 62) to the OPTOMUX message.
• Calculates an eight-bit checksum and appends it to the end of the OPTOMUX message as

two hex bytes.
• Appends a carriage return (character 13) to the end of the OPTOMUX message.
• The OPTOMUX response is expected to start with either an A or an N and is expected to end

with a carriage return.
• The two characters preceding the carriage return are expected to be the checksum when

data is returned.
• The checksum is calculated and compared with what was sent. If there is a checksum error,

or if “?” was substituted for the checksum characters, a -45 error will be returned. The
checksum is not stripped from the message.

• Some valid responses are: N03, AB2EB9.
• The string variable length for the OPTOMUX response must be greater than the length of the

longest response expected.
• The carriage return in the receive buffer is deleted as the response is moved to the string

variable.
• The status is an error code that indicates how successful this command was. A zero

indicates OK; any negative value indicates an error.
• If the number of characters in the receive buffer is less than the length of the string variable

and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the string variable.
If this happens frequently, use Configure Port Timeout Delay to increase the timeout value.
See Notes below.

• If the communications port is already in use, this command will wait for it to become
available until a port-in-use timeout error (-40) occurs.

• RS-232 mode only: Turns RTS on. Turns RTS off when finished. If CTS is not connected, it is
on by default except on COM0 of the M4RTU or M4IO. If CTS is off or the timeout is too short
(see Configure Port Timeout Delay), this command will eventually time out and return a -41
error. No message will be sent if CTS is off. A partial message may be sent if the timeout is
too short.

Arguments: Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-29

Standard
Example:

Transmit/Receive OPTOMUX String
From Optomux_Command String Variable

On Port 1 Integer 32 Literal
Put Result in Optomux_Response String Variable
Put Status in Error_Code Integer 32 Variable

OptoScript
Example:

TransReceOptomuxString(String, On Port, Put Result in)
Error_Code = TransReceOptomuxString(Optomux_Command, 1,

Optomux_Response);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use Clear Receive Buffer before using this command each time.
• Always use Configure Port Timeout Delay once before using this command . As a minimum,

use the result of this formula: (longest message length / baud rate) * 40. For example, a
24-character message at 9600 baud results in a delay of 0.1 seconds.

• RS-232 mode only: Always connect RTS to CTS on COM0 of the M4RTU or M4IO unless RTS
and CTS must be connected to a modem, printer, or other device. Never connect anything to
CTS unless it must be used to handshake with another device.

Dependencies: • Baud rate, parity, number of data bits, number of stop bits: Parity must be N; number of data
bits must be 8; number of stop bits must be 1.

• Must use OPTOMUX protocol.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off or timeout is too short (see Configure Port Timeout Delay).
For ports 4 and 7, this error indicates the transmit buffer is full.
-42 = Timeout—no carriage return found in the receive buffer within allotted time
(see Configure Port Timeout Delay).
-43 = Too few characters received.
-44 = Response not formatted correctly (illegal first character).
-45 = CRC or checksum failed.
-47 = Received a NAK (this is OK—not an error).
-51 = Invalid port number—use port 0–3.

See Also: Configure Port (page C-41)
T-30 OptoControl Command Reference

T
Transmit/Receive String via ARCNET
Communication—Network Action

Function: Sends a message, and then waits for the response.

Typical Use: Sending messages and data to other controllers via the peer port where a response is expected
before continuing.

Details: • See the Details section for Transmit String via ARCNET and Receive String via ARCNET.
• If the response has embedded carriage returns, use Receive String via ARCNET to get each

additional carriage return delimited section.

Arguments:

Standard
Example:

Transmit/Receive String via ARCNET
From XMIT_MSG String Variable

On Port 7 Integer 32 Literal
Put Result in RECV_MSG String Variable
Put Status in TR_STATUS Integer 32 Variable

OptoScript
Example:

TransReceStringViaArcnet(String, On Port, Put Result in)
TR_STATUS = TransReceStringViaArcnet(XMIT_MSG, 7, RECV_MSG);

This is a function command; it returns one of the status codes listed below.

Notes: • Use Move String, Append String to String, or Append Character to String to build the string
to send. Consider using a carriage return as a delimiter between data sets or types when
appropriate. Sending one long packet is more efficient than sending several short packets.

• Use Receive String via ARCNET or Receive N Characters via ARCNET in the destination
controller followed by Transmit String via ARCNET for the reply.

• See the Notes section for Transmit String via ARCNET and Receive String via ARCNET.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—timeout is too short (use Configure Port Timeout Delay), or there is no
response from the receiver, or the transmit buffer is full.
-42 = Timeout—no carriage return found in the receive buffer with allotted time
(see Configure Port Timeout Delay).
-45 = CRC verification failed.
-51 = Invalid port number—use 4 or 7.

See Also: Receive String via ARCNET (page R-19), Transmit String via ARCNET (page T-19)

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-31

Transmit/Receive String via Ethernet
Communication—Network Action

Function: Sends a message, and then waits for the response.

Typical Use: Sending messages and data to other controllers via Ethernet ports 9 and 10 (peer ports) and to
MIS systems via Ethernet port 8.

Details: • See the Details section for Transmit String via Ethernet and Receive String via Ethernet.
• If the response has embedded carriage returns, use Receive String via Ethernet to get each

additional carriage return delimited section.

Arguments:

Standard
Example:

Transmit/Receive String via Ethernet
From XMIT_MSG String Variable

Via Session SESSION_NUMBER Integer 32 Variable
On Port 9 Integer 32 Literal

Put Result in RECV_MSG String Variable
Put Status in TR_STATUS Integer 32 Variable

OptoScript
Example:

TransReceStringViaEthernet(String, Via Session, On Port, Put Result in)
TR_STATUS = TransReceStringViaEtheret(XMIT_MSG, SESSION_NUMBER, 9,

RECV_MSG);

This is a function command; it returns one of the status codes listed below.

Notes: • An Ethernet session is a logical link (a virtual dedicated cable) between two nodes. Up to 32
sessions total can be concurrently established on the three logical Ethernet ports—8, 9, and
10. These three ports use the same Ethernet card.
Controller Port # Typical Use TCP/IP Port #

8 Host Port 2001
9 Peer Port 2002

10 Peer Port 2003

• Use Move String, Append String to String or Append Character to String to build the string to
send. Consider using a carriage return as a delimiter between data sets or types when
appropriate. Sending one long packet is more efficient than sending several short packets.

• Use Receive String via Ethernet or Receive N Characters via Ethernet in the destination
controller followed by Transmit String via Ethernet for the reply.

• See the Notes section for Transmit String via Ethernet and Receive String via Ethernet.

Dependencies: Must first use Open Ethernet Session to establish a session, or Accept Session on TCP Port to
accept a session initiated by a peer.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.

Argument 1
From
String Literal
String Variable

Argument 2
Via Session
Integer 32 Literal
Integer 32 Variable

Argument 3
On Port
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
String Variable

Argument 5
Put Status in
Integer 32 Variable
T-32 OptoControl Command Reference

OptoControl Command Reference T-33

T
-41 = Send timeout—timeout is too short (see Configure Port Timeout Delay), or there is no
response from the receiver, or the transmit buffer is full.
-42 = Timeout—response not received within allotted time
(see Configure Port Timeout Delay).
-48 = String too short to hold response.
-51 = Invalid port number—use 8, 9, or 10.
-70 = No Ethernet card present.
-72 = Timeout—Couldn’t open the session.
-74 = Session not open.
-75 = Invalid session number—Use 0–127.
-77 = This controller doesn’t support Ethernet.

Queue Errors: 32 = Bad table index value—index was negative or greater than or equal to the table size.

See Also: Receive String via Ethernet (page R-20), Transmit String via Ethernet (page T-20)
Transmit String via Ethernet, Receive String via Ethernet

Transmit/Receive String via Serial Port
Communication—Serial Action

Function: Sends an ASCII message and gets an ASCII response, using a communication port.

Typical Uses: • To poll for ASCII messages from weigh scales, barcode readers, data entry terminals, and
other controllers.

• To send data to other devices where an immediate response is expected.

Details: • For use with ports 0–3 only.
• Appends a carriage return (character 13) to the end of the message sent. The response is

expected to end with a carriage return (character 13). The carriage return in the receive
buffer is deleted as the response is moved to the string variable.

• The string variable length for the response must be at least two greater than the length
of the longest message expected.

• The status is an error code that indicates how successful this command was. A zero
indicates OK; any negative value indicates an error.

• If the first set of characters in the receive buffer that is equal to the length of the string
variable does not contain a carriage return, these characters will be moved to the string
variable without error and all remaining characters in the receive buffer will be discarded.

• If the number of characters in the receive buffer is less than the length of the string variable
and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the string variable.
If this happens frequently, use Configure Port Timeout Delay to increase the timeout value.
See Notes below.

• If the communication port is already in use, this command will wait for it to become
available until a port-in-use timeout error (-40) occurs. If the receive buffer is empty, no
message will be sent and an error -42 will be returned.

• RS-232 mode only: Turns RTS on. Turns RTS off when finished. If CTS is not connected, it is
on by default except on COM0 of the M4RTU or M4IO. If CTS is off or the timeout is too short
(see Configure Port Timeout Delay), this command will eventually time out and return a -41
error. No message will be sent if CTS is off. A partial message may be sent if the timeout is
too short.

• No error checking is performed on any data passed.

Arguments:

Standard
Example:

Transmit/Receive String via Serial Port
From Command String Variable

On Port 1 Integer 32 Literal
Put Result in Response String Variable
Put Status in Error_Code Integer 32 Variable

Argument 1
From
String Literal
String Variable

Argument 2
On Port
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Float Variable
Integer 32 Variable
T-34 OptoControl Command Reference

T
OptoScript

Example:
TransReceStringViaSerialPort(String, On Port, Put Result in)
Error_Code = TransReceStringViaSerialPort(Command, 1, Response);

This is a function command; it returns one of the status codes listed below.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use Clear Receive Buffer before using this command each time.
• Always use Configure Port Timeout Delay once before using this command . As a minimum,

use the result of this formula: (longest message length / baud rate) * 40. For example, a
24-character message at 9600 baud results in a delay of 0.1 seconds.

• When there are multiple responses terminated by a carriage return and a line feed
(character 10), all responses received starting with the second response will have a line feed
as the first character in the string variable. To remove it, get the first character of the string
variable using Get Nth Character where n=1. If the nth character is equal to 10, use Get
Substring with Start At set to 2 and Number Of set greater than or equal to the number of
characters expected.

• Do not use this command for binary messages, since they may contain numerous carriage
returns at unpredictable locations.

• When using this command to communicate with another controller, use Receive String via
Serial Port in the other controller.

• RS-232 mode only: Always connect RTS to CTS on COM0 of the M4RTU or M4IO unless RTS
and CTS must be connected to a modem, printer, or other device. Never connect anything to
CTS unless it must be used to handshake with another device.

Dependencies: Baud rate, parity, number of data bits, number of stop bits.

Status Codes: 0 = No error.
-40 = Timeout—specified port already in use.
-41 = Send timeout—CTS is off or timeout is too short (see Configure Port Timeout Delay).
-42 = Timeout—no carriage return found in the receive buffer within allotted time (see Configure
Port Timeout Delay).
-51 = Invalid port number—use port 0–3.

See Also: Transmit String via Serial Port (page T-22), Receive Character via Serial Port (page R-14),
Configure Port (page C-41)
OptoControl Command Reference T-35

Truncate
Mathematical Action

Function: Discards the fractional part of a number without changing the whole part.

Typical Use: In totalizing, to separate the whole part of a number from the fractional part to increase overall
accuracy.

Details: Separating the whole part from the fractional part allows significantly greater accuracy on the
fractional part since more significant digits are made available for the fractional part to use. This
technique is especially useful when the total value is greater than 9999.

Arguments:

Standard
Example:

Truncate
Flow_Total_Raw Float Variable

Put Result in Flow_Total_Integer Integer 32 Variable

OptoScript
Example:

Truncate(Value)
Flow_Total_Integer = Truncate(Flow_Total_Raw);

This is a function command; it returns the whole part of the truncated number.

Notes: Subtracting the resulting integer from the float will remove the whole part from the
fractional part.

See Also: Round (page R-29)

Argument 1
[Value]
Down Timer Variable
Float Literal
Float Variable
Up Timer Variable

Argument 2
Put Result in
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
T-36 OptoControl Command Reference

T
Turn Off
Digital Point Action

Function: To turn off a digital output point.

Typical Use: To deactivate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: • Turns off the specified output.
• Discontinues any previously executing pulse, square wave, or TPO command immediately.
• The output will remain off until directed otherwise.

Arguments:

Standard
Example:

Turn Off
The_Lights Local Simple Digital Output

OptoScript
Example:

TurnOff(Output)
TurnOff(The_Lights);

This is a procedure command; it does not return a value.
In OptoScript code, you could also assign the output a zero value to turn it off:
The_Lights = 0;

Notes: • To cause an output on one I/O unit to assume the state of an input on another I/O unit, use
Move in standard commands or an assignment in OptoScript code.

• Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

• Use event/reactions to cause an output to track an input on the same digital multifunction
I/O unit.

• Turning off a digital TPO will forcefully turn off the point. The last TPO percent written can
still be read.

• Speed Tip: Use Set Digital I/O Unit from MOMO Masks (with a value of 0) to turn off all
16 outputs at once.

Dependencies: • If the output point or the I/O unit is disabled, no action will occur at the output point (XVAL).
The IVAL, however, will be updated.

See Also: Set Digital I/O Unit from MOMO Masks (page S-17), Start On-Pulse (page S-60), Start Off-Pulse
(page S-59), Turn On (page T-40)

Argument 1
[Value]
Digital Output
Local Simple Digital Output
OptoControl Command Reference T-37

Turn Off RTS
Communication—Serial Action

Function: Lowers the RTS output on the specified serial port.

Typical Use: In half-duplex applications that require flow control, such as radio links.

Details: • Use after Transmit Character via Serial Port to lower RTS.
• RTS will automatically turn on the next time a character or string is transmitted.

Arguments:

Standard
Example:

Turn Off RTS
On Port 3 Integer 32 Literal

Put Status in COMM_STATUS Integer 32 Variable

OptoScript
Example:

TurnOffRts(On Port)
COMM_STATUS = TurnOffRts(3);

This is a function command; it returns one of the status codes listed below.

Notes: No need to use when transmitting strings, since RTS is automatically turned off after the last
character is sent.

Status Codes: 0 = Success
-51 = Invalid port

See Also: Turn On RTS (page T-41)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
T-38 OptoControl Command Reference

T
Turn Off RTS After Next Character
Communication—Serial Action

Function: To inform the communication hardware that the next character sent will be the last in this
message.

Typical Use: To turn off RTS after a complete message is sent.

Details: • For use with ports 0–3 only.
• Must use when the last character of a message is sent as a single character and RTS must

be turned off to receive a response (as when using half-duplex radio with RS-232 or 2-wire
RS-485/422 communication).

• When messages are sent as a string, RTS turns off automatically after the last character in
the string is sent.

Arguments: None.

Standard
Example:

Turn Off RTS After Next Character

OptoScript
Example:

TurnOffRtsAfterNextChar()
TurnOffRtsAfterNextChar();

This is a procedure command; it does not return a value.

Notes: • See “Communication—Serial Commands” in Chapter 10 of the OptoControl User’s Guide.
• Always use this command immediately prior to sending the final character of a message if

you want RTS to turn off.

Dependencies: Must be used prior to a command that sends a single character such as Transmit Character via
Serial Port.
OptoControl Command Reference T-39

Turn On
Digital Point Action

Function: To turn on a digital output point.

Typical Use: To activate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: • Turns on the specified output.
• Discontinues any previously executing pulse, square wave, or TPO command immediately.
• The output will remain on until directed otherwise.

Arguments:

Standard
Example:

Turn On
INLET_VALVE Digital Output

OptoScript
Example:

TurnOn(Output)
TurnOn(INLET_VALVE);

This is a procedure command; it does not return a value.
In OptoScript code, you could also assign the output any non-zero value to turn it on:
INLET_VALVE = -1;

Notes: • To cause an output on one I/O unit to assume the state of an input on another I/O unit, use
Move in standard commands or an assignment in OptoScript code.

• Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

• Use event/reactions to cause an output to track an input on the same digital multifunction
I/O unit.

• Turning on a digital TPO will forcefully turn on the point. The last TPO percent written can
still be read.

• Speed Tip: Use Set Digital I/O Unit from MOMO Masks (with a value of -1) to turn on all
16 outputs at once.

Dependencies: • If the output point or the I/O unit is disabled, no action will occur at the output point (XVAL).
The IVAL, however, will be updated.

See Also: Set Digital I/O Unit from MOMO Masks (page S-17), Start On-Pulse (page S-60), Start Off-Pulse
(page S-59), Turn Off (page T-37)

Argument 1
[Value]
Digital Output
Local Simple Digital Output
T-40 OptoControl Command Reference

T
Turn On RTS
Communication—Serial Action

Function: Raises the RTS output on the specified serial port.

Typical Use: To “warm-up” the radio in half-duplex applications that require flow control.

Details: • Use before Transmit Character via Serial Port or Transmit String via Serial Port to raise the
RTS output in advance. This allows the radio transmitter time to turn on before it gets any
characters to send.

• RTS will automatically turn off right after using Transmit String via Serial Port.

Arguments:

Standard
Example:

Turn On RTS
On Port 3 Integer 32 Literal

Put Status in COMM_STATUS Integer 32 Variable

OptoScript
Example:

TurnOnRts(On Port)
COMM_STATUS = TurnOnRts(3);

This is a function command; it returns one of the status codes listed below.

Notes: Use Delay (mSec) immediately after this command to give the radio time to turn on. Twenty to
100 milliseconds is usually enough time.

Status Codes: 0 = Success
-51 = Invalid port

See Also: Turn Off RTS (page T-38)

Argument 1
On Port
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference T-41

T-42 OptoControl Command Reference

U
 U
Up Timer Target Time Reached?
Miscellaneous Condition

Function: To check if an up timer has reached its target time.

Typical Use: Used to go to the next step in a sequential process.

Details: • Up timers do not stop timing when they reach their target value.
• Use the Set Up Timer Target Value command to set the target time.

Arguments:

Standard
Example:

Up Timer Target Time Reached?
Up Timer OVEN_TIMER Up Timer Variable

OptoScript
Example:

HasUpTimerReachedTargetTime(Up Timer)
if (HasUpTimerReachedTargetTime(OVEN_TIMER)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: See “Miscellaneous Commands” in Chapter 10 of the OptoControl User’s Guide for more
information on using timers.

See Also: Start Timer (page S-62), Continue Timer (page C-45), Pause Timer (page P-1), Stop Timer (page
S-68), Set Up Timer Target Value (page S-46)

Argument 1
Up Timer
Up Timer Variable
OptoControl Command Reference U-1

U-2 OptoControl Command Reference

V
 V
Variable False?
Logical Condition

Function: To determine if the specified variable is zero.

Typical Use: To determine if further processing should take place.

Details: Evaluates True if the specified variable has a value of zero, False otherwise.

Arguments:

Standard
Example:

Is Pressure_Difference Integer 32 Variable
Variable False?

OptoScript
Example:

IsVariableFalse(Variable)
if (IsVariableFalse(Pressure_Difference)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.
A shorter way to achieve the same result in OptoScript code is to use the following:
if (not Pressure_Difference) then

See Also: Variable True? (page V-2)

Argument 1
Is
Float Variable
Integer 32 Variable
Integer 64 Variable
OptoControl Command Reference V-1

Variable True?
Logical Condition

Function: To determine if the specified variable is non-zero.

Typical Use: To determine if further processing should take place.

Details: Evaluates True if the specified variable has a non-zero value, False otherwise.

Arguments:

Standard
Example:

Is Pressure_Difference Integer 32 Variable
Variable True?

OptoScript
Example:

VariableTrue(Variable)
if (IsVariableTrue(Pressure_Difference)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.
A shorter way to achieve the same result in OptoScript code is to use the following:
if (Pressure_Difference) then

See Also: Variable False? (page V-1)

Argument 1
Is
Float Variable
Integer 32 Variable
Integer 64 Variable
V-2 OptoControl Command Reference

V
Verify Checksum on String
String Action

Function: Checks the validity of a message received via serial port.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • Checksum type is eight-bit.
• The Start Value is also known as the “seed.” It is usually zero.
• All characters except the last one are included in the verification.
• The last character must be the checksum.

Arguments:

Standard
Example:

Verify Checksum on String
Start Value 0 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status In CKSUM_STATUS Integer 32 Variable

OptoScript
Example:

VerifyChecksumOnString(Start Value, On String)
CKSUM_STATUS = VerifyChecksumOnString(0, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error.
-45 = Checksum verification failed.
-49 = String was empty.

See Also: Generate Checksum on String (page G-1)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable
OptoControl Command Reference V-3

Verify Forward CCITT on String
String Action

Function: Checks the validity of a message received via serial port.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit forward CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

Verify Forward CCITT on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status In CRC_STATUS Integer 32 Variable

OptoScript
Example:

VerifyForwardCcittOnString(Start Value, On String)
CRC_STATUS = VerifyForwardCcittOnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error.
-45 = CRC verification failed.
-49 = String was empty.

See Also: Verify Reverse CCITT on String (page V-6), Generate Forward CCITT on String (page G-2)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable
V-4 OptoControl Command Reference

V
Verify Forward CRC-16 on String
String Action

Function: Checks the validity of a message received via serial port.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit forward.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

Verify Forward CRC-16 on String
Start Value -1 Integer 32 Literal
On String RESPONSE_VSS String Variable

Put Status in CRC_STATUS Integer 32 Variable

OptoScript
Example:

VerifyForwardCrc16OnString(Start Value, On String)
CRC_STATUS = VerifyForwardCrc16OnString(-1, RESPONSE_VSS);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error.
-45 = CRC verification failed.
-49 = String was empty.

See Also: Verify Reverse CRC-16 on String (page V-7), Generate Forward CRC-16 on String (page G-3)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable
OptoControl Command Reference V-5

Verify Reverse CCITT on String
String Action

Function: Checks the validity of a message received via serial port.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit reverse CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

Verify Reverse CCITT on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status in CRC_STATUS Integer 32 Variable

OptoScript
Example:

VerifyReverseCcittOnString(Start Value, On String)
CRC_STATUS = VerifyReverseCcittOnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error.
-45 = CRC verification failed.
-49 = String was empty.

See Also: Verify Forward CCITT on String (page V-4), Generate Reverse CCITT on String (page G-6)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable
V-6 OptoControl Command Reference

V
Verify Reverse CRC-16 on String
String Action

Function: Checks the validity of a message received via serial port.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

Verify Reverse CRC-16 on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status in CRC_STATUS Integer 32 Variable

OptoScript
Example:

VerifyReverseCrc16OnString(Start Value, On String)
CRC_STATUS = VerifyReverseCrc16OnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error.
-45 = CRC verification failed.
-49 = String was empty.

See Also: Verify Forward CRC-16 on String (page V-5), Generate Reverse CRC-16 on Table (32 bit) (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable
OptoControl Command Reference V-7

V-8 OptoControl Command Reference

W
 W
Within Limits?
Logical Condition

Function: To determine if a value is greater than or equal to a low limit and less than or equal to a high limit.

Typical Use: To check if a temperature is within an acceptable range.

Details: • Determines if Argument 1 is no less than Argument 2 and no greater than Argument 3.
Evaluates True if Argument 1 falls between Argument 2 and Argument 3 or equals either
value. Evaluates False if Argument 1 is less than Argument 2 or greater than Argument 3.
Examples:

Argument 1 Argument 2 Argument 3 Result
0.0 0.0 100.0 True

-32768 0.0 100.0 False
72.1 68.0 72.0 False
-1.0 -45.0 45.0 True

Arguments:

Standard
Example:

This example evaluates True if Current_Temp is greater than or equal to Coldest_Temp and less
than or equal to Hottest_Temp. It evaluates False otherwise.

Is Current_Temp Float Variable
Within Limits?

>= Coldest_Temp Float Variable
And <= Hottest_Temp Float Variable

OptoScript
Example:

IsWithinLimits(Value, Low Limit, High Limit)
if IsWithinLimits(Current_Temp, Coldest_Temp, Hottest_Temp) then

Argument 1
Is
Analog Input
Analog Output
Counter
Down Timer Variable
Float Literal
Float Variable
Frequency
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Off Pulse
Off Totalizer
On Pulse
On Totalizer
Period
TPO
Up Timer Variable

Argument 2
> =
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
And < =
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
OptoControl Command Reference W-1

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the OptoControl User’s Guide for more information.

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide.
• Use to replace two conditions: Less Than or Equal? and Greater Than or Equal?

See Also: Less Than or Equal? (page L-2) Greater Than or Equal? (page G-107)
W-2 OptoControl Command Reference

W
Write Byte to PC Memory (ISA only)
Controller Action

Function: Writes one byte to memory on another card in the PC.

Typical Use: To send eight-bit data to other cards plugged into the PC bus via the assigned memory address
for the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command is
executed immediately.

• The value sent is treated as an unsigned short.

Arguments:

Standard
Example:

Write Byte to PC Memory (ISA only)
From 0x22 Integer 32 Literal

To Address 0xD0000 Integer 32 Literal
Put Status in Write_Status Integer 32 Variable

OptoScript
Example:

WriteByteToPcMemory(Byte, To Address)
Write_Status = WriteByteToPcMemory(0x22, 0xD0000);

This is a function command; it returns one of the status codes listed below.

Notes: • The numeric mode was changed to hex before entering the address of the port in the above
example. (D0000 hex = 851968.)

• Memory on the PC motherboard cannot be accessed.
• The status returned is the error code. If the DMA channel in the PC wasn’t configured

properly, a bus error may be posted to the error queue, the chart will stop, and the PC
may hang.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC
must be configured for use by the ISA controller. Likewise, the ISA controller must be configured
to use the chosen DMA channel. See the ISA controller manual for details.

Status Codes: 0 = No error.
-77 = This is not an ISA controller.
-78 = Illegal memory address.

Queue Errors: 38 = Bus error—DMA not configured.

See Also: Write Word to PC Memory (ISA only) (page W-12), Write Byte to PC Port (ISA only) (page W-4)

Argument 1
From
Integer 32 Literal
Integer 32 Variable

Argument 2
To Address
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference W-3

Write Byte to PC Port (ISA only)
Controller Action

Function: Writes one byte to a port on another card in the PC.

Typical Use: To send eight-bit data to other cards plugged into the PC bus via the assigned port address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command
executes immediately.

• The value sent is treated as an unsigned short.

Arguments:

Standard
Example:

Write Byte to PC Port (ISA only)
From 22 Integer 32 Literal

To Address 851968 Integer 32 Literal
Put Status in Write_Status Integer 32 Variable

OptoScript
Example:

WriteByteToPcPort(Byte, To Address)
Write_Status = WriteByteToPcPort(22, 851968);

This is a function command; it returns one of the status codes listed below.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• PC port addresses range from 000 to 3FF hex and must be entered in decimal.
• The status returned is the error code. If the DMA channel in the PC wasn’t configured

properly, a bus error may be posted to the error queue, the chart will stop, and the PC
may hang.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to
use the chosen DMA channel. See the ISA controller manual for details.

Status Codes: 0 = No error.
-77 = This is not an ISA controller.
-78 = Illegal memory address.

Queue Errors: 38 = Bus error—DMA not configured.

See Also: Write Word to PC Port (ISA only) (page W-13), Write Byte to PC Memory (ISA only) (page W-3)

Argument 1
From
Integer 32 Literal
Integer 32 Variable

Argument 2
To Address
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
W-4 OptoControl Command Reference

W
Write I/O Unit Configuration to EEPROM
I/O Unit Action

Function: Stores all channel parameters, watchdog settings, PID parameters, and event/reactions to
EEPROM at the I/O unit.

Typical Use: Allows the I/O unit to be fully functional at powerup. No further configuration by a controller
is needed.

Details: This command takes about one second to complete. During this time, no other communication to
the I/O unit port is permitted. It should only be used where it will execute just once each time the
program runs—typically in the Powerup chart after all special configuration commands are sent
to the I/O unit.

Arguments:

Standard
Example:

Write I/O Unit Configuration to EEPROM
On I/O Unit FURNACE_PID G4 Analog Multifunction I/O Unit

OptoScript
Example:

WriteIoUnitConfigToEeprom(On I/O Unit)
WriteIoUnitConfigToEeprom(FURNACE_PID);

This is a procedure command; it does not return a value.

Argument 1
On I/O Unit
B100 Digital Multifunction I/O Unit
B200 Analog Multifunction I/O Unit
B3000 SNAP Analog
B3000 SNAP Digital
B3000 SNAP Mixed I/O
G4 Analog Multifunction I/O Unit
G4 Digital Local Simple I/O Unit
G4 Digital Multifunction I/O Unit
G4 Digital Remote Simple I/O Unit
HRD Analog Current Output I/O Unit
HRD Analog RTD Input I/O Unit
HRD Analog Thermocouple/mV Input I/O Unit
HRD Analog Voltage Output I/O Unit
HRD Analog Voltage/Current Input I/O Unit
SNAP Digital 64
SNAP Remote Simple Digital
OptoControl Command Reference W-5

Write Numeric Table to I/O Memory Map
Communication—I/O Action

Function: Write a range of values from an integer 32 or float table into an Opto 22 SNAP Ethernet I/O
memory map address.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: • This command works with SNAP Ethernet I/O units that have been configured in
OptoControl. The controller must be connected to the I/O unit for this command to work.

• Argument 1, Length, is the number of table elements and also the length of data in the
memory map in quads (groups of four bytes).

• Argument 4, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

Arguments:

Standard
Example:

Write Numeric Table to I/O Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYINTTABLE Integer 32 Table

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

WriteNumTableToIoMemMap(Length, Start Index, I/O Unit, Mem Address, Table)
STATUS = WriteNumTableToIoMemMap(0x10, 0x5, MYIOUNIT, OxFFFFFFFF,

MYINTTABLE);

This is a function command; it returns one of the status codes listed below.
In OptoScript, you can use hex in one argument while not using it in others, for example:
STATUS = WriteNumTableToIoMemMap(16, 5, MYIOUNIT, OxFFFFFFFF, MYINTTABLE);

Notes: • Use hex integer display for easy entering of memory map addresses. When you display
integers in hex, note that the length of data and start index arguments are also in hex.

• The controller does not convert the table type to match the area of the memory map being
written to. The controller has no knowledge of which memory map areas are integers and
which are floats. You must write the correct type of data to the specified memory map
address.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 4
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 5
From
Float Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable
W-6 OptoControl Command Reference

W
For example, unpredictable results would occur if you try to write an integer 32 table to
the analog bank area of the memory map. A float table should be used instead. See the
SNAP Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-32 = Bad table index value—index was negative or greater than the table size.
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read Numeric Variable from I/O Memory Map (page R-8), Read Numeric Table from I/O Memory
Map (page R-6), Write Numeric Variable to I/O Memory Map (page W-8)
OptoControl Command Reference W-7

Write Numeric Variable to I/O Memory Map
Communication—I/O Action

Function: Write a value from an integer 32 or float variable into an Opto 22 SNAP Ethernet I/O memory map
address.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: This command works with SNAP Ethernet I/O units that have been configured in OptoControl.
The controller must be connected to the I/O unit for this command to work.

Arguments:

Standard
Example:

Write Numeric Variable to I/O Memory Map
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYINTVAR Integer 32 Variable

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

WriteNumVarToIoMemMap(I/O Unit, Mem Address, Variable)
STATUS = WriteNumVarToIoMemMap(MYIOUNIT, OxFFFFFFFF, MYINTVAR);

This is a function command; it returns one of the status codes listed below.

Notes: • Use hex integer display in OptoControl for easy entering of memory map addresses. If you
copy a memory map address from the SNAP Ethernet brain’s built-in Web pages, be sure you
delete any spaces within the address.

• The controller does not convert the variable type to match the area of memory map being
written to. The controller has no knowledge of which memory map areas are integers and
which are floats. You must write the correct type of data to the specified memory map
address.

For example, if you are using the SNAP PID module (SNAP-PID-V), use an integer to write the
setpoint, which is in counts, and use a float to write the analog output.

As another example, unpredictable results would occur if you try to write an integer 32
variable to the analog point area of the memory map. Use a float variable instead.

See the SNAP Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465)
to determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read Numeric Variable from I/O Memory Map (page R-8), Read Numeric Table from I/O Memory
Map (page R-6), Write Numeric Table to I/O Memory Map (page W-6)

Argument 1
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 2
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 3
From
Float Variable
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable
W-8 OptoControl Command Reference

W
Write String Table to I/O Memory Map
Communication—I/O Action

Function: Write a range of values from a string table into the Opto 22 SNAP Ethernet I/O memory map.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: • This command works with SNAP Ethernet I/O units that have been configured in
OptoControl. The controller must be connected to the I/O unit for this command to work.

• Argument 1, Length, is the number of bytes you want to send, up to a maximum of 255.
• Argument 4, Mem address, includes only the last eight digits of the memory map address

(the lower 32 bits).

Arguments:

Standard
Example:

Write String Table to I/O Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYSTRINGTABLE String Table

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

WriteStrTableToIoMemMap(Length, Start Index, I/O Unit, Mem Address, Table)
STATUS = WriteStrTableToIoMemMap(0x10, 0x5, MYIOUNIT, OxFFFFFFFF,

MYSTRINGTABLE);

This is a function command; it returns one of the status codes listed below.
In OptoScript, you can use hex in one argument while not using it in others, for example:
STATUS = WriteStrTableToIoMemMap(16, 5, MYIOUNIT, OxFFFFFFFF,

MYSTRINGTABLE);

Notes: • Use hex integer display for easy entering of memory map addresses. When you display
integers in hex, note that the length of data and start index arguments are also in hex.

• The controller does not convert the table type to match the area of the memory map being
written to. The controller has no knowledge of which memory map areas are strings and
which are other formats. You must write the correct type of data to the specified memory
map address.

For example, unpredictable results would occur if you try to write a string table to the analog
bank area of the memory map. A float table should be used instead. See the SNAP

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 4
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 5
From
String Table

Argument 6
Put Status in
Integer 32 Variable
OptoControl Command Reference W-9

Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to determine
the data types for specific areas of the memory map.

Status Codes: 0 = Success
3 = Bad length error. Length cannot be more than 255 bytes.
-32 = Bad table index value—index was negative or greater than the table size.
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read String Table from I/O Memory Map (page R-9), Read String Variable from I/O Memory Map
(page R-11), Write String Variable to I/O Memory Map (page W-11)
W-10 OptoControl Command Reference

W
Write String Variable to I/O Memory Map
Communication—I/O Action

Function: Write a value from a string variable into an Opto 22 SNAP Ethernet I/O memory map address.

Typical Use: To access areas of the memory map not directly supported by OptoControl.

Details: This command works with SNAP Ethernet I/O units that have been configured in OptoControl.
The controller must be connected to the I/O unit for this command to work.

Arguments:

Standard
Example:

Write String Variable to I/O Memory Map
I/O Unit MYIOUNIT B3000 SNAP Mixed I/O

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYSTRINGVAR String Variable

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

WriteStrVarToIoMemMap(I/O Unit, Mem Address, Variable)
STATUS = WriteStrVarToIoMemMap(MYIOUNIT, OxFFFFFFFF, MYSTRINGVAR);

This is a function command; it returns a status code as listed below.

Notes: • Use hex integer display for easy entering of memory map addresses.
• The controller does not convert the variable type to match the area of memory map being

written to. The controller has no knowledge of which memory map areas are strings and
which are other formats. You must write the correct type of data to the specified memory
map address.

For example, unpredictable results would occur if you try to write a string variable to the
analog point area of the memory map. A float variable should be used instead. See the
SNAP Ethernet-Based I/O Units Programming & Protocols Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-47 = Received a NAK from the I/O unit.
-74 = Session not open.

See Also: Read String Table from I/O Memory Map (page R-9), Read String Variable from I/O Memory Map
(page R-11), Write String Table to I/O Memory Map (page W-9)

Argument 1
I/O Unit
B3000 SNAP Mixed I/O
SNAP Digital 64

Argument 2
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 3
From
String Variable

Argument 4
Put Status in
Integer 32 Variable
OptoControl Command Reference W-11

Write Word to PC Memory (ISA only)
Controller Action

Function: Writes two bytes to memory on another card in the PC.

Typical Use: To send 16-bit data to other cards plugged into the PC bus via the assigned memory address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command is
executed immediately.

• The value sent is treated as an unsigned word.

Arguments:

Standard
Example:

Write Word to PC Memory (ISA only)
From 65314 Integer 32 Literal

To Address 851968 Integer 32 Literal
Put Status in WRITE_STATUS Integer 32 Variable

OptoScript
Example:

WriteWordToPcMemory(Word, To Address)
WRITE_STATUS = WriteWordToPcMemory(65314, 851968);

This is a function command; it returns one of the status codes listed below.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• Memory on the PC motherboard cannot be accessed.
• The status returned is the error code. If the DMA channel in the PC wasn’t configured

properly, a bus error may be posted to the error queue, the chart will stop, and the PC
may hang.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to use
the chosen DMA channel. See the ISA controller manual for details.

Status Codes: 0 = No error.
-77 = This is not an ISA controller.
-78 = Illegal memory address.

Queue Errors: 38 = Bus error—DMA not configured.

See Also: Write Word to PC Port (ISA only) (page W-13), Write Byte to PC Memory (ISA only) (page W-3)

Argument 1
From
Integer 32 Literal
Integer 32 Variable

Argument 2
To Address
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
W-12 OptoControl Command Reference

W
Write Word to PC Port (ISA only)
Controller Action

Function: Writes two bytes to a port on another card in the PC.

Typical Use: To send 16-bit data to other cards plugged into the PC bus via the assigned port address for
the card.

Details: • When the ISA controller is used in a typical PC, this command must first get permission from
the DMA controller in the PC to talk over the bus. This is a relatively slow process.

• When the ISA controller is used in a passive backplane as the bus master, this command is
executed immediately.

• The value sent is treated as an unsigned word.

Arguments:

Standard
Example:

Write Word to PC Port (ISA only)
From 65314 Integer 32 Literal

To Address 744 Integer 32 Literal
Put Status in WRITE_STATUS Integer 32 Variable

OptoScript
Example:

WriteWordToPcPort(Word, To Address)
WRITE_STATUS = WriteWordToPcPort(65314, 744);

This is a function command; it returns one of the status codes listed below.

Notes: • Utilities Set DMA0, Set DMA5, Set DMA6, and Set DMA7 can be used to set up
DMA channels.

• PC port addresses range from 000 to 3FF hex.
• The status returned is the error code. If the DMA channel in the PC wasn’t configured

properly, a bus error may be posted to the error queue, the chart will stop, and the PC
may hang.

Dependencies: When the ISA controller is used in a typical PC, one of the unused DMA channels in the PC must
be configured for use by the ISA controller. Likewise, the ISA controller must be configured to use
the chosen DMA channel. See the ISA controller manual for details.

Status Codes: 0 = No error.
-77 = This is not an ISA controller.
-78 = Illegal memory address.

Queue Errors: 38 = Bus error—DMA not configured.

See Also: Write Word to PC Memory (ISA only) (page W-12), Write Byte to PC Port (ISA only) (page W-4)

Argument 1
From
Integer 32 Literal
Integer 32 Variable

Argument 2
To Address
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Status in
Float Variable
Integer 32 Variable
OptoControl Command Reference W-13

W-14 OptoControl Command Reference

X
 X
XOR
Logical Action

Function: To perform a logical EXCLUSIVE OR on any two allowable values.

Typical Use: To toggle a logic state such as a digital output from True to False or False to True.

Details: • Performs a logical EXCLUSIVE OR on Argument 1 and Argument 2 and puts result in
Argument 3. The result is -1 (True) if either Argument 1 or Argument 2 value is non-zero (but
not both); otherwise the result is 0 (False). Examples:

Argument 1 Argument 2 Argument 3
0 0 0
0 1 -1
1 0 -1
1 1 0
0 -1 -1
-1 0 -1
1 -1 0

22 0 -1
22 22 0

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

XOR
SUPPLY_FAN Local Simple Digital Output

With -1 Integer 32 Literal
Put Result in SUPPLY_FAN Local Simple Digital Output

In this example, if SUPPLY FAN is on it will turn off, and vice versa.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the xor operator.
Supply_Fan = Supply_Fan xor -1;

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the xor operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable
Local Simple Digital Output
OptoControl Command Reference X-1

• It is advisable to use only integers or digital channels with this command.
• To manipulate individual bits or toggle a value between zero and any other value,

use Bit XOR.

See Also: Bit XOR (page B-18) Not Equal? (page N-4)
X-2 OptoControl Command Reference

X
XOR?
Logical Condition

Function: To determine if two values are at opposite True/False states.

Typical Use: To determine if a logic value has changed state.

Details: • Determines if Argument 1 and Argument 2 have different True/False states. Examples:
Argument 1 Argument 2 Result

0 0 False
0 1 True
1 0 True
1 1 False
0 -1 True
-1 0 True
-1 -1 False
22 0 True
22 -4 False

• Evaluates True if one item is True (non-zero, on) and the other is False (zero, off). Evaluates
False if both items are True or if both items are False.

• Functionally equivalent to the Not Equal? condition when using allowable values.

Arguments:

Standard
Example:

Is Limit_Switch1_Prev Integer 32 Variable
XOR?

Is Limit_Switch1 Local Simple Digital Input

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the xor operator.
if (Limit_Switch_Prev xor Limit_Switch) then

Notes: • See “Logical Commands” in Chapter 10 of the OptoControl User’s Guide. The example
shown is only one of many ways to use the xor operator. For more information on logical
operators in OptoScript code, see Chapter 11 of the OptoControl User’s Guide.

• It is advisable to use only integers or digital channels with this command.
• To test two values for equivalent True/False states, use the False exit.

See Also: NOT (page N-2), AND? (page A-7), OR? (page O-8)

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output

Argument 2
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Local Simple Digital Input
Local Simple Digital Output
OptoControl Command Reference X-3

X-4 OptoControl Command Reference

Index
A
Absolute Value, 1
Accept Session on TCP Port, 2
Add, 3
Add User Error to Queue, 4
Add User I/O Unit Error to Queue, 5
analog point

Calculate & Set Analog Gain, 1
Calculate & Set Analog Offset, 3
Get & Clear Analog Filtered Value, 10
Get & Clear Analog Maximum Value, 11
Get & Clear Analog Minimum Value, 12
Get & Clear Analog Totalizer Value, 13
Get Analog Filtered Value, 30
Get Analog Lower Clamp, 31
Get Analog Maximum Value, 32
Get Analog Minimum Value, 33
Get Analog Square Root Filtered Value, 34
Get Analog Square Root Value, 35
Get Analog Totalizer Value, 36
Get Analog Upper Clamp, 37
Ramp Analog Output, 3
Set Analog Filter Weight, 2
Set Analog Gain, 4
Set Analog Offset, 5
Set Analog Totalizer Rate, 6
Set Analog TPO Period, 8

AND, 6
AND?, 7
Append Character to String, 8
Append String to String, 9
Arccosine, 13
ARCNET

Get ARCNET Destination Address on Port,
39

Get ARCNET Host Destination Address, 38
Get ARCNET Peer Destination Address, 40
Receive N Characters via ARCNET, 15
Receive String via ARCNET, 19
Receive Table via ARCNET, 23
Set ARCNET Destination Address, 9
Set ARCNET Destination Address on Port,

10
Set ARCNET Mode Raw, 11
Set ARCNET Mode Standard, 12
Set ARCNET Peer Destination Address, 13
Transmit String via ARCNET, 19
Transmit Table via ARCNET, 23
Transmit/Receive String via ARCNET, 31

ARCNET Connected?, 10
ARCNET Message Address Equal to?, 11
ARCNET Node Present?, 12
Arcsine, 14
Arctangent, 15

B
Bit AND, 1
Bit AND?, 2
Bit Clear, 4
Bit NOT, 5
Bit NOT?, 6
Bit Off?, 8
Bit On?, 9
Bit OR, 10
Bit OR?, 11
Bit Rotate, 12
Bit Set, 14
Bit Shift, 15
Bit Test, 17
OptoControl Command Reference Index-1

Bit XOR, 18
Bit XOR?, 19

C
Calculate & Set Analog Gain, 1
Calculate & Set Analog Offset, 3
Calculate & Store Strategy CRC, 4
Calculate Strategy CRC, 5
Call Chart, 6
Calling Chart Running?, 7
Calling Chart Stopped?, 8
Calling Chart Suspended?, 9
Caused a Chart Error?, 10
Caused an I/O Unit Error?, 11
Characters Waiting at Serial Port?, 12
chart

Call Chart, 6
Calling Chart Running?, 7
Calling Chart Stopped?, 8
Calling Chart Suspended?, 9
Chart Running?, 13
Chart Stopped?, 14
Chart Suspended?, 15
Continue Calling Chart, 43
Continue Chart, 44
Get Chart Status, 41
Get Priority, 93
Get Priority of Host Task, 94
Host Task Received a Message?, 1
Set Priority, 39
Set Priority of Host Task, 40
Start Chart, 53
Start Default Host Task, 56
Start Host Task (ASCII), 57
Start Host Task (Binary), 58
Stop Chart, 63
Stop Chart on Error, 64
Stop Host Task, 66
Suspend Chart, 72
Suspend Chart on Error, 73
Suspend Default Host Task, 74

Chart Running?, 13
Chart Stopped?, 14
Chart Suspended?, 15
Clamp Float Table Element, 16
Clamp Float Variable, 17

Clamp Integer 32 Table Element, 18
Clamp Integer 32 Variable, 19
Clamp PID Output, 20
Clamp PID Setpoint, 21
Clear All Errors, 22
Clear All Event Latches, 23
Clear All Latches, 24
Clear Counter, 25
Clear Event Latch, 26
Clear I/O Unit Interrupt, 27
Clear Off-Latch, 28
Clear On-Latch, 29
Clear PC Byte Swap Mode (ISA only), 30
Clear Pointer, 30
Clear Pointer Table Element, 31
Clear Quadrature Counter, 32
Clear Receive Buffer, 33
Close Ethernet Session, 34
Comment (Block), 35
Comment (Single Line), 36
communication

I/O
Convert Mistic I/O Hex to Float, 49
Convert Number to Mistic I/O Hex, 52
Read Numeric Table from I/O Memory

Map, 6
Read Numeric Variable from I/O Memory

Map, 8
Read String Table from I/O Memory

Map, 9
Read String Variable from I/O Memory

Map, 11
Transmit/Receive Mistic I/O Hex String

with Checksum, 27
Transmit/Receive Mistic I/O Hex String

with CRC, 28
Transmit/Receive OPTOMUX String, 29
Write Numeric Table to I/O Memory

Map, 6
Write Numeric Variable to I/O Memory

Map, 8
Write String Table to I/O Memory Map, 9
Write String Variable to I/O Memory

Map, 11
network

Accept Session on TCP Port, 2
ARCNET Connected?, 10
Index-2 OptoControl Command Reference

ARCNET Message Address Equal to?, 11
ARCNET Node Present?, 12
Close Ethernet Session, 34
Ethernet Session Open?, 21
Get ARCNET Destination Address on

Port, 39
Get ARCNET Host Destination Address,

38
Get ARCNET Peer Destination Address,

40
Get Ethernet Session Name, 54
Get Number of Characters Waiting on

Ethernet Session, 71
Open Ethernet Session, 5
Receive N Characters via ARCNET, 15
Receive N Characters via Ethernet, 16
Receive String via ARCNET, 19
Receive String via Ethernet, 20
Receive Table via ARCNET, 23
Receive Table via Ethernet, 24
Set ARCNET Destination Address, 9
Set ARCNET Destination Address on

Port, 10
Set ARCNET Mode Raw, 11
Set ARCNET Mode Standard, 12
Set ARCNET Peer Destination Address,

13
Transmit String via ARCNET, 19
Transmit String via Ethernet, 20
Transmit Table via ARCNET, 23
Transmit Table via Ethernet, 24
Transmit/Receive String via ARCNET, 31
Transmit/Receive String via Ethernet, 32

serial
Characters Waiting at Serial Port?, 12
Clear Receive Buffer, 33
Configure Port, 41
Configure Port Timeout Delay, 42
CTS Off?, 64
CTS On?, 65
Get Active Interrupt Mask, 28
Get Number of Characters Waiting, 70
Interrupt on Port0?, 4
Interrupt on Port1?, 4
Interrupt on Port2?, 5
Interrupt on Port3?, 6
Interrupt on Port6?, 6

Receive Character via Serial Port, 14
Receive N Characters via Serial Port, 18
Receive String via Serial Port, 21
Receive Table via Serial Port, 25
Set End-of-Message Terminator, 20
Transmit Character via Serial Port, 16
Transmit NewLine via Serial Port, 17
Transmit String via Serial Port, 22
Transmit Table via Serial Port, 25
Transmit/Receive String via Serial Port,

34
Turn Off RTS, 38
Turn Off RTS After Next Character, 39
Turn On RTS, 41

Communication to All I/O Points Enabled?, 37
Communication to All I/O Units Enabled?, 38
Complement, 39
Configure I/O Unit, 40
Configure Port, 41
Configure Port Timeout Delay, 42
Continue Calling Chart, 43
Continue Chart, 44
Continue Timer, 45
controller

Add User Error to Queue, 4
Add User I/O Unit Error to Queue, 5
Calculate & Store Strategy CRC, 4
Calculate Strategy CRC, 5
Caused a Chart Error?, 10
Caused an I/O Unit Error?, 11
Clear All Errors, 22
Disable I/O Unit Causing Current Error, 13
Enable I/O Unit Causing Current Error, 9
Error on I/O Unit?, 20
Error?, 19
Get Address of I/O Unit Causing Current Er-

ror, 29
Get Controller Address, 42
Get Controller Type, 43
Get Default Host Port, 47
Get Error Code of Current Error, 52
Get Error Count, 53
Get Firmware Version, 56
Get ID of Block Causing Current Error, 60
Get Name of Chart Causing Current Error,

67
OptoControl Command Reference Index-3

Get Name of I/O Unit Causing Current Error,
68

Get Port of I/O Unit Causing Current Error,
92

Get RTU-DAS-I/O Temperature, 96
Get RTU-DAS-I/O Voltage, 97
ISA only

Clear PC Byte Swap Mode (ISA only), 30
Read Byte from PC Memory (ISA only), 4
Read Byte from PC Port (ISA only), 5
Read Word from PC Memory (ISA only),

12
Read Word from PC Port (ISA only), 13
Set PC Byte Swap Mode (ISA only), 28
Write Byte to PC Memory (ISA only), 3
Write Byte to PC Port (ISA only), 4
Write Word to PC Memory (ISA only), 12
Write Word to PC Port (ISA only), 13

Low RAM Backup Battery?, 6
Remove Current Error and Point to Next Er-

ror, 26
Reset Controller, 27
Retrieve Strategy CRC, 28

Convert Float to String, 45
Convert Hex String to Number, 47
Convert IEEE Hex String to Number, 48
Convert Mistic I/O Hex to Float, 49
Convert Number to Formatted Hex String, 50
Convert Number to Hex String, 51
Convert Number to Mistic I/O Hex, 52
Convert Number to String, 53
Convert Number to String Field, 54
Convert String to Float, 55
Convert String to Integer 32, 56
Convert String to Integer 64, 57
Convert String to Lower Case, 59
Convert String to Upper Case, 59
Copy Date to String (DD/MM/YY), 60
Copy Date to String (MM/DD/YY), 61
Copy Time to String, 62
copy, see Move, 5
Cosine, 63
CTS Off?, 64
CTS On?, 65

D
Decrement Variable, 1
Delay (mSec), 2
Delay (Sec), 3
digital point

Clear All Latches, 24
Clear Counter, 25
Clear Off-Latch, 28
Clear On-Latch, 29
Clear Quadrature Counter, 32
Generate N Pulses, 4
Get & Clear Counter, 14
Get & Clear Off-Latch, 19
Get & Clear On-Latch, 20
Get & Clear Quadrature Counter, 21
Get & Restart Off-Pulse Measurement, 23
Get & Restart Off-Time Totalizer, 24
Get & Restart On-Pulse Measurement, 25
Get & Restart On-Time Totalizer, 26
Get & Restart Period, 27
Get Counter, 44
Get Frequency, 57
Get Off-Latch, 72
Get Off-Pulse Measurement, 73
Get Off-Pulse Measurement Complete Sta-

tus, 74
Get Off-Time Totalizer, 75
Get On-Latch, 76
Get On-Pulse Measurement, 77
Get On-Pulse Measurement Complete Sta-

tus, 78
Get On-Time Totalizer, 79
Get Period, 80
Get Period Measurement Complete Status,

81
Get Quadrature Counter, 95
Off?, 1
Off-Latch Set?, 2
On?, 3
On-Latch Set?, 4
Set TPO Percent, 44
Set TPO Period, 45
Start Continuous Square Wave, 54
Start Counter, 55
Start Off-Pulse, 59
Start On-Pulse, 60
Start Quadrature Counter, 61
Index-4 OptoControl Command Reference

Stop Counter, 65
Stop Quadrature Counter, 67
Turn Off, 37
Turn On, 40

Disable Communication to All I/O Points, 4
Disable Communication to All I/O Units, 5
Disable Communication to Analog Point, 6
Disable Communication to Digital Point, 7
Disable Communication to Event/Reaction, 8
Disable Communication to I/O Unit, 9
Disable Communication to PID Loop, 11
Disable Event/Reaction Group, 12
Disable I/O Unit Causing Current Error, 13
Disable Interrupt on Event, 14
Disable PID Output, 15
Disable PID Output Tracking in Manual Mode,

16
Disable PID Setpoint Tracking in Manual

Mode, 17
Disable Scanning for All Events, 18
Disable Scanning for Event, 19
Disable Scanning of Event/Reaction Group, 20
Divide, 21
Down Timer Expired?, 22

E
Enable Communication to All I/O Points, 1
Enable Communication to All I/O Units, 2
Enable Communication to Analog Point, 3
Enable Communication to Digital Point, 4
Enable Communication to Event/Reaction, 5
Enable Communication to I/O Unit, 6
Enable Communication to PID Loop, 7
Enable Event/Reaction Group, 8
Enable I/O Unit Causing Current Error, 9
Enable Interrupt on Event, 10
Enable PID Output, 11
Enable PID Output Tracking in Manual Mode,

12
Enable PID Setpoint Tracking in Manual

Mode, 13
Enable Scanning for All Events, 14
Enable Scanning for Event, 15
Enable Scanning of Event/Reaction Group, 16
Equal to Table Element?, 18
Equal?, 16

Error on I/O Unit?, 20
Error?, 19
Ethernet

Accept Session on TCP Port, 2
Close Ethernet Session, 34
Get Ethernet Session Name, 54
Get Number of Characters Waiting on

Ethernet Session, 71
Open Ethernet Session, 5
Receive N Characters via Ethernet, 16
Receive String via Ethernet, 20
Receive Table via Ethernet, 24
Transmit String via Ethernet, 20
Transmit Table via Ethernet, 24
Transmit/Receive String via Ethernet, 32

Ethernet Session Open?, 21
Event Occurred?, 22
Event Occurring?, 23
Event Scanning Disabled?, 26
Event Scanning Enabled?, 27
event/reaction

Clear All Event Latches, 23
Clear Event Latch, 26
Clear I/O Unit Interrupt, 27
Disable Interrupt on Event, 14
Disable Scanning for All Events, 18
Disable Scanning for Event, 19
Disable Scanning of Event/Reaction Group,

20
Enable Interrupt on Event, 10
Enable Scanning for All Events, 14
Enable Scanning for Event, 15
Enable Scanning of Event/Reaction Group,

16
Event Occurred?, 22
Event Occurring?, 23
Event Scanning Disabled?, 26
Event Scanning Enabled?, 27
Generating Interrupt?, 9
Get & Clear Event Latches, 18
Get Event Latches, 55
Interrupt Disabled for Event?, 2
Interrupt Enabled for Event?, 3
Read Event/Reaction Hold Buffer, 6

Event/Reaction Communication Enabled?, 24
Event/Reaction Group Communication En-

abled?, 25
OptoControl Command Reference Index-5

F
Find Character in String, 1
Find Substring in String, 2
Float Valid?, 3

G
Generate Checksum on String, 1
Generate Forward CCITT on String, 2
Generate Forward CRC-16 on String, 3
Generate N Pulses, 4
Generate Random Number, 5
Generate Reverse CCITT on String, 6
Generate Reverse CRC-16 on String, 7
Generate Reverse CRC-16 on Table, 8
Generating Interrupt?, 9
Get & Clear Analog Filtered Value, 10
Get & Clear Analog Maximum Value, 11
Get & Clear Analog Minimum Value, 12
Get & Clear Analog Totalizer Value, 13
Get & Clear Counter, 14
Get & Clear Digital I/O Unit Latches, 15
Get & Clear Digital-64 I/O Unit Latches, 16
Get & Clear Event Latches, 18
Get & Clear Off-Latch, 19
Get & Clear On-Latch, 20
Get & Clear Quadrature Counter, 21
Get & Clear Simple-64 I/O Unit Latches, 22
Get & Restart Off-Pulse Measurement, 23
Get & Restart Off-Time Totalizer, 24
Get & Restart On-Pulse Measurement, 25
Get & Restart On-Time Totalizer, 26
Get & Restart Period, 27
Get Active Interrupt Mask, 28
Get Address of I/O Unit Causing Current Error,

29
Get Analog Filtered Value, 30
Get Analog Lower Clamp, 31
Get Analog Maximum Value, 32
Get Analog Minimum Value, 33
Get Analog Square Root Filtered Value, 34
Get Analog Square Root Value, 35
Get Analog Totalizer Value, 36
Get Analog Upper Clamp, 37
Get ARCNET Destination Address on Port, 39
Get ARCNET Host Destination Address, 38
Get ARCNET Peer Destination Address, 40

Get Chart Status, 41
Get Controller Address, 42
Get Controller Type, 43
Get Counter, 44
Get Day, 45
Get Day of Week, 46
Get Default Host Port, 47
Get Digital I/O Unit as Binary Value, 48
Get Digital I/O Unit Latches, 50
Get Digital-64 I/O Unit as Binary Value, 49
Get Digital-64 I/O Unit Latches, 51
Get Error Code of Current Error, 52
Get Error Count, 53
Get Ethernet Session Name, 54
Get Event Latches, 55
Get Firmware Version, 56
Get Frequency, 57
Get High Bits of Integer 64, 58
Get Hours, 59
Get ID of Block Causing Current Error, 60
Get Julian Day, 61
Get Length of Table, 62
Get Low Bits of Integer 64, 63
Get Minutes, 64
Get Mixed I/O Unit as Binary Value, 65
Get Month, 66
Get Name of Chart Causing Current Error, 67
Get Name of I/O Unit Causing Current Error,

68
Get Nth Character, 69
Get Number of Characters Waiting, 70
Get Number of Characters Waiting on Ether-

net Session, 71
Get Off-Latch, 72
Get Off-Pulse Measurement, 73
Get Off-Pulse Measurement Complete Status,

74
Get Off-Time Totalizer, 75
Get On-Latch, 76
Get On-Pulse Measurement, 77
Get On-Pulse Measurement Complete Status,

78
Get On-Time Totalizer, 79
Get Period, 80
Get Period Measurement Complete Status, 81
Get PID Control Word, 82
Get PID D Term, 83
Index-6 OptoControl Command Reference

Get PID I Term, 84
Get PID Input, 85
Get PID Mode, 86
Get PID Output, 87
Get PID Output Rate of Change, 88
Get PID P Term, 89
Get PID Scan Rate, 90
Get PID Setpoint, 91
Get Port of I/O Unit Causing Current Error, 92
Get Priority, 93
Get Priority of Host Task, 94
Get Quadrature Counter, 95
Get RTU-DAS-I/O Temperature, 96
Get RTU-DAS-I/O Voltage, 97
Get Seconds, 98
Get Seconds Since Midnight, 99
Get Simple-64 I/O Unit as Binary Value, 100
Get Simple-64 I/O Unit Latches, 101
Get String Length, 102
Get Substring, 103
Get System Time, 104
Get Year, 105
Greater Than or Equal to Table Element?, 108
Greater Than or Equal?, 107
Greater Than Table Element?, 109
Greater?, 106

H
help

available documents, xv
host port, 47
host task

Get Priority of Host Task, 94
Set Priority of Host Task, 40
Start Default Host Task, 56
Start Host Task (ASCII), 57
Start Host Task (Binary), 58
Stop Host Task, 66
Suspend Default Host Task, 74

Host Task Received a Message?, 1
Hyperbolic Cosine, 2
Hyperbolic Sine, 3
Hyperbolic Tangent, 4

I
I/O Point Communication Enabled?, 7
I/O unit

Configure I/O Unit, 40
Get & Clear Digital I/O Unit Latches, 15
Get & Clear Digital-64 I/O Unit Latches, 16
Get & Clear Simple-64 I/O Unit Latches, 22
Get Digital I/O Unit as Binary Value, 48
Get Digital I/O Unit Latches, 50
Get Digital-64 I/O Unit as Binary Value, 49
Get Digital-64 I/O Unit Latches, 51
Get Mixed I/O Unit as Binary Value, 65
Get Simple-64 I/O Unit as Binary Value, 100
Get Simple-64 I/O Unit Latches, 101
I/O Unit Ready?, 9
Move Analog I/O Unit to Table, 7
Move Digital I/O Unit to Table, 8
Move Digital I/O Unit to Table Element, 9
Move Mixed I/O Unit to Table, 13
Move Simple-64 I/O Unit to Table, 14
Move Table Element to Digital I/O Unit, 16
Move Table to Analog I/O Unit, 17
Move Table to Digital I/O Unit, 19
Move Table to Mixed I/O Unit, 20
Move Table to Simple-64 I/O Unit, 21
Set Digital I/O Unit from MOMO Masks, 17
Set Digital-64 I/O Unit from MOMO Masks,

18
Set I/O Unit Configured Flag, 22
Set Mixed I/O Unit from MOMO Masks, 24
Set Number of Retries to all I/O Units, 27
Set Simple-64 I/O Unit from MOMO Masks,

42
Write I/O Unit Configuration to EEPROM, 5

I/O Unit Communication Enabled?, 8
I/O Unit Ready?, 9
Increment Variable, 1
Interrupt Disabled for Event?, 2
Interrupt Enabled for Event?, 3
Interrupt on Port0?, 4
Interrupt on Port1?, 4
Interrupt on Port2?, 5
Interrupt on Port3?, 6
Interrupt on Port6?, 6
IVAL Set Analog from Table, 10
IVAL Set Analog Point, 11
IVAL Set Counter, 12
OptoControl Command Reference Index-7

IVAL Set Digital Binary, 13
IVAL Set Frequency, 14
IVAL Set Off-Latch, 15
IVAL Set Off-Pulse, 16
IVAL Set Off-Totalizer, 17
IVAL Set On-Latch, 18
IVAL Set On-Pulse, 19
IVAL Set On-Totalizer, 20
IVAL Set Period, 21
IVAL Set PID Control Word, 22
IVAL Set PID Process Term, 23
IVAL Set Quadrature Counter, 24
IVAL Set TPO Percent, 25
IVAL Set TPO Period, 26
IVAL Turn Off, 27
IVAL Turn On, 28

L
Less Than or Equal to Table Element?, 3
Less Than or Equal?, 2
Less Than Table Element?, 5
Less?, 1
logical

AND, 6
AND?, 7
Bit AND, 1
Bit AND?, 2
Bit Clear, 4
Bit NOT, 5
Bit NOT?, 6
Bit Off?, 8
Bit On?, 9
Bit OR, 10
Bit OR?, 11
Bit Rotate, 12
Bit Set, 14
Bit Shift, 15
Bit Test, 17
Bit XOR, 18
Bit XOR?, 19
Equal to Table Element?, 18
Equal?, 16
Get High Bits of Integer 64, 58
Get Low Bits of Integer 64, 63
Greater Than or Equal to Table Element?,

108

Greater Than or Equal?, 107
Greater Than Table Element?, 109
Greater?, 106
Less Than or Equal to Table Element?, 3
Less Than or Equal?, 2
Less Than Table Element?, 5
Less?, 1
Make Integer 64, 1
Move 32 Bits, 6
NOT, 2
Not Equal to Table Element?, 5
Not Equal?, 4
NOT?, 3
OR, 6
OR?, 8
Set Variable False, 47
Set Variable True, 48
Table Element Bit Clear, 1
Table Element Bit Set, 2
Table Element Bit Test, 3
Test Equal, 5
Test Greater, 8
Test Greater or Equal, 9
Test Less, 10
Test Less or Equal, 12
Test Not Equal, 13
Test Within Limits, 14
Variable False?, 1
Variable True?, 2
Within Limits?, 1
XOR, 1
XOR?, 3

Low RAM Backup Battery?, 6

M
Make Integer 64, 1
mathematical

Absolute Value, 1
Add, 3
Arccosine, 13
Arcsine, 14
Arctangent, 15
Clamp Float Table Element, 16
Clamp Float Variable, 17
Clamp Integer 32 Table Element, 18
Clamp Integer 32 Variable, 19
Index-8 OptoControl Command Reference

Complement, 39
Cosine, 63
Decrement Variable, 1
Divide, 21
Generate Random Number, 5
Hyperbolic Cosine, 2
Hyperbolic Sine, 3
Hyperbolic Tangent, 4
Increment Variable, 1
Maximum, 2
Minimum, 3
Modulo, 4
Multiply, 27
Natural Log, 1
Raise e to Power, 1
Raise to Power, 2
Round, 29
Seed Random Number, 1
Sine, 51
Square Root, 52
Subtract, 71
Tangent, 4
Truncate, 36

Maximum, 2
Minimum, 3
miscellaneous

Comment (Block), 35
Comment (Single Line), 36
Continue Timer, 45
Delay (mSec), 2
Delay (Sec), 3
Down Timer Expired?, 22
Float Valid?, 3
Generate Reverse CRC-16 on Table, 8
Get Length of Table, 62
Move, 5
Move from Table Element, 12
Move Table Element to Table, 17
Move Table to Table, 22
Move to Table Element, 26
Pause Timer, 1
Set Down Timer Preset Value, 19
Set Up Timer Target Value, 46
Shift Table Elements, 50
Start Timer, 62
Stop Timer, 68
Timer Expired?, 15

Up Timer Target Time Reached?, 1
Modulo, 4
Move, 5
Move 32 Bits, 6
Move Analog I/O Unit to Table, 7
Move Digital I/O Unit to Table, 8
Move Digital I/O Unit to Table Element, 9
Move from Pointer Table Element, 10
Move from String Table, 11
Move from Table Element, 12
Move Mixed I/O Unit to Table, 13
Move Simple-64 I/O Unit to Table, 14
Move String, 15
Move Table Element to Digital I/O Unit, 16
Move Table Element to Table, 17
Move Table to Analog I/O Unit, 17
Move Table to Digital I/O Unit, 19
Move Table to Mixed I/O Unit, 20
Move Table to Simple-64 I/O Unit, 21
Move Table to Table, 22
Move to Pointer, 23
Move to Pointer Table, 24
Move to String Table, 25
Move to Table Element, 26
Multiply, 27

N
Natural Log, 1
NOT, 2
Not Equal to Table Element?, 5
Not Equal?, 4
Not?, 3

O
Off?, 1
Off-Latch Set?, 2
On?, 3
On-Latch Set?, 4
Open Ethernet Session, 5
OR, 6
OR?, 8

P
Pause Timer, 1
OptoControl Command Reference Index-9

PID
Clamp PID Output, 20
Clamp PID Setpoint, 21
Disable PID Output, 15
Disable PID Output Tracking in Manual

Mode, 16
Disable PID Setpoint Tracking in Manual

Mode, 17
Enable PID Output, 11
Enable PID Output Tracking in Manual

Mode, 12
Enable PID Setpoint Tracking in Manual

Mode, 13
Get PID Control Word, 82
Get PID D Term, 83
Get PID I Term, 84
Get PID Input, 85
Get PID Mode, 86
Get PID Output, 87
Get PID Output Rate of Change, 88
Get PID P Term, 89
Get PID Scan Rate, 90
Get PID Setpoint, 91
Set PID Control Word, 29
Set PID D Term, 30
Set PID I Term, 31
Set PID Input, 32
Set PID Mode to Auto, 33
Set PID Mode to Manual, 34
Set PID Output Rate of Change, 35
Set PID P Term, 36
Set PID Scan Rate, 37
Set PID Setpoint, 38

PID Loop Communication Enabled?, 2
Pointer Equal to NULL?, 3
Pointer Table Element Equal to NULL?, 4
pointers

Clear Pointer, 30
Clear Pointer Table Element, 31
Move from Pointer Table Element, 10
Move to Pointer, 23
Move to Pointer Table, 24
Pointer Equal to NULL?, 3
Pointer Table Element Equal to NULL?, 4

Product Support, xvi

R
Raise e to Power, 1
Raise to Power, 2
Ramp Analog Output, 3
Read Byte from PC Memory (ISA only), 4
Read Byte from PC Port (ISA only), 5
Read Event/Reaction Hold Buffer, 6
Read Numeric Table from I/O Memory Map, 6
Read Numeric Variable from I/O Memory

Map, 8
Read String Table from I/O Memory Map, 9
Read String Variable from I/O Memory Map,

11
Read Word from PC Memory (ISA only), 12
Read Word from PC Port (ISA only), 13
Receive Character via Serial Port, 14
Receive N Characters via ARCNET, 15
Receive N Characters via Ethernet, 16
Receive N Characters via Serial Port, 18
Receive String via ARCNET, 19
Receive String via Ethernet, 20
Receive String via Serial Port, 21
Receive Table via ARCNET, 23
Receive Table via Ethernet, 24
Receive Table via Serial Port, 25
Remove Current Error and Point to Next Error,

26
Reset Controller, 27
Retrieve Strategy CRC, 28
Round, 29

S
Seed Random Number, 1
Set Analog Filter Weight, 2
Set Analog Gain, 4
Set Analog Offset, 5
Set Analog Totalizer Rate, 6
Set Analog TPO Period, 8
Set ARCNET Destination Address, 9
Set ARCNET Destination Address on Port, 10
Set ARCNET Mode Raw, 11
Set ARCNET Mode Standard, 12
Set ARCNET Peer Destination Address, 13
Set Date, 14
Set Day, 15
Set Day of Week, 16
Index-10 OptoControl Command Reference

Set Digital I/O Unit from MOMO Masks, 17
Set Digital-64 I/O Unit from MOMO Masks, 18
Set Down Timer Preset Value, 19
Set End-of-Message Terminator, 20
Set Hours, 21
Set I/O Unit Configured Flag, 22
Set Minutes, 23
Set Mixed I/O Unit from MOMO Masks, 24
Set Month, 25
Set Nth Character, 26
Set Number of Retries to all I/O Units, 27
Set PC Byte Swap Mode (ISA only), 28
Set PID Control Word, 29
Set PID D Term, 30
Set PID I Term, 31
Set PID Input, 32
Set PID Mode to Auto, 33
Set PID Mode to Manual, 34
Set PID Output Rate of Change, 35
Set PID P Term, 36
Set PID Scan Rate, 37
Set PID Setpoint, 38
Set Priority, 39
Set Priority of Host Task, 40
Set Seconds, 41
Set Simple-64 I/O Unit from MOMO Masks,

42
Set Time, 43
Set TPO Percent, 44
Set TPO Period, 45
Set Up Timer Target Value, 46
Set Variable False, 47
Set Variable True, 48
Set Year, 49
Shift Table Elements, 50
simulation

Communication to All I/O Points Enabled?,
37

Communication to All I/O Units Enabled?,
38

Disable Communication to All I/O Points, 4
Disable Communication to All I/O Units, 5
Disable Communication to Analog Point, 6
Disable Communication to Digital Point, 7
Disable Communication to Event/Reaction,

8
Disable Communication to I/O Unit, 9

Disable Communication to PID Loop, 11
Disable Event/Reaction Group, 12
Enable Communication to All I/O Points, 1
Enable Communication to All I/O Units, 2
Enable Communication to Analog Point, 3
Enable Communication to Digital Point, 4
Enable Communication to Event/Reaction,

5
Enable Communication to I/O Unit, 6
Enable Communication to PID Loop, 7
Enable Event/Reaction Group, 8
Enable PID Output, 11
Event/Reaction Communication Enabled?,

24
Event/Reaction Group Communication En-

abled?, 25
I/O Point Communication Enabled?, 7
I/O Unit Communication Enabled?, 8
IVAL Set Analog from Table, 10
IVAL Set Analog Point, 11
IVAL Set Counter, 12
IVAL Set Digital Binary, 13
IVAL Set Frequency, 14
IVAL Set Off-Latch, 15
IVAL Set Off-Pulse, 16
IVAL Set Off-Totalizer, 17
IVAL Set On-Latch, 18
IVAL Set On-Pulse, 19
IVAL Set On-Totalizer, 20
IVAL Set Period, 21
IVAL Set PID Control Word, 22
IVAL Set PID Process Term, 23
IVAL Set Quadrature Counter, 24
IVAL Set TPO Percent, 25
IVAL Set TPO Period, 26
IVAL Turn Off, 27
IVAL Turn On, 28
PID Loop Communication Enabled?, 2

Sine, 51
speed tips, 50, 2, 21, 27, 1, 3, 47, 48, 37, 40
Square Root, 52
Start Chart, 53
Start Continuous Square Wave, 54
Start Counter, 55
Start Default Host Task, 56
Start Host Task (ASCII), 57
Start Host Task (Binary), 58
OptoControl Command Reference Index-11

Start Off-Pulse, 59
Start On-Pulse, 60
Start Quadrature Counter, 61
Start Timer, 62
Stop Chart, 63
Stop Chart on Error, 64
Stop Counter, 65
Stop Host Task, 66
Stop Quadrature Counter, 67
Stop Timer, 68
string

Append Character to String, 8
Append String to String, 9
Convert Float to String, 45
Convert Hex String to Number, 47
Convert IEEE Hex String to Number, 48
Convert Number to Formatted Hex String,

50
Convert Number to Hex String, 51
Convert Number to String, 53
Convert Number to String Field, 54
Convert String to Float, 55
Convert String to Integer 32, 56
Convert String to Integer 64, 57
Convert String to Lower Case, 59
Convert String to Upper Case, 59
Find Character in String, 1
Find Substring in String, 2
Generate Checksum on String, 1
Generate Forward CCITT on String, 2
Generate Forward CRC-16 on String, 3
Generate Reverse CCITT on String, 6
Generate Reverse CRC-16 on String, 7
Get Nth Character, 69
Get String Length, 102
Get Substring, 103
Move from String Table, 11
Move String, 15
Move to String Table, 25
Set Nth Character, 26
String Equal to String Table Element?, 70
String Equal?, 69
Test Equal Strings, 7
Verify Checksum on String, 3
Verify Forward CCITT on String, 4
Verify Forward CRC-16 on String, 5
Verify Reverse CCITT on String, 6

Verify Reverse CRC-16 on String, 7
String Equal to String Table Element?, 70
String Equal?, 69
Subtract, 71
Suspend Chart, 72
Suspend Chart on Error, 73
Suspend Default Host Task, 74

T
table

Get Length of Table, 62
Less Than or Equal to Table Element?, 3
Less Than Table Element?, 5
Move Analog I/O Unit to Table, 7
Move Digital I/O Unit to Table, 8
Move Digital I/O Unit to Table Element, 9
Move from Pointer Table Element, 10
Move from String Table, 11
Move from Table Element, 12
Move Mixed I/O Unit to Table, 13
Move Simple-64 I/O Unit to Table, 14
Move Table Element to Digital I/O Unit, 16
Move Table Element to Table, 17
Move Table to Analog I/O Unit, 17
Move Table to Digital I/O Unit, 19
Move Table to Mixed I/O Unit, 20
Move Table to Simple-64 I/O Unit, 21
Move Table to Table, 22
Move to String Table, 25
Move to Table Element, 26
Not Equal to Table Element?, 5
Receive Table via Serial Port, 25
Shift Table Elements, 50
Transmit Table via ARCNET, 23
Transmit Table via Ethernet, 24
Transmit Table via Serial Port, 25

Table Element Bit Clear, 1
Table Element Bit Set, 2
Table Element Bit Test, 3
Tangent, 4
Test Equal, 5
Test Equal Strings, 7
Test Greater, 8
Test Greater or Equal, 9
Test Less, 10
Test Less or Equal, 12
Index-12 OptoControl Command Reference

Test Not Equal, 13
Test Within Limits, 14
time/date

Copy Date to String (DD/MM/YY), 60
Copy Date to String (MM/DD/YY), 61
Copy Time to String, 62
Get Day, 45
Get Day of Week, 46
Get Hours, 59
Get Julian Day, 61
Get Minutes, 64
Get Month, 66
Get Seconds, 98
Get Seconds Since Midnight, 99
Get System Time, 104
Get Year, 105
Set Date, 14
Set Day, 15
Set Day of Week, 16
Set Hours, 21
Set Minutes, 23
Set Month, 25
Set Seconds, 41
Set Time, 43
Set Year, 49

timer
Continue Timer, 45
Down Timer Expired?, 22
Pause Timer, 1
Set Down Timer Preset Value, 19
Set Up Timer Target Value, 46
Start Timer, 62
Stop Timer, 68
Up Timer Target Time Reached?, 1

Timer Expired?, 15
Transmit Character via Serial Port, 16
Transmit NewLine via Serial Port, 17
Transmit String via ARCNET, 19
Transmit String via Ethernet, 20
Transmit String via Serial Port, 22
Transmit Table via ARCNET, 23
Transmit Table via Ethernet, 24
Transmit Table via Serial Port, 25
Transmit/Receive Mistic I/O Hex String with

Checksum, 27

Transmit/Receive Mistic I/O Hex String with
CRC, 28

Transmit/Receive OPTOMUX String, 29
Transmit/Receive String via ARCNET, 31
Transmit/Receive String via Ethernet, 32
Transmit/Receive String via Serial Port, 34
troubleshooting

Product Support, xvi
Truncate, 36
Turn Off, 37
Turn Off RTS, 38
Turn Off RTS After Next Character, 39
Turn On, 40
Turn On RTS, 41

U
Up Timer Target Time Reached?, 1

V
Variable False?, 1
Variable True?, 2
Verify Checksum on String, 3
Verify Forward CCITT on String, 4
Verify Forward CRC-16 on String, 5
Verify Reverse CCITT on String, 6
Verify Reverse CRC-16 on String, 7

W
Within Limits?, 1
Write Byte to PC Memory (ISA only), 3
Write Byte to PC Port (ISA only), 4
Write I/O Unit Configuration to EEPROM, 5
Write Numeric Table to I/O Memory Map, 6
Write Numeric Variable to I/O Memory Map, 8
Write String Table to I/O Memory Map, 9
Write String Variable to I/O Memory Map, 11
Write Word to PC Memory (ISA only), 12
Write Word to PC Port (ISA only), 13

X
XOR, 1
XOR?, 3
OptoControl Command Reference Index-13

Index-14 OptoControl Command Reference

	Welcome to the OptoControl Command Reference
	About this Reference
	Other FactoryFloor Resources
	Commands by Command Group

	A
	Absolute Value
	Accept Session on TCP Port
	Add
	Add User Error to Queue
	Add User I/O Unit Error to Queue
	AND
	AND?
	Append Character to String
	Append String to String
	ARCNET Connected?
	ARCNET Message Address Equal to?
	ARCNET Node Present?
	Arccosine
	Arcsine
	Arctangent

	B
	Bit AND
	Bit AND?
	Bit Clear
	Bit NOT
	Bit NOT?
	Bit Off?
	Bit On?
	Bit OR
	Bit OR?
	Bit Rotate
	Bit Set
	Bit Shift
	Bit Test
	Bit XOR
	Bit XOR?

	C
	Calculate & Set Analog Gain
	Calculate & Set Analog Offset
	Calculate & Store Strategy CRC
	Calculate Strategy CRC
	Call Chart
	Calling Chart Running?
	Calling Chart Stopped?
	Calling Chart Suspended?
	Caused a Chart Error?
	Caused an I/O Unit Error?
	Characters Waiting at Serial Port?
	Chart Running?
	Chart Stopped?
	Chart Suspended?
	Clamp Float Table Element
	Clamp Float Variable
	Clamp Integer 32 Table Element
	Clamp Integer 32 Variable
	Clamp PID Output
	Clamp PID Setpoint
	Clear All Errors
	Clear All Event Latches
	Clear All Latches
	Clear Counter
	Clear Event Latch
	Clear I/O Unit Interrupt
	Clear Off-Latch
	Clear On-Latch
	Clear PC Byte Swap Mode (ISA only)
	Clear Pointer
	Clear Pointer Table Element
	Clear Quadrature Counter
	Clear Receive Buffer
	Close Ethernet Session
	Comment (Block)
	Comment (Single Line)
	Communication to All I/O Points Enabled?
	Communication to All I/O Units Enabled?
	Complement
	Configure I/O Unit
	Configure Port
	Configure Port Timeout Delay
	Continue Calling Chart
	Continue Chart
	Continue Timer
	Convert Float to String
	Convert Hex String to Number
	Convert IEEE Hex String to Number
	Convert Mistic I/O Hex to Float
	Convert Number to Formatted Hex String
	Convert Number to Hex String
	Convert Number to Mistic I/O Hex
	Convert Number to String
	Convert Number to String Field
	Convert String to Float
	Convert String to Integer 32
	Convert String to Integer 64
	Convert String to Lower Case
	Convert String to Upper Case
	Copy Date to String (DD/MM/YY)
	Copy Date to String (MM/DD/YY)
	Copy Time to String
	Cosine
	CTS Off?
	CTS On?

	D
	Decrement Variable
	Delay (mSec)
	Delay (Sec)
	Disable Communication to All I/O Points
	Disable Communication to All I/O Units
	Disable Communication to Analog Point
	Disable Communication to Digital Point
	Disable Communication to Event/Reaction
	Disable Communication to I/O Unit
	Disable Communication to PID Loop
	Disable Event/Reaction Group
	Disable I/O Unit Causing Current Error
	Disable Interrupt on Event
	Disable PID Output
	Disable PID Output Tracking in Manual Mode
	Disable PID Setpoint Tracking in Manual Mode
	Disable Scanning for All Events
	Disable Scanning for Event
	Disable Scanning of Event/Reaction Group
	Divide
	Down Timer Expired?

	E
	Enable Communication to All I/O Points
	Enable Communication to All I/O Units
	Enable Communication to Analog Point
	Enable Communication to Digital Point
	Enable Communication to Event/Reaction
	Enable Communication to I/O Unit
	Enable Communication to PID Loop
	Enable Event/Reaction Group
	Enable I/O Unit Causing Current Error
	Enable Interrupt on Event
	Enable PID Output
	Enable PID Output Tracking in Manual Mode
	Enable PID Setpoint Tracking in Manual Mode
	Enable Scanning for All Events
	Enable Scanning for Event
	Enable Scanning of Event/Reaction Group
	Equal?
	Equal to Table Element?
	Error?
	Error on I/O Unit?
	Ethernet Session Open?
	Event Occurred?
	Event Occurring?
	Event/Reaction Communication Enabled?
	Event/Reaction Group Communication Enabled?
	Event Scanning Disabled?
	Event Scanning Enabled?

	F
	Find Character in String
	Find Substring in String
	Float Valid?

	G
	Generate Checksum on String
	Generate Forward CCITT on String
	Generate Forward CRC-16 on String
	Generate N Pulses
	Generate Random Number
	Generate Reverse CCITT on String
	Generate Reverse CRC-16 on String
	Generate Reverse CRC-16 on Table (32 bit)
	Generating Interrupt?
	Get & Clear Analog Filtered Value
	Get & Clear Analog Maximum Value
	Get & Clear Analog Minimum Value
	Get & Clear Analog Totalizer Value
	Get & Clear Counter
	Get & Clear Digital I/O Unit Latches
	Get & Clear Digital-64 I/O Unit Latches
	Get & Clear Event Latches
	Get & Clear Off-Latch
	Get & Clear On-Latch
	Get & Clear Quadrature Counter
	Get & Clear Simple-64 I/O Unit Latches
	Get & Restart Off-Pulse Measurement
	Get & Restart Off-Time Totalizer
	Get & Restart On-Pulse Measurement
	Get & Restart On-Time Totalizer
	Get & Restart Period
	Get Active Interrupt Mask
	Get Address of I/O Unit Causing Current Error
	Get Analog Filtered Value
	Get Analog Lower Clamp
	Get Analog Maximum Value
	Get Analog Minimum Value
	Get Analog Square Root Filtered Value
	Get Analog Square Root Value
	Get Analog Totalizer Value
	Get Analog Upper Clamp
	Get ARCNET Host Destination Address
	Get ARCNET Destination Address on Port
	Get ARCNET Peer Destination Address
	Get Chart Status
	Get Controller Address
	Get Controller Type
	Get Counter
	Get Day
	Get Day of Week
	Get Default Host Port
	Get Digital I/O Unit as Binary Value
	Get Digital-64 I/O Unit as Binary Value
	Get Digital I/O Unit Latches
	Get Digital-64 I/O Unit Latches
	Get Error Code of Current Error
	Get Error Count
	Get Ethernet Session Name
	Get Event Latches
	Get Firmware Version
	Get Frequency
	Get High Bits of Integer 64
	Get Hours
	Get ID of Block Causing Current Error
	Get Julian Day
	Get Length of Table
	Get Low Bits of Integer 64
	Get Minutes
	Get Mixed I/O Unit as Binary Value
	Get Month
	Get Name of Chart Causing Current Error
	Get Name of I/O Unit Causing Current Error
	Get Nth Character
	Get Number of Characters Waiting on Serial or ARCNET Port
	Get Number of Characters Waiting on Ethernet Session
	Get Off-Latch
	Get Off-Pulse Measurement
	Get Off-Pulse Measurement Complete Status
	Get Off-Time Totalizer
	Get On-Latch
	Get On-Pulse Measurement
	Get On-Pulse Measurement Complete Status
	Get On-Time Totalizer
	Get Period
	Get Period Measurement Complete Status
	Get PID Control Word
	Get PID D Term
	Get PID I Term
	Get PID Input
	Get PID Mode
	Get PID Output
	Get PID Output Rate of Change
	Get PID P Term
	Get PID Scan Rate
	Get PID Setpoint
	Get Port of I/O Unit Causing Current Error
	Get Priority
	Get Priority of Host Task
	Get Quadrature Counter
	Get RTU/M4IO Temperature
	Get RTU/M4IO Voltage
	Get Seconds
	Get Seconds Since Midnight
	Get Simple-64 I/O Unit as Binary Value
	Get Simple-64 I/O Unit Latches
	Get String Length
	Get Substring
	Get System Time
	Get Year
	Greater?
	Greater Than or Equal?
	Greater Than or Equal to Table Element?
	Greater Than Table Element?

	H
	Host Task Received a Message?
	Hyperbolic Cosine
	Hyperbolic Sine
	Hyperbolic Tangent

	I
	Increment Variable
	Interrupt Disabled for Event?
	Interrupt Enabled for Event?
	Interrupt on Port0?
	Interrupt on Port1?
	Interrupt on Port2?
	Interrupt on Port3?
	Interrupt on Port6?
	I/O Point Communication Enabled?
	I/O Unit Communication Enabled?
	I/O Unit Ready?
	IVAL Set Analog from Table
	IVAL Set Analog Point
	IVAL Set Counter
	IVAL Set Digital Binary
	IVAL Set Frequency
	IVAL Set Off-Latch
	IVAL Set Off-Pulse
	IVAL Set Off-Totalizer
	IVAL Set On-Latch
	IVAL Set On-Pulse
	IVAL Set On-Totalizer
	IVAL Set Period
	IVAL Set PID Control Word
	IVAL Set PID Process Term
	IVAL Set Quadrature Counter
	IVAL Set TPO Percent
	IVAL Set TPO Period
	IVAL Turn Off
	IVAL Turn On

	L
	Less?
	Less Than or Equal?
	Less Than or Equal to Table Element?
	Less Than Table Element?
	Low RAM Backup Battery?

	M
	Make Integer 64
	Maximum
	Minimum
	Modulo
	Move
	Move 32 Bits
	Move Analog I/O Unit to Table
	Move Digital I/O Unit to Table
	Move Digital I/O Unit to Table Element
	Move from Pointer Table Element
	Move from String Table
	Move from Table Element
	Move Mixed I/O Unit to Table
	Move Simple-64 I/O Unit to Table
	Move String
	Move Table Element to Digital I/O Unit
	Move Table Element to Table
	Move Table to Analog I/O Unit
	Move Table to Digital I/O Unit
	Move Table to Mixed I/O Unit
	Move Table to Simple-64 I/O Unit
	Move Table to Table
	Move to Pointer
	Move to Pointer Table
	Move to String Table
	Move to Table Element
	Multiply

	N
	Natural Log
	NOT
	NOT?
	Not Equal?
	Not Equal to Table Element?

	O
	Off?
	Off-Latch Set?
	On?
	On-Latch Set?
	Open Ethernet Session
	OR
	OR?

	P
	Pause Timer
	PID Loop Communication Enabled?
	Pointer Equal to NULL?
	Pointer Table Element Equal to NULL?

	R
	Raise e to Power
	Raise to Power
	Ramp Analog Output
	Read Byte from PC Memory (ISA only)
	Read Byte from PC Port (ISA only)
	Read Event/Reaction Hold Buffer
	Read Numeric Table from I/O Memory Map
	Read Numeric Variable from I/O Memory Map
	Read String Table from I/O Memory Map
	Read String Variable from I/O Memory Map
	Read Word from PC Memory (ISA only)
	Read Word from PC Port (ISA only)
	Receive Character via Serial Port
	Receive N Characters via ARCNET
	Receive N Characters via Ethernet
	Receive N Characters via Serial Port
	Receive String via ARCNET
	Receive String via Ethernet
	Receive String via Serial Port
	Receive Table via ARCNET
	Receive Table via Ethernet
	Receive Table via Serial Port
	Remove Current Error and Point to Next Error
	Reset Controller
	Retrieve Strategy CRC
	Round

	S
	Seed Random Number
	Set Analog Filter Weight
	Set Analog Gain
	Set Analog Offset
	Set Analog Totalizer Rate
	Set Analog TPO Period
	Set ARCNET Host Destination Address
	Set ARCNET Destination Address on Port
	Set ARCNET Mode Raw
	Set ARCNET Mode Standard
	Set ARCNET Peer Destination Address
	Set Date
	Set Day
	Set Day of Week
	Set Digital I/O Unit from MOMO Masks
	Set Digital-64 I/O Unit from MOMO Masks
	Set Down Timer Preset Value
	Set End-of-Message Terminator
	Set Hours
	Set I/O Unit Configured Flag
	Set Minutes
	Set Mixed I/O Unit from MOMO Masks
	Set Month
	Set Nth Character
	Set Number of Retries to All I/O Units
	Set PC Byte Swap Mode (ISA only)
	Set PID Control Word
	Set PID D Term
	Set PID I Term
	Set PID Input
	Set PID Mode to Auto
	Set PID Mode to Manual
	Set PID Output Rate of Change
	Set PID P Term
	Set PID Scan Rate
	Set PID Setpoint
	Set Priority
	Set Priority of Host Task
	Set Seconds
	Set Simple-64 I/O Unit from MOMO Masks
	Set Time
	Set TPO Percent
	Set TPO Period
	Set Up Timer Target Value
	Set Variable False
	Set Variable True
	Set Year
	Shift Table Elements
	Sine
	Square Root
	Start Chart
	Start Continuous Square Wave
	Start Counter
	Start Default Host Task
	Start Host Task (ASCII)
	Start Host Task (Binary)
	Start Off-Pulse
	Start On-Pulse
	Start Quadrature Counter
	Start Timer
	Stop Chart
	Stop Chart on Error
	Stop Counter
	Stop Host Task
	Stop Quadrature Counter
	Stop Timer
	String Equal?
	String Equal to String Table Element?
	Subtract
	Suspend Chart
	Suspend Chart on Error
	Suspend Default Host Task

	T
	Table Element Bit Clear
	Table Element Bit Set
	Table Element Bit Test
	Tangent
	Test Equal
	Test Equal Strings
	Test Greater
	Test Greater or Equal
	Test Less
	Test Less or Equal
	Test Not Equal
	Test Within Limits
	Timer Expired?
	Transmit Character via Serial Port
	Transmit NewLine via Serial Port
	Transmit String via ARCNET
	Transmit String via Ethernet
	Transmit String via Serial Port
	Transmit Table via ARCNET
	Transmit Table via Ethernet
	Transmit Table via Serial Port
	Transmit/Receive Mistic I/O Hex String with Checksum
	Transmit/Receive Mistic I/O Hex String with CRC
	Transmit/Receive OPTOMUX String
	Transmit/Receive String via ARCNET
	Transmit/Receive String via Ethernet
	Transmit/Receive String via Serial Port
	Truncate
	Turn Off
	Turn Off RTS
	Turn Off RTS After Next Character
	Turn On
	Turn On RTS

	U
	Up Timer Target Time Reached?

	V
	Variable False?
	Variable True?
	Verify Checksum on String
	Verify Forward CCITT on String
	Verify Forward CRC-16 on String
	Verify Reverse CCITT on String
	Verify Reverse CRC-16 on String

	W
	Within Limits?
	Write Byte to PC Memory (ISA only)
	Write Byte to PC Port (ISA only)
	Write I/O Unit Configuration to EEPROM
	Write Numeric Table to I/O Memory Map
	Write Numeric Variable to I/O Memory Map
	Write String Table to I/O Memory Map
	Write String Variable to I/O Memory Map
	Write Word to PC Memory (ISA only)
	Write Word to PC Port (ISA only)

	X
	XOR
	XOR?
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

