LC2-LC4
Opto 22 FORTH
LC2: Release 2
LC4: Release 3

Form 173.3

LC2/LC4 OPTO 22 FORTH

This technical document describes the features, specifications, and operations of the product.

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change
without notice.

Opto 22 warrants all its products to be free from defects in material or workmanship for 24 months from
the manufacturing date code.

This warranty is limited to the original cost of the unit only and does not cover installation laber or any
other contingent costs.

ARCNET is a registered trademark of Datapoint Corporation.

Cyrano, Generation 4, G4, OPTOMUX and OPTOWARE are trademarks of Opto 22.

IBM is a registered trademark of International Business Machine Corporation.

IBM PC, XT, AT and PS/2 are trademarks of International Business Machine Corporation,
Microsoft BASIC and GW-BASIC are registered trademarks of Microsoit Corporation.
mistic is a registered trademark of Opto 22.

QuickBASIC is a trademark of Microsoft Corporation.

Turbo BASIC, Turbo C and Turbo Pascal are trademarks of Borland International.

LC2/LC4 OPTO 22 FORTH TABLE OF CONTENTS

Table Of Contents

Introductioncciarivienniiiinrarirsnerasisasasnaraanss 1-1
Features i ittt it e 2-1
FLOATING POINT .. o i v iis i sin e 21
XONIXOFFPROTOCOL. ...ttt ciisee e 21
OPTOMUX & PAMUXDRIVERSot cii e 2-2
Quick Reference Guideo it iiiirinnracacnaan 3-1
ARITHMETIC ... i it et c it ae e 3-1
LOGICAL ..ttt i i i i i i e 3-2
COMPARISON ... it it i s s i i na s anaaans 3-2
MEMORY . i e ittt e e i e 3-3
CONVERSION ...ttt ittt sirenansaanann 3-4
STRING ... i i i i i i ta s s 3-4
INPUT/OUTPUT ittt i ittt s ie i eas 35
ST ACK it i i e e it 3-6
070 1 T 3-7
COMPILERWORDttt it iiii e ianans 3-8
DEFININGWORD ... ittt cii e iiiaiaaans 3-9
L o 1 3-9
1027 7 3-11
GIOSSAIY ...ttt i tearnssmraaraananmaassauasorsarssanrenncnns 4-1
GLOSSARY CONVENTIONS iiiiiine e 4-1
STANDARDWORD SET ... v i iiisriiian i 4-5
WORD SETGLOSSARY . ..ottt ittt cina s 4-7
AppendiX i i i iiia i it a e a s 1
SAMPLE PROGRAM ... i i et it it et i 3

SUGGESTED READING i it e e 7

TABLE OF CONIENTS LC2/LC4 OPTO 22 FORTH

LC2/1.C4 OPTO 22 FORTH INTRODUCTION

INTRODUCTION

The LC2/LC4 FORTH is a subset of the FORTH-83 standard with further enhancements which take
advantage of LC2/L.C4's hardware features. These features include accessing the real-time clock, the
OPTOMUX serial port, the OPTOWARE driver and the PAMUX driver (LC4 only).

LC2/L.C4 FORTH is a powerful and versatile language which, in the hands of knowledgeable
programmers, can be used to create programs which, generally speaking, will execute faster and more
efficiently than programs written using the LC2/LC4 BASIC. That is not to say, however, that LC2/L.C4
BASIC is not useful. LC2/LC4 BASIC has advantages where speed and space are not critical but
readability and ease of programming are important. Programmers who live by the FORTH philosophy
may argue this point, and it is not our intent to proclaim which language is the best. Therefore, we offer
both and leave the final decision to you; the end user. Neither is it our intent to teach the language of
FORTH. That is something best left to the textbooks and the teachers. The Appendix contains some
suggested reading material which may offer some help to beginning and advanced FORTH
prograrmers. In addition, several examples are included which try to explain the additional Opto 22
FORTH Word Set and the interaction with the OPTOWARE driver and the PAMUX driver.

INTRODUCTION LC2/LC4 OPTO 22 FORTH

LC2/LC4 OPTO 22 FORTH FEATURES

FEATURES

The major extensions to the LC2/LC4 FORTH are floating point numbers, an OPTOMUX driver and a
PAMUX driver. The LC2 does not contain the PAMUX driver since it does not have the hardware
needed to talk to the PAMUX boards,

FLOATING POINT NUMBERS

The new LC2/LC4 FORTH now supports floating point numbers and the associated transcendental
functions (sine, cosine, etc.). The format for floating point numbers is as follows:

mantissa E exponent

When entered, the mantissa is a standard double number. The E, converts the mantissa to a floating
point number and then inputs the exponent, a single precision number, and adjust the floating point
number accordingly. The placement of the decimal point in the mantissa is significant, a 3.0 E 5 is not
equal to a .30 E 5 (though a 3.0 is equal to a .30 in double precision numbers).

XON/XOFF PROTOCOL

The FORTH now supports the XON/XOFF protocol when downloading a program. The XON/XOFF
protocol is enabled or disabled depending upon the value contained in the variable XONO.ENABLE. A
zero value stored in XONO.ENABLE will disable the protocol, any other value will enable the protocol. If
the LC2/LC4 FORTH seems to be working fine, but is printing strange characters at the beginning and
end of each line, the XON/XOFF protocol is probably enabled.

NOTE: The XON/XOFF protocol will only function when you are downloading a program,
not while you are running a program.

POWER UP MODES

When the controller is first powered up, it is in terminal mode. 1t will accept any new words at this point
that are sent to it from the host port. It is important to note that the last word sent to the controller is
the first word executed after power up when the AUTO jumper is installed. It is up to the user program
to make forth words that allow starting and stopping the program from the host port. Once it is stopped,
new words can be downloaded from any ASCII terminal or computer via the host port.

FEATURES LC2/LC4 OPTO 22 FORTH

OPTOMUX AND PAMUX DRIVERS

The LC2/LC4 FORTH uses a structure for passing parameters to and from the OPTOMUX and PAMUX
driver subroutines (the 1L.C2 FORTH does not contain the PAMUX driver). Each driver uses the same
defining word, PARAMETER-BLOCK, to define a structure for the subroutines. To use a particular
PARAMETER-BLOCK in a call to the driver, you store its address in the variable PARAMETERS. The
OPTOMUX driver (OPTOWARE) expects up to six items in the defined PARAMETER-BLOCK. The first
three items act like-single precision variables and the second three items act like single-precision arrays.

ERRORS returned error number (variable)
ADDRESS OPTOMUX board address (variable)
COMMAND command to perform (variable)
POSITIONS list of modules to use (16 element array)
MODIFIERS command modifiers (2 element array)
INFO data (16 element array)

The following code demonstrates how to use the PARAMETER-BLOCK structure:

PARAMETER-BLOCK RONNY-BABY \ define a parameter block

RONNY-BABY PARAMETERS 1 \ set the address so we can use it
243 ADDRESS ! \ set the OPTOMUX boeard address

0 CONMAND ! \ lets do a power-up clear command
OPTOWARE \ and call the driver

12 COMMAND ! \ lets do a get relay status command
OPTOWARE \ and call the driver again

3 INFO ? \ print the status of medule 3

You are allowed to have multiple PARAMETER-BLOCK defined at one time, however, only one is
active at a fime (the one whose address is in the variable PARAMETERS).

The PAMUX driver uses the same defining word, PARAMETER-BLOCK, but uses some different

elements:
ERRORS returned error number (variable)
ADDRESS OPTOMUX board address (variable)
COMMAND command to perform {variable)
POSITION module to use (variable)
INFO data (8 element array)

NOTE: The OPTOMUX driver uses the array call POSITIONS and the PAMUX driver
uses a variable call POSITION (no S).

1L.C2/LC4 OPTO 22 FORTH

QUICK REFERENCE GUIDE

LC2 FORTH QUICK REFERENCE GUIDE

ARITHMETIC

¥)
“IMOD

P

ABS

D+

D-

D4~

D2*
DABS
DMAX
DMIN
DNEGATE
DSHIFT
F*

F+

-

Ff
FNEGATE
FPERR
FSIN
FSQRT
=
M/MOD
MAX

MIN
MOD
MU/MOD
NEGATE
s>D
SHIFT
UM*
UM/MOD

wil w2 -- w3

nt n2n3 -- n4

nt n2 n3 -- rem quot
nin2-d

wil w2 -- w3

w1l addr --

wl w2 -- w3

wi w2 -- w3
n1n2--n3

n1 n2 -- rem guot
w1l --wi

w1 -- wi

ni --n2

wi -- w2

wi -~ w2

ni -- n2

n--u

wd1 wd2 - wd3
wd1 wd2 -- wd3

di n--d2

df --d2

d-- ud

d1 d2 -- d3

di d2 -- d3

di -- d2

wd1 n -~ wd2

float1 float2 -- float3
float! float2 -~ float3
float1 float2 -- float3
float1 float2 -- float3
floatt -- float2

-n

float1 -- float2
floatt -- float2
float1 float2 -- float3
d n -- rem quot

n1 n2 -- n3

ni1 n2 -- n3

n1 n2 -- n3

udi ul -- rem quot
nt --n2

n-d

win-- w2

ul u2 -- ud

ud ut --u2 uld

Multiply

n = (n1*n2)/n3

*I with remainder
Single-to-double multiply
Add

Add w to number at addr

if w2<0 make w1 negative
Subtract (wi-w2)

Divide n1 by n2

Divide with remainder
Increment by one
Decrement by one

Multiply by two

increment by two

Decrement by two

Signed divide by two
Absolute value of single
Double-precision add
Double-precision subtract
Double precision +-

Multiply d1 by 2

Absolute value of double
Leave larger, double number
Leave smaller, double number
Change sign of double

Shift wd1 by n

Multiply float1 by float2
Floating point add

Subtract float2 from floati
Civide float1 by float2
Change sign of a floating point number
Floating point error variable
Return sine of float1 in radians
Return square root of float1
Raise fioat1 to the float2 power
Mixed divide with remainder
Leave larger number

Leave smaller number
Leave remainder of n1/n2
Mixed divide with remainder
Change sign

Sign extend to double

Shiit w1 by n

Unsigned mixed multiply
Unsigned mixed divide

QUICK REFERENCE GUIDE

LC2/LC4 OPTO 22 FORTH

LOGICAL
AND 16b1 16b2 -- 16d3
FALSE -0
NOT 16b1 -- 16b2
OR 16b1 16b2 -- 16b3
TOGGLE addr byte --
TRUE - -1
XCR 16b1 16b2 -- 16b3
COMPARISON

0< n -- flag
0= w -- flag
0> n -- flag
<> n -~ flag
< ni1 n2 - flag
<> n1 n2 -- flag
= wi w2 - flag
< ni1 n2 -- flag
2CONDITION flag --
AWAKE n--
D0= wd -- flag
D< d1 d2 -- flag
D= wd1 wd2 -- flag
D> di d2 -- flag
DU< ud1 ud2 -- flag
DU di d2 -- flag
FO= float -- flag
F< float1 float2 - flag
Fe= float1 float2 -- flag
F> float1 float2 -- flag
OF -~ addr n

n1 n2 --m

nin2 --
U< ul u2 -- flag
U> uf u2 - flag

Bitwise logical AND
Constant

Cne's complement
Bitwise logical OR
XOR byte at addr
Constant

Bitwise exclusive OR

True if n < zero

True if w = zero

True if n > zero

True if n not equal to 0

True if n1 < n2

True if n1 not = n2

True if wi = w2

True if n1 > n2

ABORT "conditionals wrong" if false
Wake up sleeping L.C2

Trueifwd =0

True if d1 < d2

True if wdl = wd2

True if d1 > d2

True if d1 < d2 (unsigned)
True if d1 > d2 (unsigned)
True if float = O

True if float1 < float2
True if floati = float2
True if float! > float2
{compiling)

(if no match was found)

(if match was found)

True if ul < u2 {unsigned)
True if ul > u2 (unsigned)

LC2/LC4 OPTO 22 FORTH

QUICK REFERENCE GUIDE

MEMORY

!

21

2@

?

@

@@
ADDRESS
BANK.!
BANK.2!
BANK.2@
BANK.@
BANK.C!
BANK.C@
Cl

cae
CMOVE
CMOVE
ERRORS

F!

F@

FILL

INFO
MODIFIERS
PARAMETERS
POSITIONS
TOGGLE

16b addr --
32b addr --
addr - 32b
addr --
addr --16b
addr -- 16b
-- addr

16b addr --
32b addr --
addr -- 32b
addr -- 16b
16b addr --
addr -- 16b
16b addr --
addr -- 16b
addr1 addr2 u --
addrl1 addr2 u --
-- addr
float addr --
addr -~ float
addr u 8b --
n -- addr

n - addr

- addr

n -- addr
addr byte --

Store 16B at addr

Store d at addr

Fetch double number

Print number at addr

Fetch 16b

Indirect fetch from memory
Address field in parameter block
Store 16b at addr

Store d at addr

Fetch double number

Fetch 16b

Store lower byte at addr

Store lower byte at addr

Store lower byte at addr

Store lower byte at addr

Move byte string LO -- HI

Move byte string Hl -- LO

Errors field in parameter-block
Store floating point at addr
Fetch float at addr

Fill memory with byte

Info-array in parameter-block
Modifier array in parameter-block
Point to current parameter-block
Position-array in parameter-block
XOR byte at addr

QUICK REFERENCE GUIDE

LC2/LC4 OPTO 22 FORTH

CONVERSION

#

#>

#5

<#

BASIC
BODY>
CONVERT
D>F

DECIMAL
DIGIT

E
F>D
FCOSs
FEXP
FLN
HEX
HLD
HOLD
S>D

SIGN

STRING

-TRAILING
BL

COUNT
ENCLOSE
WORD

+di -- +d2
32b -- addr +n
+d -- 00

addri -- addr2

+d addr1 -- +d2 addr 2

d -- float

char n -- n2 flag (valid digit)
char n -- flag (invalid digit)
d -- float

float -- d

float1 -- float2

floatt -- float2

floatt -- float2

-- addr

char --

n--d

n--

addr +n2 -- addr +n2

-- 32 (decimal)

-- 20 (hex)

addr1 -- addr2 +n

addri char -- addri n1 n2 n3
char -- addr

Binary digit to ASCII

End ASCI conversion
Convert rest of digits

Start ASCII conversion

Exit FORTH and go to BASIC
Convert PFA to CFA

ASCII string to binary

BASE+DECIMAL
ASCII to binary base n

Convert a double-precision number to float
Convert a float to a double

Return cosine of float1 in radians
Calculate "e" raised to power floati
Natural log of float1 (float2)

BASE = Hexadecimal

Addr of |atest conversion char
Insert char into string

Converts a single-precision number
to double-precision

Insert sign into string

suppress trailing blanks
Put ASCII "space" on stack

Get count from string
Text parsing primitive
Parse input string

1C2/1LC4 OPTO 22 FORTH QUICK REFERENCE GUIDE

INPUT/OUTPUT
#IN -n Input n from selacted port
. n - Print signed number
N - Print string up to "
(= Print string up to)
2#IN -d ASCI! input to double
CR - Output CRLF sequence
D. d-- Print double number
D.R d width -- Print a double-precision number
D>R d width -- Print right justified
DU. ud -- Print unsigned, double number
DU.R ud n - Print unsigned, double, right-justified
DUMP addr n -- Display contents of n bytes of memory
EMIT 16b -- Output one character
EXPECT addr +n -- String input stored at addr
F. float -- Print a floating-point number
F.R float n -- Print a floating-point number (righi-justified)
F? addr -- Print float stored at addr
HOURS! n - Set the hour on the real time clock
HOURS @ - n Read the hour on the real time clock
KEY ---16b Input a character from port
LCC -n Number of bytes in serial port buffer
LOF - n Number of free bytes in serial port buffer
P! n port - Output a byte to IfO port
P@ port --n Input a byte from |/C port
QUERY - Input string to TIB
SPACE - Print one space
SPACES +n - Print n spaces
TYPE addr +n -- Print character string
U u-- Print unsigned number
U.R u width -- Print unsigned number (right justified)
U>R u width -- Print unsigned (right justified)

QUICK REFERENCE GUIDE

LC2/LC4 OPTO 22 FORTH

STACK

-ROT
-2ROT
-3ROT
2DROP
2DUP
20VER
2ROT
2SWAP
3DROP
3pup
3ROT
3SWAP
>R
?DUP
DEPTH
DROP
DUP
OVER
PICK
R<
R@
ROLL
SWAP
ROT
ROT

16b1 16b2 16b3 -- 16b3 16b1 16b2
32b1 32b2 32b3 -- 32b3 32b{ 32b2
48b1 48b2 48b3 -- 48b3 48b1 48b2
a2b --

32b -- 32b 32b

32b1 32b2 -- 32b1 32b2 32b1

32b1 32b2 32b3 -- 32b2 32b3 32b1
32b1 32b2 -- 32b2 32b1

48b1 --

48b1 48b1 48b1 --

48b1 48b2 48b3 -- 48b2 48b3 48b1
48b1 48b2 -- 48b2 48b1

16b --

16b --18b16bor0-- 0

-+

16b --

16b -- 16b 16b

16b1 16b2 -- 16b1 1b62 16b1

+n --- 16b

- 16b

-- 16b

+n

16b1 16b2 -- 16b2 16b1

16b1 16b2 16b3 -- 16b2 16b3 16b1
16b1 16b2 16b3 -- 16b3 16b1 16b2

Rotate 2nd number to top
Rotate 2nd number to top
Rotate 2nd triple number to fop
Discard double number
Duplicate double number

Copy 2nd double to top

Rotate 3rd double number to top
Reverse top two doubles
Discard one friple-precision number
Duplicate top triple number
Rotate 3rd triple number to top
Reverse top two triple numbers
Move 16b 1o return stack
Duplicate 16b if not zero

of items on stack

Discard single number
Duplicate single number

Copy 2nd item to top

Copy nth item to top

Pop the return stack

Copy from return stack

Rotate nth item to top
Exchange top two numbers
Rotate 3rd item to top

Rotate top item to 3rd

LC2/1.C4 OPTO 22 FORTH QUICK REFERENCE GUIDE
CONTROL
+LOOP n-- increment loop index by n
<MARK -- addr Fetch current dicticnary pointer
<RESOLVE addr -- Compile word into current definition
>MARK -- addr Fetch addresses of next free location
>RESOLVE addr -- Place current dictionary pointer at addr
?7<MARK -- flag addr Puts true on stack and does <MARK
?<RESOLVE flag -- addr Perform a <RESOLVE if true
7>MARK -- flag addr Puts true on stack and does >MARK
?7>RESOLVE flag addr -- Perform a >RESOLVE if true
?BRANCH flag -- Perform branch if true
D0 wi w2 - Perform DO.LOOP if wi <>w2
?LEAVE flag -- Execute LEAVE if true
AGAIN -- Branch to word after BEGIN
BEGIN - Marks start of BEGIN loop
CASE --- (executing) Start of CASE control structure
addr n --- (compiling)
DO limit start -- Loop from start to start + limit
ELSE - Conditional part of IF
ENDCASE n --- (if no match) End of CASE control structure
-- (if matched)
EXECUTE addr -- Execute word at addr
EXIT - Exit from colon definition
IF flag - Conditional execution
LEAVE - Jump out of DO loop
LOOP - Increment loop index by 1
QUIT - Return control to outer interpreter
RECURSE - Exscute recursively
REPEAT - Branch to word after BEGIN
THEN - Conditional part of IF
UNTIL flag -- Marks the end of BEGIN..UNTIL lcop
WHILE flag -- Conditional execution

QUICK REFERENCE GUIDE

LC2/LC4 OPTO 22 FORTH

COMPILER WORD
) -- addr
(-
{(;CODE) -
" addr -- addr
{(+LOCP) n -
{?D0O) -
{?LEAVE) -
(BO) -
{LEAVE) -
(LIT) -
(LOCP) -
, 16b --
;CODE -
sys1 -- sys2
>LINK addri -- addr2
>NAME addr1 -- addr2
ASCIl -
BRANCH -
C, byte --
COMPILE -
CREATE -
DUITERAL --32b
32b -«
DOES> -- addr
ENDOF addr n1 -- addr2 n2
NAME> addri -- addr2
[-
{1 -- addr
[{COMPILE] -

]

Compilation address

Start a comment

Run time procedure for ;CODE
Run time procadure for ."

Run time procedure for +LOOP
Run time procedurs for 7DO
Run time procedure for 7LEAVE
Run time procedure for DO

Run time procedure for LEAVE
Run time procedure for LIT

Run time procedure for LOOP
Store 16b at HERE

Start colon definition

End colon definition

Stops compiling and executes ASSEMBLER

Get CFA's corresponding LFA
Get CFA’s corresponding NFA
Put an ASCII character onto stack
Unconditional branch

Store byte at HERE

Compile a compilation address
Build a dictionary header

Compile a double number

Define a run time action

Transfer control o word after ENDCASE
Get NFA's corresponding CFA

Set interpret state

Compile the compilation addr

Compile the following word

Set Compilation state

LC2/LC4 OPTO 22 FORTH QUICK REFERENCE GUIDE

DEFINING WORD
2ARRAY n-- Create a double-precision array
2CONSTANT 32b -- Create double constant
2VARIABLE - Create double variable
ARRAY n-- Create a single-precision array
CONSTANT 16b - Create a constant
FARRAY n-- Create a float array of n elements
FCONSTANT float -- Create a floating point constant
FVARIABLE - Create a floating point variable
PARAMETER-BLOCK --Structure of variables for passing to driver
USER n-- Create a user variable
VARIABLE -- Create a variable
VOCABULARY -- Create a vocabulary

SYSTEM
ICSP - Store parameter stack addr
#TIB -- addr Addr of TIB string length
(FIND) addr1 addr2 -- addr3 n Searches current directory
.CPU - Print processor name
.NAME addr - Print name in dictionary
8 - Print the stack
>BODY addrt -- addr2 Get CFA’s corresponding PFA
>IN - addr Input stream pointer
?7COMP - Check if compiling
?CS8P - Check parameter stack pointer
?EXEC - Check if executing
?PAIRS 16b1 16b2 - Execute abort if 16b <> 16b
?STACK - Check limits of stack pointer
?KEY -- fiag True if character received
ABORT n..n -- Clear stack and quit
ABORT" flag -- Conditional abort
ALLOT W - Allocates w bytes in the dictionary
BASE - System radix
CfL -n Constant leaving # of characters per line
CLEAR.BUF - Reset communication buffers
CLOCK.TICK -- addr Variable incremented by RTC
COLD - Restart FORTH
COM1 - Select Optomux port for serial IO
COoM2 - Select serial port 2 on LC4 for serial /O
COM3 -- Select serial port 3 on LC4 for serial 1fO
CONSOLE - Select host port for serial O
CONTEXT -- addr First vocabulary to search
csepP -~ addr User variable for stack pointer
CURRENT -- addr User variable for vocabulary pointer
DEFINITIONS - Select compilation vocabulary

QUICK REFERENCE GUIDE LC2/LC4 OPTO 22 FORTH
DP -- addr Next dictionary location
DPL -- addr # of digits right of decimal
EMPTY - Remove all user compiled FORTH words
ERROR addri n1 -- addr2 n2 Print a system error
EVEN -n Constant for even parity
FENCE -- addr FORGET boundary
FIND addrt -- addr2 n Search name in dictionaries
FORGET - Remove from dictionary
FORTH - Select FORTH vocabulary
FORTH-83 - Verify FORTH-83 system
HERE -- addr Next available dictionary addr
1 -W Inner loop index
IMMEDIATE - Mark latest definition
INTERPRET -- Outer text interpreter
J - W inner loop index
K -w Inner loop index
LATEST -- addr Most recently compiled definition
LC.ADDRESS -- addr L C2's address for SLEEP/AWAKE
LITERAL -- 16b Compile a number

16b --

NEXT-LINK -- addr Addr of NEXT
NO - N Constant for no parity
NOOP - Does nothing
OPTOWARE - Calls Optoware driver
OoDbD -n Constant for odd parity
ouT -~ addr Counts number of EMITS
PAD -- addr System scratch pad
PAMWARE - Calls the Pamux driver
RO -- addr initial addr of return stack
RP! - Initializes return stack
RP@ -- addr Addr of return stack
SET.SERIAL n1 n2 n3 -- flag Sets serial port parameters
S0 -- addr Initial addr of parameter stack
SMUDGE - Toggles smudge bit
SPAN -- addr # of chars received by EXPECT
Skl - Initializes parameter stack
SP@ -- addr Addr of parameter stack
STATE -- addr Compilation state
TASK - Boundary marker
TIB - addr Text input bugger
TRAVERSE addri n -- addr2 Move across name fisld
TX.ENABLE -- addr State of com port transmitter
VOC-LINK - addr Addr of vocabulary link field
WIDTH -- addr MAX # of chars in name field
WORDS - Lists names in vocabulary
XONO.ENABLE - addr Com0 xon/xoff enable variable
XON1.ENABLE -- addr Com1 xon/xoff enable variable
XON2.ENABLE -- addr Com2 xon/xoff enable variable
XONS.ENABLE -- addr Com?3 xon/xoff enable variable
\ -- Start of comment

LC2/LC4 OPTO 22 FORTH QUICK REFERENCE GUIDE

LC2/LCA
ADDRESS -- addr Address field in PARAMETER-BLOCK
AWAKE n-- Wake up sleeping LC2
CLOCK.TICK -- addr Counter variable
COMMAND -- addr Command field in PARAMETER-BLOCK
DATE! -~ nin2n3-- Set date on RTC
DATE®@ - n1 n2n3 Fetch date from RTC
DAYSI n-- Set day on RTC
DAYS@ -n Feich day from RTC
ERRORS -- addr Errors field in PARAMETER-BLOCK
HOURS! n-- Set hours of RTC
HOURS®@ -n Fetch hours from RTC
INFO n -- addr Info-array in PARAMETER-BLOCK
LC.ADDRESS n-- LC2's address for SLEEP/AWAKE
MINUTESI n -- Set minutes on RTC
MINUTES @ -n Fetch minutes from RTC
MODIFIERS n -- addr Modifier-array in PARAMETER-BLOCK
MONTHS! n-- Set months on RTC
MONTHS @ -n Fetch months from RTC
OPTOWARE - Call OPTOMUX™ driver
PAMWARE - Call PAMUX™ driver
PARAMETER-BLOCK --Parameter-block for OPTOWARE ™
PARAMETERS -- addr Point to current parameter-block
POINTER addr -- Create memory pointer
POSITION -- addr Position variable in parameter-block
POSITIONS n -- addr Positions-array in parameter-block
SECONDSI n-- Set seconds on RTC
SECONDS@ --n Fetch seconds from RTC
SLEEP n-- Put LC2 to sleep
TIME! a1l n2 n3 -- Set time on RTC
TIME@ - ntn2n3 Fetch time from RTC
YEARS! n - Set year on RTC

YEARS@ - n Fetch year from RTC

QUICK REFERENCE GUIDE LC2/1.C4 OPTO 22 FORTH

LC2/LC4 OPIO 22 FORTH GLOSSARY

GLOSSARY

The major parts included in the Glossary are: an explanation of the conventions used throughout the
manual, an alphabetized Standard Word Set for quick reference and the actual Word Set Glossary,

GLOSSARY CONVENTIONS

Glossary Word Definition Layout

(WORD DEFINITION)
"natural language pronunciation”

STACK:
{Stack Notation)

CATEGORY:
{Word Attribute) -(Category)

DESCRIPTION:
(Word Description)

Word Definitions

All LC2 FORTH words are defined in upper case. In order to be executed, they must be called in upper
case. User defined words can be defined in either case, but must be called in the form (upper or lower
case) which they were defined. For ease of verbal communication, the natural language pronunciation
(as per FORTH-83 Standards) is surrounded by double quotes where necessary.

Text Input

Word definitions may include the following two symbols to represent text input. This notation refers to
text from the input stream, not to values from the data stack:

<pame>
An arbitrary FORTH word accepted from the input stream:
ceo

A sequence of arbitrary chracters accepted from the input stream. The number of characters accepted
may be from 0 to 255 and are accepted until the occurrence of a specified delimiter.

GLOSSARY LC2/LC4 OPTO 22 FORTH

Word Attributes

Each word definition listed may contain certain capitalized symbols which indicate particular attributes of
the defined word, These atiributes are described below:

C The word may only be used within a colon definition.
| immediate, will execute during compilation.

u User variable.

83 Part of the FORTH 83 Required Word Set.

79 Unchanged from the FORTH 79 Required Word Set.

Word Descriptions

Each word in the glossary is followed by a brief description and an example to better illustrate its
usage. The descriptions are reproduced from the FORTH-83 standards document and modified only
where exceptions are taken or, for the sake of clarity, a better description is required.

Stack Notation

The following symbolic diagram shows the effect on the stack when a FORTH word is executed:
before -- after

Two dashes separate the contents of the stack before and after execution. The elements to the left of
the dashes represent the contents of the stack before execution. The elements to the right of the
dashes represent the contents of the stack after the word is executed. The top of the stack is always to
the right. For example, if the stack contains the numbers 1,2 and 3, with 3 being on the top of the
stack, the diagram for the word ROT can be shown as:

123-231

LC2/LC4 OPTO 22 FORTH

GLOSSARY

Stack Abbreviations

The following is a list of stack parameter abbreviations used throughout the LC2 FORTH manual.
These abbreviations are consistent with those used in the FORTH-83 Standards document with minor
exceptions, Suffixes are used to differentiate between multiple parameters of the same typs.

Stack Number Range Minimum
Abbr. Type (Decimal) Field
addr 16-bit memory address 0..65,535 16
byte 8-bit byte (represented as a 16-bit number 0..265 8
with the high order 8-bits equal to zero)

char character (same representation as byte) 0..255 8
flag boolean O=false, -1=true 16
true boolean -1 as a result 16
false boolean 0 16
b bit 0..1 1

8b 8 arbitrary bits (byte) not applicable 8
16b 16 arbitrary bits (word) not applicable 16
32b 32 arbitrary bits (double word) not applicable 32
n integer number (signed, 16 bits) -32,768..32,767 16
+n positive integer 0..32,767 16
d double-precision integer (signed, 32-bits, -2,147,483,648.. az

high order bits on top of stack) 2,147,483,647
+d positive, double-precision integer 0..2,147,483,647 32
u unsigned integer 0..65,535 16
w unspecified integer {signed or unsigned) -32,768..65,535 16
ud unsigned, double integer -..4,294,967,295 32
wd unspecified, double integer -2,147,483,648.. 32
4,294,967,295
sys Temporary system data not applicable na

GLOSSARY LC2/LC4 OPTO 22 FORTH

Categories of FORTH Words

Arithmetic Performs an arithmetic or bit manipulation operation.

Comparison Performs a comparison, then returns a flag to the stack
Flags are boolean; -1 = true and 0 = false.

Compiler word Has both compile-time and run-time action.

Control Causes conditional or unconditional branching of
program control at execution time.

Conversion Converis ASCII data to binary or vice-versa.

Defining word Creates a dictionary definition from the input stream.

Input Reads data from host, OPTOMUX or CPU ports.

Logical Performs a logical operation such as AND, OR, XOR or NOT.
Memory Reads or changes bytes in memory.

OQutput Controls or transfers data to the host, OPTOMUX, or CPU ports.
Stack Changes the number of items or the position of items on the stack.
String Performs operations on byte strings which may include patsing,

counting or comparisons.

System Provides access o the FORTH system.

LC2/1L.C4 OPTO 22 FORTH

Glossary

STANDARD WORD SET

The LC2/LC4 FORTH Dictionary is composed of the majotity of the FORTH-83 Required
Word Set. Words not included are some of the file-related words in the device layer of the
FORTH-83 Required Word Set. The LC2/LC4 FORTH Dictionary also includes words from
the FORTH-83 Double Number Extension Word Set and the Controlled Reference Word Set.
For more information on the FORTH-83 Standard, contact the FORTH Standards Team listed
in the Appendix. An enhanced word set which inciudes LC2/L.C4 and OPTOWARE™ specific
words has also been added to makeup the complete LC2/LC4 FORTH Dictionary.

The following is a list of the LC2/L.C4 FORTH Standard Word Set. Refer to the next section
for information on the LC2/LC4 FORTH enhanced word set.

1
ICSP
#

#>

#IN

#3S

#TIB

(

(")

(+LOOP) (;CODE)
(?D0)

(?LEAVE)

(DO)

(FIND)

(LEAVE)

(LIT)

(LOOP)

*
*IMOD
*D

<+

+

+u
+LOOP

-

-2

-2ROT

-3

-3ROT

4

-ROT
TRAILING

.
L]

X

NAME
S

/

/MOD

W)

O<

O<>

0=

0>

1

1+

i-

2

2l

24N

2*

24

2.

2f

2@
2ARRAY
2CONSTANT
2DROP
2DUP
20VER
2R0T
28WAP
2VARIABLE
3
3DROP
3DUP
3ROT
3SWAP
4

<#

(LC4): This word only available with L.C4

<>

<MARK
<RESOLVE
>

>BODY

>IN

>LINK
>MARK
>NAME

>R
>RESOLVE
?

?7<MARK
?<RESOLVE
?7>MARK
?>RESOLVE
?BRANCH
?COMP
?CONDITION
?CSP

?D0o

?DUP
?EXEC
?KEY
?LEAVE
?PAIRS
?8TACK

@

@@
ABORT
ABORT"
ABS
ADDRESS
AGAIN
ALLOT
AND
ARRAY
ASCII

AWAKE
BANK.]
BANK.2!
BANK.2@
BANK.@
BANK.CI!
BANK.C@
BASE
BEGIN

8L

BODY>
BRANCH

Cl

C!

C/lL

CASE

c@
CLEAR.BUF
CLOCK.TICK
CMOVE
CMOVE>
COLD
COM1
COM2 (LC4)
COM3 (LC4)
COMMAND
COMPILE
CONSOLE
CONSTANT
CONTEXT
CONVERT
COUNT

CR
CREATE
CsP
CURRENT
D+

D-

D+-

Glossary LC2/LC4 OPTO 22 FORTH
D. F< MAX SPACES
D.R F= MIN SPAN
DO= F> MINUTESI Sk
D2* F>D MINUTES@ SP@
D< F? MOD STATE
D= F@ MODIFIERS SWAP
D> FALSE MONTHS!
D>F FARRAY MONTHS@ TASK
DABS FCONSTANT MU/MOD THEN
DATE! FCOSINE NAME> TIB
DATE@ FCOS NEGATE TIME!
DAYS! FENCE NEXT-LINK TIME®@
DECIMAL FEXP NO TOGGLE
DEFINITIONS FILL NOOP TRAVERSE
DEPTH FIND NOT TRUE
DIGIT FLN obb TX.ENABLE
DLITERAL FNEGATE OF TYPE
DMAX FORGET OLD u.
DMIN FORTH OPTOWARE UR
DNEGATE FORTH-83 OR U<
DO FPERR ouT U>
DOES> FSIN OVER UM*
DP FSQRT Pl UM/MOD
DPL FVARIABLE Pa@ UNTIL
DRCP F PAD USER
DSHIFT HERE PAMWARE (LC4) VARIABLE
buU. HEX PARAMETER-BLOC VOC-LINK
bDU.R HLD KPARAMETERS VOCABULARY
DU< HOLD PICK WHILE
DU HOURS! POINTER WIDTH
DUMP HOURS@ POSITION (LC4) WORD
DuUpP I POSITIONS WORDS
E IF QUERY XONO.ENABLE
ELSE IMMEDIATE QuIT XON1.ENABLE
EMIT INFO R> XON2.ENABLE-LC
EMPTY INTERPRET R@> AXON3.ENABLE-L
ENCLOSE J RO CAXOR
ENDCASE K RECURSE YEARSI
ENDOF KEY REPEAT YEARS@
ERROR LATEST ROLL [
ERRORS LC.ADDRESS ROT [
EVEN LEAVE RP! [COMPILE]
EXECUTE LoC RP@]
EXIT LITERAL S0 /
EXPECT LOF S>D
Fl ROT SECONDS!
F* RP! SECONDS®@
F+ RP@ SET.SERIAL
F- S0 SHIFT
F. s>D SIGN
F.R SECONDSI SLEEP
Ff LOOP SMUDGE
FO= M/MOD SPACE

(LC4): This word only available with L.C4

4-6

LC2/LC4 OPTO 22 FORTH GLOSSARY

WORD SET GLOSSARY

"store"

STACK:

i16b addr —
CATEGORY:

79 - Memory
DESCRIPTION:

16b is stored at addr.

ICSP
"store-c-s-p"

STACK:
CATEGORY:

- System
DESCRIPTION:

ICSP stores the current parameter stack address in the user variable CSP. This word is
used in conjunction with 2CSP to determine if the parameter stack has changed after
compilation.

#
llsharp"

STACK:

+d1 — +d2
CATEGORY:

79 - Conversion

DESCRIPTION:

The remainder of +d1 divided by the value of BASE is converted to an ASCII character
and appended to the output string toward lower memory addresses. +d2 is the quotient
and is maintained for further processing. Typically used between <# and #>.

GLOSSARY LC2/LC4 OPTO 22 FORTH

#>
"sharp-greater"
STACK:
32b -- addr +n
CATEGORY:

79 - Conversion

DESCRIPTION:
Pictured, numeric output conversion is ended dropping 32b. addr is the address of the
resulting output string. +n is the number of characters in the output string. addr and +n
together are suitable for TYPE.

#IN
"number-in"
STACK:
-n
CATEGORY:
- input, Conversion
DESCRIPTION:

#IN converts numeric characters being received at the selected input port into a
single-precision number and places this number on the stack. Conversion stops if a
non-humeric character is received. If the number is larger than a single-precision value,
the upper bits of the result will be incorrect.

#S
"sharp-s"
STACK:
+d -- 00
CATEGORY:
79 - Conversion
DESCRIPTION:

+d is converted, appending each resultant character into the pictured numeric output
string until the quotient (see: #) is zero. A single zero is added to the ouput string if the
number was initially zero. Typically used between <# and #>.

LC2/LC4 OPTO 22 FORTH GLOSSARY

#T1B
"sharp-t-i-b"
STACK:
- addr
CATEGORY:
U,B3 - System
DESCRIPTION:

#TIB is the address of a variable containing the number of bytes in the text input buffer.
#TIB is accessed by WORD when BLK is zero. {{0..capacity of TiB}}

Y

Iltickll

STACK:

- addr
CATEGORY:

83 - Compiler word
DESCRIPTION:

Used in the form: ' <pame>

addr is the compilation address of <name>. An error condition exists if <pame> is not
found in the currently active search order.

llparenll

STACK:

-~ (compiling)

CATEGORY:
[,83 - Compiler word

DESCRIPTION:
Used in the form: (ccc)

The characters ccc, delimited by) (closing parenthesis), are considered comments.
Comments are not otherwise processed. The blank following (is not part of cce. (may
be freely used while interpreting or compiling. The number of characters in_ccc may be
from zero to the number of characters remaining in the input stream up to the closing
parenthesis.

GLOSSARY 1.C2/LC4 OPTO 22 FORTH

11
"paren-(do)t-quote"
STACK:
addr -- addr1
CATEGORY:
- Compiler word
DESCRIPTION:

(.") is a run-time procedure compiled by ." and is used to output the text string compiled
into the dictionary by ." . addr is the address of the length byte of the text string. addr1
is the address of the next word to interpret.

(+LOOP)
"paren-plus-loop"
STACK:
ne--
CATEGORY:
- Compiler word
DESCRIPTION:

(+LOOP) is the run-time procedure compiled by +1.COP, which increments the lcop index
by n and tests for loop completion.

(;CODE)
"paren semi-colon code"
STACK:
CATEGORY:
«Compiler word
DESCRIPTION:

(;CODE) is the run-time procedure, compiled by ;CODE, that rewrites the code field of the
most recently defined word to point to the following machine code sequence.

(?D0O)
"paren-query-do’
STACK:
CATEGORY:
- Compiler word
DESCRIPTION:

{?DO) is the run-time procedure compiled by ?DO to indicate the start of an iterative loop.

LC2/LC4 OPTO 22 FORTH GLOSSARY

(?LEAVE)
"paren-query-leave"
STACK:
CATEGORY:
-Compiler word
DESCRIPTION:
(?LEAVE) is the run-time procedure compiled by ?LEAVE.
(DO)
"paren-do"
STACK:
CATEGORY:
- Compiler word
DESCRIPTION:

(DO) is the run-time procedure compiled by DO to move the loop control parameters to
the return stack. See DO.

(FIND)
"paren-find"

STACK:
addr1 addr2 -- pfa b #f {successful)
addr1 addr2 — ff {unsuccessful)
CATEGORY:
- 8ystem

DESCRIPTION:

(FIND) will perform a dictionary search starting at the name-field address addr2, and try
to match the text at address addr1. If successful, the parameter field address (pfa), the
length byte of the name-field (b), and a boolean true flag (tf) will be returned on the
stack. If unsuccessful, a boolean false flag {ff} will be returned.

GLOSSARY LC2/LC4 OPTO 22 FORTH

(LEAVE)
"paren-leave"
STACK:
CATEGORY:
- Compiler word
DESCRIPTION:

(LEAVE) is the run-time procedure which is compiled by LEAVE to transfer execution to
just beyond the next LOOP or +LOOP. See LEAVE.

(LIT)
"paren-lit"

STACK.

CATEGORY:
« Compiler word

DESCRIPTION:

(LIT) is the run-time procedure which is compiled by LIT to place the 16-bit contents of
the next dictionary location onto the parameter stack.

(LOOP)
"paren-loop"

STACK:
CATEGORY:

- Compiler Word
DESCRIPTION:

(LOOP) is the run-time procedure compiled by LOOP which increments the loop index
and tests for a loop completion.

*

"times"

STACK;

wil w2 - w3
CATEGORY:

79 - Arithmetic

DESCRIPTION:
w3 is the least-significant 16-bits of the arithmetic product of w1l times w2.

LC2/LC4 OPTO 22 FORTH GLOSSARY

*

"times-divide"'

STACK:
nin2n3-nd

CATEGORY:
83 - Arithmetic

DESCRIPTION:

n1 is first multiplied by n2 producing an intermediate 32-bit result. n4 is the floor of the
quotient of the intermediate 32-bit result divided by the divisor n3. The product of n1
times n2 is maintained as an intermediate 32-bit result for greater precision than the
otherwise equivalent sequence: n1 n2 * n3 /. An error condition results if the divisor is
zero or if the quotient falls outside of the range {-32,768..32,767].

*MOD
"times-divide-mod"

STACK:
ni n2 n3 - rem quot

CATEGORY:
83 - Arithmetic

DESCRIPTION:
n1 is first multiplied by n2 producing an intermediate 32-bit result. rem is the remainder
and quot is the floor of the quotient of the intermediate 32-bit result divided by the
divisor n3. A 32-bit intermediate product is used as for *. rem has the same sigh as n3
or is zero. An error condition results if the divisor is zero or if the quotient falls outside
of the range {-32,768..32,767}.

*D
"times-d"
STACK:
nit n2 --d
CATEGORY:
- Arithmetic
DESCRIPTION:

*D multiplies two single precision numbers n1 and n2 and leaves a double precision
result d on the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

+
leusll
STACK:
wiw2-w3
CATEGORY:
79 - Arithmetic
DESCRIPTION:
w3 is the arithmetic sum of w1 plus w2,
+!

"plus-store"

STACK:

w1 addr --
CATEGORY:

79 - Arithmetic
DESCRIPTION:

w1 is added to the w value at addr using the convention for +. This sum replaces the
original value at addr.

+a
"plus-minus"

STACK:

wi w2 - w3
CATEGORY:

- Arithmetic

DESCRIPTION:

The +- operation negates the sign of w1 if the sign of w2 is negative. The top value w2 is
then dropped.

+LOOP
"plus-loop"

STACK:

n -

sys -- (compiling)
CATEGORY:

C,1,83 - Control

DESCRIPTION:

n is added to the loop index. If the new index was incremented across the boundary
between limit-1 and limit then the loop is terminated and loop control parameters are
discarded. When the loop is not terminated, execution continues {o just after the
corresponding DO. sys is balanced with its corresponding DO. See: DO

LC2/LC4 OPTO 22 FORTH GLOSSARY

?
"comma"

STACK:
16b --
CATEGORY:
79 - Compiler word
DESCRIPTION:
ALLOT space for 16b then store 16b at HERE -2.

"minus"

STACK:
wi w2 - w3

CATEGORY:
79 - Arithmetic

DESCRIPTION:
w3 is the result of subtracting w2 from w1.

-1
"minus-one"
STACK:
--1
CATEGORY:
- Constant, Arithmetic
DESCRIPTION:

-1 is a single-precision constant with the signed, single-precision value of «1. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

-2
"minus-two"

STACK:
-2
CATEGORY:
- Constant, Arithmetic

DESCRIPTION:

-2 is a single-precision constant with the signed, single-precision value of -2. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

4-15

GLOSSARY LC2/LC4 OPTO 22 FORTH

-2ROT
"minus-two rote"
STACK:
32b1 32b2 32b3 --32b3 32b1 32b2
CATEGORY:
- Stack
DESCRIPTION:

The top three double-number stack entries are rotated, bringing the 2nd
item to the top of the stack.

-3
"minus-three"
STACK:
--3
CATEGORY:
- Constant, Arithmetic
DESCRIPTION:

-3 is a single-precision constant with the signed, single-precision value of -3. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

-3ROT
"minus-three rote"

STACK:

48b1 48b2 48b3 -- 48b3 48b1 48b2
CATEGORY:

- Stack
DESCRIPTION:

The top three triple-number stack entries are rotated,
bringing the 2nd item %o the top of the stack.

-4
"minus-four"
STACK:
CATEGORY:
~ Constant, Arithmetic
DESCRIPTION;

-4 is a single-precision constant with the signed single-
precision value of -4,

LC2/LC4 OPTO 22 FORTH GLOSSARY

-ROT
"dash-rote"
STACK:
16b1 16b2 16b3 — 16b3 16b1 16b2
CATEGORY:
- Stack
DESCRIPTION:

The top three stack entries are rotated, bringing the 2nd
item to the top of the stack.

-TRAILING
"dash-trailing"
STACK:
addr +n1 -- addr +n2
CATEGORY:
79 - String
DESCRIPTION:

The character count +n1 of a text string beginning at addr is adjusted to exclude trailing
spaces. If +n1 is zero, then +n2 is also zero. If the entire string consists of spaces, then
+n2 is zero.

lld.ot"

STACK:
n--
CATEGORY:
79 - Output
DESCRIPTION:

The absolute value of n is displayed in a free-field format with a leading minus sign if n
is negative.

GLOSSARY LC2/1C4 OPTO 22 FORTH

"dot-.quote"

STACK:

-- (compiling)
CATEGORY:

C,1,83 - Output
DESCRIPTION:

Used in the form: ." cece"

Later execution will display the characters ccc up to, but not including, the delimiting "
(close-quote). The blank following ." is not part of ccc.

"dot—baren"

STACK:

- (compiling)
CATEGORY:

1,83 - Output
DESCRIPTION:

Used in the form: (ccc)

The characters cce up to, but not including, the delimiting) (closing parenthesis) are
displayed. The blank following .(is not part of ccc.

.NAME
"dot-name"
STACK:
addr -- Qutput
CATEGORY:
- System
DESCRIPTION:

.NAME is used to print the name-field of a dictionary header given the header’s address
(addr). The name is printed out the currently selected communications port.

LC2/L.C4 OPTO 22 FORTH GLOSSARY

S
"dOt*S"
STACK:
- Qutput
CATEGORY":
- System
DESCRIPTION:

.S displays the contents of the stack.,

"divide"

STACK:

nln2 -n3
CATEGORY:

83 - Arithmetic

DESCRIPTION:

n3 is the floor of the quotient of n1 divided by n2. An error condition results if the
divisor is zero or if the quotient is outside the range (-32,768 - 32,767).

/MOD
"divide-mod"
STACK:
nl1 n2 — rem quot
CATEGORY:
83 - Arithmetic
DESCRIPTION:

rem is the remainder and quot the floor of the quotient of n1 divided by the divisor n2.
n3 has the same sign as n2 or is zero. An error condition results if the divisor is zero or
if the quotient falls outside the range {-32,768..32,767}.

GLOSSARY LC2/LC4 OPTO 22 FORTH

0
''zero"
STACK:
-0
CATEGORY:
- Arithmetic, Constant
DESCRIPTION:

0 is a single-precision constant with the signed, single-precision value of 0. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

0<
"zero-less"

STACK:

n — flag
CATEGORY:

83 - Comparison

DESCRIPTION:
flag is true if n is less than zero (negative).

0<>
"zero not-equal-to”

STACK:

n - flag
CATEGORY:

- Comparison

DESCRIPTION:
flag will be true if n is not equal to zero.

0=
"zero-equals”
STACK:
w -- flag
CATEGORY:
83 - Comparison
DESCRIPTION:

flag is true if w is zero.

LC2/1LC4 OPTO 22 FORTH GLOSSARY

0>
""zero-greater"
STACK:
n - flag
CATEGORY:
83 - Comparison
DESCRIPTION:

flag is true if n is greater than zero.

1
llonell
STACK:
-1
CATEGORY:
- Constant, Arithmetic
DESCRIPTION:

1 is a single-precision constant with the signed value of 1. Since this value is used very
often, it has been made into a constant in order to save compiling time.

1+
"one-plus"
STACK:
wil -- w2
CATEGORY:
79 - Arithmetic
DESCRIPTION:

w2 is the result of adding one to w1 according to the operation of +.

1-
"one-minus"
STACK:
wil -- w2
CATEGORY:
79 - Arithmetic
DESCRIPTION:

w2 is the result of subtracting one from w1 according to the operation of - .

GLOSSARY LC2/LC4 OPTO 22 FORTH

2
1 ltwoll
STACK:
-2
CATEGORY:
« Constant, Arithmetic
DESCRIPTION:

2 is a single-precision constant with the signed, single-precision value of 2. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

21
"two-store"

STACK:
d addr -

CATEGORY:
79 - Memory

DESCRIPTION:
2! stores a double-precision number d at the specified memory location addr.

2#IN
"two-number-in"
STACK:
-d
CATEGORY:
- Input, Conversion
DESCRIPTION:

2#IN converts numeric characters received at the input port into a double- precision
number and places this number on the stack. Conversion stops if a hon-numeric
character is received. If the number is larger than a double-precision value, the upper
bits of the result will be incorrect.

2*
"two-times"

STACK:

nl - n2
CATEGORY:

79 - Arithmetic
DESCRIPTION:

n2 is the result of arithmetically shifting nt left one bit. A zero is shifted into the vacated
bit position.

LC2/LC4 OPTO 22 FORTH GLOSSARY

2+
"two-plus"
STACK:
wl - w2
CATEGORY:
79 - Arithmetic
DESCRIPTION:

w2 is the result of adding two to w1 according to the operation of +.

2
"two-minus”
STACK:
w1l - w2
CATEGORY:
79 - Arithmetic
DESCRIFTION:

w2 is the resuit of subtracting two from w1 according to the operation of - .

2/
"two-divide"
STACK:
ni —-n2
CATEGORY:
83 - Arithmetic
DESCRIPTION:

n2 is the result of arithmetically shifting n1 right one bit. The sign is included in the shift
and remains unchanged.

2@
"two-fetch"

STACK:

addr -- 32b
CATEGORY:

79 - Memory
DESCRIPTION:

2@ will copy a double-precision number from the specified address to the top of the
stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

2ARRAY
"two-array"
STACK:
n -
CATEGORY:
- Defining word
DESCRIPTION:

2ARRAY is a defining word used to allocate memory for storage of a double-precision
array. The format for using <name> is:

n <name>

n is the array element you want to access. When <name> is executed, the address of the
specified array element is placed on the stack.

2CONSTANT
"two-constant"

STACK:
32b --

CATEGORY:
83 - Defining word
DESCRIPITON:
A defining word for creating a double precision constant used in the form:
d 2CONSTANT <pame>

Creates a dictionary entry for <name> so that when <pame> is later executed, the
double-precision number d will be left on the stack.

2DROP
"two-drop"
STACK:
32b -
CATEGORY:
79 - Stack
DESCRIPITON:

2DROP will remove one double-precision number or two single-precision numbers from
the top of the stack.

LC2/LC4 OPTO 22 FORTH GLOSSARY

2DUP
"two-dupe"”
STACK:
32b -- 32b 32b
CATEGORY:
79 - Stack
DESCRIPTION:

2DUP will duplicate the double-precision number on the top of the stack. It is a faster
and more compact operation than OVER OVER.

20VER
"two-over"
STACK:
32b1 32b2 ~ 32b1 32b2 32b1
CATEGORY:
79 - Stack
DESCRIPTION:

20VER copies the second double-precision number on the stack to the top of the stack.

2ROT
"two-rote”
STACK:
32b1 32b2 32b3 — 32b2 32b3 32b1
CATEGORY:
- Stack
DESCRIPTION:

2ROT rotates the top three double-numbers on the stack, bringing the third double-
number to the top of the stack.

2SWAP
"two-swap"
STACK:
32b1 32b2 - 32b2 32b1
CATEGORY:
79 - Stack
DESCRIPTION:

2SWAP exchanges the top two double-precision numbers on the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

2VARIABLE
"two-variable"
STACK:
CATEGORY:
79 - Defining word
DESCRIPTION:

2VARIABLE is a defining word used to allocate memory for storage of a deuble-precision
number. Used in the form:

2VARIABLE <pame>

A dictionary entry for <name> is created and four bytes are ALLOTted in its parameter
field. The parameter field is to be used for contents of the variable. The application is
responsible for initializing the contents of the variable which it creates. When <pame> is
later executed, the address of its parameter field is left on the stack.

3
"three"
STACK:
-3
CATEGORY:
- Constant, Arithmetic
DESCRIPTION:

3 is a single-precision constant with the signed single-precision value of 3. Since this
value is used very often, it has been made into a constant in order to save compiling
time.

3DROP
"three-drop

STACK:

48b1 --
CATEGORY":

- Stack
DESCRIPTION:

3DROP will remove one triple-precision number from the top
of the stack.

LC2/LC4 OPTO 22 FORTH GLOSSARY

3DUP
"three-dupe"
STACK:
48b1-- 48b1 48b1
CATEGORY:
- Stack
DESCRIPTION:

3DUP will duplicate thetriple-precision number on the top of the stack.

3ROT
"three-rote"

STACK:

48bh1 48h2 48b3 --48b2 48b3 48b1
CATEGORY:

- Stack
DESCRIPTION:

3ROT will rotate the top three triple-number, stack entries, bringing the 3rd item to the
top of the stack.

3SWAP
"three-swap"

STACK:
48b1 48b2 - 48b2 48b1

CATEGORY:
- Stack

DESCRIPTION:
3SWAP exchanges the top two triple-precision numbers on the stack.

4
"four"

STACK:
-4
CATEGORY:
- Constant, Arithmetic

DESCRIPTION:
4 is a single-precision constant with the signed single-precision value of 4.

GLOSSARY LC2/1.C4 OPTO 22 FORTH

"colon"

STACK:
- sys
CATEGORY:
79 - Compiler word

DESCRIPTION:
A defining word executed in the form:

: <pame> .. §

Create a word definition for <name> in the compilation vocabulary and set compilation
state. The search order is changed so that the first vocabulary in the search order is
replaced by the compilation vocabulary. The compilation vocabulary is unchanged. The
text from the input stream is subsequently compiled. <name> is called a "colon
definition". The newly created word definition for <name> cannot be found in the
dictionary until the corresponding ; is successfully processed.

An error condition exists if a word is not found and cannot be converted to a number or
if, during compilation from mass storage, the input stream is exhausted before
encountering ;. sys is balanced with its corresponding ; +.

]
"semi-colon"

STACK:

- sys— (compiling)
CATEGORY:

C,1,79 - Compiler word
DESCRIPTION:

Stops compilation of a colon definition, allows the <name> of this colon definition to be
found in the dictionary, sets interpret state and compiles EXIT (or a system dependent
word which performs an equivalent function). sys is balanced with its corresponding : .

<
"less-than"

STACK:

n1 n2 -- flag
CATEGORY:

83 - Comparison

DESCRIPTION:

flag is true if n1 is less than n2. -32768 < 32767 must return true. -32768 < 0 must
return true.

LC2/LC4 OPTO 22 FORTH GLOSSARY

<#
"less-sharp”
STACK:
CATEGORY:
79 - Conversion
DESCRIPTION:

Initialize pictured, numeric, output conversion. The words:
#> #S <# HOLD SIGN

can be used to specify the conversion of a double number into an ASCII text string
stored in right-to-left order.

<>
"not-equal-to"

STACK:
ntn2-f

CATEGORY:
« Comparison

DESCRIPTION:
Flag f is true if n1 is not equal to n2.

<MARK"
"from-mark™
STACK:
- addr
CATEGORY":
- Control
DESCRIPTION:

<MARK places the value of the current dictionary pointer on the stack.

<RESOLVE
"from resolve"
STACK:
addr --
CATEGORY:
- Control
DESCRIPTION:

<RESOLVE compiles the word at addr into the current definition.

GLOSSARY LC2/1C4 OPTO 22 FORTH

"equals"

STACK:

wil w2 - flag
CATEGORY:

- Comparison

DESCRIPTION:
flag is true if w1 is equal to w2

>
"greater-than"

STACK:

ni n2 -- flag
CATEGORY:

83 - Comparison
DESCRIPTION:

flag is true if n1 is greater than n2. -32768 > 32767 must return false. -32768 > 0 must
return false

>BODY
"to-body"
STACK:
addr1 — addr2
CATEGORY:
83 - System
DESCRIPTION:

addr2 is the parameter-field address corresponding to the compilation address addri.

>IN
1 lto_i n "
STACK:
--addr
CATEGORY:
U, 79 - System
DESCRIPTION:

>IN is the address of a variable which contains the present character offset within the
input stream {{0..the number of characters in the input stream}}. See: WORD

LC2/LC4 OPTO 22 FORTH GLOSSARY

>LINK
"to-link"
STACK:
addr1 - addr2
CATEGORY:
- Compiler Word
DESCRIPTION:

addr2 is the link-field address corresponding to the compilation address addr1.

>MARK
"to-mark"
STACK:
— addr
CATEGORY:
- Control
DESCRIPTION:

>MARK places the address of the next free location of a definition on the stack and
places a temporary zero in that location. >RESOLVE is used later to replace the zero
with the current dictionary pointer.

>NAME
"to-name"
STACK:
addrt - addr2
CATEGORY:
- Compiler word
DESCRIPTION:

addr2 is the name-field address corresponding to the compilation address addri.

>R
"tO-I’"
STACK:
16b --
CATEGORY:
C,79 - Stack
DESCRIPTION:

Transfers 16b to the return stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

>RESOLVE
"to-resolve"
STACK:
addr --
CATEGORY:
- Control
DESCRIPTION:

>RESOLVE places the current dictionary pointer at the address on the stack.

?
T lq ueryll
STACK:
addr —
CATEGORY:
-Output, Conversion
DESCRIPTION:

? performs a binary to ASCIl conversion of the signed 16-bit contents of the specified
memory location (addr) and prints it out the selected communications port.

?<MARK
"query-from-mark"
STACK:
-- flag addr
CATEGORY:
- Control
DESCRIPTION:

?<MARK will put a true flag on the stack and then execute <MARK.

?<RESOLVE
"query-from-resolve"”
STACK:
flag addr --
CATEGORY:
- Control
DESCRIPTION:

?<RESOLVE will execute <RESOLVE if flag f is true. If flag f is false, ABORT"
Conditionals Wrong" will be executed.

LC2/LC4 OPTO 22 FORTH GLOSSARY

?>MARK
"query-to-mark"
STACK:
-- flag addr
CATEGORY:
- Control
DESCRIPTION:

?>MARK will put a true flag on the stack and then execute >MARK.

?>RESOLVE
"query-to-resolve"
STACK:
flag addr --
CATEGORY:
- Control
DESCRIPTION:

2?>RESOLVE will execute >RESOLVE if flag f is true, If flag f is false, ABORT"
Conditionals Wrong" will be executed.

?BRANCH
"query-branch"
STACK:
fiag --
CATEGORY:
- Control
DESCRIPTION:

?BRANCH will execute BRANCH if flag f is zero.

?COMP
"query-comp”
STACK:
CATEGORY:
~ System
DESCRIPTION:

?2COMP causes an error message to be issued if not compiling.

GLOSSARY LC2/LC4 OPTO 22 FORTH

?CONDITION
"query-condition”
STACK:
flag ~-
CATEGORY:
- Comparison
DESCRIPTION:

2CONDITION will execute an ABORT" Conditionals Wrong" if flag f is false.

?2CSP
llq uery_c_s_pl'l
STACK:
CATEGORY:
- System
DESCRIPTION:

2CSP issues an error message and a QUIT if the current parameter-stack pointer position
does not equal the value stored in the user variable CSP. Refer to WARNING and
MESSAGE for information on the type of error message issued by 2CSP.

?DO
"q uery_doll
STACK:
nln2 -
CATEGORY:
C,l - Control
DESCRIPTION:

?D0 is used 1o indicate the start of an iterative loop. ?DO is used along with LOOP or
+LOOP within a colon-definition. n1 is the loop limit and n2 is the loop index. If the
initial loop index n2 is equal to the limit n1, the loop is not executed. Instead, control
will pass directly to the word following the LOOP or +LOOP word. Otherwise, the loop
will terminate when the n2 is incremented past the boundary between n1-1 and ni.

LC2/1C4 OPTO 22 FORTH GLOSSARY

?DUP
"query-dupe"
STACK:
16b ~ 16b 16b or 0~ 0
CATEGORY:
79 - Stack
DESCRIPTION:

?DUP will duplicate 16b if it is non-zero.

?EXEC
"query-exec'
STACK:
CATEGORY:
- System
DESCRIPTION:

2?EXEC causes an error message to be issued if not executing.

?KEY
"query-key"
STACK:
- flag
CATEGORY:
- System
DESCRIPTION:

?KEY returns a flag indicating whether a character has appeared at the selected
communications port. The flag is true if a character is present.

?LEAVE
"query-leave'
STACK:
flag -
CATEGORY:
- Control
DESCRIPTION:

?LEAVE will execute LEAVE if flag is true.

GLOSSARY LC2/LC4 OPTO 22 FORTH

?PAIRS
"query-pairs'
STACK:
16b1 16b2 -
CATEGORY:
- System
DESCRIPTION:
?PAIRS issues an error message and executes an ABORT if the top 2 items on the stack
don’t match.
?STACK
"query-stack"
STACK:
CATEGORY:
- System
DESCRIPTION:

?STACK checks if the stack pointer is out of bounds. If true, an error message is
generated and program execution stops.

@
"fetch”
STACK:
addr -- 16b
CATEGORY:
- Memory
DESCRIPTION:

16b is the value at addr.

LC2/LC4 OPTO 22 FORTH GLOSSARY

@@
"fetch-fetch™
STACK:
addr -- 16b
CATEGORY:
- Memory
DESCRIPTION:

@@ will copy a single-precision number from memory to the top of the stack, @@ is
equivalent to doing @ @.

ABORT

STACK:
M. N -
CATEGORY:
79 - System
DESCRIPTION:
Abort clears the data stack and performs the function of QUIT. No message is displayed.

ABORT"
"abort-quote"
STACK:
flag - -- (compiling)
CATEGORY:
C,,83 - System
DESCRIPTION:

Used in the form:
flag ABORT" cce”

When later executed, if flag is true the characters ccc, delimited by " (close-quote), are
displayed and then a system dependent error abort sequence, including the function ot
ABORT, is performed. If flag is false, the flag is dropped and execution continues. The
blank following ABORT" is not part of ccc,

GLOSSARY LC2/LC4 OPTO 22 FORTH

ABS
"absolute"

STACK:

n--u
CATEGORY:

79 - Arithmetic

DESCRIPTION:
u is the absolute value of n. If n is -32,768 then u is the same value.

ADDRESS

STACK:
-- addr

CATEGORY:
- Memory

DESCRIPTION:
ADDRESS points to "address" variable which is passed to-and-from the OPTOWARE™
driver. This word is used for storing or fetching a value in the "address™ variable within
the parameter block being pointed at by the "parameters” variable. The ADDRESS
pointer is equal to the contents of PARAMETERS plus an offset of 2.

AGAIN

STACK:
CATEGORY:

C,I - Control
DESCRIPTION:

AGAIN causes program control to branch to the word immediately following the
corresponding BEGIN.

LC2/LC4 OPTO 22 FORTH GLOSSARY

ALLOT

STACK:

W -
CATEGORY:

79 - System
DESCRIPTION:

ALLOT allocates w bytes in the dictionary. The address of the next available dictionary
location is updated accordingly.

AND

STACK:
16b1 16b2 - 16b3
CATEGORY:
79 - Logical
DESCRIPTION:
16b3 is the bit-by-bit logical ‘and’ of 16b1 with 16b2.

ARRAY

STACK:

n -
CATEGORY:

- Defining word

DESCRIPTION:

ARRAY is a defining word used to allocate memory for storage of a single-precision
array. Used in the form:

n ARRAY <pame>

n is the array element you want to access. When <name> is executed, the address of the
specified array element is placed on the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

ASCIl
“as“keyll

STACK:

sys —
CATEGORY:
- Compiling
DESCRIPTION:
Used in the form:
ASCIH ¢ce

where the delimiter of ccc is a space. char is the ASCII character value of the first
character in gce. M interpreting, char is left on the stack. If compiling, compiles char as
a literal so that when the colon definition is later executed, char is left on the stack.

AWAKE

STACK;
n -

—

CATEGORY:
Comparison, 1.C2/4
DESCRIPTION:

The AWAKE word is used to enable a single LC2/LC4 or all LC2/LCA’'s on a multidropped
link which has been previously disabled with the SLEEP word. n represents the unique
address of the LC2/LC4 to enable. When AWAKE is issued, each LC2/L.C4 that is
disabled will compare the value on the top of the stack to the value stored in its system
variable LC.ADDRESS. If a match is found, that particular 1.C2/LC4 will be enabled and
will respond to all communication on the host link. If no value appears on the stack, all
LC2/LC4's will be enabled. See: SLEEP and LC.ADDRESS.

BANK.!
"bank-dot-store"
STACK:
16b addr —
CATEGORY:
- Memory
DESCRIPTION:

BANK.! stores 16b at addr in banked memory.

LC2/LC4 OPTO 22 FORTH GLOSSARY

BANK.2!
"bank-dot-two-store"
STACK:
32b addr --
CATEGORY:
- Memory
DESCRIPTION:

BANK.2! stores a double-precision number, 32b, at the specified memory location addr in
banked memory.

BANK.2@
"hank-dot-two-fetch™
STACK:
addr - 32b
CATEGORY:
- Memory

DESCRIPTION:
32b is the value at addr in banked memory.

BANK.@
"bank-dot-fetch"
STACK:
addr — 16b
CATEGORY:
- Memory
DESCRIPTION:

16b is the value at addr in banked memory.

BANK.C!
"hank-dot-c-store"
STACK:
16b addr --
CATEGORY:
- Memory
DESCRIPTION:

The least-significant 8-bits of 16b are stored into the byte at addr in banked memory.

GLOSSARY LC2/LC4 OPTO 22 FORTH

BANK.C@
"hank-dot-c-fetch"
STACK:
addr - 16b
CATEGORY:
- Memory
DESCRIPTION:

BANK.C@ returns the least significant byte at addr in banked memory. The most
significant byte is zero.

BASE

STACK:
-- addr

CATEGORY:
U,83 - System

DESCRIPTION:
The address of a variable containing the current numeric conversion radix. {{2..72}}

BEGIN

STACK:

CATEGORY:
C,1,79 - Control

DESCRIPTION:
Used in the form:

BEGIN ... flag UNTIL
or
BEGIN ... flag WHILE ... REPEAT

BEGIN marks the start of a word sequence for repetitive execution. A BEGIN-UNTIL loop
will be repeated until flag is true. A BEGIN-WHILE-REPEAT loop will be repeated until
flag is false. The words after UNTIL or REPEAT will be executed when either loop is
finished. sys is balanced with its corresponding UNTIL or WHILE.

L.C2/LC4 OPTO 22 FORTH GLOSSARY

BL
"b_lll

STACK:

- 32 (decimal)

— 20 (hex)
CATEGORY:

- String
DESCRIPTION:

BL is a single precision constant which places the ASCIl value for the "space” character
on the stack. This value is a 20 in hex or a 32 in decimal.

BODY>
"body-to"
STACK:
addr1 - addr2
CATEGORY:
- Conversion
DESCRIPTION:

BODY> converts the parameter field address addr1 to the compilation address addr2.

BRANCH

STACK:

CATEGORY
- Compiler word
DESCRIPTION:

BRANCH is a run-time procedure to unconditionally branch. The interpretive pointer IP is
replaced by the value following the BRANCH instruction.

GLOSSARY LC2/LC4 OPTO 22 FORTH

Cl!
"c-store"
STACK:
16b addr —
CATEGORY:
79 - Memory
DESCRIPTION:
The least-significant 8 bits of 16b are stored into the byte at addr.
C,
"c-comma"
STACK:
16b -
CATEGORY:
79 - Compiler word
DESCRIPTION:

C, will store an 8-bit byte directly into the FORTH dictionary. The low order 8 bits of the
word on the top of the stack are stored at HERE (the next available dictionary location).

The dictionary pointer is then increased by 1. This word is equivalent to: HERE C! 1
ALLOT
C/L
"character-per-line"
STACK:
-~ n
CATEGORY:
~ System (64)
DESCRIPTION:
C/L is a constant leaving the number of characters per line.
CASE
STACK:
CATEGORY:
- Control
DESCRIPTION:

Start of CASE control structure.

LC2/1C4 OPTO 22 FORTH GLOSSARY

ce@
"c-fetch"

STACK:

addr - 16b
CATEGORY:

79 - Memory
DESCRIPTION:

C@ returns the least-significant byte at addr. The most-significant byte is zero.

CLEAR.BUF
"clear-dot-buf"

STACK:
CATEGORY:

- System
DESCRIPTION:

CLEAR.BUF resets the buffer pointers of the currently selected communications port.

CLOCK.TICK
"clock-dot-tick™"
STACK:
- addr
CATEGORY:
- System, LC2/4
DESCRIPTION:

CLOCK.TICK points to a variable which contains a value that is updated by the local
controller’s internal timer. On an LC2, this variable points to a 16-bit number which is
incremented every one-tenth of a second. On an LC4, this variable points to a 32-bit value
incremented every one- hundredth of a second. This is useful for executing words at
precise times.

CMOVE
"c-move"
STACK:
addr1 addr2 u --
CATEGORY:
83 - Memory
DESCRIPTION:

Move u bytes beginning at address addri to addr2. The byte at addr1 is moved first,
proceeding toward high memory. i u is zero, nothing is moved.

GLOSSARY LC2/LC4 OPTO 22 FORTH

CMOVE>
"c-move-up"
STACK:
addr1 addr2 u —-
CATEGORY:
83 - Memory
DESCRIPTION:

CMOVE moves the u bytes at address addr1 to addr2. The move begins by moving the
byte at (addr1 plus u minus 1) to (addr2 plus u minus 1) and proceeds to successively
lower addresses for u bytes. If u is zero, nothing is moved. (Useful for sliding a string
towards higher addresses).

COLD

STACK:
CATEGORY:

- System
DESCRIPTION:

COLD performs a "cold-start" in LC2/LC4 FORTH by first initializing the user variables to
their start-up values then calling the word ABORT.

COM1
"com-one'"
STACK:
CATEGORY:
- System
DESCRIPTION:

COM1 selects LC2/LCA’s OPTOMUX™ communications port as the current inputfoutput
device. The word CONSOLE can be used to switch back to the host ?ort. Using COM1
is not necessary when OPTOWARE™ is called, because OPTOWARE M addresses the
OPTOMUX™ port directly.

LC2/1C4 OPTO 22 FORIH GLOSSARY

COM2 (LC4)
"com-two"
STACK:
CATEGORY:
- System
DESCRIPTION:

COM2 selects communications port 2 located on the EX2 daughter card as the current
inputfoutput device. The EX2 daughter card plugs onto the expansion port connector or
an LC4. The word console can be used to switch back to the host port.

This word is available only with LC4.

COMS3 (LC4)
"com-three"
STACK:
CATEGORY:
- System
DESCRIPTION:

COM3 selects communications port3 located on the EX2 daughter card as the current
inputfoutput device. The EX2 daughter card plugs onto the expansion port connector of
an L.C4. The word console can be used to switch back to the host port.

This word is available only with L.C4.

COMMAND

STACK:

-- addr
CATEGORY:

- System, LC2/4
DESCRIPTION:

COMMAND points to "command" variable which is passed to and from the OPTOWARE™
driver. This word is used for storing or fetching a value in the "command" variable
within the parameter block being pointed at by the "parameters" variable. The
COMMAND pointer is equal to the contents of PARAMETERS plus an ofiset of 4.

GLOSSARY LC2/1.C4 OPTO 22 FORTH

COMPILE

STACK:

-

CATEGORY:
C,83 - Compiler word

DESCRIPTION:
Typically used in the form:

: <pame>... COMPILE <pamex> ...;

When <name> is executed, the compilation address compiled for <namex> is compiled
and not executed. <pame> is typically immediate and <namex> is typically not immediate.

CONSOLE

STACK:

CATEGORY"
- System

DESCRIPTION:
Selects LC2/LCA’s host communications port as the current output device.

CONSTANT

STACK:
16b --

CATEGORY:
83 - Defining word
DESCRIPTION:
CONSTANT is a defining word executed in the form:
16b CONSTANT <name>

CONSTANT creates a dictionary entry for <name> so that when <name> is later executed,
16b will be left on the stack.

LC2/LC4 OPTO 22 FORTH GLOSSARY

CONTEXT

STACK:
-- addr

CATEGORY:
- System

DESCRIPTION:
CONTEXT is a user variable which contains a pointer to the vocabulary which is to be
searched first. CONTEXT is set to point to a specific vocabulary by executing that
vocabulary name.

CONVERT

STACK:
+d1 addri - +d2 addr2
CATEGORY:
79 - Conversion
DESCRIPTION:
+d2 is the result of converting the characters within the text beginning at addri-+1 into digits, using
the value of BASE, and accumulating each into +d1 after muttiplying +d1 by the value of BASE.

Conversion continues untif an unconvettible character is encountered. addr2 is the location of the
first unconvertible character.

COUNT

STACK:

addri - addr2 +n
CATEGORY:

79 - String
DESCRIPTION:

addr2 is addri1+1 and +n is the length of the counted string at addr1. The byte at addr1
contains the byte count +n. Range of +n is {0..255}.

GLOSSARY LC2/LC4 OPTO 22 FORTH

CR
llc_r!l

STACK:

CATEGORY:
79 -« Quiput

DESCRIPTICN:
CR displays a carriage-return and line-feed or equivalent operation.

CREATE

STACK:

CATEGORY:
79 - Compiler word

DESCRIPTION:

CREATE is a defining word executed in the form: CREATE <name> Creates a
dictionary entry for <name>. After <name> is created, the next available
dictionary location is the first byte of <name>'s parameter ficld. When <name>
is subsequently executed, the address of the first byte of <name>'s parameter
field is left on the stack. CREATE does not allocate space in <name>’s parameter
field.

CSP
"c_s_p'll

STACK:

- addr
CATEGORY:

U - System
DESCRIPTION:

CSP is a user variable which is used as a temporary location for the compiler stack
pointer position. addr is the address of the user variable CSP.

LC2/LC4 OPTO 22 FORTH GLOSSARY

CURRENT

STACK:
-- addr

CATEGORY:
U - System
DESCRIPTION:

CURRENT is a user variable that contains a pointer to the vocabulary to which
definitions are "currently” being appended to. CURRENT is set to point to a specific
vocabulary by executing the word DEFINITIONS, that copies the vocabulary pointer in
CONTEXT into CURRENT.

D+
lld_pIUSH

STACK:

wd1 wd2 —wnd3
CATEGORY:

79 - Arithmetic
DESCRIPTION:

D+ is used to add two double-precision numbers. wd3 is the arithmetic sum of wd1 plus
wd2.

D-
"d-minus"

STACK:

wd1 wd2 - wd3
CATEGORY:

79 - Arithmetic

DESCRIPTION:

D- is used to subtract two double-precision numbers. wd3 is the result of subtracting
wd2 from wd1.

D+-
"D-plus-minus"
STACK:
din-d2
CATEGORY:
- Arithmetic
DESCRIPTION:

The sign of the double-precision value d1 is negated if the sign of the single- precision
value n is negative. Then the value n is dropped from the top of the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

D.
lld_dotll
STACK:
d -
CATEGORY:
- Qutput
DESCRIPTION:

D. prints a signed double-precision number followed by a trailing blank.

D.R
"d-dot-r"
STACK:
d width --
CATEGORY:
- Output
DESCRIPTION:

D.R prints a signed double-precision number, right-justified in a field of specified width.
If the field width is smaller than the number of significant digits, the number is printed
without leading blanks. No trailing blanks are printed.

DO=
"d-zero-equal"
STACK:
wd -- flag
CATEGORY:
- Comparison
DESCRIPTION:

D0= compares a double-precision number wd on the top of the stack with zero. If the
number d is equal to zero, a true flag is left on the stack.

D2*
"d-two-times"
STACK:
d1 - d2
CATEGORY:
- Arithmetic
DESCRIPTION:
d2 is the result of arithmetically shifting d1 left one bit. A zero is shifted into the vacated
bit position.

LC2/L.C4 OPTO 22 FORTH GLOSSARY

D<
"d-less-than"
STACK:
d1 d2 - flag
CATEGORY:
83 - Comparison
DESCRIPTION:

D< compares two signed, double-precision numbers d1 and d2. Iif d1 is less than the
number on the top of the stack d2, a true flag is left on the stack.

D=
"D-equals"
STACK:
wd1 wd2 - flag
CATEGORY:
- Comparison
DESCRIPTION:

D= compares two double-precision numbers wd1 and wd2. If d1 and d2 are equal, a true
flag is left on the stack.

D>
"D-greater-than"
STACK:
d1 d2 - flag
CATEGORY:
- Comparison
DESCRIPTION:

D> compares two signed, double-precision numbers d1 and d2. If d1 is greater than the
number on the top of the stack d2, a true flag is left on the stack.

D>F
Ild_to_fll
STACK:
d — float
CATEGORY:
- Conversion
DESCRIPTION:

D>F converts the double-precision integer on the stack into a floating-point number.

GLOSSARY LC2/LC4 OPTO 22 FORTH

DABS
Ild_abs"
STACK:
d -- ud
CATEGORY:
79 - Arithmetic
DESCRIPTION:
ud is the absolute value of d. If d is -2,147,483,648 then ud is equal to d.
DATE!
"date-store"
STACK:
nl1 n2 n3 -
CATEGORY:
- Input/Output, LC2/4
DESCRIPTION:

DATE! is used to set the real-time clock’s date. n1 is a number representing the month
(1-12), n2 is the day (1-31), and n3 represents the year (0-99).

DATE@
"date-fetch"
STACK:
- n1n2 n3
CATEGORY:
- Input/Output, LC2/4
DESCRIPTION:

DATE® is used to read the real-time clock’s date. n1 is a number representing the month
(1-12), n2 is the day (1-31), and n3 represents the year (0-99).

DAYS!
"days-store"
STACK:
n-
CATEGORY:
- Input/Cutput, LC2/4
DESCRIPTION:

DAYS! is used to set the day on the real-time clock. n is in the range of 1 to 31.

LC2/LC4 OPTO 22 FORTH GLOSSARY

DAYS@
"days-fetch"
STACK:
bl |
CATEGORY:
- Input/Output, LC2/4
DESCRIPTION:

DAYS@ is used to read the day on the real-time clock. n is in the range of 1 to 31.

DECIMAL

STACK:

CATEGORY:
79 - Conversion

DESCRIPTION:
DECIMAL sets the input-output numeric conversion base to ten.

DEFINITIONS

STACK:
CATEGORY:

79 - System
DESCRIPTION:

The compilation vocabulary is changed to be the same as the first vocabulary in the
search order.

DEPTH

STACK:
.
CATEGORY:
79 - Stack

DESCRIPTION:

+n is the number of 16-bit values contained in the data stack before +n was placed on
the stack.

GLOSSARY L.C2/1C4 OPTO 22 FORTH

DIGIT

STACK:
char n - n1 tlag (valid digit)
char n - flag (invalid digit)
CATEGORY:
- Conversion
DESCRIFPTION:

DIGIT converts a character char using base n to its binary equivalent n2. If the character
is a legal digit in the specified radix n, then the digit's binary equivalent and a true flag
are returned on the stack. If the character is an invalid digit, only a false flag is left on
the stack.

DLITERAL
"d-literal"

STACK:

- 32b (executing)

32b — (compiling)
CATEGORY:

- Compiler word
DESCRIPTION:

DLITERAL will compile a double number into a literal definition. When executing the
definition, the 32-bit number previously compiled will be pushed onto the stack.

DMAX
"d-max"
STACK:
d1 d2 —~ d3
CATEGORY:
79 - Arithmetic
DESCRIPTION:

d3 is the larger of the two, signed, double-precision values d2 and d1.

DMIN
Ild“min"
STACK:
dld2 - d3
CATEGORY:
79 - Arithmetic
DESCRIPTION:

d3 is the smaller of the two, signed, double-precision values d2 and d1.

LC2/L.C4 OPTO 22 FORTH GLOSSARY

DNEGATE
"d-negate”

STACK:

dl —-d2
CATEGORY:

79 - Arithmetic

DESCRIPTION:
d2 is the two’s complement of d1.

DO

STACK:
wi w2 -
- sys (compiling)
CATEGORY:
C.1,83 - Control
DESCRIPTION:
Used in the form:
RO ... LOOP or DO ... +L.OOP

Begins a loop which terminates based on control parameters. The loop index begins at
w2, and terminates based on the limit w1. See LOOP and +LOOP for details on how the
loop is terminated. The loop is always executed at least once. For example: w DUP DO
.. LOOP executes 65,536 times. sys is balanced with its corresponding LOOP or +LOOP.

An error condition exists if insufficient space is available for at least three nesting levels.

GLOSSARY LC2/LC4 OPTO 22 FORTH

DOES>
"does"
STACK:
-- addr
- {compiling)
CATEGORY:
C,1,83 - Compiler word
DESCRIPTION:
Defines the execution-time action of a word created by a high-level defining word. Used
in the form:
! <namex> ... <¢reate> ... DOES> ... ;
and then

<pamex> <name>
where <cregte> is CREATE or any user defined word which executes CREATE.
Marks the termination of the defining part of the defining word <namex> and then begins
the definition of the execution-time action for words that will [ater be defined by

<namex>. When <name> is later executed, the address of <name>’s parameter field is
placed on the stack and then the sequence of words between DOES> and ; are executed.

"3P "
-p
STACK:

- addr
CATEGORY:

U - System
DESCRIPTION:

DP is a user variable that contains an address pointer of the next available dictionary
location. addr is the address of the variable DP. It is used in conjunction with the word
HERE. When HERE is executed, the 16-bit single precision contents of DP are placed on
the stack. The words FORGET and ALLOT alter the contents of DP.

II%PLIII
-p-
STACK:

- addr
CATEGOCRY:

U - System
DESCRIPTION:

DPL is a user variable which indicates the number of digits found to the right of a
decimal point when converting a numeric character string into a numeric value. addris
the address of the variable DPL. The word INTERPRET uses the contents of DPL to
determine if a numeric value is to be treated as single- precision (DPL=-1, no decimal
point) or double-precision (DPL not equal fo -1, decimal point encountered).

LC2/LC4 OPTO 22 FORTH GLOSSARY

DROP

STACK:
16b --

CATEGORY:
79 - Stack

DESCRIPTION:
16b is removed from the stack

DSHIFT
"d-shift"

STACK:

wdt n - wd2
CATEGORY:

- Arithmetic
DESCRIPTION,;

wd2 is the result of shifting n-1 n bits. If n is negative, wd1 is shifted to the right; if n is
positive, wd1 is shifted to the left.

DU.
"d-u-dot"
STACK:
ud -
CATEGORY:
- Qutput
DESCRIPTION,;

d is displayed as an unsigned, double-number in a free-field format.

DU.R
"d-u-dot-r"
STACK:
ud n --
CATEGORY:
- Dutput
DESCRIPTION;

DU.R prints an unsigned, double number right-justified in a field of specified width, if
the specified width is less than the number of significant digits, the number is printed
without leading blanks. No trailing blanks are printed.

GLOSSARY LC2/LC4 OPTO 22 FORTH

DU<
"d-u-less"
STACK:
udi ud2 --flag
CATEGORY:
- Comparison
DESCRIPTION:

DU< compares two, unsigned double-numbers ud1 and ud2. A true flag is left on the
stack if udi is less than the value on the top of the stack ud2.

DU>
"d-u-more"
STACK:
ud1 ud2 -- flag
CATEGORY
- Comparison
DESCRIPTION:

DU> does an unsigned comparison of ud1 and ud2. If dt is greater than ud2, a true fiag
is returned. Otherwise the flag returned is false.

DUMP

STACK:

addr n -
CATEGORY:

- Quiput
DESCRIPTION;

Does a combined hex and ASCII dump of the specified memory. addr is address to
start dumping from and n is the number of bytes to dump.

PDUP
I!du pell
STACK:
16b —- 16b 16b
CATEGORY:
79 - Stack
DESCRIPTION:

16b is duplicated on the top of the stack.

LC2/LC4 OPTO 22 FORTH GLOSSARY

STACK:
d — float

CATEGORY:
- Conversion, Input

DESCRIPTION,;
Used in the form:

dEn

E is used for entering a number in floating point format. d Is a double- precision number
used as the mantissa and n is a 16-bit integer used as the exponent.

ELSE

STACK:

sys1 —- sys2 (compiling)
CATEGORY:
C,1,79 - Control
DESCRIPTION:
Used in the form:
flag IF ... ELSE ... THEN

ELSE executes after the true part following IF. ELSE forces execution to continue at just
after THEN. sys1 is balanced with its corresponding IF. sys2 is balanced with its
corresponding THEN . See: IF THEN.

EMIT

STACK:
16b --

CATEGORY:
83 - OQutput

DESCRIPTION:
The least-significant 8-bit ASCH character is sent to the selected output port.

GLOSSARY LC2/LC4 OPTO 22 FORTH

EMPTY

STACK:
CATEGORY:
- System
DESCRIPTION,;
EMPTY does a FORGET of all the user compiled FORTH words.

ENCLOSE

STACK:
addr1 char ~ addr1 n1 n2 n3

CATEGORY:
- String
DESCRIPTION:

ENCLOSE is a text parsing primitive used by WORD. addr1 is the begin- ning address of
the text string to parse and char is an ASCIl delimiting character. n1 is the offset to the
tirst non-delimiter character. n2 is the offset to the first delimiter after the text. n3 is the
offset to the first character used to start the next scan. This procedure will process past
an ASCII null. The ASCII null will be treated as an unconditional delimiter.

ENDCASE

STACIK:

addrl addr2 ... addr n -- (compiling)

n - (if no case was found)

- (if case was found)
CATEGORY:

- Control
DESCRIPTION:

if no case was found, the case value is dropped. If the case was found, nothing is done.

LC2/LC4 OPTO 22 FORTH GLOSSARY

ENDOF

STACK:
addr1 n1 — addr2 n2

CATEGORY:
- Compiling
DESCRIPTION:

At run time, ENDOF transfers control to the code following the next ENDCASE provided
there was a match at the last OF. If there was not a match at the last OF, ENDOF is the
location to which execution branched.

At compile time, ENDOF compiles a BRANCH, reserves a branch address, and leaves the
parameters addr2 and n2 on the stack. ENDOF also resolves the pending forward
?BRANCH from OF by calculating the offset from addr1 to HERE and storing it at addr1.

ERROR

STACK:

addr1 n1 — addr2 n2
CATEGORY:

- System, LC2/4
DESCRIPTION:

ERROR prints a system error.

ERRORS

STACK:

-- addr
CATAGORY:

- Memory
DESCRIPTION:

ERRORS points to "errors" variable which is passed to and from the OPTOWARE™
driver. This word is used for storing or fetching a value in the "errors" variable within
the parameter block being pointed at by the "parameters" variable. The ERRORS pointer
is equal to the contents of parameters plus an offset of 0.

GLOSSARY LC2/LC4 OPTO 22 FORTH

EVEN

STACK:
-n
CATEGORY:
- Constant, System

DESCRIPTION:
A constant for the SET.SERIAL word for even parity.

EXECUTE

STACK:

addr -
CATEGORY:

79 - Control

DESCRIPTION:

The word definition indicated by addr is executed. An error condition exists if addr is
not a compilation address.

EXIT

STACK:

CATEGORY:
C,79 - Control

DESCRIPTION:

When compiled within a colon definition, EXIT terminates execution of the definition at that
point. . An error condition exists if the top of the return stack does not contain a valid return
point. May not be used within a do- loop.

LC2/LC4 OPTO 22 FORTH GLOSSARY

EXPECT

STACK:
addr +n --

CATEGOCRY"
83 - Input
DESCRIPTION:

Receive characters and store each into memory. The transfer begins at addr
proceeding towards higher addresses one byte per character until either a "return” is
received or until +n characters has been transferred. No more than +n characters will
be stored. The "return” is not stored into memory. No characters are received or
transferred if +n is zero. All characters actually received and stored into memory will
be displayed, with the "return” displaying as a space.

F!
"f-store"
STACK:
float addr --
CATEGORY:
- Memory
DESCRIPTION:

F! will copy a floating point number from the second position on the stack to the address
specified on top of the stack.

F*
"f-times"
STACK:
float1 float2 — float3
CATEGORY:
- Arithmetic
DESCRIPTION:

F* multiplies float1 by float2 and returns float3.

F+
"f-plu s'"
STACK:
fioat1 float2 ~- float3
CATEGORY:
- Arithmetic
DESCRIPTION;

float3 is the result of adding float! and float2.

GLOSSARY LC2/LC4 OPTO 22 FORTH

F-
"f-minus"
STACK:
float1 float2 -- float3
CATEGORY.
- Arithmetic
DESCRIPTION:

float3 is the result of subtracting float2 from float1.

F.
llf_d otl!
STACK:
float --
CATEGORY:
- Qutput
DESCRIPTION:

The floating point number float will be displayed in a free-field format with a leading
minus sign if float is negative.

F.R
"{-dot-r'"
STACK:
float n -
CATEGORY:
- Output
DESCRIPTION:

F.R. prints a floating point number, right-justified in a field of specified width. If the field
width is smaller than the number of significant digits, the nhumber is printed without
leading blanks. No trailing blanks are printed.

F/
"f-divide"
STACK:
float1 float2 — float3
CATEGORY:
- Arithmetic
DESCRIPTION:

F/ divides float1 by float2 and returns float3.

LC2/LC4 OPTO 22 FORTH GLOSSARY

Fo=
"f-zero-equals”
STACK:
float - flag
CATEGORY:
- Comparison
DESCRIPTION:

FO= checks for float to be equal to 0. If the float is not equal to 0, flag will be a false;
else it will be a true.

F<
"f-less"
STACK:
float1 float2 - flag
CATEGORY:
« Comparison
DESCRIPTION:

F< checks for float1 to be less than float2. if floatt is smaller, flag will be a true; else it
will be a talse.

F=
"f-equal
STACK:
float1 float2 -- flag
CATEGORY:
- Comparison
DESCRIPTION:

F= checks for float1 to be equal to float2. If the numbers are not equal, flag will be a
false, else it will be a true.

F>
"f~-more"
STACK:
float1 float2 ~- flag
CATEGORY:
- Comparison
DESCRIPTION:

F> checks for float1 to be greater than float2, If float1 is greater, flag will be a true, else
it will be a false.

GLOSSARY LC2/LC4 OPTO 22 FORTH

F>D
"f-to-d"
STACK:
float — d
CATEGORY:
- Conversion
DESCRIPTION:

F>D converts a floating-point number to a 32-bit integer number.

F?
I'If_queryll
STACK:
addr -
CATEGORY:
- Output
DESCRIPTION:
F? prints floating-point number stored at addr.
F@
"f-fetch"
STACK:
addr -- float
CATEGORY:
- Memory
DESCRIPTION:

F@ will copy a floating-point number from the specified address to the top of the stack.

FALSE

STACK:

-0
CATEGORY:

- Logical
DESCRIPTION:

FALSE is a constant which is equal to the value zero. It is useful for setting flags or
logical states to a "false” value.

LC2/LC4 OPTO 22 FORTH

GLOSSARY

FARRAY
"f-array"
STACK:
n-—
CATEGORY:
- Defining word
DESCRIPTION:

A defining word executed in the form:
n FARRAY <name>

A dictionary entry for <name> is created and n * 4 bytes are allotted in its parameter
field. This parameter field is to be used for contents of the array. The application is
responsible for initializing the contents of the array which it creates. The format for
using <name> is:

n <name>

n is the array element you want to access. When <name> is executed, the address of the

specified array element is placed on the stack,

FCONSTANT
"f-constant"
STACK:
float --
CATEGORY:
- Defining word
DESCRIPTION:
A defining word executed in the form:

loat FCONSTANT <name>

Creates a dictionary entry for <name> so that when <name> is later executed, float will
be left on the stack.

FCOS
"f-cosine"
STACK:
floati — float2
CATEGORY:
- Conversion
DESCRIPTION:

FCOS returns the cosine of float1 in radians (float2).

GLOSSARY LC2/LC4 OPTO 22 FORTH

FENCE

STACK:
- addr

CATEGORY:
- System

DESCRIPTICN:
FENCE is a user variable which sets a boundary past which FORGET cannot forget.

FEXP
"f-exponent”
STACK:
float1 -float2
CATEGORY:
- Conversion
DESCRIPTION:

FEXP calculates the value of "e" (base value of natural logarithm = 2,71828) raised to
the power float1.

FILL

STACK:
addr u 8b --

CATEGORY:
83 - Memory

DESCRIPTION:
u bytes of memory beginning at addr are set to 8b. No action is taken if u is zero.

FIND

STACK:
addrl ~ addr2 n

CATEGORY:
83 - System

DESCRIPTION:

addrt is the address of a counted string. The string contains a word name to be located
in the currently active search order. If the word is not found, addr2 is the string address
addri, and n is zero. If the word is found, addr2 is the compilation address and n is set
to one of two non-zero values. If the word found has the immediate attribute, n is set to
one. If the word is non-immediate, n is set to minus one (true).

LC2/1LC4 OPTO 22 FORTH GLOSSARY

FLN
Ilf_‘l_nl'l
STACK:
float1 ~ float2
CATEGORY:
- Conversion
DESCRIPTION:

FLN returns the natural log of floatt (float2). If float1 is less than or equal to zero,
FPERR will contain an error code.

FNEGATE
"f-negate”

STACK:

fioat1 — float2
CATEGORY:

- Arithmetic

DESCRIFPTION:
Float 2 is the negative of float1.

FORGET

STACK:

CATEGORY:
83 - System

DESCRIPTION:
Used in the form:
FORGET <name>

If <name> is found in the compilation vocabulary, delete <name> from the dictionary and
all words added to the dictionary after <name> regardless of their vocabulary. Failure to
find <name> is an error condition. An error condition also exists if the compilation
vocabulary is deleted.

GLOSSARY LC2/LC4 OPTO 22 FORTH

FORTH

STACK:

e

CATEGORY:
83 - System
DESCRIPTION:

The name of the primary vocabulary. Execution replaces the first vocabulary in the
search order with FORTH. FORTH is initially the compilation vocabulary and the first
vocabulary in the search order. New definitions become part of the FORTH vocabulary
until a different compilation vocabulary is established. See: VOCABULARY

FORTH-83

STACK:
CATEGORY:

83 - System
DESCRIPTION:

Assures that a FORTH-83 Standard System is available, otherwise an error condition
exists.

FPERR
"floating-point-error"

STACK:

-- addr
CATEGORY:

- Arithmetic
DESCRIPTION:

FPERR is the error variable used by the floating point routines. After each floating point
operation, FPERR is set.

FPERR Condition
o no error
1 underflow
2 overflow
3 not a number

LC2/1.C4 OPTO 22 FORTH GLOSSARY

FSIN
"f-sine"
STACK:
float1 — float2
CATEGORY:
« Arithmetic
DESCRIPTION:

FSIN returns the sine of float1 in radians (float2).

FSQRT
"f-square root"
STACK:
float1 -- float2
CATEGORY:
- Arithmetic
DESCRIPTION:

FSQRT returns the square root of float1 (float2). If float1 is negative, FPERR will contain
an error code.

FVARIABLE
STACK:
CATEGORY:
- Defining word
DESCRIPTION:
A defining word executed in the form:

FVARIABLE <name>

A dictionary entry for <name> is created and four bytes are allotted in its parameter field. This
parameter field is 1o be used for contents of the variable. The application is responsible for initializing
the contents of the variable which it creates. When <name> is later executed, the address of its
parameier field is placed n the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

F A
"f-power"

STACK:
float1 fioat2 -~ float3

CATEGORY:
Arithmetic

DESCRIPTION:
F* raises the number float1 to the float2 power, returning result float3.

HERE

STACK:
— addr

CATEGORY:
79 - System

DESCRIPTION:
The address of the next available dictionary location.

HEX

STACK:

CATEGORY:
79 - Conversion

DESCRIPTION:

The system radix is set to 16. Used for inputting hex numbers or converting from an
alternate base. See also: DECIMAL.

HLD
llh_l‘_dll
STACK:
- addr
CATEGORY:
U - Conversion
DESCRIPTION:

HLD is a user variable that holds the address of the latest character of text during
numeric output conversion.

LC2/LC4 OPTO 22 FORTH GLOSSARY

HOLD

STACK:

char -
CATEGORY;

79 - Conversion

DESCRIPTION:
char is inserted into a pictured numeric output string. Typically used between <i and #>.

HOURS!
"hours-store"

STACK:
n =
CATEGORY
- Input/Output, LC2/4

DESCRIPTION:
HOURS! is used to set the hour on the real-time clock. n is in the range 0 to 23.

HOURS @
"hours-fetch”
STACK:
-=n
CATEGORY:
« Input{Output, LC2/4
DESCRIPTION:

HOURS® is used to read the hour on the real-time clock. n is in the range 0 fo 23.

STACK:
-
CATEGORY:
C,79 - System
DESCRIPTION:
w is a copy of the loop index. May only be used in the form:
DO ... I... LOOP
or
DO ... I... +LOOP

GLOSSARY LC2/.C4 OPTO 22 FORTH

IF

STACK:

flag —
— sys (compiling)

CATEGORY:
C,1,79 - Control

DESCRIPTION:
Used in the form:

flag IF ... THEN or IF...ELSE...THEN

If flag is true, the words following IF are executed and the words following ELSE until
just after THEN are skipped. The ELSE part is optional.

If flag is false, words from IF through ELSE, or from IF through THEN (when no ELSE is
used), are skipped. sys is balanced with its corresponding ELSE or THEN.

IMMEDIATE

STACK:
CATEGORY:

79 - System
DESCRIPTION:

Marks the most recently created dictionary entry as a word which will be executed when
encountered during compilation rather than compiled.

INFO

STACK:
n -- addr

CATEGORY:
- Memory, LC2/4

DESCRIPTION:

Points to "info" array which is passed to-and-from the OPTOWARE™ driver. Used for
storing or fetching a value in the "info" variable array within the parameter block being
pointed at by the "parameters' variable. The info array is a 16-element array. n { range
of 0 - 15), determines which element is to be accessed. Resulting INFO pointer is equal
to the following FORTH expression:

PARAMETERS @ 42+2 n"+

LC2/1C4 OPTO 22 FORTH GLOSSARY

INTERPRET

STACK:

CATEGORY:
- System

DESCRIPTION:

INTERPRET is the outer text interpreter which executes or compiles text sequentially from
the input stream depending on STATE> [f a word name cannot be found after searching the
CONTEXT and the CURRENT vocab- ularies, it is converted to a number according to the
current base. [If the text cannot be converted to a number, an error message will occur
which will print the hame followed by a question mark (?). Text input is accepted according
1o the convention for WORD. If a decimal point is found as part of a number, that number
will be treated as a double- number value.

STACK:

-
CATEGORY:

C,79 - System
DESCRIPTION:

W is a copy of the index of the next outer {oop. May only be used within a nested
DO-LOOP or DO-+LOOP in the form, for example:

DO .. DO .. J..LOOP ... +LOCOP

K

STACK:

—W
CATEGORY:

C - System
DESCRIPTION:

w is a copy of the index of the next outer loop. May only be used within a nested
DO-L.OOP or DO-+LOOP in the form, for example:
DO..DO..DO..K..Jd..|..LOOP..LCOP.. LOOP

GLOSSARY LC2/LC4 OPTO 22 FORTH

KEY

STACK:
- 16b

CATEGORY:
83 - Input

DESCRIPTION:

The least-significant 8 bits of 16b is the next ASCII character received from the selected
communications port buffer. All valid ASCII characters can be received. Control
characters are not processed by the system for any editing purpose. Characters
received by KEY will be removed from the buffer and will not be echoed. Use of
CLEAR.BUF is recommended to clear all previous characters in the buffer before KEY is
used.

LATEST

STACK:
-- addr

CATEGORY:
- System
DESCRIPTION:

LATEST places the name field address of the top-most word in the vocabulary on the
stack. The topmost word is the most recently compiled definition.

LC.ADDRESS
"l.c-dot-address’
STACK:
addr -
CATEGORY:
- System, LC2/4
DESCRIPTION

LC.ADDRESS is a variable which contains the LC2 address for use with the SLEEP and
AWAKE words. Assigning LC2 a unique address is only necessary when several LC2's
are connected to the same communi- cations link. The LC.ADDRESS word should be
issued to only one LC2 unit at a time. All other LC2 units should be powered down when
an address is being set

The LC.ADDRESS variable is a special system variable which can only be cleared by
reassigning it. It is not affected by power down conditions.

1.C2/L.C4 OPTO 22 FORTH GLOSSARY

LEAVE

STACK:

- (compiling)
CATEGORY:
C,1,83 - Control

DESCRIPTION:

Transfers execution 1o just beyond the next LOOP or +LOOP. The loop is ter- minated and loop
control parameters are discarded. May only be used in the form:

DO ... LEAVE ... LOOP
or
DO ... LEAVE ... +LOOP

LEAVE may appear within other control structures which are nested within the do-loop
structure. More than one LEAVE may appear within a do-loop.

LITERAL
STACK:
-- 16b 16b —~ (compiling)
CATEGORY:
C,1,79 - System
DESCRIPTION:

Typically used in the form:
[16b] LITERAL

Compiles a system-dependent operation so that when later executed, 16b will be left on
the stack.

LOC

STACK:
-=n
CATEGORY:
- Output

DESCRIPTION
LOC returns the number of bytes in the current serial port interrupt buffer.,

GLOSSARY LC2/LC4 OPTO 22 FORTH

LOF

STACK:

-n
CATEGORY:

- Cutput
DESCRIPTION:

L.OF returns the number of free spaces in the current serial port interrupt buffer. This is
equivalent to 255 minus the value returned by 1L OC.

LOOP

STACK:

sys — {(compiling)
CATEGORY:
C,1,83 - Control

DESCRIPTION:

LOOP increments the DO-LOOP index by one. If the new index was incremented across
the boundary between limit-1 and limit, the loop is terminated and loop control
parameters are discarded. When the loop is not terminated, execution continues to just
after the corresponding DO. sys is balanced with its corresponding DO. See: DO.

M/MOD
"M-divide-mod"
STACK:
d n -- rem quot
CATEGORY:
- Arithmetic
DESCRIPTICN:

M/MOD is used to divide a double-precision number {d) by a single- precision number (n)
and leave the remainder (rem) and quotient (quot) on the stack. The remainder is signed
with the sign of the divisor and the quotient is floored.

MAX
IlmaxI!
STACK:
nin2-n3
CATEGORY:
79 - Arithmetic
DESCRIPTION:

n3 is the greater of n1 and n2 according to the operation of >.

LC2/LC4 OPTO 22 FORTH GLOSSARY

MIN
Ilminl!

STACK:

nt n2 - n3
CATEGORY:

79 - Arithmetic
DESCRIPTION:

n3 is the lesser of n1 and n2 according to the operation of <.

MINUTES!
"minutes-store"

STACK:

n-
CATEGORY:

- Input/Output, LC2/4
DESCRIPTION:

MINUTES! is used to set the minutes on the real-time clock. n is in the range of 0 to 59,

MINUTES @
"minutes-fetch"
STACK:
=N
CATEGORY:
- Input/Output, LC2/4
DESCRIPTION:

MINUTES@ is used to read the minutes on the real-time clock. n is in the range of 0 to 59.

MOD

STACK:
n1 n2 - n3

CATEGORY:
83 - Arithmetic

DESCRIPTION:

n3 is the remainder after dividing n1 by the divisor n2. n3 has the same sign as n2 or is
zero. An error condition results if the divisor is zero or if the quotient falls outside of the
range {-32,768..32,767}.

GLOSSARY LC2/LC4 OPTO 22 FORTH

MODIFIERS

STACK:
n - addr

CATEGORY:
- Memory, LC2/4

DESCRIPTION:

Points to "modifiers" array which is passed to-and-from the OPTOWARE™ driver. This
word is used for storing or fetching a value in the "modi- fiers" variable array within the
parameter block being pointed at by the "parameters” variable. Since the modifers array
is a 2-element array, n determines which element is to be accessed. n is in the range of
0 to 1. The resulting MODIFIERS pointer is equal to the following FORTH expression:

PARAMETERS @ 38+2p*+

MONTHS!
"months-store”
STACK:
n—
CATEGORY:
= Input/Output, 1.C2/4
DESCRIPTION:

MONTHS! is used to set the month on the real-time clock. n is in the range of 1 to 12.

MONTHS @
"months-fetch"
STACK:
N
CATEGORY:
= Input/Cutput, LC2/4
DESCRIPTION:

MONTHS @ is used to read the month on the real-time clock. n is in the range of 1 to 12,

LC2/LC4 OPTO 22 FORTH GLOSSARY

MU/MOD
"m-u-divide-mod"
STACK:
udi ul — rem quot
CATEGORY:
83 - Arithmetic
DESCRIPTION:

Rem is the remainder and quot is the floor of the quotient after dividing ud1 by the
divisor u1l. All values and arithmetic are unsigned. MU/MOD is similar to UM/MOD with
the exception that the quotient of MU/MOD is a double- precision value.

NAME>
"from-name"’
STACK:
addr1 — addr2
CATEGORY:
- Compiler Word
DESCRIPTION:

addr2 is the compilation address corresponding to the name-field address addr1.

NEGATE

STACK:

nl—n2
CATEGORY:

79 - Arithmetic

DESCRIPTION:
n2 is the two’s complement of n1; i.e., the difference of zero less n1.

NEXT-LINK
"next-dash-link™
STACK:
— addr
CATEGORY:
U - System
DESCRIPTION:

NEXT-LINK is a constant for the address of the word NEXT. Addr is the address of NEXT.

GLOSSARY LC2/LC4 OPTO 22 FORTH

NO

STACK:
-n
CATEGORY:
- Constant, System
DESCRIPTION:
A constant for the SET.SERIAL word for no parity.

NOOP
"no-op"

STACK:

CATEGORY:
- System

DESCRIPTION:
A NOOP does nothing.

NOT

STACK:
16b1 — 16b2
CATEGORY:
83 - Logical
DESCRIPTION:
16b2 is the one’s complement of 16b1.

OoDD

STACK:
-n
CATEGORY:
- Constant, System
DESCRIPTION:
A constant for the SET.SERIAL word for odd parity.

LC2/LC4 OPTO 22 FORTH GLOSSARY

OF

STACK:

—addrn (compiling)

n1 n2 - ni (if no match was found)

nln2 -- (if match was found)
CATEGORY:

Comparison - Compiling
DESCRIPTION:

At run time, OF checks to see if n1 is equal to n2. If so, n1 and n2 are dropped and
execution continues to the next ENDOF. If n1 is not equal to n2, only n2 is dropped and
execution jumps to whatever follows the next ENDOF.

At compile time, OF compiles a comparison, 2BRANCH and reserves space for a jump
address. addr is used by ENDOF to resolve the address, n is used for error checking.

OLD

STACK:
- addr
CATEGORY:
- System

DESCRIPTION:
OLD is a system variable.

OPTOWARE

STACK:

CATEGORY:
- System, Optoware

DESCRIPTION:

This word causes all the parameters in the current parameter-block to be placed on the
stack and a call be made to the OPTOWARE' driver. Upon returning from OPTOWARE",
the parameter-block will be updated with the values which OPTOWARE" returned on the
stack. It is very important that a parameter-block be defined and the parameters variable
contain the address of the defined parameter-block before OPTOWARE" is called.

GLOSSARY LC2/LC4 OPTO 22 FORTH

OR

STACK:
16b1 16b2 - 16b3
CATEGORY:
79 - Logical
DESCRIPTION:
16b3 is the bit-by-bit inclusive-or of 16b1 with 16b2.

ouT

STACK:
— addr

CATEGORY:
u - System
DESCRIPTION:

OUT is a user variable which contains a value incremented by EMIT each time EMIT is
executed.

OVER

STACK:
16b1 16b2 — 16b1 16b2 16b1

CATEGORY:
79 - Stack

DESCRIPTION:
Copies of the second stack value to the top of the stack.

P!
"p-store"
STACK:
n port --
CATEGORY:
- Output
DESCRIPTION:

P! outputs the least significant byte of integer n to the 8-bit JfO port specified by port.

LC2/LC4 OFTO 22 FORTH GLOSSARY

P@
"p-fetch"
STACK:
port - n
CATEGORY:
~ Input
DESCRIPTION:

P@ inputs a byte from the I/O port specified and transfers it to the top of the stack. The
most significant byte of integer n is 0.

PAD

STACK:
-- addr

CATEGORY:
83 - System
DESCRIPTION:

The lower address of a scratch area used to hold data for intermediate processing. The
address or contents of PAD may change and the data may be lost if the address of the
next available dictionary location is changed. The minimum capacity of PAD is 84
characters.

PAMWARE (LC4)

STACK:

CATEGORY:
« System, LC2/4
DESCRIPTION:

This word causes all the parameters in the current parameter-block to be placed on the
stack and a call be made to the PAMUX™ driver. Upon returning from PAMWARE™, the
parameter-block will be updated with the values which the PAMUX " driver returned on
the stack. It is very important that a parameter-block be defined and the parameters
variable contain the address of the defined parameter-block before OPTOWARE"

called,

The parameter-block used by PAMWARE™ is the same one used by OPTOWARE "
However, not all of the OPTOWARE" parameters are used by the PAMWARE™ Only the
first location of the POSITIONS array is used by the PAMUX driver, therefore, a variable
pointer POSITION has been defined.

LC4: This word is only available with LC4.

GLOSSARY LC2/LC4 OPTO 22 FORTH

PARAMETER-BL.OCK
"parameter-block"
STACK:
CATEGORY:
- Defining, Optoware
DESCRIPTION:

Word used to allocate an area in memory which has a predefined structure for passing
parameters o the OPTOWARE™ and PAMWARE " drivers. Used in the form:

PARAMETER-BLOCK <pame>

Refer to page 2-2 for correct usage of a parameter-block structure. Multiple
parameter-blocks may be assigned by giving each a unique name. A parameter-block
can be accessed after it has been defined by storing its name in the PARAMETERS
pointer. See PARAMETERS word for accessing a parameter-block.

PARAMETERS

STACK:
— addr
CATEGORY:
-- Memory, Optoware

DESCRIPTION:

The PARAMETERS word is used when referring to the "parameters” variable for storing
the address of the current parameter-block. Used along with PARAMETER-BLOCK in the
form:

PARAMETER-BLOCK BOARD |

BOARD1 PARAMETERS !

Any references made to any of the OPTOWARE " parameters will use the address stored in
PARAMETERS as a pointer to the parameter-block specified.

LC2/LC4 OPTO 22 FORTH GLOSSARY

PICK

STACK:
+n - 16b
CATEGORY:
83 - Stack
DESCRIPTION:
16b is a copy of the +nth stack value, not counting +n itself {0... the number of elements
on stack-1}.

0 PICK is equivalent to DUP
1 PICK is equivalent to OVER

POINTER

STACK:
addr --

CATEGORY:
- Defining
DESCRIPTION:
POINTER is a defining word for creating a memory pointer. Used in the form:

addr POINTER <pame>

This creates a dictionary entry for <pame> so that when <name> is later executed, the
address addr is left on the stack.

POSITION (LC4)

STACK:

- addr
CATEGORY:

- Memory, LC2/4

DESCRIPTION:

Points to the POSITION variable which is passed to-and-from the PAMUX ™" driver. This
word is used for storing or fetching a value in the POSITION variable. (POSITION is
equivalent to 0 POSITIONS for the OPTOMUX™ driver).

LC4: This word is available only with LC4.

GLOSSARY LC2/LC4 OPTO 22 FORTH

POSITIONS

STACK:
n -- addr

CATEGORY
- Memory, Optoware

DESCRIPTION:

Points to "positions" array which is passed to-and-from the OPTOWARE ' driver. This
word is used for storing or fetching a value in the "positions" variable array within the
parameter block being pointed at by the "parameters" variable. Since the positions array
is a 16-element array, n determines which element is to be accessed. n is in the range of
0 to 15. The resulting POSITIONS pointer is equal to the following FORTH expression:

PARAMETERS @ 6+2n " +

QUERY

STACK:
CATEGORY:

- Input
DESCRIPTION:

QUERY accepts a text string from the host communications port. Input will continue up to
80 characters in length until a carriage return (ODH) is encountered. The text string is placed
at the address TIB with #TIB equal to the number of characters received and >IN set to 0.

QUIT

STACK:

CATEGORY:
79 - Control

DESCRIPTION:

Clears the return stack, sets interpret state, accepts new input from the current input
device, and begins text interpretation. No message is displayed.

LC2/LC4 OPTO 22 FORTH GLOSSARY

R>
"r-from"
STACK:
-~ 16b
CATEGORY:
C,79 - Stack
DESCRIPTION:

16b is removed from the return stack and transferred to the data stack.

R@
"r-fetch"
STACK:
- 16b
CATEGORY:
C,79 - Stack
DESCRIPTION:

16b is a copy of the top of the return stack.

RO
"r-zero"
STACK:
- addr
CATEGORY:
U - System
DESCRIPTION:

RO is a user variable which contains the initial address of the return stack. It is a 16-bit,
single-precision value that is initialized by COLD during system start-up.

RECURSE

STACK:

CATEGORY:
{ - Control

DESCRIPTION:

RECURSE is used to execute a colon definition recursively. When RECURSE is used in
a colon definition, the compilation address of the colon definition is compiled and
executed causing the definition to execute itself recursively. Care must be taken to
avoid overflowing the stack.

GLOSSARY LC2/LC4 OPTO 22 FORTH

REPEAT

STACK:

sys — {(compiling)
CATEGORY:
C.I,79 - Control

DESCRIPTION:

Used in the form:

BEGIN ... flag WHILE ... REPEAT at execution time, REPEAT continues execution to just
after the corresponding BEGIN. sys is balanced with its corresponding WHILE. See:
BEGIN

ROLL

STACK:
) -
CATEGORY:
83 - Stack

DESCRIPTION:

The +nth stack value, not counting +n itself is first removed and then transferred to the
top of the stack, moving the remaining values into the vacated position. {.. the number
of elements on the stack-1} 2 ROLL is equivalent to ROT. 0 ROLL is a null operation.

ROT
"rote"
STACK:
16b1 16b2 16b3 — 16b2 16b3 16b1
CATEGORY:
79 - Stack
DESCRIPTION:

The top three stack entries are rotated, bringing the deepest to the top.

LC2/LC4 OPTO 22 FORTH GLOSSARY

RP!
"r-p-store”

STACK:

CATEGORY:
- System @MINOR HEADING = DESCRIPTION:

RP! initializes the return stack pointer to the address contained in the user variable RO.
See RO.

RP@
"r-p-fetch”

STACK:

=~ addr
CATEGORY:

- System
DESCRIPTION:

RP @ returns the return stack pointer address that is present at the time RP@ is invoked
and places it on the parameter stack.

so
"s-zero"
STACK:
- addr
CATEGORY:
U - System
DESCRIPTION:

S0 is a user variable containing the initial address of the parameter stack. It is a 16-bit,
single-precision value that is initialized by COLD during system start-up.

S>D
!Is_to_dll
STACK:
n-d
CATEGORY:
- Conversion
DESCRIPTION:

S>D converts a single-precision number to a double-precision number by sign extending
the single-precision number. The high order bit of the single-number is copied into all
the high order bits of the double-number.

GLOSSARY LC2/LC4 OPTO 22 FORTH

SECONDS!
"seconds store”
STACK:
n-
CATEGORY:
- Input/Qutput, LC2/4
DESCRIPTION:

SECONDS! is used to set the seconds on the real-time clock. n is in the range of 0 to 59.

SECONDS@
"seconds-fetch"

STACK:

- n
CATEGORY:

- Input{Output, LC2/4
DESCRIPTION:

SECONDS@ is used to read the seconds on the real-time clock. n is in the range of 0 to
59,

SET.SERIAL

STACK:

n1 n2 n3 - flag
CATEGORY:

- System
DESCRIPTION:

Initializes the current serial port for number of stop bits, number of dta bits and the
parity. n1 is the parity (see ODD, EVEN and NO), n2 is the number of data bits and n3 is
the number of stop bits. A TRUE is returned if the port has been initialized, a FALSE is
returned if the initialization has failed.

SHIFT

STACK:

wl n - w2
CATEGORY:

- Arithmetic
DESCRIPTION;

w2 is the result of shifting w1 n bits. If n is negative, w1 is shifted to the right, if n is
positive, w1 is shifted to the left.

LC2/LC4 OPTO 22 FORTH GLOSSARY

SIGN

STACK:

n -
CATEGORY:

79 - Conversion

DESCRIPTION:

If n is negative, an ASCII "-" {(minus sign) is appended to the pictured numeric output
string. Typically used between <# and #>,

SLEEP

STACK:

n--
CATEGORY:

~ System, LC2/4

DESCRIPTION:

The SLEEP word is used to disable a single LC2/LC4 or all LC2/LC4’s on a multidropped
link which is currently enabled (listening and responding to communications). n
represents the unique address of the LC2/LC4 to be disabled. When SLEEP is issued,
each L.C2/L.C4 that is enabled will compare the value on the top of the stack to the value
stored in its system variable LC.ADDRESS. If a match is found, that particular LC2/LC4
will be disabled and will not respond to any communication on the host link until an
AWAKE waoard is used with this address. If no value appears on the stack, all LC2/..C4's
will be disabled. See AWAKE and LC.ADDRESS.

SMUDGE

STACK:

CATEGORY:
- System
DESCRIPTION:

SMUDGE is used during word definition to toggle the "smudge" bit in the length byte of
a definition’s name field. This prevents an uncompleted definition from being found {via
the FIND word) until compiling is completed without an error.

GLOSSARY LC2/1.C4 OPTO 22 FORTH

SPACE

STACK:

CATEGORY:
79 - Output

DESCRIPTION:
Displays an ASCIl space.

SPACES

STACK:
[—-

CATEGORY:
79 - Output

DESCRIPTION:
Displays +n ASCII spaces, Nothing is displayed if +n is zero.

SPAN

STACK:

-- addr
CATEGORY:

U,83 - System

DESCRIPTION:

Span is the address of a variable containing the count of characters actually received and
stored by the last execution of EXPECT. See: EXPECT.

SP!
"s-p-store”

STACK:
CATEGORY:

- System
DESCRIPTION:

SP! initializes the parameter-stack pointer to the address contained in the user variable

80. See S0.

LC2/1C4 OPTO 22 FORTH GLOSSARY

SP@
"s-p-fetch"
STACK:
-- addr
CATEGORY:
- Stack
DESCRIPTION:

SP@ returns the parameter-stack pointer address that is present at the time SP@ is
invoked and places it on the parameter-stack. The following usage:

128P@ @...
would result in 2 2 1 being displayed.

To get address of 2nd item on stack, add 2. The following usage:
12SP@2+@...
would result in 1

2 1 being displayed.

STATE

STACK:

-- addr
CATEGORY:

U,79 - System
DESCRIPTION:

State is a variable containing the compilation state. A non-zero content indicates
compilation is occurring, but the value itself is system dependent. A Standard Program
may not modify this variable.

SWAP

STACK:
16b1 16b2 —~ 16b2 16b1

CATEGORY:
79 - Stack

DESCRIPTION:
The top two stack entries are exchanged.

GLOSSARY LC2/LC4 OPTO 22 FORTH

TASK

STACK:

——

CATEGORY:
- System

DESCRIPTION:
TASK is a definition that is used only as a boundary marker between applications or
program segments. The word consists of a colon, a name, and a semicolon to create a
no-op definition. It is normally compiled as the first word of an application with all other
application words following it in the dictionary. In this manner, the use of FORGET
TASK will then forget all of the application.

THEN

STACK:

sys « (compiling)
CATEGORY:
C,1,79 - Control

DESCRIPTION:
Used in the form:
fiag IF ... ELSE ... THEN

or
flag IF ... THEN

THEN is the point where execution continues after ELSE, or IF when no ELSE is present.
sys is balanced with its corresponding IF or ELSE. See: IF ELSE.

TIB
!lt_i_bl!
STACK:
- addr
CATEGORY:
83 - System
DESCRIPTION:

The address of the text input buffer. This buffer is used to hold characters when the
input stream is coming from the current input device. The minimum capacity of TIB
is 80 characters.

LC2/LC4 OPTO 22 FORTH GLOSSARY

TIME!
"fime-store"
STACK:
ni n2 n3 --
CATAGORY:
- Input/Output, LC2/4
DESCRIPTION:

TIME! is used o set the real-time clock’s time. n1 is a number representing the time in
hours (0-23), n2 is the minutes (0-59) and n3 is the seconds (0-59).

TIME®@
"time-fetch"
STACK:
—~n1l n2n3
CATAGORY:
- Input/Qutput, LC2/4
DESCRIPTION:

TIME@ is used to read the real-time clock’s time. n1 is a number representing the time
in hours {0-23), n2 is the minutes (0-59) and n3 the seconds (0-59).

TOGGLE

STACK:

addr byte -
CATEGORY:

- Logical, Memory
DESCRIPTION:

TOGGLE will Exclusive-Or the byte specified with the contents of the byte at the
specified address. This is useful for updating flags in memory.

TRAVERSE

STACK:
addri n - addr2

CATEGORY:
- System

DESCRIPTION:

TRAVERSE is used to move across the name field of a variable-length name- field. addri
is either the address of the length byte or of the last letter of the name-field. nis a
direction indicator. If n=1, the traverse is performed towards high memory. If n=-1, the
traverse is performed towards low memory. The resuming address addr2 is the address
of the opposite end of the name-field.

GLOSSARY LC2/LC4 OPTO 22 FORTH

TRUE

STACK:

- -1
CATEGORY:

- Logical
DESCRIPTION:

TRUE is a constant which is equal to the value -1. It is useful for setting flags or logical
states to a "true" value.

TX.ENABLE
"transmit-enable"
STACK:
- addr
CATEGORY:
- System
DESCRIPTION:

TX.ENABLE is a system variable stored at address addr, that is used by the system to
enable or disable output on the currently selected port. Setting TX.ENABLE to -1{true)
will enable output. Setting TX.ENABLE to O(false) will disable any output.

TYPE

STACK:
addr +n --
CATEGORY:
79 - Output
DESCRIPTION:

+n characters are displayed from memory beginning with the character at addr and
continuing through consecutive addresses. Nothing is displayed if +n is zero.

u.
"u_dotl!
STACK:
[V]
CATEGORY:
79 - Output
DESCRIPTION:

u is displayed as an unsigned humber in a free-field format.

4-100

LC2/LC4 OPTO 22 FORTH GLOSSARY

U.R
"u-dot-r"
STACK:
u width -
CATEGORY:
- Output
DESCRIPTION:

U.R prints an unsigned number right-justified in a field of specified width. If the
specified width is less than the number of significant digits, the number is printed
without leading blanks. No trailing blanks are printed.

U<
"u-less-than"
STACK:
ul u2 -~ flag
CATEGORY:
83 - Comparison
DESCRIPTION:

flag is true if ui is less than u2.

U>
"u-greater-than"

STACK:

ui u2 - flag
CATEGORY:

- Comparison

DESCRIPTION:
tlag is true if u1 is greater than u2.

UmM*
"u-m-times"

STACK:
utl u2 - ud

CATEGORY:
83 - Arithmetic

DESCRIPTION:
ud is the unsigned product of ut times u2. Al values and arithmetic are unsigned.

4 -101

GLOSSARY LC2/1.C4 OPTO 22 FORTH

UM/MOD
"u-m-divide-mod"
STACK:
ud ul — u2 u3
CATEGORY:
83 - Arithmetic
DESCRIPTION:

u2 is the remainder and u3 is the floor of the quotient after dividing ud by ul. All values
and arithmetic are unsigned. An error condition results if the divisor is zero or if the
quotient lies outside the range {0...65,535}.

UNTIL

STACK:

flag -

SYS --
CATEGORY:

C,1,79 - Control
DESCRIPTION:

Used in the form:

BEGIN ... flag UNTIL

Marks the end of a BEGIN-UNTIL loop which will terminate based on flag. If flag is true,
the loop is terminated. If flag is false, execution continues to just after the
corresponding BEGIN. sys is balanced with its corresponding BEGIN. See: BEGIN.

USER

STACK:
n-—
CATEGORY:
Defining
DESCRIPTION:
A defining word used in the form:
n USER <pame>

which creates a user variable <name>. The parameter field of <name> contains n as a
fixed offset relative to the user pointer UP for this user variable. When <name> is later
executed, it places the sum of its offset and the user area base address on the stack as
the storage address of that particular variable.

4-102

LC2/LC4 OPTO 22 FORTH GLOSSARY

VARIABLE

STACK:
CATEGORY:
79 - Defining word
DESCRIPTION:
A defining word executed in the form:
VARIABLE <pame>

A dictionary entry for <pame> is created and two bytes are ALLOTted in its
parameter-field. This parameter-field is to be used for contents of the variable. The
application is responsible for initializing the contents of the variable which it creates.
When <name> is later executed, the address of its parameter-field is placed on the stack.

VOC-LINK
"voke-link"
STACK:
- addr
CATEGORY:
- System
DESCRIPTION:

VOC-LINK is a user variable that contains the address (pointer) of a field in the definition
of the most recent vocabulary created. All vocabulary definitions are linked by this field
in chronological order via this pointer.

VOCABULARY
STACK:
CATEGORY:
83 - Defining word
DESCRIPTION:
A defining word executed in the form:

VOCABULARY <pame>

A dictionary entry for <name> is created which specifies a new ordered list of word
definitions. Subsequent execution of <name> replaces the first vocabulary in the search
order with <name>. When <pame> becomes the compilation vecabulary, new definitions
will be appended to <name>’s list.

4-103

GLOSSARY LC2/LC4 OPTO 22 FORTH

WHILE

STACK:
flag ~
sys1 - sys2 (compiling)
CATEGOCRY:
C,1,79 - Control
DESCRIPTION:
Used in the form:
BEGIN ... flag WHILE ... REPEAT

Selects conditional execution based on flag. When flag is true, execution continues to
just after the WHILE through to the REPEAT which then continues execution back to just
after the BEGIN. When flag is false, execution continues to just after the REPEAT,
exiting the control structure. sys1 is balanced with its corresponding BEGIN. sys2 is
balanced with its corresponding REPEAT. See: BEGIN.

WIDTH

STACK:

-~ addr
CATEGORY:

- System
DESCRIPTION:

WIDTH is a user variable that contains the maximum number of characters stored in the
name-field of a compiled definition. This value is in the range of 1 to 31 characters with
31 as the default. The length byte is not included in the field width specified by width.

4-104

LC2/LC4 OPTO 22 FORTH GLOSSARY

WORD

STACK:
char — addr

CATEGORY:
83 - String
DESCRIPTION:

Generates a counted string by non-destructively accepting characters from the input
stream until the delimiting character is encountered or the input stream is exhausted.
Leading delimiters are ignored. The entire character string is stored in memory
beginning at addr as a sequence of bytes. The string is followed by a blank which is not
included in the count. The first byte of the string is the number of characters {0...255}. If
the string is longer than 255 characters, the count is unspecified. If the input stream is
already exhausted as WORD is called, then a zero length character string will result.

if the delimiter is not found the value of >IN is the size of the input stream. If the
delimiter is found >IN is adjusted to indicate the offset to the character following the
delimiter. #TIB is unmodified.

The counted string returned by WORD may reside in the "free" dictionary area at HERE
or above. Note that the text interpreter may also use this area.

WORDS

STACK:

CATEGORY:
- System
DESCRIPTION:
WORDS lists the names of all definitions in the dictionary.

XONO.ENABLE

STACK:

~ addr
CATEGORY:

- System
DESCRIFPTION:

XONOD.ENABLE leaves the address of the host xon/xotf enable variable on the stack. A
false value in XONO.ENABLE will disable xonjxoff protocol on the host port. A TRUE will
enable the xon/xoff protocol.

4-105

GLOSSARY LC2/LC4 OPTO 22 FORTH

XON1.ENABLE

STACK:
-- addr

CATEGORY:
- System
DESCRIPTION:

XON1.ENABLE leaves the address of the com1 xon/xoff enable variable on the stack. A
false value in XON1.ENABLE will disable xon/xoff protocol on the com1 port. A TRUE
will enable the xonfxoff protocol.

XON2.ENABLE (LC4)

STACK:

- addr
CATEGORY:

- System
DESCRIPTION:

XON2.ENABLE leaves the address of the com2 xon/xoff enable variable on the stack. A
false value in XON2.ENABLE will disable xonfxoff protocol on the com2 port. A TRUE
will enable the xon/xoff protocol.

LC4: This word is only available with LC4,

XON3.ENABLE (LC4)

STACK:
- addr
CATEGORY:
- System

DESCRIPTION:

XON2.ENABLE leaves the address of the com3 xon/xoff enable variable on the stack. A
false value in the XON3_ ENABLE will disable xonfxoff protocof on the com3 port. A
TRUE will enable the xon/xoff protocol.

This word is only available with LC4.

4-106

LC2/LC4 OPTO 22 FORTH GLOSSARY

XOR
!lx_or"
STACK:
16b1 16b2 —~ 16b3
CATEGORY:
79 - Logical
DESCRIPTION:

16b3 is the bit-by-bit exclusive-or of 16b1 with 16b2.

YEARS!
"'years-store"
STACK:
ne--
CATEGORY:
- Input/Qutput, LC2/4
DESCRIPTION:

YEARS! is used to set the year on the real-time clock. n is in the range 0 to 99.

YEARS@
"years-fetch"
STACK:
-n
CATEGORY:
- Input/Output, LC2/4
DESCRIPTION:

YEARS@ is used to read the year on the real-time clock. n is in the range 0 to 99,

[
"left-bracket"

STACK:

- (compiling)
CATEGORY:
1,79 - Compiier word

DESCRIPTION:

Sets interpret state. The text from the input stream is subsequently interpreted. For
typical usage see LITERAL. See:]

4-107

GLOSSARY LC2/LC4 OPTO 22 FORTH

]

"bracket-tick"

STACK:

-- addr

-~ (compiling)
CATEGORY:

C,I,83 - Compiler word
DESCRIPTION:

Used in the form:;

['l <name>

Compiles the compilation address addr of <pame> as a literal. When the colon definition
is later executed addr is left on the stack. An error condiiton exists if <name> is not
found in the currently active search order. See: LITERAL.

[COMPILE]
"bracket-compile"

STACK:

-- (compiling)
CATEGORY:

C,1,79 - Compiler word
DESCRIPTION:

Used in the form:

[COMPILE] <pame>

Forces compilation of the following word <pame>. This allows compilation of an
immediate word when it would otherwise have been executed.

]
"right-bracket"

STACK:

CATEGORY:
79 - Compiler word

DESCRIPTION:

Sets compilation state. The text from the input stream is subsequently compiled. For
typical usage see LITERAL. See: [

4-108

LC2/LC4 OPTO 22 FORTH GLOSSARY

"backslash"

STACK:

CATEGORY:

- System
DESCRIPTION:

Used in the form \ ccoce

Ignore a comment that will be delimited by the end of the line. The \ must be followed by
a space.

4-109

GLOSSARY LC2/LC4 OPTO 22 FORTH

LC2/LC4 OPTO 22 FORTH APPENDIX

Appendix

APPENDIX LC2/LC4 OPTO 22 FORTH

LC2/LC4 OPTO 22 FORTH

APPENDIX

TASK SCHEDULER

N — — T — — — L~ — p— p—

‘TASK;

P N T o N — p—

)

This is an example of a simple task scheduler)
)

The resolution of the real-time clock interrupt)
on the LC2 is .2 seconds. This will allow us)
to start a new task every .1 seconds. If a)
task takes longer than .2 seconds, other tasks)
cannot be performed until the culprit is done.)
)

Each task is assigned a tick count with a .1 sec)
resolution. A task will be performed every)
time its tick count comes around.)

)

EXAMPLE: a task with a tick count of 3 will)
be performed each time the tick)

equals 3, 6, 9, 12 ... elc.

(easy forget)

QUE will contain the list of tasks and tick)
counts for each task)

QUE + 0 has the current clock.tick)

QUE + 2 has the tick value for the first word)
QUE + 4 has the address of the first word)

QUE + 6 has the tick value for the second word)

)
)
)

QUE + n-1 has address of last word)
QUE + n has a zero to indicate the end of que)

VARIABLE QUE 42 ALLOT (make space for 10 words)

(

TASK.POINTER will keep track of where you are in)
(que)

VARIABLE TASK.POINTER

The following group of words are just some simple)
tasks to schedule)

58 HOLD { stick a : into text buffer)

47 HOLD (stick a [into text buffer)

the following word prints the time on the screen in the)
HH:MM:SS format)

APPENDIX LC2/LC4 OPTO 22 FORTH

(hours is 3rd on the stack)

(minutes is 2nd on the stack)

(seconds is 1st on the stack)

. .TIME
SWAP RCT (getinto correct order)
0 <#'""#HHi> (convert hours)
TYPE (type hours)
O <#""#HHi> (convert minutes
TYPE (type minutes)
0 <iHHH> (convert seconds)
TYPE (type seconds)

({ the following word prints the data on the screen in the

{ MM/DD/YY format)

{ month is 3rd on the stack)

{ day is 2nd on the stack)

{ year is 1st on the stack)

. .DATE
SWAP ROT { get into correct order)
O <#f#H> { convert months)
TYPE { type months)
O<#'['#iHi> (convert days)
TYPE { type days)
O<d#HHt> (convert years)
TYPE (type years)

:TEST
This is just a test" CR

: PRINT.TIME
TIME@ (get time from clock chip)
TJIME (print the time)
C

: PRINT.DATE
DATE®@ { get date from clock chip)
.DATE { print the date)
CR

— — — —

This word is used to stop all the tasks in the gueue)
It does this by storing a zero in the tick value for)
the first word in the que)

)

the tasks are stopped only if a key press is detected)

LC2/LC4 OPTO 22 FORTH APPENDIX
: STOP.RUN
7KEY (check for keypress)
IF
KEY DROP { get key and drop it)
0 QUE 2+ { make que empty)
THEN

.
¥

:WAIT.FOR.TICK (wait for clock tick to change)

BEGIN
CLOCK.TICK @
QUE @
=NOT
UNTIL
: SEE.IF.MINE
QUE @
TASK.POINTER @ @
MOD 0=
: QUEI
OVER ! 2+

(initialize que)

QUE 2+

9 QUE!"' TEST QUEI

3 QUE!"’ PRINT.TIME QUE!
6 QUE! ' PRINT.DATE QUEI
1 QUE!’ STOP.RUN QUE!
0 QUE!

— T~ — o~

— — o p— o

start loop)

get current tick value)

get value to compare with)
see if equal)

if not equal loop)

see if tick value is active)

get current tick value)
get nexi words tick value)
get modulo value)

point to first location)

do TEST every 9 ticks)

do PRINT.TIME every 3 ticks)
do PRINT.DATE every 6 ticks)
do STOP.RUN every 1 ticks)
stick in que terminator)

APPENDIX

LC2/LC4 OPTO 22 FORTH

: RUN

1 CLOCK.TICK (initialize clock.tick)

BEGIN

{ setup loop)
QUE 2+ TASK.POINTER |
CLOCK.TICK @ DUF

O=IF
DROP 1 1 CLOCK.TICK !
THEN

QuE !
WAIT.FOR.TICK
TASK.POINTER @ @

IF (if value isn't zero)
BEGIN

UNTIL

(perform words in QUE)

(initialize task pointer)
(get current clock tick)
(
{

if aqual to zero)
set equal to a 1)

set que value)
(wait for the tick to change)
(get first tick value)

SEE.IF.MINE (compare que with clock.tick)

IF (if value isn't zero)
TASK.POINTER @ (get a copy of task pointer)

2+ @ { point to word to execute)
EXECUTE { perform word)

THEN

TASK.POINTER @ (get a copy of task pointer)
2+ 2+ DUP (increment pointer)
TASK.POINTER! (save updated task pointer)
@ 0= (see if tick is equal to zero)
UNTIL

FALSE { on stack to continue loop)
ELSE (if first item was zero)
TRUE { and put a true onto the stack)
THEN { to terminate the loop)

LC2/LC4 OPTO 22 FORTH APPENDIX

SUGGESTED READING

The following is a list of good sources for learning more about FORTH. However, not all of the
books listed cover the FORTH-83 standard, but the philosophy remains the same.

Starting FORTH

Leo Brodie

Prentice-Hall Inc., Englewood Cliffs, New Jersey
1981

FORTH Fundamentals, Volume 1, Language Usage
C. Kevin McCabe

Dilithium Press, Beaverton, Oregon

1983

FORTH Pregramming
Leo J. Scanlon

Howard W. Sams & Co, Indianapolis, Indiana
1982

FORTH Encyclopedia
Mitch Derick & Linda Baker
Mountain View Press Inc, Mountain View, California

Thinking FORTH

Leo Brodie

Prentice-hall Inc, Englewood Ciliffs, New Jersey
1984

FORTH-83 STANDARD

A Publication of the FORTH Standards Team
Mountain View Press inc, Mountain View, California
August 1983

For additional sources refer to:

A Bibliography of FORTH References

David K. Hofert, Editor

The Institute For Applied FORTH Research, Inc.
70 Elmwood Avenue

Rochester, New York 14611

APPENDIX LC2/1C4 OPTO 22 FORTH

OPTO 22

43044 Business Park Drive » Temecula, CA 82590-3514
Phone: 800/321-0PTO (6786) or 909/695-3000
Fax: 800/832-0PTO (6786) or 909/695-2712
Internet Web site: http:/fiwww.opto22.com

Product Support Services:
800/TEK-OPTO {835-6786) or 909/695-3080
Fax: 909/695-3017
E-mail: support@opto22.com
Bulletin Board Systemn (BBS}: 909/695-1367
FIP site: fip.opto22.com

