
CYRANO COMMAND REFERENCE

Form 703-990421 — April, 1999

43044 Business Park Drive, Temecula, CA 92590-3614
Phone: 800-321-OPTO (6786) or 951-695-3000

Fax: 800-832-OPTO (6786) or 951-695-2712
www.opto22.com

Product Support Services:
800-TEK-OPTO (835-6786) or 951-695-3080

Fax: 951-695-3017
E-mail: support@opto22.com

Web: support.opto22.com

INTRODUCTION

ii Cyrano Command Reference

Cyrano Command Reference
Form 703-990421 — April, 1999

All rights reserved.
Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22 assumes
no responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the
manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover
installation, labor, or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of
1/96 or later are guaranteed for life. This lifetime warranty excludes reed relay, SNAP serial communication
modules, SNAP PID modules, and modules that contain mechanical contacts or switches. Opto 22 does not warrant
any product, components, or parts not manufactured by Opto 22; for these items, the warranty from the original
manufacturer applies. These products include, but are not limited to, the OptoTerminal-G70, OptoTerminal-G75,
and Sony Ericsson GT-48; see the product data sheet for specific warranty information. Refer to Opto 22 form
number 1042 for complete warranty information.

Opto 22 FactoryFloor, Cyrano, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl,
ioDisplay, ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl,
OptoDisplay, OptoENETSniff, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, SNAP Ethernet I/O,
SNAP I/O, SNAP OEM I/O, SNAP Simple I/O, SNAP Ultimate I/O, and SNAP Wireless LAN I/O are trademarks of
Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered
trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET
is a registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric.
Wiegand is a registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M
Gateway Software, and Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia
Corporation. Sony is a trademark of Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

INTRODUCTION

Cyrano Commmand Reference iii

TABLE OF CONTENTS

Welcome ... vii
What Is Cyrano? .. vii
What Is Cyrano Used With? .. vii

Hardware .. vii
Firmware ... viii

About This Manual .. ix
Document Conventions ... x
About Opto 22 ... xi

Chapter 1: Overviews ... 1-1
Chart Overview ... 1-1

What is a chart? .. 1-1
What is the HOST task? ... 1-1
What are additional HOST tasks? .. 1-2
Uses for Additional HOST Tasks .. 1-2
What is the INTERRUPT chart? .. 1-2
What is the 32-task queue? .. 1-2
What is a time slice? .. 1-3
What is priority? ... 1-3
How much CPU time can a task use? ... 1-3
What about subroutines? .. 1-3
Does a task always use all of its allocated time? .. 1-3
When will the requested change to a chart or task status take effect? 1-4
How many charts should I have running concurrently? .. 1-4

Communication Overview ... 1-5
What are the Mistic port assignments? ... 1-5
What is a HOST port? .. 1-5
What communication modes are available? ... 1-5
How is ASCII mode selected for a HOST port? .. 1-5
What modes can serial ports be in? ... 1-6
What modes can ARCNET ports be in? .. 1-6
What is peer-to-peer communication? ... 1-6
What is an “open” communication port? ... 1-6
What is a “closed” communication port? .. 1-6
How many ports can an individual chart have open at once? 1-6
Can two charts have the same port open at the same time? 1-6
What is a receive buffer? ... 1-7
What is a transmit buffer? ... 1-7

INTRODUCTION

iv Cyrano Command Reference

How many messages can these buffers hold? ... 1-7
What type of flow control is supported on serial ports? .. 1-7
Where can baud rate, # data bits, etc., be changed? .. 1-7
How do you troubleshoot failed communications? ... 1-7

Digital Point Overview ... 1-8
What are XVAL and IVAL? .. 1-8
Simulation and Test: The “Real” Use for XVAL and IVAL .. 1-8
Digital Counters ... 1-8
Additional Commands .. 1-9

Event/Reaction Overview ... 1-9
What is an event/reaction? ... 1-9
Why use event/reactions? .. 1-10
Typical applications for event/reactions: .. 1-10
What can be configured as an event? ... 1-10
What can be configured as a reaction? .. 1-11
Simple Event/Reaction Example .. 1-12
Enhancements ... 1-13
Questions and Answers .. 1-13

How to Use the INTERRUPT Chart to Handle Reactions That Generate an Interrupt 1-15
Why use the INTERRUPT chart? .. 1-15
Follow this procedure: .. 1-15
For each I/O unit that is generating an interrupt, sequentially perform the following:
... 1-15
How to Store Event/Reactions in Flash EEPROM at the I/O Unit 1-15
How to Remove Event/Reactions Previously Written to Flash EEPROM at the I/O Unit
... 1-16
How to Change Event Criteria On the Fly from the Mistic Controller 1-16

Logical Overview .. 1-16
What is logical True? ... 1-16
What types of values do Logical operations and conditions work with? 1-17
Can floats be used in logic? ... 1-17
What is a mask? .. 1-17
How are multiple entries in condition blocks evaluated? .. 1-17

Mathematical Overview ... 1-17
What is an integer? ... 1-17
How are integer bits numbered? .. 1-18
What is a float? ... 1-18
Can integers and floats be mixed in the same command, and can they be
 converted from one to the other? ... 1-18
Can rounding be controlled? ... 1-18
What is a radian? ... 1-18

PID Overview ... 1-19
Theory of Operation .. 1-19
Suggested Tuning Method ... 1-20
Input Filtering ... 1-21
Opto 22’s PID Formula ... 1-22

INTRODUCTION

Cyrano Commmand Reference v

String Overview .. 1-22
What is a string? ... 1-22
What is the difference between string length and width? ... 1-23
Can numeric tables be used as an alternative to strings? ... 1-23
How are strings handled during multitasking? .. 1-24
How can binary bytes be viewed in the Cyrano Debugger? .. 1-24
Should quotes be used within strings? ... 1-24
How can a control character be added to a string? .. 1-24
Sample String Variable ... 1-25
Sample String Table .. 1-25
String Data Extraction Examples ... 1-26
String Building Example .. 1-26
Convert-to-String Examples ... 1-28
ASCII Table ... 1-30

Timers Overview .. 1-31
Analog I/O Overview ... 1-32

Chapter 2: Operations .. 2-1
Overview ... 2-1
Index of Operation Command Groups .. 2-1
Index of Operation Commands ... 2-1
Analog Point Operations ... 2-9
Chart Operations .. 2-30
Communication Operations .. 2-45
Digital Point Operations .. 2-94
Event/Reaction Operations 2-135
General Purpose Operations 2-147
I/O Unit Operations 2-169
Logical Operations 2-181
Mathematical Operations 2-202
PID Operations 2-224
String Operations 2-239
Time/Date Operations 2-258

Chapter 3: Conditions .. 3-1
Chart Conditions .. 3-4
Digital Point Conditions .. 3-10
Event/Reaction Conditions ... 3-15
General Purpose Conditions ... 3-22
Logical Conditions ... 3-38
String Conditions ... 3-67

INTRODUCTION

vi Cyrano Command Reference

Chapter 4: Error Codes .. 4-1
I/O Unit Errors .. 4-1
General Errors .. 4-3
Errors Reported to HOST Port Devices ... 4-5
Communication and String Command Errors ... 4-8
Motion Control Errors .. 4-10

Appendix A: Product Support .. A-1

Index

INTRODUCTION

Cyrano Commmand Reference vii

WELCOME

WHAT IS CYRANO?

The Cyrano 200 Visual Control Language (“Cyrano,” for short) is a powerful, easy-to-use
program that enables you to develop control applications for Opto 22’s Mistic systems
right from your PC. These applications are based on simple flowcharts familiar to anyone
involved in process control design. Because these flowchart concepts are fundamental,
and because the terminology used to program Cyrano is plain English rather than techno-
jargon, you will find Cyrano easy to learn and intuitive, whether or not you have any
previous programming experience.

But don’t be fooled by Cyrano’s ease of use. Features such as multitasking, full debugging
capabilities, and an extensive set of built-in advanced tools combine to make Cyrano the
most powerful and versatile control design program you will ever need.

WHAT IS CYRANO USED WITH?

An inexpensive and readily available IBM-compatible PC workstation, equipped with
color graphics and a mouse, is all that you need to run Cyrano. By making selections from
Cyrano’s color graphic menus on your PC workstation and using your mouse to draw
interconnections, you can create a control chart that defines how you want your
application to work. Cyrano then completes the rest of the work for you by creating a
computer program that runs your application on the Opto 22 Controller.

Once you have developed and debugged a control application using Cyrano, you can
download it directly to an Opto 22 controller. At this point your program becomes a
stand-alone application running on the controller, and the PC is no longer required.

Hardware
Applications developed in Cyrano will run on control systems with the following Opto 22
equipment:

• Opto 22 Controller (with Flash EEPROM or EPROM)

• Digital and Analog I/O Units

• G4 Type I/O Modules, as required by your application

For multidrop applications that require several controllers to be connected to digital and
analog I/O bricks, the following hardware is required:

• An IBM-compatible PC workstation

• An Opto 22 AC24, AC422 RS-485/422, or AC37 (115-KBd) Adapter Card, or an
SMC PC-130 ARCNET card

INTRODUCTION

viii Cyrano Command Reference

• An Opto 22 system with:

— Opto 22 200 Controllers, as required by your application

— Opto 22 Digital and Analog I/O Units, as required by your application

— Opto 22 Digital and Analog I/O Modules (G4 type), as required by your
application

• Serial cables, or coaxial cables and hubs, to multidrop-connect the PC to Opto 22
controllers

FIRMWARE
Cyrano requires compatible firmware to be installed on various hardware components, as
detailed below:

Current Version Minimum Version
Required

Analog Brick
Single-Point Local (G4A8L) R3.0a LA 117

Single-Point Remote (G4A8R) R3.0a RA 117

HRD High-Density Local (G4HDAL) R3.0a LAM 105

HRD High-Density Remote (G4HDAR) R3.0a RAM 105

Digital Brick
Local Multifunction Digital (G4D16L) R3.0a LD 109

Remote Multifunction Digital (G4D16R) R3.0a RD 109

Local Simple Digital (G4D16LS) LS 101 LS 101

Remote Simple Digital (G4D32RS) R3.0a R3.0a

Mistic Controllers
G4LC32ISA R3.1h R3.0a

G4LC32ISA-LT R3.1h R3.0a

G4LC32SX R3.1h R3.0a

G4LC32 R3.1h R3.0a

M4 R3.1h R3.0a

M4 I/O R3.1h R3.0a

M4RTU/DAS R3.1h R3.0a

INTRODUCTION

Cyrano Commmand Reference ix

ABOUT THIS MANUAL

The Cyrano Command Reference is the second of three volumes in the Cyrano
documentation set. This reference manual provides complete descriptions of all Cyrano
commands, both operations (which execute something) and conditions (which evaluate
something). It also includes detailed overview information on various command groups.

The other two Cyrano manuals are:

• Cyrano User’s Guide (Opto 22 form 702) — general information on installing and
using Cyrano plus a description of all tools, menus, and dialog box options

• Cyrano Tutorial (Opto 22 form 704) — a step-by-step introduction to Cyrano
application development

This manual is organized as follows:

• Chapter 1: Overviews — general information, tips, and usage examples for various
command groups

• Chapter 2: Operations — complete descriptions of all Cyrano operation
commands, organized alphabetically within command groups. Includes an
alphabetical index of all operation commands at the beginning of the chapter.

• Chapter 3: Conditions — complete descriptions of all Cyrano condition
commands, organized alphabetically within command groups. Includes an
alphabetical index of all condition commands at the beginning of the chapter.

• Chapter 4: Error Codes — descriptions and possible causes of all Cyrano errors

• Appendix A: Product Support — how to reach Opto 22

Command descriptions include the following information:

• Function — a general description of the command’s purpose

• Typical Use — a description of one or more common uses

• Details — specific information on how and when to use the command and what
to know when using it

• Arguments — the number and type of command parameters required

• Example — a usage example, including sample arguments (if any)

• Notes — tips and special information (if any)

• Dependencies — special conditions to be met before using the command (if any)

• Error Codes — descriptions of all errors that could occur with the command (if
any)

• See Also — related commands (if any)

INTRODUCTION

x Cyrano Command Reference

DOCUMENT CONVENTIONS

• Bold typeface indicates text to be typed. Unless otherwise noted, such text may
be entered in upper or lower case. (Example: “At the DOS prompt, type
cd \windows.”)

• Italic typeface indicates emphasis and is used for book titles. (Example: “See the
Cyrano User’s Guide for details.”)

• Names of menus, commands, dialog boxes, fields, and buttons are capitalized as
they appear in the product. (Example: “From the File menu, select Print to bring
up the PRINT TOPIC dialog box.”)

• File names appear in all capital letters. (Example: “Open the file TEST1.TXT.”)

• Key names appear in small capital letters. (Example: “Press SHIFT.”)

• Key press combinations are indicated by hyphens between two or more key
names. For example, SHIFT-F1 is the result of holding down the SHIFT key, then
pressing and releasing the F1 key. Similarly, CTRL-ALT-DELETE is the result of pressing
and holding the CTRL and ALT keys, then pressing and releasing the DELETE key.

• “Press” (or “click”) means press and release when used in reference to a mouse
button.

• Menu commands are sometimes referred to with the Menu➠Command
convention. For example, “Select File➠Run” means to select the Run command
from the File menu.

• Numbered lists indicate procedures to be followed sequentially. Bulleted lists
(such as this one) provide general information.

INTRODUCTION

Cyrano Commmand Reference xi

ABOUT OPTO 22

Opto 22’s goal to deliver total control to industrial automation customers dates back to
its beginnings in 1974 with the introduction of optically-isolated solid-state relays.
Today, Opto 22 is the number one provider of I/O systems, with more than 80 million
points of I/O working reliably worldwide. After earning a reputation for consistent
innovation and leadership in automation hardware, Opto 22 realized it was time to take a
new approach to control software. In 1988, Opto 22 introduced the first flowchart-based
control programming language. Opto 22 continues to deliver successively more advanced
generations of hardware and software.

All Opto 22 products are manufactured in the U.S. at the company’s headquarters in
Temecula, California, and are sold through a global network of distributors, system
integrators, and OEMs. Sales offices are located throughout the United States. For more
information, contact Opto 22, 43044 Business Park Drive, Temecula, CA 92590-3614.
Phone Opto 22 Inside Sales at 1-800-452-OPTO or Opto 22 headquarters at
951-695-3000. Fax us at 951-695-3095.

You can also visit our Web site at www.opto22.com.

INTRODUCTION

xii Cyrano Command Reference

Cyrano Command Reference 1-1

OVERVIEWS

This chapter provides general information on fundamental terms and concepts you will find valuable when
using various Cyrano commands. Use this information as a reference for learning the function of several
command groups within the Cyrano language.

CHART OVERVIEW

WHAT IS A CHART?

The term �chart� refers to a flowchart, also known as a �task.� The maximum number of tasks that can
run concurrently is 32. Since the HOST task and the INTERRUPT chart are included by default in the 32-
task queue, this means that up to 30 user-configurable charts can be run concurrently. It should be noted
that the total number of charts in a program is not limited to 32. Provided enough memory is available, a
total of 1,295 charts can exist per program; however, only 32 can be running at any one time.

WHAT IS THE HOST TASK?

The HOST task is an invisible �chart� that always exists and is always part of the 32-task queue. Its
purpose is to respond to master/slave communications from a Cyrano Debugger, MMI, or other device
using Mistic HOST protocol. The HOST task functions as the slave, which means that it never originates a
message, it only responds to inquiries or commands.

There are two types of HOST task: the default HOST task and additional HOST tasks.

What is the default HOST task?

� This task runs by default.

� The default HOST task is specified during configuration of the Mistic controller and the Cyrano
software, typically on COM0 or COM4 (ARCNET).

� This task must be used to download a new kernel to the Mistic controller.

� Opto 22 binary communication mode (�binary mode�) is the default (for use with ARCNET and
direct serial connections).

� Opto 22 ASCII communication mode (�ASCII mode�) must be selected when using modems.

Since most modems and radio modems do not support the Mistic controller�s binary mode, ASCII mode must
be selected when using modems. See the processor manual for details on how to change communication
modes. Note that COM4 (ARCNET) always runs in binary mode, even if ASCII mode is selected.

OVERVIEWS

1-2 Cyrano Command Reference

WHAT ARE ADDITIONAL HOST TASKS?

� One or more additional HOST tasks can be started or stopped under program control at any
time.

� Each task started will take up one task slot in the 32-task queue.

� Additional HOST tasks can be assigned to COM0 through COM4 (ARCNET).

� Either binary or ASCII communication mode can be specified for COM0 through COM3.

� Additional HOST tasks cannot be used to download a new kernel to the Mistic controller.

USES FOR ADDITIONAL HOST TASKS

� Remote debugging via modem

� Remote MMI connections via modem

� Supporting a Debugger on one port, an MMI on another

� Supporting a local Debugger on ARCNET, a remote Debugger via modem

The binary mode of the Mistic controller has a very efficient 11-bit frame tailored especially for
addressable communications. The parity bit is used to identify an address byte, not to carry parity
information. All serial ports support this mode. However, most modems and radio modems do not support
any other use of the parity bit. If binary mode doesn�t work, use ASCII mode.

The ASCII mode of the Mistic controller converts all bytes to two ASCII hex characters (00 to FF). ASCII
mode is required for use with modems and radio modems. Defaults are no parity, eight data bits, and one
stop bit. ASCII mode may be desired for use with some Windows applications that do not work well in
binary mode.

WHAT IS THE INTERRUPT CHART?

� The INTERRUPT chart is automatically created by the Configurator and cannot be deleted.

� The purpose of this chart is to service interrupts from I/O units that have interrupt-generating
event/reactions configured and have interrupt wiring connected to the Mistic controller.

� The INTERRUPT chart is suspended by default. It runs automatically when an interrupt is
generated by an I/O unit.

� The INTERRUPT chart does not use CPU time while suspended, but it does take up one of the
tasks in the 32-task queue.

� Using STOP CHART to stop the INTERRUPT chart will take it out of the 32-task queue and
prevent it from running when an interrupt occurs.

� Using START CHART to restart the INTERRUPT chart will put it back into the 32-task queue (if a
time slot is available) and leave it suspended at BLOCK-0, ready to process an interrupt.

WHAT IS THE 32-TASK QUEUE?

� The queue is a list of the tasks and charts that are to run concurrently.

OVERVIEWS

Cyrano Command Reference 1-3

� Every task on the list is executed one at a time over and over.

� The order in which the tasks appear on the list is subject to change frequently, since tasks can
come and go from the list as they are started and stopped.

� Any chart or task that is running or suspended is on the task list.

WHAT IS A TIME SLICE?

� A time slice is a fixed unit of CPU time. This unit is currently set at 500 microseconds (one-half
millisecond).

� Each task in the 32-task queue is allocated one time slice by default. This results in the
smoothest task switching operation.

� The maximum number of time slices is 8,160 (32 tasks x 255 time slices).

WHAT IS PRIORITY?

� Priority is the number of consecutive time slices a task can use.

� All tasks have a priority of 1 by default.

� The HOST task priority can be changed using SET HOST PRIORITY.

� The priority for other charts can be changed using SET PRIORITY.

� The valid priority range is 1 to 255.

HOW MUCH CPU TIME CAN A TASK USE?

Up to 100%. Suppose there are three tasks in the 32-task queue, each with one time slice (a priority of
1). In this case each task will use 33.33% of CPU time. If the third task is given two time slices (i.e., its
priority is changed to 2), the first two tasks will each use 25% of CPU time while the third task will use
50% of CPU time (two consecutive 25% time slices).

The number of consecutive time slices allowed for each task ranges from 1 to 255 and can be changed
on the fly under program control. See SET PRIORITY and SET HOST PRIORITY.

WHAT ABOUT SUBROUTINES?

Whenever a chart calls a subroutine, the subroutine temporarily inherits the task in use by the calling
chart along with its priority.

DOES A TASK ALWAYS USE ALL OF ITS ALLOCATED TIME?

Not always. If a chart or subroutine runs in a loop, all allocated time will be used. If a chart or subroutine
does not need all of its allocated time to complete its job, all remaining time (including portions of a time
slice) is given up.

The following conditions will cause a chart to use less than a full time slice:

� The chart or subroutine stops.

OVERVIEWS

1-4 Cyrano Command Reference

� The chart or subroutine is suspended.

� The DELAY command is used.

DELAYing 1 millisecond is a handy way to give up the time slice while waiting for an event such as
CHARACTERS WAITING? to occur.

WHEN WILL THE REQUESTED CHANGE TO A CHART OR TASK STATUS TAKE EFFECT?

Not immediately. In any multitasking system, timing and synchronization issues are always a concern.
The time required for a particular request to be implemented depends on the number of tasks currently
running, the priority of each, and the specified chart�s location in the 32-task queue. In other words, it�s
hard to say. However, the worst-case delay can be calculated. For example, if four charts and one HOST
task are running, each with a priority of 2 (two time slices each), the worst case delay would be 5 x 2 x 500
microseconds = 5 milliseconds.

HOW MANY CHARTS SHOULD I HAVE RUNNING CONCURRENTLY?

As few as possible. This leaves options as the program grows. Get in the habit of running only a few
charts concurrently. Set up �chains of charts� where each chart in the chain starts the next chart as its last
command. This way, all charts in the chain use only one task in the 32-task queue.

If two charts are running, both with a priority of 1, each will have equal execution time. This can be seen
by examining the first eight time slices, as shown below:

Table 1-1: HOST Task and a Chart Both Running with a Priority of 1

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8

HOST
Task

CHART_A
HOST
Task

CHART_A
HOST
Task

CHART_A
HOST
Task

CHART_A

If the HOST task priority is changed to 3, the following will occur:

Table 1-2: HOST Task with a Priority of 3 Running with a Chart with a Priority of 1

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8

HOST
Task

HOST
Task

HOST
Task

CHART_A
HOST
Task

HOST
Task

HOST
Task

CHART_A

OVERVIEWS

Cyrano Command Reference 1-5

COMMUNICATION OVERVIEW

WHAT ARE THE MISTIC PORT ASSIGNMENTS?

� Ports 0-3 (COM 0-3) are serial � a variable mix of RS-232 and RS-422/RS-485 2-wire and 4-
wire.

� Port 4 is ARCNET.

� Port 5 is the front panel keypad and LCD display of the G4LC32.

� Port 6 is parallel (16 wide) for local I/O.

� Port 7 is ARCNET peer, a virtual port. It uses the same connector as port 4 (ARCNET) for external
connections.

WHAT IS A HOST PORT?

Any port that supports the Mistic HOST protocol (where the Mistic controller is always a slave). Ports 0-
4 are eligible. The HOST port is always used by the Debugger and MMI.

There are two types of HOST ports: the default HOST port and additional HOST ports. Additional HOST
ports differ only in that they do not support Mistic kernel downloads. A Mistic controller always has a
default HOST port, usually port 0 or port 4. Many additional HOST ports can be defined under program
control. See the Chart Overview for details.

WHAT COMMUNICATION MODES ARE AVAILABLE?

All HOST ports support either Opto 22 Mistic controller binary communication mode (the default) or Opto
22 Mistic controller ASCII communication mode. Binary mode uses an 11-bit frame (1 start, 8 data, 1 stop,
1 parity) with the parity bit used to indicate that the current byte is an address byte. Since most modems
do not support this use of the parity bit, binary mode cannot be used with most modems. For this reason,
ASCII mode is also available. This mode uses a 10-bit frame (1 start, 8 data, 1 stop, no parity) with all
characters being printable ASCII 0�127. In this mode, any eight-bit binary data is sent as two ASCII hex
characters.

Any modem will work with ASCII mode. However, be sure to select ENABLED for CTS under PC COM Port
Configuration in Cyrano. Also be sure to connect CTS from the modem to the PC (a standard PC-to-modem
cable does this automatically).

HOW IS ASCII MODE SELECTED FOR A HOST PORT?

For the default HOST port, it depends on which Mistic controller is used. Current methods are via front
panel, jumper, and EEPROM. See your processor�s user guide for specific details on how to select the
communication mode for your particular processor.

For additional HOST ports, use START HOST TASK (ASCII) in the POWERUP chart.

OVERVIEWS

1-6 Cyrano Command Reference

WHAT MODES CAN SERIAL PORTS BE IN?

� Opto 22 Mistic controller binary mode � This is the default mode for talking to remote I/O
units. Special drivers are available (and required) to talk to remote I/O units in ASCII mode via
modem.

� Opto 22 Mistic controller ASCII mode � This mode is used for talking via modem on a HOST
port.

� Standard mode � This is the default mode for all serial ports that are not talking to remote I/O
units and are not configured as a HOST port. Default is a 10-bit frame (1 start, 8 data, 1 stop, no
parity). These parameters can be changed under Cyrano program control using the CONFIGURE
PORT command.

WHAT MODES CAN ARCNET PORTS BE IN?

Binary mode only.

WHAT IS PEER-TO-PEER COMMUNICATION?

A fast method for two or more Mistic controllers to communicate with each other via ARCNET. All
communication via ARCNET is CRC error-checked by the ARCNET protocol. The MMI and the Debugger
can use the ARCNET at the same time it�s being used for peer-to-peer communication.

Peer-to-peer communication uses port 7 (a virtual port within the Mistic controller) and the ARCNET port
for external connections.

Certain commands must be used to send data to port 7, such as SET PEER DESTINATION ADDRESS and
PRINT NEW LINE (PORT) W/TIMEOUT. See example peer applications included with the Cyrano
distribution files or on the Opto 22 BBS.

WHAT IS AN �OPEN� COMMUNICATION PORT?

One that is in use or �locked� by a chart or subroutine. An open port is not available to any other charts
as long as it remains open.

A port is opened by using REQUEST PORT and closed by using RELEASE PORT. Valid commands for open
ports always include the word PORT in parentheses, e.g., (PORT).

WHAT IS A �CLOSED� COMMUNICATION PORT?

One that is available for general use. Valid commands for closed ports always require the port number to
be specified as part of the command.

HOW MANY PORTS CAN AN INDIVIDUAL CHART HAVE OPEN AT ONCE?

Only one. If a chart requires multiple ports, only one can be open at a time.

CAN TWO CHARTS HAVE THE SAME PORT OPEN AT THE SAME TIME?

No, not if the REQUEST PORT command has been used to open the port. For this reason you should
check the status returned by this command to verify that the port was available (-1 indicates success).

OVERVIEWS

Cyrano Command Reference 1-7

WHAT IS A RECEIVE BUFFER?

Each port has a separate location in memory known as its receive buffer. Messages sent to the
controller automatically go in this buffer for later retrieval by the program. The typical size of a receive
buffer is 253 characters, although port 5�s receive buffer holds only one character.

WHAT IS A TRANSMIT BUFFER?

Ports 4, 6, and 7 have separate locations in memory known as transmit buffers. Characters sent to these
ports do not get transmitted right away. A command such as PRINT NEW LINE TO PORT must be used to
transfer the contents of the transmit buffer to the port. The typical size of a transmit buffer is 250
characters.

HOW MANY MESSAGES CAN THESE BUFFERS HOLD?

For ports 0�3, as many as will fit.

For ports 4, 6, and 7, the receive buffer can hold only one message, regardless of length. This message
consists of all characters that were in the transmit buffer of the sender when the message was sent (using
PRINT NEW LINE TO PORT if the message came from another Mistic controller).

WHAT TYPE OF FLOW CONTROL IS SUPPORTED ON SERIAL PORTS?

Hardware only: RTS/CTS. RTS stands for Request To Send. The RTS output is on when characters are
being sent. CTS stands for Clear To Send. The CTS input is on by default on most Mistic controllers (the
known exception is port 0 on the M4RTU). CTS must be on to send. It is used to externally stop the
sending of characters.

WHERE CAN BAUD RATE, # DATA BITS, ETC., BE CHANGED?

� Under program control using CONFIGURE PORT. The changes take effect immediately and
override all other means used to set port baud rates. Tip: Set all serial port parameters in the
POWERUP chart to ensure they are correct.

� For selected ports, the baud rate can be changed from the Mistic front panel, switches, or
jumpers. Any changes made this way do not take effect until power is cycled and can be
overridden under program control using CONFIGURE PORT.

� The Cyrano Configurator can be used to set baud rates. Such a change takes effect only after a
download and can be overridden under program control using CONFIGURE PORT.

HOW DO YOU TROUBLESHOOT FAILED COMMUNICATIONS?

Serial

� Check baud rate, # data bits, # stop bits, parity, communication mode (binary vs. ASCII),
address, etc.

� Connect RTS to CTS on the Mistic serial port.

� Cycle power to the Mistic controller and try again.

OVERVIEWS

1-8 Cyrano Command Reference

ARCNET

� Make sure the ARCNET card in the PC has a unique ARCNET address (usually set at 1 from the
factory). You are advised to use address 128.

� Cycle power to the Mistic controller and try again.

DIGITAL POINT OVERVIEW

WHAT ARE XVAL AND IVAL?

All I/O points have two associated values: XVAL and IVAL. Unless you are using the Debugger to
manipulate I/O values or to disable an I/O point or I/O unit, you do not need to be concerned with these
values.

The external value, or XVAL, is the �real� (hardware) value as seen by the I/O unit. This value is external to
the Mistic controller.

The internal value, or IVAL, is a logical or software variable copy of the XVAL that resides within the Mistic
controller. The IVAL may or may not be current, since it is updated to match the XVAL only when a read or
write is done to an enabled I/O point by the program in the Mistic controller.

Do not be concerned when the IVAL does not match the XVAL, since this means only that the program is
not reading from or writing to the I/O point in question.

SIMULATION AND TEST: THE �REAL� USE FOR XVAL AND IVAL

To force an XVAL for a specific output to a particular value in order to test output performance, you do
not necessarily have to disable the output. If the program is actively writing to the output, you will need
to disable it. On the other hand, if the program is stopped, there is no need to disable any output.

To force an IVAL for a specific input to a particular value in order to test program logic, you must disable
the input first.

Disabling can be performed under program control by using DISABLE DIGITAL POINT, DISABLE ANALOG
POINT, DISABLE I/O UNIT, etc. However, disabling is usually handled via the Debugger by selecting �I/O�
to view the �DEBUG POINT DISPLAY SCREEN.�

DIGITAL COUNTERS

Before using a counter, it must be activated using START COUNTER for single inputs or START
QUADRATURE COUNTER for quadrature inputs. This is normally done in the POWERUP chart.

To keep a counter active after a power failure at the I/O unit, use the Debugger to write or �burn� the
current I/O unit configuration to EEPROM after the counter is started.

OVERVIEWS

Cyrano Command Reference 1-9

ADDITIONAL COMMANDS

Although not listed under Digital Point operations or conditions, several I/O Unit and Logical commands
can be used for digital operations:

� MOVE can be used to cause an output on one I/O unit to assume the state of an input or output
on another I/O unit. A digital input or output that is on will return a True (-1). A True (non-zero)
sent to a digital output will turn it on.

� NOT can be used to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

� Event/reactions can be used to cause an output to track an input on the same digital
multifunction I/O unit.

� DO BINARY READ can be used to get the state of all 16 channels at once. BIT TEST can then be
used to determine the state of individual channels.

� DO BINARY WRITE, DO BINARY ACTIVATE, or DO BINARY DEACTIVATE can be used to control
all 16 outputs at once.

EVENT/REACTION OVERVIEW

WHAT IS AN EVENT/REACTION?

An event/reaction is a powerful and unique feature of the Mistic system that allows users to �off load�
or distribute control logic to an I/O unit. That is, some of the logic in a control strategy can be run on the
I/O unit independently of the Mistic controller.

As the name suggests, an event/reaction consists of an event and a corresponding reaction. Each time
an event becomes true, its corresponding reaction is executed once. The event is a user-defined state
that the I/O unit can recognize. The defined state can be a combination of values, inputs, and outputs.

On a digital multifunction I/O unit, for example, any pattern of input and output states (on and off) can
constitute an event. On an analog I/O unit, an event could occur when an input channel attains a reading
greater than a preset value. Examples of reactions include turning on or off a set of outputs, ramping an
analog output, and enabling or disabling other event/reactions.

The predefined communications watchdog timer at the I/O unit is another example of the event/reaction
concept. When active, this built-in event/reaction will change the state of an output channel after
communication with the controller fails.

Event/reactions are stored in each I/O unit. They are scanned continuously in alphanumeric order (just as
they appear in the Configurator) as soon as power is applied to the I/O unit. Since each I/O unit can be
configured with up to 256 event/reactions, complex tasks and sequences can be performed.

OVERVIEWS

1-10 Cyrano Command Reference

WHY USE EVENT/REACTIONS?

� To reduce communication overhead between the I/O unit and the Mistic controller.

� To distribute control logic sequences to the I/O unit rather than concentrating them in the
Mistic controller.

� To handle high-speed logic functions local to an I/O unit.

� To increase the execution speed of a program in the Mistic controller.

� To simplify overall control strategy.

TYPICAL APPLICATIONS FOR EVENT/REACTIONS:

� Motor-starting logic

� Drum sequencers

� Alarm enunciation

� Analog biasing

� Power-up sequencing

� Monitoring emergency stop buttons (notifying the Mistic controller when pressed)

� Monitoring analog inputs (notifying the Mistic controller if inputs fall outside acceptable limits)

� Auto seeking of backup communication paths

WHAT CAN BE CONFIGURED AS AN EVENT?

Digital Multifunction I/O Unit Events Analog I/O Unit Events

Communication Watchdog Timeout Communication Watchdog Timeout
Counter >= Value Analog Input >= Value
Counter <= Value Analog Input <= Value
Quadrature >= Value Analog Output >= Value
Quadrature <= Value Analog Output <= Value
Frequency >= Value
Frequency <= Value
Totalize ON >= Value
Totalize OFF >= Value
ON Pulse >= Value
OFF Pulse >= Value
Period >= Value
MOMO Match

In these events, VALUE refers to a setpoint supplied by the user. Analog inputs and outputs can compare
the current reading as well as the average, peak, lowest, or totalized readings against a value.

OVERVIEWS

Cyrano Command Reference 1-11

Both digital and analog I/O units have a watchdog timeout event. A watchdog timeout value can be set
such that, if communication is lost for a time greater than this value, a corresponding reaction will be
executed. This can be useful in situations requiring an orderly shutdown of equipment should
communication between the Mistic controller and the I/O unit be lost.

The MOMO (Must On, Must Off) MATCH event in the digital multifunction I/O unit is used to define an
event based on a specified input and/or output pattern. MOMO MATCH compares the inputs and outputs
on the I/O unit to a pattern entered by the user. As soon as the pattern matches the current state of the I/O
unit channels, the event becomes true. The MOMO MATCH event allows the user to specify On, Off, or
DON�T CARE for each input or output channel. This event is very useful for identifying emergency
conditions or implementing basic combinational logic, such as an AND gate.

WHAT CAN BE CONFIGURED AS A REACTION?

After an event has occurred, a reaction is executed once. The following reactions can be performed in
response to an event:

Digital Multifunction I/O Unit Reactions Analog I/O Unit Reactions

None None
Enable Scan for Events Enable Scan for Event
Disable Scan for Events Disable Scan for Event
Disable Scan for All Events Disable Scan for All Events
Set MOMO Outputs Read and Hold Analog Input Data
Start ON Pulse Read and Hold Analog Output Data
Start OFF Pulse Activate PID Loop
Start Counter Deactivate PID Loop
Stop Counter Set PID Setpoint
Clear Counter/Timer Set Analog Output
Clear Quadrature Counter Ramp Analog Output to Endpoint
Read and Hold Counter Value
Read and Hold Quadrature Value
Read and Hold Totalize ON Value
Read and Hold Totalize OFF Value
Read and Hold ON Pulse Value
Read and Hold OFF Pulse Value
Read and Hold Period Value
Read and Hold Frequency Value

One of the most powerful features of event/reactions is their ability to start and stop one another. This
feature allows dynamic restructuring of the control logic running at the I/O unit. This is accomplished using
the reactions ENABLE SCAN FOR EVENT, DISABLE SCAN FOR EVENT, and DISABLE SCAN FOR ALL
EVENTS.

Both analog and digital I/O units have read-and-hold reactions. These reactions are used to capture a
count, period, analog value, or frequency at the moment the event occurs and store it in a hold buffer for
later retrieval by the Mistic controller. Each event/reaction has a dedicated hold buffer.

OVERVIEWS

1-12 Cyrano Command Reference

SIMPLE EVENT/REACTION EXAMPLE

As an example of an event/reaction, let�s build a motor controller. It consists of two inputs and one
output on the same digital multifunction I/O unit. The two inputs are wired to two momentary push
buttons that are normally open: START MOTOR and STOP MOTOR. The output, called MOTOR RUN, is
connected to a motor starter.

The operation of the motor starter is simple. When the START MOTOR button is pressed, the motor
starts and remains on until the STOP MOTOR button is pressed.

To build the logic for this example, two event/reactions are required. The first watches the START
MOTOR button (event) and turns on the MOTOR RUN output if the button is pressed (reaction). The
second watches the STOP MOTOR button and turns off the MOTOR RUN output if the button is pressed.

Event Reaction

1. START MOTOR (input changes from off to on) Turn on MOTOR RUN output

2. STOP MOTOR (input changes from off to on) Turn off MOTOR RUN output

Follow these steps to actually create this example event/reaction:

1. Launch the Cyrano Configurator.

2. From the Configure menu, select I/O Point. Create two digital inputs (START MOTOR and STOP
MOTOR) and one digital output (MOTOR RUN) on a digital multifunction I/O unit (assuming one
has already been configured).

3. From the Configure menu, select Event/Reaction.

4. From the Select I/O Unit Type dialog box, select DIGITAL MF.

5. Select the digital multifunction I/O unit you are using. If there are no event/reactions on this
I/O unit, the message �No Event/Reaction Defined� will pop up. Ignore it.

6. To add the first event/reaction, select ADD in the EVENT/REACTION FOR I/O UNIT dialog box
and do the following:

a. Enter START MOTOR as the name of the event/reaction and press ENTER.

b. Cursor down to the EVENT TYPE field, leaving intervening fields at their defaults.

c. Under EVENT TYPE, cursor left to MOMO MATCH and press ENTER.

d. Cursor down to the START MOTOR input. Cursor left to ON and press ENTER.

e. Cursor down to ACCEPT and press ENTER.

f. In the REACTION TYPE field, cursor right four times to SET MOMO OUTPUTS and press ENTER.

g. Cursor down to the MOTOR RUN output. Cursor left to ON and press ENTER.

h. Cursor down to ACCEPT and press ENTER.

i. Press ENTER again to accept this event/reaction.

OVERVIEWS

Cyrano Command Reference 1-13

7. To add the second event/reaction, select ADD in the EVENT/REACTION FOR I/O UNIT dialog
box and do the following:

a. Enter STOP MOTOR as the name of the event/reaction and press ENTER.

b. Cursor down to the EVENT TYPE field, leaving intervening fields at their defaults.

c. Under EVENT TYPE, cursor left to MOMO MATCH and press ENTER.

d. Cursor down to the STOP MOTOR input. Cursor left to ON and press ENTER.

e. Cursor down to ACCEPT and press ENTER.

f. In the REACTION TYPE field, cursor right four times to SET MOMO OUTPUTS and press ENTER.

g. Cursor down to the MOTOR RUN output. Cursor left to OFF and press ENTER.

h. Cursor down to ACCEPT and press ENTER.

i. Press ENTER again to accept this event/reaction.

8. Use the Cyrano Debugger to download and run this strategy to activate these event/reactions.

ENHANCEMENTS

You can enhance the event/reactions in the previous example by:

� requiring the opposite input to be off;

� requiring the MOTOR RUN output to be in the opposite state.

QUESTIONS AND ANSWERS

Q. Where are event/reactions defined?

A. In the Cyrano Configurator.

Q. How do event/reactions get sent to the I/O unit?

A. They are automatically sent to the Mistic controller by the Debugger during download.

After selecting RUN, all event/reactions are forwarded to their respective I/O units during I/O
unit initialization.

Q. How fast do event/reactions execute?

A. That depends on how many there are and how often the I/O unit is polled for data.

A typical answer is 0.5 milliseconds. The maximum possible delay would be 5 milliseconds if all
256 event/reactions were in use.

Rapid polling of the I/O unit will significantly increase these times.

OVERVIEWS

1-14 Cyrano Command Reference

Q. Can an I/O unit notify the Mistic controller when certain events occur?

A. Yes. An event/reaction can also trigger an interrupt wired to the Mistic controller.

Q. Can each event/reaction be configured to notify the Mistic controller of an event?

A. Yes.

Q. Does the reaction keep occurring as long as the associated event is True?

A. No. The reaction occurs once each time the specified event status changes from False to True.

Q. Does the order of event/reaction execution matter?

A. Not usually. Only if subsequent event/reactions rely on the results of previous event/reactions.

Keep in mind that event/reactions execute in alphanumeric order (just as they appear in the
Configurator).

Q. Are event/reactions permanently stored at the I/O unit?

A. Not automatically. Unless they are stored in Flash EEPROM, event/reaction definitions will be
lost if the I/O unit loses power. See �How to Store Event/Reactions in Flash EEPROM at the I/O
Unit� on the following page for more information.

Q. Can event/reactions be individually started and stopped by the program, by the Debugger, and by
each other?

A. Yes.

Q. Can the event criteria be changed on the fly by the program?

A. Yes.

Q. Are all reactions latched?

A. Yes. Every reaction is maintained regardless of the state of the event.

Q. Can the same event be used in multiple event/reactions?

A. Yes, unless the event references a counter. In these cases, use the reaction as the event for
subsequent related event/reactions to guarantee reliable performance.

OVERVIEWS

Cyrano Command Reference 1-15

Q. Can counts, analog values, etc., be captured as the reaction?

A. Yes. There is a hold buffer for each event/reaction specifically for this purpose.

Q. Which is more important on the Cyrano Debugger event/reaction screen, the XVAL or the IVAL?

A. Since event/reactions occur entirely at the I/O unit, the XVAL is the most important because it
shows the current status of the event/reaction. The IVAL may or may not be current, since it is
updated to match the XVAL only when a read or write is done to an enabled I/O point by the
program in the Mistic controller. Do not be concerned when the IVAL does not match the XVAL,
since this means only that the program is not reading from or writing to the I/O point in question.

HOW TO USE THE INTERRUPT CHART TO HANDLE
REACTIONS THAT GENERATE AN INTERRUPT

WHY USE THE INTERRUPT CHART?

� To be promptly notified of critical events that occur at the I/O unit.

� To allow an event on one I/O unit to quickly cause a reaction on another I/O unit using logic in
the INTERRUPT chart as the gateway. (Note that reactions should be configured to occur at the
I/O unit whenever possible for maximum speed and efficiency.)

FOLLOW THIS PROCEDURE:

� Be sure to wire the interrupt lines from remote I/O units to the Mistic controller.

� Use GENERATING INTERRUPT? to determine which I/O units are generating an interrupt.

FOR EACH I/O UNIT THAT IS GENERATING AN INTERRUPT, SEQUENTIALLY PERFORM
THE FOLLOWING:

1. Use CLEAR I/O UNIT INTERRUPT.

2. Use HAS EVENT OCCURRED? to determine which event/reaction(s) caused the interrupt.

3. For each event that occurred, use CLEAR EVENT LATCH.

4. React to each event as desired.

5. IMPORTANT! Be sure to check every event that may have caused the interrupt. There may
have been multiple events.

HOW TO STORE EVENT/REACTIONS IN FLASH EEPROM AT THE I/O UNIT

Event/reactions are not automatically stored at the I/O unit. This means that after a power failure at the
I/O unit, all event/reactions will be lost unless they were written to Flash EEPROM via the Debugger or by
program command.

OVERVIEWS

1-16 Cyrano Command Reference

To store event/reactions in Flash EEPROM, do the following:

1. From the Debugger, download and run your strategy.

2. From the Controller menu, select Clear/Store I/O Unit Cfg, select the I/O unit, and click STORE.
A confirmation message will appear; click YES to confirm the action.

This will store the first 32 event/reactions in Flash EEPROM. More event/reactions can be stored by
replacing the socketed Flash EEPROM with a higher-capacity chip.

HOW TO REMOVE EVENT/REACTIONS PREVIOUSLY WRITTEN TO FLASH EEPROM AT
THE I/O UNIT

� Using the Debugger, download a program to the Mistic controller (but don�t run it!) with the
specified I/O unit configured but with no event/reactions defined.

� From the Controller menu, select Turn Reset I/O On.

� Now click RUN. This will clear the RAM at the I/O unit.

� From the Controller menu, select Clear/Store I/O Unit Cfg, select the I/O unit, and click STORE. A
confirmation message will appear; click YES to clear the EEPROM.

HOW TO CHANGE EVENT CRITERIA ON THE FLY FROM THE MISTIC CONTROLLER

Use SEND/RECEIVE PORT W/CRC to send special commands to Mistic I/O units, as detailed in the
Mistic Analog and Digital Commands Manual (Opto 22 form 270). Many additional event/reaction
control features are also available, such as CHANGE ANALOG >= EVENT LIMIT. Consult the Opto 22 BBS
for information on these advanced control features.

Tip: You must use ENABLE INTERRUPT ON EVENT (if using interrupts) followed by ENABLE SCAN FOR
EVENT immediately after any change to event criteria.

LOGICAL OVERVIEW

WHAT IS LOGICAL TRUE?

True is represented by any non-zero value. Cyrano always uses -1 (all 32 bits on) to indicate True in an
integer variable.

A digital input or output that is on will return a True (-1). A True or any non-zero value sent to a digital
output will turn it on. Any value other than zero can be used to indicate True.

For individual bits within an integer variable, bits that are set (1) indicate True values. Bits that are cleared
(0) indicate False values.

For condition blocks, if all the conditions within the block are True, the T exit will be taken, otherwise the F
exit will be taken.

Tip: Some programs that communicate with the Mistic controller use 1 rather than -1 for logical True. This

OVERVIEWS

Cyrano Command Reference 1-17

is only a problem when such programs read Boolean values from the Mistic controller. An easy way to
convert a -1 Boolean result to a 1 is to use TAKE ABSOLUTE VALUE OF.

What is logical False?

False is represented by a value of zero.

For individual bits within an integer variable, bits that are cleared (0) indicate False values.

For condition blocks, a False result means the F exit will be taken, otherwise the T exit will be taken.

WHAT TYPES OF VALUES DO LOGICAL OPERATIONS AND CONDITIONS WORK
WITH?

Logical operations and conditions work with integers, individual bits within an integer, a single digital I/
O channel, or a group of digital I/O channels (a digital I/O unit). All values are treated as Boolean; that is,
they are always either True or False, on or off.

CAN FLOATS BE USED IN LOGIC?

Yes. However, integers are strongly recommended whenever any bits are referenced. Since Cyrano does
not permit bits in a float value to be altered, float values must be converted to integers before evaluation.
The result of a Boolean operation is always an integer value of either 0 or -1.

See the Mathematical Overview for further information on integers and floats.

WHAT IS A MASK?

A mask is an integer variable or constant with one or more specific bits set. These bits define a set of
bits for other operations to work on.

For example, a mask of 255 (the eight least significant bits set) is used with BIT AND either to keep the
value in the least significant byte of an integer variable, or to force the 24 most significant bits to zero.

HOW ARE MULTIPLE ENTRIES IN CONDITION BLOCKS EVALUATED?

All the conditions in the block are evaluated and ANDed together. In other words, they all must evaluate
to True for the result of the condition block to be True. All entries are evaluated, even if the first entry is
False.

MATHEMATICAL OVERVIEW

WHAT IS AN INTEGER?

In Cyrano an integer is a 32-bit signed number ranging from -2,147,483,648 to 2,147,483,647 (roughly ±2
billion). An integer can only be a whole number (-1, 0, 1, 2, 3, etc.). In other words, integers do not include
a decimal component.

A special feature of integers is that when all 32 bits are on, the value is -1, since negative numbers are
represented in twos complement form. When all 32 bits are off, the value is 0.

OVERVIEWS

1-18 Cyrano Command Reference

A digital I/O unit is considered a 16-bit unsigned integer. For example, if the status of all 16 channels of
a digital I/O unit is copied to an integer using DO BINARY READ, the lower 16 bits (bits 15 to 0) will
contain an exact image of the status of all 16 channels whether they are inputs or outputs. The upper 16
bits of the target integer are not used.

HOW ARE INTEGER BITS NUMBERED?

The 32 bits are numbered left to right, 31 to 0, as follows:

Byte 3 Byte 2 Byte 1 Byte 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

WHAT IS A FLOAT?

In Cyrano a floating point number (or simply �float�) is a 32-bit IEEE single-precision number ranging
from ±3.402824 x 10-38 to ±3.402824 x 1038.

Note that this format guarantees only about six and a half digits of significance in the mantissa.
Because of this, mathematical operations involving floats with seven or more significant digits may incur
errors after the sixth significant digit. For example, a float-to-integer conversion of 555444333.0 yields
555444416 (note the error in the last three digits).

All analog values read from an I/O unit are floats.

CAN INTEGERS AND FLOATS BE MIXED IN THE SAME COMMAND, AND CAN THEY
BE CONVERTED FROM ONE TO THE OTHER?

Yes. Type conversion is automatic. An analog value read from an I/O unit and put into an integer is
converted from float to integer automatically.

However, to maintain the integrity and accuracy of a numeric type (float or integer), keep all item types the
same. For example, use MOVE to copy an integer value to a variable float when exclusively float
calculations are desired.

CAN ROUNDING BE CONTROLLED?

Yes. To round the result of a float calculation, use MOVE to copy the float result to a variable integer.
Note that 1.5 rounds up to 2, 1.49 rounds down to 1.

To round down only, divide an integer by an integer (5/3 = 1).

WHAT IS A RADIAN?

A radian is a natural unit of angular measurement equal to 57.29578 degrees of arc. Note that 2p
radians = 360 degrees and 2p f = angular frequency in radians per second (represented by the Greek
letter omega, ω), where f = frequency in Hz.

OVERVIEWS

Cyrano Command Reference 1-19

PID OVERVIEW

The Opto 22 PID algorithm is an interacting type with a reverse output. This means that

1. The gain, integral, and derivative all interact, and

2. The output increases as the input decreases (reverse output).

The reverse output mode is used for �pump-up� control, such as maintaining level, pressure, and flow as
well as heating. For cooling or �pump-down� control, direct output is required. To switch to direct, simply
reverse the sign of the gain (e.g., a gain of 1.28 would become -1.28). Note that this is not negative gain.
The minus sign only serves to change the type of PID output from reverse to direct.

THEORY OF OPERATION

Gain (P) � For those familiar with the term �proportional band,� gain is simply the inverse. Gain acts
directly on the change in error since the last scan (error is the setpoint minus the input value in
engineering units). Therefore, in the case of steady-state error (i.e., change in error = 0), gain alone has no
effect on the output. For this reason, gain cannot be used alone. Gain is also used as a multiplier on the
integral and derivative.

Opto 22 uses gain much as it is used in the Honeywell �type A� PID and the Bailey �error input� type PID.
Higher gain results in increased output change. Too much gain results in output oscillation. Too little gain
results in very slow performance.

Keep in mind that a gain value other than zero is required.

Integral (I) � This term acts only on the current error. It is used to reduce the current error to zero. Note
that during steady-state conditions, integral multiplied by current error multiplied by gain is the only thing
affecting the output. The larger the integral value, the larger the output change.

Keep in mind that a positive integral value is required.

Derivative (D) � This term acts only on the change in slope of the input signal. Its purpose is to
anticipate where the input will be on the next scan based on a change in the rate of change of the input
value. In other words, it changes the output as the input gets near the setpoint to prevent overshooting or
undershooting.

Derivative is used in �feed forward� applications and in systems that have a lot of dead time. Its action
type is unlimited (i.e., it has no filtering). If the input signal is noisy and the derivative value is greater than
zero, the input value must be filtered. (See step 4 on page 1-22 for details.) If the slope of the input signal
has remained unchanged for the last two scans, the derivative will have no effect.

Judging by the change in direction of the input, the derivative contributes an appropriate value to the
output that is consistent with where the input will be at the next scan if it continues at its current rate
of change.

Integral-Derivative Interaction � Integral and derivative can be trying to move the output in
opposite directions. When this is the case, the derivative should be large enough to overcome the
integral (since the derivative is �looking ahead� based on the change in slope, it has a bigger picture
than the integral does).

OVERVIEWS

1-20 Cyrano Command Reference

This can be observed when the input is below the setpoint and is rising fast. The integral tries to
increase the output (which will only make things worse), while the derivative tries to decrease the
output because, at the current rate of change of the input, there will be an input overshoot if the output
is increased. Therefore, the derivative needs to be large enough to counteract the integral when
necessary.

SUGGESTED TUNING METHOD

1. Determine the scan rate in seconds.

This is the most important step. If the scan rate is not matched to the system that the PID is to control,
tuning the PID will be difficult if not impossible. The scan rate must be greater than the loop dead time.
The dead time is the time it takes the input to begin changing in response to an output step change.

To determine the dead time, put the PID output in manual mode, then set the output somewhere
around midrange. After the loop has achieved a steady state, change the output by at least 10% of
its span. Measure the time (in seconds) that it takes the input to start responding to the change. This
is the dead time.

For conservative tuning, set the scan rate greater than or equal to the dead time. A quick value to use
for the scan rate is 1.5 times the dead time. For aggressive tuning, set the scan rate to one-third of the
dead time.

Tip: If the scan rate is too short, it will be impossible to tune the loop because the PID calculation is using
an input value that has not had a chance to change yet in response to the last output change.

Note: None of the following applies to aggressive tuning!

2. Determine the gain.

The recommended initial gain is the percent of output span change divided by the resulting percent of
input span change.

Let�s say that the output, which is scaled 0�100, was changed from 50 to 60, a 10% change. As a result,
the input, which is scaled 500�1500, changed from 600 to 678, a 7.8% change. We can calculate the gain
as 10/7.8 = 1.28. This gain causes a 7.8% input change to result in a 10% output change, which
represents an equivalent gain of 1.0. In this example we would set the gain greater than or equal to 1.28.

Tip: Remember, to reverse the action of the PID output, make the gain negative.

Tip: Limit changes to the initial gain value to between +20% and -0% while fine tuning.

Tip: If you wish to change just the gain and leave the integral and derivative as they are, change their
values proportionally to the change in gain. For example, if you double the gain, cut both the integral and
derivative values in half.

3. Determine the integral.

The integral is required and must be greater than zero. The recommended initial integral setting is 60
divided by the scan rate determined above. For example, if the scan rate is 5 seconds, the integral would
be 60/5 = 12. In this example we would set the integral less than or equal to 12 but greater than 0.

Tip: Limit changes to the calculated integral value to between +0% and -50% while fine tuning.

OVERVIEWS

Cyrano Command Reference 1-21

Tip: Reduce the integral value if the output is overshooting during steady-state error conditions.

4. Determine the derivative.

The derivative is very useful in loops with a long dead time and long time constants. Set it to zero to
disable it. The recommended initial derivative setting is 1/integral, giving it equal ability to the integral in
affecting output. For example, if the integral is 12, the derivative would be 1/12 = 0.0833. In this example
we would set the derivative to 0.0833.

Tip: Limit changes to the calculated derivative value to ±50% while fine tuning.

Tip: Increase derivative value to improve �look-ahead� performance.

Tip: Activate input filtering if the input signal is the least bit noisy. See the following page for details.

5. Set the output lower and upper clamps.

This is particularly important if the device controlled by the output signal has �dead areas� at either end.
For example, say the output is scaled 0�10. It is connected to a valve that begins to open at 1.25 and is
�effectively� fully open at 5.75 (even though it may only be 70% open). Set LOWER CLAMP to 1.2 (valve
closed) and UPPER CLAMP to 5.75 (valve effectively fully open). This prevents reset windup, potentially
resulting in dramatically improved control when the output value has reached either limit and has to
suddenly reverse direction.

6. Set the maximum change rate of the output.

The MAX CHANGE RATE can be ignored, since it defaults to 100% per scan. If you wish to limit the output
rate of change, set MAX CHANGE RATE to 10% or so to start. This setting would limit the output rate of
change to 100% in 10 scan rate periods.

Tip: The output can be preset or changed at any time by the user or by the user program. For example, if
you have determined that the output should start at 40% whenever the system is activated, simply set the
PID output (or the analog channel output) to this value under program control.

Tip: The factory default causes the setpoint to track the input when the PID is in manual mode. This
means that the setpoint will be altered. If this is undesirable, disable setpoint tracking so that when the
PID is in manual mode, the setpoint will not be altered. Use DISABLE PID MAN. SETP. TRACK:, specifying
the appropriate PID. (Note: As of February 1995, DISABLE PID MAN. SETP. TRACK: is an �external�
command that requires library support. Consult the Opto 22 BBS for details.)

INPUT FILTERING

If the input signal is noisy, you may want to activate input filtering. Follow the procedures below:

1. Use SET ANALOG FILTER WEIGHT, specifying the appropriate analog input channel. Use a filter
weight value of less than 10 times the scan rate. Otherwise, the loop cannot be tuned.

2. Use START PID AVERAGE: to tell the PID to switch to the filtered input value.

3. Use WRITE TO EEPROM: to save the filter weight and the input type (current or average) to
EEPROM at the analog brick. This ensures that the PID will automatically use these values.

OVERVIEWS

1-22 Cyrano Command Reference

Note: As of February 1995, START PID AVERAGE: and WRITE TO EEPROM: are �external� commands
that require library support. Consult the Opto 22 BBS for details.

OPTO 22�S PID FORMULA

Change in output = Gain *
((Error - Last Error) + (P)
(Integral * Time * Error) + (I)
((Derivative/Time) * (Error - (2 * Last Error) + Oldest Error))) (D)

where Error is (Setpoint - Input) in engineering units
Time is (Scan Rate/60), which results in time in minutes

All values are in engineering units.

The change in output calculated above is added to the existing PID output. If the input span and the output
span are different, the change is normalized and then added to the output. This is accomplished by
converting the change to a percentage of input span. The same percentage of output span is then added
to the output.

Tip: If the input engineering units are negative, the output may move in the direction opposite that
desired. If this happens, reverse the sign of the gain.

Tip: The input must not be bipolar. An input range of -10 to +10, for example, will not work. Values such as
-300 to -100, -100 to 0, and 0 to 100 are acceptable. If an application has a bipolar input range, it will have
to be rescaled to a generic range, such as 0 to 100. The setpoint range will then have to match this generic
input range.

STRING OVERVIEW

All numbers are decimal unless otherwise stated.

WHAT IS A STRING?

A Cyrano string can be likened to a string of beads. Each bead represents a single character (such as
�A� or �1�). The string to which the beads are attached represents the place where the characters are
�strung together.� Each string has a user-defined name and width and is called either a string variable
or a string table.

Characteristics of strings include the following:

� Strings are always referred to by name (and, if in a table, by index).

� Each character is represented by one byte.

� Each character is represented by its ASCII code (0 to 255).

� The relationships of characters or the meaning of a particular character is always defined by the user.

� Although a string may appear to contain numeric values, it does not. Digits �0� through �9� are
characters just as much as �A� through �Z�; they do not represent numeric values.

OVERVIEWS

Cyrano Command Reference 1-23

� A string containing no characters is sometimes referred to as an �empty string.�

� Strings are frequently used in serial communication as a container for moving numeric
characters from one location to another.

To illustrate, let�s look at the number 22. This is a decimal number representing a quantity of 22. The
number 22 can be represented in a string in several ways:

� As �22�: two character 50�s (the ASCII code for �2� is 50). Use APPEND STRING to append �22�
or use APPEND CHARACTER to append character 50 twice.

� As �16�: a character 49 (�1�) and a character 54 (�6�) (16 represents the hex value of 22). Use
APPEND STRING to append �16� or use APPEND CHARACTER to append characters 49 and 54.

� As �■�: a character 22. Use APPEND CHARACTER to append character 22.

Note that the string representation of the number 22 is no longer a number. It is simply one or two ASCII
characters. The string representation of a number must be converted to a numeric value if it is to be used
in calculations. Several CONVERT commands are available for this purpose.

WHAT IS THE DIFFERENCE BETWEEN STRING LENGTH AND WIDTH?

Length is not the same as width. Width is the maximum length a string can be; length is the actual
number of characters contained in the string. A string with a width of 100 may currently be empty, which
means its length is actually zero. A string with a width of 10 containing the characters �Hello � has a
length of six (five for �Hello� and one for the space after the �o�). Although a string�s length may change
dynamically as the string is modified by the program, its width remains constant.

For applications requiring strings wider than the width supported by Cyrano (127), there are several options:

� Use several strings to hold the data.

� Use string tables, which are arrays of strings.

� Use numeric tables, described below.

CAN NUMERIC TABLES BE USED AS AN ALTERNATIVE TO STRINGS?

Yes. Since a string is nothing more than a sequence of characters, you can store a �string� in a numeric
table, with each table element holding a character.

The advantages of using numeric tables for strings are:

� A numeric table can store strings of any size.

� A numeric table can access binary data easier in the Debugger.

The disadvantages are:

� Memory usage is three times greater.

� No string conversion functions are available for numeric tables. An intermediate temporary
string would be required to utilize string commands for these tables.

OVERVIEWS

1-24 Cyrano Command Reference

HOW ARE STRINGS HANDLED DURING MULTITASKING?

Although string commands are completed before the current task loses its time slice, it is important to
note that a string may require more than one time slice to be constructed if multiple steps are used to
construct it.

For example, if a string is being constructed with two steps (such as MOVE STRING �Hello� and APPEND
STRING � World�), after the first step a task switch could occur such that another chart looking at the
resulting string might see �Hello� rather than �Hello World.�

If another chart is relying on a completed string, an integer should be used as a flag to indicate whether
the string is completely built. This is illustrated in the following example:

1. The variable string MSG$ is empty and is about to be built by the chart BUILD STRING. MSG$ is
intended to be printed by chart USE STRING. In this example, BUILD STRING builds �The
temperature is 56.77.�

2. Chart BUILD STRING uses MOVE STRING to put �The temperature is � into MSG$.

3. A task switch now occurs, and the chart USE STRING gets control. If this chart looks at
MSG$, it would see a partially constructed string containing �The temperature is � but not
the actual temperature.

4. Chart BUILD STRING gets control again after a task-switch and completes its work on MSG$
by adding the actual temperature. It then sets an integer variable called STRING COMPLETE
to True.

5. Chart USE STRING sees a non-zero value in STRING COMPLETE and now prints the completed
string MSG$. It then clears the flag by resetting STRING COMPLETE to False, thus signalling the
BUILD STRING chart that it can begin building another string.

HOW CAN BINARY BYTES BE VIEWED IN THE CYRANO DEBUGGER?

Some strings may contain non-printable ASCII characters, such as an STX or a carriage return. To see
these characters in hex when using the Debugger, use the CTRL-C key (which is normally used to view the
communications buffer). In this �CTRL-C� window, the field RBUF shows the string contents. The first bytes
are communication header bytes and may be ignored (the first byte is packet length, the second is an error
byte where 0 means no error, and the third is an ID byte used only when ARCNET is in use). For example,
the RBUF for the string �Hello� would contain the following: 06 00 nn 48 65 6C 6C 6F, where the first three
bytes contain communication info and the �48� is the first letter of �Hello.�

SHOULD QUOTES BE USED WITHIN STRINGS?

Double quotes cannot be entered for strings in the Cyrano Configurator. For example, if using MOVE
STRING to put �Hello� into variable MY STRING, do not type in the beginning or ending double quotes.
You may use single quotes around text, although they are not required.

HOW CAN A CONTROL CHARACTER BE ADDED TO A STRING?

You can input control characters by turning on the num lock on your keyboard and inputting the
appropriate control codes through the numeric keypad (at the far right of most keyboards).

OVERVIEWS

Cyrano Command Reference 1-25

For example, to add a CR, press and hold ALT as you type 16 on the keypad, then press and hold ALT as
you type 13 on the keypad. To add a DLE, press and hold ALT as you type 16 on the keypad, then press
and hold ALT as you type 13 on the keypad.

SAMPLE STRING VARIABLE

� Declared Name: STRING 1

� Declared Width: 22

� Maximum Possible Width: 127 (may increase in future versions of Cyrano)

� Bytes of Memory Required: Declared Width + Name Length + 46 = 22 + 8 + 46 = 76

Strings are referred to by their name. The above string is empty, giving it a length of zero.

Later, during program execution, seven characters were added to STRING 1, increasing its length to 7:

SAMPLE STRING TABLE

� Declared Name: PROMO MESSAGES

� Declared Width: 26

� Maximum Possible Width: 127 (may increase in future versions of Cyrano)

� Declared Length (Size): 5

� Maximum Possible Length (Size): 65,535

� Bytes of Memory Required: (Declared Width + 12) x (Declared Length (Size) + 1) +
Name Length + 80 = (26 + 12) x (5 + 1) + 14 + 80 = 322

O P T O 2 2
M I S T I C C O N T R O L L E R S
L e a d i n g t h e w a y !
T i g h t l y I n t e g r a t e d M M I
T o p - N o t c h T e c h S u p p o r t
P r o d u c t o f t h e Y e a r A w a r d !

Width is 26

IndexIndexIndexIndexIndex
Index 1Index 1Index 1Index 1Index 1
Index 2Index 2Index 2Index 2Index 2
Index 3Index 3Index 3Index 3Index 3
Index 4Index 4Index 4Index 4Index 4
Index 5Index 5Index 5Index 5Index 5

Width is 22
STRING 1STRING 1STRING 1STRING 1STRING 1 O P T O 2 2

|�� Length is 7 ��|

Width is 22

Length is 0
STRING 1STRING 1STRING 1STRING 1STRING 1

OVERVIEWS

1-26 Cyrano Command Reference

A string table is a collection of strings. Each string is referred to by the name of the table it is in and the
index at which it can be found.

The width of each string in the table is the same. The length of each string can vary from 0 to the width.

The length (size) of a string table is the number of strings it can hold + 1.

STRING DATA EXTRACTION EXAMPLES

To extract various pieces of information from a string, use GET SUBSTRING. Consider the following
example:

One way to get two separate pieces of information from this string is to get characters 1�4 and then get
characters 6 and 7, as shown in the following examples:

GET SUBSTRING

STRING 1 variable string
Start At 1 constant integer
Number Of 4 constant integer
Move To SUB$ 1 variable string (width = 5)

Results in:

GET SUBSTRING
STRING 1 variable string

Start At 6 constant integer
Number Of 2 constant integer
Move To SUB$ 2 variable string (width = 5)

Results in:

STRING BUILDING EXAMPLE

Strings are assembled using MOVE STRING, APPEND CHARACTER, and APPEND STRING. Consider the
following original string and the examples that follow:

1 2 3 4 5 6 7

O P T O 2 2STRING 1STRING 1STRING 1STRING 1STRING 1

SUB$ 2SUB$ 2SUB$ 2SUB$ 2SUB$ 2

1 2 3 4 5

2 2

SUB$ 1SUB$ 1SUB$ 1SUB$ 1SUB$ 1
1 2 3 4 5

O P T O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M I S T I C 2 0 0 P R O C E S S O RSTRING 1STRING 1STRING 1STRING 1STRING 1

OVERVIEWS

Cyrano Command Reference 1-27

MOVE STRING
From �Opto� constant string
To STRING 1 variable string

Results in: (note that MOVE STRING erased the previous contents of the string)

|Length is 4|

APPEND CHARACTER
From 32 constant integer (represents a space)
To STRING 1 variable string

Results in: (note the space character in position 5)

|� Length is 5 �|

APPEND STRING
From �22� constant string
To STRING 1 variable string

Results in:

|�� Length is 7 ��|

APPEND CHARACTER
From 13 constant integer (carriage return)
To STRING 1 variable string

Results in:

|��� Length is 8 ���|

STRING 1STRING 1STRING 1STRING 1STRING 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O P T O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O P T OSTRING 1STRING 1STRING 1STRING 1STRING 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O P T O 2 2STRING 1STRING 1STRING 1STRING 1STRING 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O P T O 2 2 ¶STRING 1STRING 1STRING 1STRING 1STRING 1

OVERVIEWS

1-28 Cyrano Command Reference

Comparison to Visual Basic and C

Table 1-3 lists Cyrano string commands and their equivalents in Visual Basic and C.

Table 1-3: Visual Basic and C Equivalents of Cyrano Commands

Cyrano Command Visual Basic C

APPEND CHARACTER S$ = S$ + Chr$(MyChar%)
i = strlen(str);

str[i] = 0;
str[i] = 0;

APPEND STRING S$ = S$ + "Hello" strcat(str, "Hello");

CONVERT HEX STRING
TO NUMBER

1% = "&H" + S$ sscanf(str,"%x",&iNum);

CONVERT NUMBER TO
HEX STRING

S$ = Hex$(1%) sprintf(str,"%x",iNum);

CONVERT NUMBER TO
STRING

S$ = CStr(1%)
sprintf(str,"%d",iNum);
sprintf(str,"%f",fNum):

CONVERT STRING TO
NUMBER

1% = Clnt(S$)
sscanf(str,"%d",&iNum);

iNum = atoi(str);

GET NTH CHARACTER
MyByte% = ASC

(MID$(Str$,n%,1))
MyByte = str[n];

GET STRING LENGTH MyLENGTH% = LEN(Str$) iLEN = strlen(str);

GET SUBSTRING SubStr$ = MID$(Str$,i,n)
strncpy(subStr,&str[i]);

subStr[n] = "\0";

MOVE STRING STR$ = "Hello" strcpy(strDest,"Hello");

TEST EQUAL STRINGS Equal% = (STR$ = "Hello") i = strcmp(str1,"Hello");

STRING EQUAL if STR$ = "Hi" then... if(!strcmp(str1,"Hi"))

EQUAL TO STRING if STR$(n%) = "Hi" then... if(!strcmp(str1[n],"Hi")

CONVERT-TO-STRING EXAMPLES

Table 1-4 compares the five �convert-to-string� commands. These commands are typically used when
printing a number to a port. This table shows examples of how various parameters affect the string. Note
the following:

� �Value� indicates the numeric value to be converted.

� �Dec� indicates the number of digits to the right of the decimal point (not applicable to hex
conversions).

� The �*� in strings indicates an overflow where the whole-number portion of the resulting string
is longer than its allocated space.

OVERVIEWS

Cyrano Command Reference 1-29

� Some commands add leading spaces to achieve the specified length. These spaces are
indicated with underline (�_�) characters.

� Floats (if used) are automatically rounded to integers before conversion except when using
CONV. FORMATTED # TO HEX STR.

Table 1-4: Convert-to-String Commands

Command
Parameters

"Convert-to-String" Commands

Value Dec Len
CONV. FORMATTED #

TO HEX STR.

CONV.
FLOATING
POINT #
TO STR.

CONVERT
NUMBER
TO HEX
STRING

CONVERT
NUMBER
TO STR.

FIELD

CONVERT
NUMBER

TO
STRING

Float
16.0

1 4
417FFFFF

(Len 8 req'd for floats)
16.0 10 1.6e+01 1.6e+01

Float
16.0

2 4
417FFFFF

(Len 8 req'd for floats)

(too big)
10 1.6e+01 1.6e+01

Float
-16.0

1 4
C17FFFFF

(Len 8 req'd for floats)

(too big)
FFFFFFF0 -1.6e+01 -1.6e+01

Float
1.23

1 4
3F9D70A4

(Len 8 req'd for floats)
_1.2 1 1.23 1.23

Float
12.3

1 4
4144CCCD

 (Len 8 req'd for floats)
12.3 C 1.23e+01 1.23e+01

Float
0.0

1 4
00000000

(Len 8 req'd for floats)
_0.0 0 _ _ _0 0

Int 16 1 4 0010 16.0 10 _ _16 16

Int 16 2 4 0010

(too big)
10 _ _16 16

Int -16 1 4 FFF0

(too big)
FFFFFFF0 _-16 -16

Int 0 1 4 0000 s0.0 0 _ _ _0 0

Int
1000

1 2 E8
**

(too big)
3E8 1000 1000

OVERVIEWS

1-30 Cyrano Command Reference

ASCII TABLE

Table 1-5 displays ASCII characters with their decimal and hex values. For characters 0�31, equivalent
control codes are also listed; for example, a carriage return (character 13) is equivalent to a CTRL-M (^M).
Printable ASCII characters are shown in bold. Hex values consist of the column heading appended with
the row heading. For example, a �P� is character 80 (hex 50 since it�s in column 5, row 0), a �p� is
character 112 (hex 70).

Table 1-5: ASCII Characters with Decimal and Hex Values

(1) = No symbol defined

OVERVIEWS

Cyrano Command Reference 1-31

TIMERS OVERVIEW

Timers are a special type of numeric variable. To create a timer in OptoControl, configure a numeric
variable and select the type called �Timer�. An OptoControl timer stores elapsed time in units of seconds
with resolution of milliseconds. Timers in OptoControl continuously count down to zero.
Up timers are not currently supported, and there are no commands to suspend or continue timers.

PROPERTIES

Type: Continuous countdown to zero.

Units: Seconds.

Resolution: 0.001 second.

Range: 0.001 to 4.611686 x 1015 seconds.

Numeric Type: Numeric variable configured as a timer. Internally the timer is a 64-bit integer
in units of 0.0005 seconds. For convenience, this value is presented to the
user as a float with units in seconds.

Time Sync: The timer is independent from the controller�s clock. Over thousands of
seconds, the timer and the controller�s clock will not match.

Defaults: Timer stopped with a value of zero.

Features: Start and end.

Overhead: None. The timers do not place any additional load on the CPU.

OPERATION

To start a timer, use the [MOVE] command to put a value greater than zero into the timer. The timer will
begin counting down immediately. To force an end to the timing, use the [MOVE] command to put a value
of zero into the timer.

The current value of a timer can be viewed at any time from the OptoControl Debug mode. Any
OptoControl command that references a numeric variable can be used to access a timer from within an
OptoControl strategy.

To determine if the timer is finished, use the condition <TIMER EXPIRED?>. This condition simply tests the
timer to see if it is zero. This condition is much faster than using the condition <EQUAL?>
to compare the timer to a value of zero.

OVERVIEWS

1-32 Cyrano Command Reference

NOTES

 1. The condition <TIMER EXPIRED?> will be true any time the timer has a value of zero. When
using this condition statement, the resolution is 1 msec.

 2. When program execution speed is a priority, use the [MOVE] command to put an integer value
into the timer (rather than a float) to start the timer. This eliminates the float to integer conversion
time.

3. The timing function internal to the controller maintains its accuracy regardless of the value of the
timer. However, the resolution when viewing or evaluating the remaining time depends on the
amount of time remaining. When viewing the remaining time in a timer from the OptoControl
Debug mode or by using commands within an OptoControl strategy, the resolution will depend
on the remaining time as follows:

Remaining Time Best Resolution
(Seconds) (Seconds)

 0 - 9,999 0.001

10,000 - 99,999 0.01

100,000 - 999,999 0.1

1,000,000 - 9,999,999 1.0

values >= 10,000,000 seven digits plus exponent (9.999999 x 10n).

ANALOG I/O OVERVIEW

Analog Mistic 200 I/O Units constantly update the status of their I/O. Input modules are read every
7 milliseconds and the data held in memory until requested by the host CPU. Output module data is
held in memory and output to each module every 50 milliseconds.

Cyrano Command Reference 2-1

OPERATIONS

OVERVIEW

This appendix provides reference data on all Cyrano operation commands.

To locate a command, look it up in the index below or browse through the appropriate command group
(Analog Point, Chart, etc.) in this chapter.

INDEX OF OPERATION COMMAND GROUPS

Analog Point Operations .. 2-9

Chart Operations .. 2-30

Communication Operations .. 2-45

Digital Point Operations ... 2-94

Event/Reaction Operations ... 2-135

General Purpose Operations ... 2-148

I/O Unit Operations .. 2-169

Logical Operations ... 2-181

Mathematical Operations .. 2-202

PID Operations... 2-224

String Operations ... 2-239

Time/Date Operations .. 2-258

INDEX OF OPERATION COMMANDS

OF CHARACTERS WAITING (PORT) .. 2-45

OF CHARACTERS WAITING FROM PORT ... 2-46

\ COMMENT .. 2-167

\\ COMMENT ... 2-168

AND .. 2-181

APPEND CHARACTER .. 2-239

APPEND STRING ... 2-240

OPERATIONS

2-2 Cyrano Command Reference

BIT AND 2-182

BIT CLEAR .. 2-183

BIT NOT 2-184

BIT OR 2-185

BIT ROTATE .. 2-186

BIT SET 2-187

BIT SHIFT .. 2-188

BIT TEST ... 2-189

BIT XOR 2-190

CALC & SET ANALOG GAIN .. 2-9

CALC & SET ANALOG OFFSET.. 2-10

CALCULATE STRATEGY CRC .. 2-147

CLEAR ALL ERRORS ... 2-148

CLEAR ALL EVENT LATCHES .. 2-135

CLEAR ALL LATCHES .. 2-94

CLEAR EVENT LATCH ... 2-136

CLEAR I/O UNIT INTERRUPT .. 2-137

CLEAR OFF-LATCH .. 2-95

CLEAR ON-LATCH ... 2-96

CLEAR RECEIVE BUFFER .. 2-48

CLEAR RECEIVE BUFFER (PORT)... 2-47

COMPLEMENT... 2-202

CONFIGURE PORT... 2-49

CONTINUE CALLING CHART ... 2-30

CONTINUE CHART.. 2-31

CONV. FLOATING POINT # TO STR. ... 2-243

CONV. FORMATTED # TO HEX STR .. 2-241

CONV. IEEE HEX STRING TO NUMBER ... 2-242

CONV. STR. TO FLOATING POINT # ... 2-248

CONV. STR. TO INTEGER # ... 2-249

CONVERT HEX STRING TO NUMBER .. 2-244

CONVERT NUMBER TO HEX STRING .. 2-245

CONVERT NUMBER TO STR. FIELD ... 2-246

CONVERT NUMBER TO STRING .. 2-247

COPY DATE TO STRING (EUR) ... 2-258

COPY DATE TO STRING (US) ... 2-259

COPY TIME TO STRING .. 2-260

DECREMENT VARIABLE ... 2-203

OPERATIONS

Cyrano Command Reference 2-3

DELAY (MSEC) .. 2 -149

DELAY (SEC) ... 2-150

DISABLE ANALOG POINT.. 2-11

DISABLE DIGITAL POINT ... 2-97

DISABLE EVENT SCANNING .. 2-138

DISABLE EVENT/REACTION ... 2-139

DISABLE I/O UNIT ... 2-169

DISABLE INTERRUPT ON EVENT.. 2-140

DISABLE ON I/O UNIT ERROR... 2-170

DISABLE PID LOOP.. 2-224

DISABLE SCAN FOR EVENT ... 2-141

DO ADDITION 2-204

DO BINARY ACTIVATE .. 2-171

DO BINARY DEACTIVATE.. 2-172

DO BINARY READ ... 2-173

DO BINARY WRITE ... 2-174

DO DIVIDE ... 2-205

DO MODULO ... 2-206

DO MULTIPLY... . 2-207

DO SUBTRACTION.. 2-208

ENABLE ANALOG POINT .. 2-12

ENABLE DIGITAL POINT .. 2-98

ENABLE EVENT SCANNING ... 2-143

ENABLE EVENT/REACTION ... 2-142

ENABLE I/O UNIT .. 2-175

ENABLE INTERRUPT ON EVENT .. 2-144

ENABLE ON I/O UNIT ERROR ... 2-176

ENABLE PID LOOP... 2-225

ENABLE SCAN FOR EVENT .. 2-145

GENERATE N PULSES .. 2-99

GET & CLEAR OFF-LATCH VALUE.. 2-101

GET & CLEAR ON-LATCH VALUE... 2-102

GET AND CLEAR COUNTER VALUE .. 2-103

GET AND CLEAR QUADRATURE VALUE .. 2-104

GET ARCNET DEST. ADDR. ... 2-50

GET BAD I/O UNIT ADDRESS ... 2-177

GET BAD I/O UNIT PORT ... 2-178

GET CHAR (PORT) ... 2-51

OPERATIONS

2-4 Cyrano Command Reference

GET CHART STATUS ... 2-32

GET CHR FROM PORT .. 2-52

GET COUNTER VALUE .. 2-105

GET DAY ... 2-261

GET DAY OF WEEK ... 2-262

GET ERROR CODE... 2-151

GET ERROR COUNT .. 2-152

GET FREQUENCY ... 2-106

GET HOURS .. 2-263

GET MINUTES .. 2 -264

GET MONTH ... 2-265

GET NTH CHARACTER ... 2-250

GET OFF-LATCH VALUE ... 2-106

GET OFF-PULSE MEAS ... 2-107

GET OFF-PULSE MEAS & RESTART ... 2-108

GET OFF-PULSE MEAS COMP. STAT ... 2-109

GET ON-LATCH VALUE .. 2-110

GET ON-PULSE MEAS .. 2-111

GET ON-PULSE MEAS & RESTART .. 2-112

GET ON-PULSE MEAS COMP. STAT ... 2-113

GET PEER DESTINATION ADDRESS ... 2-53

GET PERIOD .. 2-114

GET PERIOD & RESTART .. 2-115

GET PERIOD MEAS COMP. STAT .. 2-116

GET QUADRATURE VALUE .. 2-117

GET RTU TEMPERATURE ... 2-153

GET RTU VOLTAGE .. 2-154

GET SECONDS ... 2-266

GET SIZE OF NUMERIC TABLE ... 2-155

GET SIZE OF STRING TABLE ... 2-156

GET STRING (PORT) .. 2-54

GET STRING LENGTH ... 2-251

GET SUBSTRING .. 2-252

GET THIS CONTROLLER�S ADDRESS ... 2-157

GET TOTALIZE OFF VALUE... 2-118

GET TOTALIZE ON VALUE ... 2-119

GET YEAR ... 2-267

GET/RESTART TOTALIZE OFF VAL. ... 2-120

OPERATIONS

Cyrano Command Reference 2-5

GET/RESTART TOTALIZE ON VAL. .. 2-121

INCREMENT VARIABLE .. 2-209

MOVE ... 2-158

MOVE ANL. I/O UNIT TO TABLE .. 2-179

MOVE FLOAT TABLE TO FLOAT TABLE .. 2-159

MOVE FROM STRING TABLE ... 2-253

MOVE FROM TABLE ... 2-160

MOVE FROM TABLE TO (PORT) .. 2-55

MOVE FROM TABLE TO PORT .. 2-56

MOVE INT TABLE TO INT TABLE... 2-161

MOVE STRING ... 2-255

MOVE TABLE TO ANL I/O UNIT ... 2-178

MOVE TO FLOAT TABLE .. 2-161

MOVE TO INTEGER TABLE ... 2-162

MOVE TO STRING TABLE ... 2-252

MOVE TO TABLE FROM (PORT) .. 2-58

MOVE TO TABLE FROM PORT .. 2-59

NOT .. 2-191

OR .. 2-192

POINT TO NEXT ERROR .. 2-164

PRINT CHARACTER (PORT) .. 2-61

PRINT CHR TO PORT .. 2-62

PRINT DATE (PORT) .. 2-63

PRINT FORMATTED NUMBER (PORT) .. 2-64

PRINT NEW LINE (PORT) .. 2-67

PRINT NEW LINE (PORT) W/TIMEOUT ... 2-68

PRINT NEW LINE TO PORT ... 2-65

PRINT NUMBER (PORT) .. 2-69

PRINT NUMBER AS FIELD (PORT) .. 2-70

PRINT STR (OPTOMUX) TO PORT ... 2-71

PRINT STR WITH CRC TO PORT ... 2-72

PRINT STRING (PORT) .. 2-73

PRINT TIME (PORT) .. 2-74

PRINT TO PORT .. 2-75

PULSE OFF .. 2-122

PULSE ON ... 2-123

RAISE E TO ... 2-210

RAISE TO POWER... 2-211

OPERATIONS

2-6 Cyrano Command Reference

RAMP TO POINT ... 2-13

READ & CLEAR ANALOG MAX VAL .. 2-14

READ & CLEAR ANALOG MIN VAL ... 2-15

READ & CLEAR ANALOG TOTAL VAL .. 2-16

READ & CLR ANALOG FILT VAL ... 2-17

READ ANALOG FILT VALUE ... 2-18

READ ANALOG MAX VALUE ... 2-19

READ ANALOG MIN VALUE .. 2-20

READ ANALOG SQRT FILT VALUE ... 2-21

READ ANALOG SQRT VALUE .. 2-22

READ ANALOG TOTAL VALUE ... 2-23

READ E/R HOLD BUFFER .. 2-146

READ OUTPUT RATE OF CHANGE ... 2-226

READ PID INPUT ... 2-227

READ PID OUTPUT .. 2-228

READ PID SETPOINT... 2-229

RECEIVE FROM PORT .. 2-76

RECEIVE FROM PORT (OPTOMUX) ... 2-78

RECEIVE FROM PORT W/CRC ... 2-80

RELEASE ACTIVE PORT.. 2-81

REQUEST PORT .. 2-82

RESET COUNTER ... 2-124

RESET QUADRATURE COUNTER .. 2-125

RETRIEVE SAVED CRC ... 2-165

SEND/RECEIVE PORT (OPTOMUX) ... 2-83

SEND/RECEIVE PORT W/CRC ... 2-85

SEND/RECEIVE USING PORT N ... 2-86

SET ANALOG FILTER WEIGHT .. 2-24

SET ANALOG GAIN ... 2-26

SET ANALOG OFFSET ... 2-27

SET ANALOG TOTALIZE RATE ... 2-28

SET ANALOG TPO PERIOD .. 2-29

SET ARCNET DEST. ADDR. ... 2-88

SET D TERM... 2-230

SET DATE ... 2-268

SET DAY ... 2-269

SET DAY OF WEEK ... 2-270

SET HOST PRIORITY... 2-33

OPERATIONS

Cyrano Command Reference 2-7

SET HOURS .. 2-271

SET I TERM .. 2-231

SET LAST CHARACTER .. 2-89

SET MINUTES 2-272

SET MONTH ... 2-273

SET NUMBER OF RETRIES .. 2-90

SET OUTPUT RATE OF CHANGE ... 2-232

SET P TERM ... 2-233

SET PEER DESTINATION ADDRESS ... 2-91

SET PID AUTO MODE ... 2-234

SET PID INPUT .. 2 -235

SET PID MANUAL MODE.. 2-236

SET PID SCAN RATE ... 2-237

SET PID SETPOINT ... 2-238

SET PORT TIMEOUT DELAY.. 2-92

SET PRIORITY 2-34

SET SECONDS ... 2-274

SET TIME ... 2-275

SET TIME PROP OUTPUT.. 2-126

SET TIME PROP PERCENT .. . 2-127

SET VARIABLE FALSE ... 2-193

SET VARIABLE TRUE .. 2-194

SET YEAR ... 2-276

SHIFT TABLE ... 2-166

START CHART 2-35

START CONTINUOUS SQUARE WAVE ... 2-128

START COUNTER ... 2-129

START DEFAULT HOST TASK ... 2-36

START HOST TASK (ASCII) ... 2-37

START HOST TASK (BINARY) ... 2-38

START QUADRATURE COUNTER .. 2-130

STOP CHART 2-39

STOP CHART ON ERROR .. 2-40

STOP COUNTER ... 2-131

STOP HOST TASK ... 2-41

STOP QUADRATURE COUNTER .. 2-132

SUSPEND CHART... 2-42

SUSPEND CHART ON ERROR... 2-43

OPERATIONS

2-8 Cyrano Command Reference

SUSPEND DEFAULT HOST TASK .. 2-44

TAKE ABSOLUTE VALUE OF .. 2-212

TAKE ARC COS OF .. 2-213

TAKE ARC SIN OF ... 2-214

TAKE ARC TAN OF .. 2-215

TAKE COS OF 2-216

TAKE COSH OF ... 2-217

TAKE NATURAL LOG OF .. 2-218

TAKE SIN OF ... 2-219

TAKE SINH OF ... 2-220

TAKE SQUARE ROOT OF ... 2-221

TAKE TAN OF 2-222

TAKE TANH OF .. 2 -223

TEST EQUAL ... 2-195

TEST EQUAL STRINGS ... 2-256

TEST GREATER... 2-196

TEST GREATER OR EQUAL ... 2-197

TEST LESS ... 2-198

TEST LESS OR EQUAL .. 2-199

TEST NOT EQUAL ... 2-200

TURN OFF ... 2-133

TURN ON .. 2-134

VERIFY CHECKSUM ON STRING ... 2-93

VERIFY CRC ON STRING .. 2-257

XOR .. 2-201

OPERATIONS

Cyrano Command Reference 2-9

ANALOG POINT OPERATIONS

CALC & SET ANALOG GAIN Analog Point

Function: To improve the accuracy of an analog input signal or to change its range.

Typical Uses: � To improve calibration on a temperature input.
� To rescale an input from one range (say, 25�50%) to a range of 0�100%.

Details: � Reads the current value of a specified analog input and interprets it as the maximum (100%,
full-scale) value. Hence, the analog input should always be set to the full-scale value before
this command is used.

� Calculates a gain based on the current value that will cause this value to read 100% (full
scale).

� Stores the calculated gain in Argument 2 for subsequent use by SET ANALOG GAIN, if
desired.

� The calculated gain will be used until power is removed from the I/O unit, or it will always be
used if it is stored in permanent memory at the I/O unit.

� The default gain value is 1.0. The valid range for gain is 0.0003 to 16.0.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: CALC & SET ANALOG GAIN
For BOILER TEMPERATURE analog input
Move To GAIN COEFFICIENT variable float

Notes: � A Cyrano calibration chart could be created to prompt the user to input a �known good� high-
scale value. After acknowledgment by the user, the CALC & SET ANALOG GAIN command
could be executed. This procedure should only have to be performed once.

� To ensure that the calculated gain coefficient will always be used, store this and other
changeable I/O unit values in permanent memory at the I/O unit. (You can do so through the
Debugger.)

Dependencies: � Always use CALC & SET ANALOG OFFSET before using this command.
� Always set the analog input to the full-scale (100%) value before using this command.
� This command is not supported by high-density analog input cards, such as the G4AIVA and

G4AITM.

See Also: CALC & SET ANALOG OFFSET, SET ANALOG GAIN, SET ANALOG OFFSET

OPERATIONS

2-10 Cyrano Command Reference

CALC & SET ANALOG OFFSET Analog Point

Function: To improve accuracy of an analog input signal or to change its range.

Typical Uses: � To improve calibration on a temperature input.
� To rescale an input from one range (say, 25�50%) to a range of 0�100%.

Details: � Reads the current value of a specified analog input and interprets it as the minimum (0%,
zero-scale) value. Hence, the analog input should always be set to the zero-scale value
before this command is used. (Note that zero scale on a bipolar input module with a range of -
10 VDC to +10 VDC is -10 VDC.)

� Calculates an offset based on the current input value that will cause this value to read 0%
(zero scale).

� Stores the calculated offset in Argument 2 for subsequent use by SET ANALOG OFFSET, if
desired.

� The calculated offset will be used until power is removed from the I/O unit, or it will always be
used if it is stored in permanent memory at the I/O unit.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: CALC & SET ANALOG OFFSET
For BOILER TEMPERATURE analog input
Move To OFFSET variable integer

Notes: � This command is intended to be used in conjunction with CALC & SET ANALOG GAIN.
� A Cyrano calibration chart could be created to prompt the user to input a �known good� low-

scale value. After acknowledgment by the user, the CALC & SET ANALOG OFFSET command
could be executed. This procedure should only have to be performed once.

� To ensure that the calculated offset will always be used, store this and other changeable I/O
unit values in permanent memory at the I/O unit. (You can do so through the Debugger.)

Dependencies: � This command is not supported by high-density analog input cards, such as the G4AIVA and
G4AITM.

See Also: CALC & SET ANALOG GAIN, SET ANALOG GAIN, SET ANALOG OFFSET

OPERATIONS

Cyrano Command Reference 2-11

DISABLE ANALOG POINT Analog Point

Function: To disable communication between the program in the Mistic controller and an individual analog
channel.

Typical Use: To disconnect the program from a specified analog channel for simulation and program testing.

Arguments: ARGUMENT 1
ANALOG IN

ANALOG OUT

Example: DISABLE ANALOG POINT
TANK LEVEL analog point

Details: � All analog point communication is enabled by default.
� This command does not affect the analog channel in any way. It only disconnects the

program in the Mistic controller from the analog channel.
� When communication to an analog channel is disabled, program actions have no effect.
� When a program reads the value of a disabled channel, the last value before the channel

was disabled (IVAL) will be returned. Likewise, any attempts by the program to change the
value of an output channel will affect only the IVAL, not the actual output channel (XVAL).

� Disabling an analog channel while a program is running has no effect on the program.

Notes: � Disabling an analog channel is ideal for a start-up situation, since the program thinks it is
reading an input or updating an output as it normally would be.

� Use the IVAL field in the Debugger to change the value of an analog input.
� Use the XVAL field in the Debugger to change the value of an analog output.

See Also: ENABLE ANALOG POINT

OPERATIONS

2-12 Cyrano Command Reference

ENABLE ANALOG POINT Analog Point

Function: To enable communication between the program in the Mistic controller and an individual analog
channel.

Typical Use: To reconnect the program to a specified analog channel after simulation or program testing.

Details: � All analog channel communication is enabled by default.
� This command does not affect the analog channel in any way. It only connects the program in

the Mistic controller with the analog channel.
� When communication to an analog channel is enabled, program actions again take effect.
� When a program reads the value of an enabled input channel, the current value of the

channel (XVAL) will be returned to the program (IVAL). Likewise, an enabled output channel
will update when the program writes a value. The XVAL and IVAL will match at this time.

Arguments: ARGUMENT 1
ANALOG IN

ANALOG OUT

Example: ENABLE ANALOG POINT
TANK LEVEL analog point

Notes: � Use this command to enable an analog channel previously disabled by the DISABLE ANALOG
POINT command.

See Also: DISABLE ANALOG POINT

OPERATIONS

Cyrano Command Reference 2-13

RAMP TO POINT Analog Point

Function: To change an analog output value to a new value at a constant rate.

Typical Use: To raise or lower oven temperature from point A to point B at a specified rate.

Details: � When the I/O unit receives this command, it will assume control of the analog output
channel.

� Ramping starts from the current output value and proceeds toward the specified endpoint
value.

� The ramp rate is specified in engineering units per second. A rate of zero is illegal (returns a
queue error 7).

� Updates to the current output value will be made at 50-millisecond intervals.
� If this command is executed while the output is ramping, the ramp rate will be changed.
� If this command is executed too frequently, the output will not get a chance to ramp at all.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT ANALOG OUT

CONSTANT INTEGER CONSTANT INTEGER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: RAMP TO POINT
Endpoint SOAK TEMP variable float (endpoint value)
Units/Sec RAMP RATE variable float (rate value)
For TEMP CONTROL analog output

Notes: � To stop the ramp at any time, use MOVE to send the desired �static� value to the analog
output channel.

� Use this command only to change or start the ramp.
� Be sure the analog output value is at the desired starting point before using this command.
� If the output value must be changed, wait at least 50 milliseconds before using this

command.

Error Codes: Queue error 7 = Value sent to I/O unit is out of range

OPERATIONS

2-14 Cyrano Command Reference

READ & CLEAR ANALOG MAX VAL Analog Point

Function: To retrieve the peak value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the peak pressure over a given period of time.

Details: � The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built in to the module. Check the specifications for the module to be used if high-
speed readings are required.

� Min and max values are recorded at the I/O unit immediately after the current value is
updated.

� Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ & CLEAR ANALOG MAX VAL
From PRES SENSOR analog input
Move To MAX KPA variable float (max value)

Notes: � Use this command to clear the analog max value before actual readings commence.

Dependencies: � If digital filtering is active (see SET ANALOG FILTER WEIGHT), min and max value detection is
derived from the filtered reading, which is only updated every 100 milliseconds. This could
reduce the ability to capture min and max values by several orders of magnitude.

See Also: READ & CLEAR ANALOG MIN VALUE, READ ANALOG MIN VALUE, SET ANALOG FILTER WEIGHT

OPERATIONS

Cyrano Command Reference 2-15

READ & CLEAR ANALOG MIN VAL Analog Point

Function: To retrieve the lowest value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the lowest pressure over a given period of time.

Details: � The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built in to the module. Check the specifications for the module to be used if high-
speed readings are required.

� Min and max values are recorded at the I/O unit immediately after the current value is
updated.

� Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ & CLEAR ANALOG MIN VAL
From PRES SENSOR analog input
Move To MIN KPA variable float (min value)

Notes: � Use this command to clear the analog min value before actual readings commence.

Dependencies: � If digital filtering is active (see SET ANALOG FILTER WEIGHT), min and max value detection is
derived from the filtered reading, which is only updated every 100 milliseconds. This could
reduce the ability to capture min and max values by several orders of magnitude.

See Also: READ & CLEAR ANALOG MAX VALUE, READ ANALOG MAX VALUE, SET ANALOG FILTER
WEIGHT

OPERATIONS

2-16 Cyrano Command Reference

READ & CLEAR ANALOG TOTAL VAL Analog Point

Function: To read and clear the totalized (integrated) value of a specified analog input.

Typical Use: To capture a flow total that has been accumulating at the I/O unit before it reaches its maximum
value.

Details: � Totalizing is performed at the I/O unit. This command reads the current total, then clears it to
zero.

� The value returned will be an integer from -32,768 to 32,767.
� Totalizing will be bidirectional if the input range is -10 to +10.
� Totalizing will stop when the total reaches either limit. Totalizing will resume after using READ

& CLEAR ANALOG TOTAL VAL.
� Totalizing will stop when an input channel is too far under range (below -1.25% of span).

Totalizing will resume when the input signal is back within range.
� Channels without a module installed will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ & CLEAR ANALOG TOTAL VAL
From FLOW RATE analog input
Move To TOTAL BARRELS variable float (total value)

Notes: � See Notes for SET ANALOG TOTALIZE RATE before using this command.
� Use this command to clear the total before actual readings commence.
� Use READ ANALOG TOTAL VALUE periodically to simply �watch� the total. When it exceeds

30,000, use READ & CLEAR ANALOG TOTAL VAL to capture the total to a float variable and
reset it to zero.

� Do not use this command frequently when the total is a small value. Doing so may degrade
the cumulative accuracy.

Dependencies: � Before using this command, SET ANALOG TOTALIZE RATE must be executed. Otherwise, a
value of -32,768 will be returned to indicate an error.

See Also: READ ANALOG TOTAL VALUE, SET ANALOG TOTALIZE RATE

OPERATIONS

Cyrano Command Reference 2-17

READ & CLR ANALOG FILT VAL Analog Point

Function: To read a digitally filtered input value from a specified analog channel, then set the filtered value
to the current value.

Typical Use: To restart digital filtering using the current value as the default.

Details: � Digital filtering must be activated before using this command by using SET ANALOG FILTER
WEIGHT.

� Digital filtering, if activated, is performed at the I/O unit. Sample rate is 10 per second.
� The unfiltered analog input is still available using standard analog commands.
� Channels without a module installed or with a thermocouple module that has an open

thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ & CLR ANALOG FILT VAL
From TEMP SENSOR analog input
Move To FILTERED TEMP variable float (filtered value)

Notes: � Do not use this command for frequent reads (one per second or faster) since it continually
resets the averaging. Use READ ANALOG FILT VALUE instead.

� To ensure that digital filtering will always be active, store changeable I/O unit values (such as
filter weight) in permanent memory at the I/O unit. (You can do so through the Debugger.)

Dependencies: � Before using this command, SET ANALOG FILTER WEIGHT must be executed. Otherwise, a
value of -32,768 will be returned to indicate an error.

See Also: READ ANALOG FILT VALUE, SET ANALOG FILTER WEIGHT

OPERATIONS

2-18 Cyrano Command Reference

READ ANALOG FILT VALUE Analog Point

Function: To read the digitally filtered input value of a specified analog channel.

Typical Use: To smooth noisy or erratic signals.

Details: � Digital filtering must be activated before using this command by using SET ANALOG FILTER
WEIGHT.

� Digital filtering, if activated, is performed at the I/O unit. Sample rate is 10 per second.
� The unfiltered analog input is still available using standard analog commands.
� Channels without a module installed or with a thermocouple module that has an open

thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG FILT VALUE
From TEMP SENSOR analog input
Move To FILTERED TEMP variable float (filtered value)

Notes: � Use SET ANALOG FILTER WEIGHT to restart filtering after a value of -32,768 is returned.
� To ensure that digital filtering will always be active, store changeable I/O unit values (such as

filter weight) in permanent memory at the I/O unit. (You can do so through the Debugger.)

Dependencies: � Before using this command, SET ANALOG FILTER WEIGHT must be issued. Otherwise, a value
of -32,768 will be returned to indicate an error.

See Also: READ & CLR ANALOG FILT VAL, SET ANALOG FILTER WEIGHT

OPERATIONS

Cyrano Command Reference 2-19

READ ANALOG MAX VALUE Analog Point

Function: To retrieve the peak value of a specified analog input since its last reading.

Typical Use: To capture the peak pressure over a given period of time.

Details: � The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built in to the module. Check the specifications for the module to be used if high-
speed readings are required.

� Min and max values are recorded at the I/O unit immediately after the current value is
updated.

� Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG MAX VALUE
From PRES SENSOR analog input
Move To MAX KPA variable float (max value)

Notes: � Use READ & CLEAR ANALOG MAX VAL to clear the max value before actual readings
commence.

Dependencies: � If digital filtering is active (see SET ANALOG FILTER WEIGHT), min and max value detection is
derived from the filtered reading, which is only updated every 100 milliseconds. This could
reduce the ability to capture min and max values by several orders of magnitude.

See Also: READ & CLEAR ANALOG MAX VAL, READ & CLEAR ANALOG MIN VAL, READ ANALOG MIN
VALUE

OPERATIONS

2-20 Cyrano Command Reference

READ ANALOG MIN VALUE Analog Point

Function: To retrieve the lowest value of a specified analog input since its last reading.

Typical Use: To capture the lowest pressure over a given period of time.

Details: � The current value for each channel is read and stored at the I/O unit every seven
milliseconds. However, the response time of the input module may be much slower due to
smoothing built in to the module. Check the specifications for the module to be used if high-
speed readings are required.

� Min and max values are recorded at the I/O unit immediately after the current value is
updated.

� Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG MIN VALUE
From PRES SENSOR analog input
Move To MIN KPA variable float (min value)

Notes: � Use READ & CLEAR ANALOG MIN VAL to clear the min value before actual readings
commence.

Dependencies: � If digital filtering is active (see SET ANALOG FILTER WEIGHT), min and max value detection is
derived from the filtered reading, which is only updated every 100 milliseconds. This could
reduce the ability to capture min and max values by several orders of magnitude.

See Also: READ & CLEAR ANALOG MIN VAL, READ & CLEAR ANALOG MAX VAL, READ ANALOG MAX
VALUE

OPERATIONS

Cyrano Command Reference 2-21

READ ANALOG SQRT FILT VALUE Analog Point

Function: To read and linearize the digitally filtered input value of a flow signal from a differential pressure
(DP) transmitter.

Typical Use: To smooth noisy or erratic signals from a DP transmitter connected to an orifice plate or venturi
tube.

Details: � Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

� Digital filtering must be activated before using this command by using SET ANALOG FILTER
WEIGHT.

� Digital filtering, if activated, is performed at the I/O unit. Sample rate is 10 per second.
� The unfiltered analog input is still available using standard analog commands.
� Channels without a module installed will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG SQRT FILT VALUE
From DP FLOW XMTR analog input
Move To FILTERED FLOW variable float (filtered value)

Notes: � Use SET ANALOG FILTER WEIGHT to restart filtering after a value of -32,768 is returned.
� To ensure that filtering will always be active, store the filter value in permanent memory at

the I/O unit. (You can do so through the Debugger.)
� Do not issue this command more than 10 times per second. Doing so will degrade the

performance speed of the analog I/O unit.

Dependencies: � Before using this command, SET ANALOG FILTER WEIGHT must be executed. Otherwise, a
value of -32,768 will be returned to indicate an error.

See Also: READ ANALOG SQRT VALUE, SET ANALOG FILTER WEIGHT

OPERATIONS

2-22 Cyrano Command Reference

READ ANALOG SQRT VALUE Analog Point

Function: To read and linearize the analog input value of a flow signal from a differential pressure (DP)
transmitter.

Typical Use: To linearize flow signals from a DP transmitter connected to an orifice plate or venturi tube.

Details: � Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

� Channels without a module installed will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG SQRT VALUE
From DP FLOW XMTR analog input
Move To FLOW RATE variable float (flow value)

Notes: � Do not issue this command more than 10 times per second. Doing so will degrade the
performance speed of the analog I/O unit.

See Also: READ ANALOG SQRT FILT VALUE

OPERATIONS

Cyrano Command Reference 2-23

READ ANALOG TOTAL VALUE Analog Point

Function: To read the totalized (integrated) value of a specified analog input.

Typical Use: To examine a flow total that has been accumulating at the I/O unit to determine when to clear it.

Details: � Totalizing is performed at the I/O unit. This command reads the current total.
� The value returned will be an integer from -32,768 to 32,767.
� Totalizing will be bidirectional if the input range is -10 to +10, for example.
� Totalizing will stop when the total reaches either limit. Totalizing will resume after using READ

& CLEAR ANALOG TOTAL VAL.
� Totalizing will stop when an input channel is too far under range (below -1.25% of span).

Totalizing will resume when the input signal is back within range.
� Channels without a module installed will return a value of -32,768 to indicate an error.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE FLOAT

VARIABLE INTEGER

Example: READ ANALOG TOTAL VALUE
From FLOWRATE analog input
Move To TOTAL BARRELS variable float (total value)

Notes: � See Notes for SET ANALOG TOTALIZE RATE before using this command.
� Use READ & CLEAR ANALOG TOTAL VAL to clear the total before actual readings commence.
� Use this command periodically to simply �watch� the total. When it exceeds 30,000, use

READ & CLEAR ANALOG TOTAL VAL to capture the total to a float variable and reset it to zero.

Dependencies: � Before using this command, SET ANALOG TOTALIZE RATE must be executed. Otherwise, a
value of -32,768 will be returned to indicate an error.

See Also: READ & CLEAR ANALOG TOTAL VAL, SET ANALOG TOTALIZE RATE

OPERATIONS

2-24 Cyrano Command Reference

SET ANALOG FILTER WEIGHT Analog Point

Function: To activate digital filtering and set the amount of filtering to use on an analog input channel.

Typical Use: To smooth noisy or erratic input signals.

Details: � When issued, this command copies the current input value to the filtered value to initialize it.
Thereafter, a percentage of the difference between the current input value and the last
filtered value is added to the last filtered value at the rate of 10 times per second.

� To read the filtered value, use READ ANALOG FILT VALUE, READ & CLR ANALOG FILT VAL, or
READ ANALOG SQRT FILT VALUE. All other commands will read the unfiltered value!

� The digital filtering algorithm is an implementation of a first-order lag filter:
New Filtered Value = ((Current Reading - Old Filter Value) / Filter Weight) +
Old Filter Value

� To calculate the filter weight value that will result in a particular time constant value, use:
Filter Weight = (Time Constant [in seconds] + 0.1) * 10

A one-second time constant requires a filter weight of 11.
� To calculate the time constant that a particular filter weight will result in, use:

Time Constant (in seconds) = (Filter Weight / 10) - 0.1
� With a filter weight of 11, an input value that suddenly changes from 0% to 100% (a 100%

step change) will take over five seconds to be fully recognized. This is considered to be a time
constant of one second (which is the time it takes for the input to reach 63.21% of its final
value), as shown below:

100% STEP CHANGE, FILTER WEIGHT OF 11
INPUT VALUE TIME IN SECONDS VALUE READ

100% 0 0%
100% 1 63.21%
100% 2 86.47%
100% 3 95.02%
100% 4 98.17%
100% 5 99.33%

� A filter weight value of zero specifies digital filtering is to be discontinued.
� The filter weight will be used until power is removed from the I/O unit, or it will always be

used if it is stored in permanent memory at the I/O unit.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT ANALOG IN

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

OPERATIONS

Cyrano Command Reference 2-25

SET ANALOG FILTER WEIGHT (CONTINUED) Analog Point

Example: SET ANALOG FILTER WEIGHT
Samples FILTER WEIGHT variable integer

TEMP IN1 analog input

Notes: � Do not continually issue this command since it resets the filtered value to the current value.
� To ensure that digital filtering will always be active, store this and other changeable I/O unit

values in permanent memory at the I/O unit. (You can do so through the Debugger.)

See Also: READ ANALOG FILT VALUE, READ & CLR ANALOG FILT VAL, READ ANALOG SQRT FILT VALUE

OPERATIONS

2-26 Cyrano Command Reference

SET ANALOG GAIN Analog Point

Function: To improve accuracy of an analog input signal or to change its range.

Typical Uses: � To improve calibration on a temperature input.
� To rescale an input from one range (say, 25�50%) to a range of 0�100%.

Details: � Always use SET ANALOG OFFSET before using this command.
� The default gain value is 1.0. The valid range for gain is 0.0003 to 16.0.
� A gain of 4.0 will cause a 25% input value to read 100% (full scale).
� The calculated gain will be used until power is removed from the I/O unit, or it will always be

used if the gain is stored in permanent memory at the I/O unit.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT ANALOG IN

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET ANALOG GAIN
Value GAIN COEFFICIENT variable float (gain coefficient value)
To PRESS IN analog input

Notes: � This procedure should only have to be performed once.
� To ensure that the gain will always be used, store this and other changeable I/O unit values

in permanent memory at the I/O unit. (You can do so through the Debugger.)

Dependencies: � Must use SET ANALOG OFFSET first.

See Also: SET ANALOG OFFSET, CALC & SET ANALOG GAIN

OPERATIONS

Cyrano Command Reference 2-27

SET ANALOG OFFSET Analog Point

Function: To improve the accuracy of an analog input signal or to change its range.

Typical Uses: � To improve calibration on a temperature input.
� To rescale an input from one range (say, 25�50%) to a range of 0�100%.

Details: � Always use SET ANALOG GAIN after using this command.
� The default offset value is 0. The valid range for offset is -4,095 to 4,095 (integer values only).
� An offset of -1,024 will cause a 25% input value to read 0% (zero scale).
� The calculated offset will be used until power is removed from the I/O unit, or it will always be

used if the offset is stored in permanent memory at the I/O unit.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT ANALOG IN

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET ANALOG OFFSET
Value OFFSET variable integer
To PRESS IN analog input

Notes: � This procedure should only have to be performed once.
� To ensure that the offset will always be used, store this and other changeable I/O unit values

in permanent memory at the I/O unit. (You can do so through the Debugger.)

See Also: SET ANALOG GAIN, CALC & SET ANALOG OFFSET

OPERATIONS

2-28 Cyrano Command Reference

SET ANALOG TOTALIZE RATE Analog Point

Function: To start the totalizer and to establish the sampling rate.

Typical Use: To accumulate total flow based on a varying flow rate signal.

Details: � The specified analog input channel is sampled at the end of each time interval.
� The sampled value is added to the previous accumulated total.
� Valid range for the sampling rate is 0.0 to 3276.7 seconds.
� Setting the sampling rate to 0.0 seconds will discontinue totalizing.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT ANALOG IN

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET ANALOG TOTALIZE RATE
Seconds TOTALIZE RATE variable float (number of seconds

between samples)
FUEL FLOW analog input

Notes: � Set the sampling rate to 1.0 seconds.
� Use READ ANALOG TOTAL VALUE to �watch� the total accumulate. Wait for a reasonable value to

accumulate (the greater the better but less than 32,767) before proceeding.
� Use READ & CLEAR ANALOG TOTAL VAL to move the accumulated total to a temporary float

variable. Divide the temporary float variable by the appropriate divisor from the conversion
table below, putting the result in the temporary float variable. Finally, add the temporary float
variable to the cumulative total float variable.
FLOW RATE UNITS DIVISOR (CONSTANT FLOAT)

per Second 1.0
per Minute 60.0

per Hour 3600.0
per Day 86400.0

� The following series of commands reads the accumulated total from the I/O unit, scales it,
then adds the result to a float variable representing the total number of liters. The flow signal
is scaled 0�1000 liters per minute.

READ & CLEAR ANALOG TOTAL VAL
Move To TEMP FLOAT1 variable float (temp value)

DO DIVIDE TEMP FLOAT1
By 60.0
Put Result in TEMP FLOAT1 variable float (temp value)

DO ADD TEMP FLOAT1
Plus LITERS
Put Result in LITERS variable float (total value)

See Also: READ ANALOG TOTAL VALUE, READ & CLEAR ANALOG TOTAL VAL

OPERATIONS

Cyrano Command Reference 2-29

SET ANALOG TPO PERIOD Analog Point

Function: To set the time proportional output period of an analog channel where the analog TPO module is
used.

Typical Use: To control the duty cycle of resistive heating elements used for temperature control.

Details: � Analog channels will not function as TPOs until this command is issued.
� TPO periods are multiples of 2.048 seconds (i.e., 2.048, 4.096, 6.144, etc.) ranging from 2.048

to 522.2 seconds.
� If the value entered is not an exact multiple of 2.048 seconds, it will be rounded to the

nearest period value.
� The time proportion period specifies the total time the output is varied over.
� Use MOVE to set the percent of on time by moving a value from 0�100 to the analog output

channel.
� Always use 0�100 for the analog TPO scaling.
� PID outputs can be analog TPO channels.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT ANALOG OUT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: This example sets the period for the TPO channel named TPO OUTPUT to 6.144 seconds (the
value 6.0 is rounded automatically to the nearest period value, 6.144). If MOVE is used to set a
50% duty cycle (by MOVEing 50.0 to TPO OUTPUT), then the analog output will repeatedly cycle
on for 3.072 seconds and off for 3.072 seconds.

SET ANALOG TPO PERIOD
Period 6.0 constant float or variable float (period

time in seconds)
Point TPO OUTPUT analog input (G4DA9)

Notes: � To ensure that the TPO period will always be correct, store this and other changeable I/O unit
values in permanent memory at the I/O unit. (You can do so through the Debugger.)

� If the TPO period is not stored in permanent memory at the I/O unit, use SET ANALOG TPO
PERIOD immediately before MOVEing a new value to the TPO every time. This ensures that
the TPO period will be configured properly if the I/O unit has experienced loss of power. Do
not, however, issue these commands more frequently than necessary since this can be
counterproductive.

Dependencies: � This command is valid only when used on a properly configured G4DA9 time proportional
output module.

OPERATIONS

2-30 Cyrano Command Reference

CHART OPERATIONS

CONTINUE CALLING CHART Chart

Function: To continue the chart that started the current chart without having to know its name.

Typical Use: To use a chart as a form of subroutine, where this �subchart� may be called from many other
charts to perform some common function.

Details: � The only effect this command will have is to continue a suspended chart. If the calling chart is
in any other state, the calling chart will be unaffected by this command.

� The calling chart will resume execution at its next scheduled time in the 32-task queue.
� The STATUS variable indicates success (-1) or failure (0). Since a failure would �break the

chain� of execution, care must be taken to ensure success. In this example, it is possible for
CHART_A to start SUB_CHART_A, then lose its time slice before it suspends itself, leaving it
in the running state. Further, it is possible for SUB_CHART_A to complete execution in its
allocated time slice(s) and issue the CONTINUE CALLING CHART command, which will fail
because the calling chart is still in the running state. To prevent this situation, SUB_CHART_A
should be modified to add the condition CALLING CHART SUSPENDED? just before the
CONTINUE CALLING CHART operation. The True exit will lead directly to the CONTINUE
CALLING CHART operation, but the False exit will loop back to the CALLING CHART
SUSPENDED? condition itself to re-evaluate if the chart has been suspended. This ensures
proper operation.

� For the same reason, the condition CHART STOPPED? should preface the START CHART
�SUB_CHART_A� command.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: CONTINUE CALLING CHART
Put Status In STATUS variable integer (success or failure

code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� A safer method from a multitasking perspective is to utilize Cyrano�s built-in subroutine

feature.

See Also: CONTINUE CHART, START CHART, STOP CHART, SUSPEND CHART, CALLING CHART
SUSPENDED?

OPERATIONS

Cyrano Command Reference 2-31

CONTINUE CHART Chart

Function: To change the state of a specified chart from suspended to running.

Typical Use: In conjunction with SUSPEND CHART, to cause a specified chart to resume execution from
where it left off.

Details: � The only effect this command will have is to continue a suspended chart. If the specified
chart is in any other state, it will be unaffected by this command.

� Upon success, the chart will resume execution at its next scheduled time in the 32-task
queue at the point at which it was suspended.

� Suspended charts give up their time slice.
� The STATUS variable indicates success (-1) or failure (0).
� It is possible for CHART_A to complete execution of the commands between Suspending

Chart B and Continuing Chart B in its allocated time slice(s). If this happens the CONTINUE
CHART �CHART_B� command will fail, because the actual state of Chart B hasn�t changed
since it hasn�t received a time slice yet.

Arguments: ARGUMENT 1 ARGUMENT 2
CHART VARIABLE FLOAT

VARIABLE INTEGER

Example: CONTINUE CHART
CHART_A chart name (chart of interest)

Put Status In STATUS variable integer (success or failure
code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Loop on CHART SUSPENDED? before this command if success is critical.

See Also: SUSPEND CHART, CHART SUSPENDED?, SET PRIORITY

OPERATIONS

2-32 Cyrano Command Reference

GET CHART STATUS Chart

Function: To determine the current status of a specified chart.

Typical Use: To determine in detail the current status of a chart.

Details: � Status is returned as a 32-bit integer or float.
� Significant bits are 0�3:

� Bit 0: Running Mode (0 = chart is stopped; 1 = chart is running)
� Bit 1: Suspended Mode (0 = chart is not suspended; 1 = chart is suspended)
� Bit 2: Step Mode (0 = chart is not being stepped through; 1 = chart is being stepped

through)
� Bit 3: Break Mode (0 = chart does not have break points defined; 1 = chart has break

points defined)
� Bits 4�31 are reserved for Opto 22 use.
� Running Mode is on whenever a chart is running.
� Suspended Mode is on whenever a chart is suspended from Running Mode.
� Step Mode is on whenever a chart is being automatically or manually stepped through.
� Break Mode is on whenever a chart has a break point defined in one or more of its blocks.
� A chart that has never been started is considered stopped.
� A chart that is not suspended is either running or stopped.

Arguments: ARGUMENT 1 ARGUMENT 2
CHART VARIABLE FLOAT

VARIABLE INTEGER

Example: GET CHART STATUS
CHART_A chart name (chart of interest)

Put Status In STATUS variable integer (status bits)

Notes: � Bit testing (rather than number testing) should be used to determine the current status, since
a chart can simultaneously have multiple bits set at once. For example:

� Break Mode Bit 3 = 1
� Step Mode Bit 2 = 1
� Running Mode Bit 0 = 1
� Reserved Bits Bits 4�31 can have any value

� Avoid putting the returned status into a variable float, since the bits cannot be tested.

See Also: CHART SUSPENDED?, CHART STOPPED?, CHART RUNNING?, BIT TEST

OPERATIONS

Cyrano Command Reference 2-33

SET HOST PRIORITY Chart

Function: To increase the relative percentage of execution time for the HOST task.

Typical Use: To improve communication performance to anything connected to a HOST port.

Details: � The new priority takes effect at the next scheduled time in the 32-task queue for the HOST
task.

� Valid priority settings range from 1 to 255.
� Increasing the HOST task priority will give it more time to execute while giving all other charts

less time to execute.
� Valid range for the On Port parameter (Argument 2) is 0 to 5. Use 5 for the ISA controller when

its HOST port is configured as the �ISA Bus� port.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT INTEGER

CONSTANT INTEGER VARIABLE INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET HOST PRIORITY
To 5 constant integer (number of time slices)
On Port 4 constant integer (ARCNET port #)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Increase the HOST task priority to 5 to improve communication performance to an MMI.
� Warning: Setting the HOST task priority too high will severely limit the capability of all other

charts. It is advisable to use priority values of 10 or less.

See Also: SET PRIORITY

OPERATIONS

2-34 Cyrano Command Reference

SET PRIORITY Chart

Function: To increase the relative percentage of execution time for a chart.

Typical Use: To improve performance of the INTERRUPT chart or any time-sensitive task.

Details: � The new priority takes effect immediately.
� Valid priority settings range from 1 to 255.
� The priority can be changed on the fly to instantly adjust allocated time to a specific portion of

a chart.
� Increasing a chart�s priority will give it more time to execute while giving all other charts less

time to execute.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET PRIORITY
To PRIORITY variable integer (number of time slices)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Unless you have a specific timing problem to resolve, there is no benefit to changing the

priority from its default value of 1.
� Warning: Setting the priority too high in a chart that runs in a loop will severely limit the

capability of the HOST task to communicate with the MMI or Debugger. It is advisable to use
priority values of 5 or less for charts that run continuously.

� INTERRUPT chart usage: Put in BLOCK-0 to give it increased priority (if needed) when it runs.
The suggested value is 50.

� HOST task usage: See SET HOST PRIORITY.

See Also: SET HOST PRIORITY

OPERATIONS

Cyrano Command Reference 2-35

START CHART Chart

Function: To request that a chart leave the STOPPED or suspended state and begin executing at BLOCK-0.

Typical Use: In the POWERUP chart, to start all other charts that need to run. Also used by a main chart to
start event-driven charts.

Details: � This command is only a request.
� The STATUS variable indicates success (-1) or failure (0).
� If the chart is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
� Upon success, the chart is put into the 32-task queue (if it wasn�t there already) and will start

at its next scheduled time.

Arguments: ARGUMENT 1 ARGUMENT 2
CHART VARIABLE FLOAT

VARIABLE INTEGER

Example: START CHART
CHART_B chart name (chart of interest)

Put Status In STATUS variable integer (success or failure
code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubt or concerns, check the STATUS variable.
� Use STOP CHART to stop the INTERRUPT chart (if it�s not in use) to free up a task in the

32-task queue, if desired.

Dependencies: � A task must be available in the 32-task queue.

See Also: CONTINUE CHART, STOP CHART, START DEFAULT HOST TASK

OPERATIONS

2-36 Cyrano Command Reference

START DEFAULT HOST TASK Chart

Function: To request that the default HOST task leave the STOPPED or suspended state and begin
executing.

Typical Use: To resume use of the HOST task protocol on the default HOST port after the port was used for
something else.

Details: � This command is only a request.
� The STATUS variable indicates success (-1) or failure (0).
� If the task is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
� Upon success, the task is put into the 32-task queue (if it wasn�t there already) and will start

at its next scheduled time.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: START DEFAULT HOST TASK
Put Status In STATUS variable integer (success or failure

code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Normally the status does not need to be checked, since the command will succeed in most

cases.
� The default HOST task can be stopped so the port can be used for other purposes and

protocols. While it is stopped, no debugging can be done unless another HOST task is
running on another port.

Dependencies: � A task must be available in the 32-task queue.

See Also: SUSPEND DEFAULT HOST TASK, STOP HOST TASK, START HOST TASK (ASCII), START HOST
TASK (BINARY)

OPERATIONS

Cyrano Command Reference 2-37

START HOST TASK (ASCII) Chart

Function: To request an additional HOST task on a port other than that of the default HOST task.

Typical Use: To connect a modem or radio to a HOST port for remote debugging or for use with the MMI.

Details: � Starts an additional HOST task that uses ASCII mode rather than BINARY mode.
� This command is only a request.
� The STATUS variable indicates success (-1) or failure (0).
� If the task is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
� Upon success, the HOST task is put into the 32-task queue and will start at its next scheduled

time.
� The HOST task cannot be suspended; it can only be stopped using STOP HOST TASK.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: START HOST TASK (ASCII)
On Port 1 constant integer (communication port #)
Put Status In STATUS variable integer (success or failure

code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubt or concerns, check the STATUS variable.
� If the Debugger or MMI is connected via modem or radio, it must also be in ASCII mode.

Dependencies: � A task must be available in the 32-task queue.

See Also: START CHART, SET PRIORITY, STOP HOST TASK, START HOST TASK (BINARY)

OPERATIONS

2-38 Cyrano Command Reference

START HOST TASK (BINARY) Chart

Function: To request an additional HOST task on a port other than that of the default HOST task.

Typical Use: To connect a Debugger via a serial port while an MMI is connected via ARCNET.

Details: � Starts an additional HOST task that uses BINARY mode rather than ASCII mode.
� This command is only a request.
� The STATUS variable indicates success (-1) or failure (0).
� If the task is stopped or suspended and fewer than 32 tasks are running, this command will

succeed. Otherwise, it has no effect.
� Upon success, the task is put into the 32-task queue and will start at its next scheduled time.
� This task cannot be suspended; it can only be stopped using STOP HOST TASK.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: START HOST TASK (BINARY)
On Port 1 constant integer (communication port #)
Put Status In STATUS variable integer (success or failure

code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubt or concerns, check the STATUS variable.
� The Debugger must also be in BINARY mode.

Dependencies: � A task must be available in the 32-task queue.

See Also: START CHART, SET PRIORITY, STOP HOST TASK, START HOST TASK (ASCII)

OPERATIONS

Cyrano Command Reference 2-39

STOP CHART Chart

Function: To stop a specified chart.

Typical Use: To stop another chart or the chart in which the command appears.

Details: � Unconditionally stops any chart that is either running or suspended.
� Removes the stopped chart from the 32-task queue, making another task available.
� A chart can stop itself or any other chart.
� A chart that stops itself will immediately give up the remaining time allocated in its time

slice(s).
� Stopping another chart won�t take effect immediately but will take effect at the beginning of

that chart�s scheduled time in the queue.
� Charts that are stopped or suspended cannot start or continue themselves (nor can they do

anything else).
� Stopped charts cannot be continued; they can only be started again (that is, their execution

will begin again at BLOCK-0, not at the point at which they were stopped).

Arguments: ARGUMENT 1
CHART

Example: STOP CHART
CHART_B chart name (chart of interest)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Use SUSPEND CHART if you want to continue a chart from where it left off.

See Also: START CHART, SUSPEND CHART, CHART STOPPED?

OPERATIONS

2-40 Cyrano Command Reference

STOP CHART ON ERROR Chart

Function: To stop the chart that caused the error at the top of the error queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the error queue and takes appropriate action. Utilizing this command, the error handler
chart can stop any chart that causes an error.

Details: � Since Cyrano is a multitasking environment in the Mistic controller, an error handler chart
cannot stop another chart instantaneously with this command (since the error handler chart
itself only executes periodically). The actual time required depends on how many charts are
running simultaneously as well as on the priority of each.

� The following errors can appear in the error queue:
CODE ERRORS FROM I/O UNITS (BRICKS) CODE ERRORS FROM MISTIC CONTROLLER

1 Undefined command 31 Send timeout; Mistic couldn�t send message
2 Bad CRC or checksum 32 Bad table index value
3 Buffer overrun 33 Arithmetic overflow
4 I/O unit has powered up since last access 35 Not a real number
5 Incorrect command length 36 Division by zero
6 Communication watchdog timeout 38 Processor failure or factory software fault
7 Specified data invalid 39 Port already in use
8 Busy error 40 E/R does not have a �read &hold� reaction
9 Command & channel configuration mismatch 41 Invalid E/R hold buffer at I/O unit (brick)
10 Invalid event type 42 ARCNET port busy
11 Invalid time for TPO, sq. wave or pulse 43 Host relock
29 I/O unit response timeout 44 Invalid board type
30 Invalid serial port number 45 String too short to hold data

Arguments: None.

Example: STOP CHART ON ERROR

Notes: � See the Chart Overview in Chapter 1 for important information.
� To get to each error in the error queue, the top error must be discarded, bringing the next error

to the top. Use POINT TO NEXT ERROR to do this.

See Also: POINT TO NEXT ERROR, GET ERROR COUNT, SUSPEND CHART ON ERROR

OPERATIONS

Cyrano Command Reference 2-41

STOP HOST TASK Chart

Function: To stop any additional HOST task or suspend the default HOST task.

Typical Use: To temporarily use the default HOST port to communicate with a non-HOST protocol device, such
as a hand-held terminal.

Details: � Unconditionally stops or suspends any HOST task that is either running or suspended.
� Does not take effect immediately, but takes effect at the beginning of the task�s scheduled

time in the queue.
� The default HOST task can only be suspended, not stopped, so it will never lose its place in

the 32-task queue.
� An additional HOST task will be removed from the 32-task queue, making another task

available.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: STOP HOST TASK
On Port 4 constant integer (communication port #)

Notes: � See the Chart Overview in Chapter 1 for important information.

See Also: STOP CHART, START DEFAULT HOST TASK, START HOST TASK (ASCII), START HOST TASK
(BINARY)

OPERATIONS

2-42 Cyrano Command Reference

SUSPEND CHART Chart

Function: To suspend a specified chart.

Typical Use: To suspend another chart or the chart in which the command appears.

Details: � Unconditionally suspends any chart that is running.
� Does not remove the suspended chart from the 32-task queue.
� A chart can suspend itself or any other chart.
� A chart that suspends itself will immediately give up the remaining time allocated in its time

slice(s) and will no longer use a time slice.
� Suspending another chart won�t take effect immediately but will take effect at the beginning

of that chart�s scheduled time in the queue.
� Charts that are suspended cannot start or continue themselves (nor can they do anything

else).
� Suspended charts can be continued, started (execution begun at BLOCK-0), or stopped.

Arguments: ARGUMENT 1 ARGUMENT 2
CHART VARIABLE FLOAT

VARIABLE INTEGER

Example: SUSPEND CHART
CHART_B chart name (chart of interest)

Put Status In STATUS variable integer (success or failure
code)

Notes: � See the Chart Overview in Chapter 1 for important information.

See Also: START CHART, CONTINUE CHART, CHART SUSPENDED?

OPERATIONS

Cyrano Command Reference 2-43

SUSPEND CHART ON ERROR Chart

Function: To suspend the chart that caused the error at the top of the error queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the error queue and takes appropriate action. Utilizing this command, the error handler
chart can suspend any chart that causes an error.

Details: � Since Cyrano is a multitasking environment in the Mistic controller, an error handler chart
cannot suspend another chart instantaneously with this command (since the error handler
chart itself only executes periodically). The actual time required depends on how many charts
are running simultaneously as well as on the priority of each.

� The following errors can appear in the error queue:
CODE ERRORS FROM I/O UNITS (BRICKS) CODE ERRORS FROM MISTIC CONTROLLER

1 Undefined command 31 Send timeout; Mistic couldn�t send message
2 Bad CRC or checksum 32 Bad table index value
3 Buffer overrun 33 Arithmetic overflow
4 I/O unit has powered up since last access 35 Not a real number
5 Incorrect command length 36 Division by zero
6 Communication watchdog timeout 38 Processor failure or factory software fault
7 Specified data invalid 39 Port already in use
8 Busy error 40 E/R does not have a �read &hold� reaction
9 Command & channel configuration mismatch 41 Invalid E/R hold buffer at I/O unit (brick)
10 Invalid event type 42 ARCNET port busy
11 Invalid time for TPO, sq. wave or pulse 43 Host relock
29 I/O unit response timeout 44 Invalid board type
30 Invalid serial port number 45 String too short to hold data

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: SUSPEND CHART ON ERROR

Notes: � See the Chart Overview in Chapter 1 for important information.
� To get to each error in the error queue, the top error must be discarded which brings the next

error to the top. Use POINT TO NEXT ERROR to do this.

See Also: POINT TO NEXT ERROR, GET ERROR COUNT, STOP CHART ON ERROR

OPERATIONS

2-44 Cyrano Command Reference

SUSPEND DEFAULT HOST TASK Chart

Function: To suspend the default HOST task.

Typical Use: To temporarily use the default HOST port to communicate with a non-HOST protocol device, such
as a hand-held terminal.

Details: � Unconditionally suspends the default HOST task . This does not take effect immediately, but
takes effect at the beginning of the task�s scheduled time in the queue.

� The STATUS variable indicates success (-1) or failure (0).
� A failure indicates only that the default HOST task is already suspended.
� After this command has executed, the port that the default HOST task was using will become

available for general use.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: SUSPEND DEFAULT HOST TASK
Put Status In STATUS variable integer (success or failure

code)

Notes: � See the Chart Overview in Chapter 1 for important information.
� Normally the status does not need to be checked, since the command will succeed in most

cases.
� If the port configuration (baud rate, etc.) is changed, be sure to return to the original

configuration before executing the START DEFAULT HOST TASK command.

See Also: START DEFAULT HOST TASK, START HOST TASK (ASCII), START HOST TASK (BINARY)

OPERATIONS

Cyrano Command Reference 2-45

COMMUNICATION OPERATIONS

OF CHARACTERS WAITING (PORT) Communication

Function: To get the number of characters in the receive buffer of an open communication port and put it
into a numeric variable.

Typical Use: To determine if there are any characters or a particular number of characters in the receive
buffer before actually receiving them.

Details: � A value of 0 means the receive buffer is empty.
� Each character counts as one regardless of what it is.
� As characters are received on ports 0�3, the count will increase.
� For ports 4 and 7 (ARCNET), any value greater than zero means that a complete message is

waiting in the receive buffer.
� For ports 4 and 7 (ARCNET), only one message can be in the receive buffer.

Arguments: ARGUMENT 1

VARIABLE FLOAT
VARIABLE INTEGER

Example: # OF CHARACTERS WAITING (PORT)
Move To CHAR COUNT variable integer (the count)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Use this command to determine if the number of characters expected equals the number of

characters actually received in the buffer.

Dependencies: � Must use REQUEST PORT first to open the port.

See Also: # OF CHARACTERS WAITING FROM PORT, CHARACTERS WAITING (PORT)?, CHARACTERS
WAITING?

OPERATIONS

2-46 Cyrano Command Reference

OF CHARACTERS WAITING FROM PORT Communication

Function: To get the number of characters in the receive buffer of a closed communication port and put it
into a numeric variable.

Typical Use: To determine if there are any characters or a particular number of characters in the receive
buffer before actually receiving them.

Details: � A value of 0 means the receive buffer is empty.
� Each character counts as one regardless of what it is.
� As characters are received on ports 0�3, the count will increase.
� For ports 4 and 7 (ARCNET), any value greater than zero means that a complete message is

waiting in the receive buffer.
� For ports 4 and 7 (ARCNET), only one message can be in the receive buffer.
� A negative value indicates an error.
� For this command to be meaningful, the port should not be in use by any other chart.

Arguments: ARGUMENT 1 ARGUMENT 2

CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: # OF CHARACTERS WAITING FROM PORT
Port 1 constant integer (port # to use)
Move To CHAR COUNT variable integer (the count)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Use to determine if the number of characters expected equals the number of characters

actually received in the buffer.

Error Codes: -51 = Invalid port # � use port 0�7

See Also: # OF CHARACTERS WAITING FROM PORT, CHARACTERS WAITING (PORT)?, CHARACTERS
WAITING?

OPERATIONS

Cyrano Command Reference 2-47

CLEAR RECEIVE BUFFER (PORT) Communication

Function: To empty the receive buffer of an open communication port.

Typical Use: To put the receive buffer in a known state (empty). To empty it of garbage characters or partial
messages.

Details: � All characters in the receive buffer will be deleted.

Arguments: None.

Example: CLEAR RECEIVE BUFFER (PORT)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use once before starting communications.
� Always use just before sending a message that requires a response.
� Always use after communication errors to help recover.

Dependencies: � Must use REQUEST PORT first to open the port.

See Also: CLEAR RECEIVE BUFFER

OPERATIONS

2-48 Cyrano Command Reference

CLEAR RECEIVE BUFFER Communication

Function: To empty the receive buffer of a closed communication port.

Typical Use: To put the receive buffer in a known state (empty). To empty it of garbage characters or partial
messages.

Details: � All characters in the receive buffer will be deleted, even if the port is in use by another chart.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE INTEGER
VARIABLE INTEGER

Example: CLEAR RECEIVE BUFFER
Port MY PORT variable integer (port # to use)
Put Result In MY PORT STATUS variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use once before starting communications.
� Always use just before sending a message that requires a response.
� Always use after communication errors to help recover.

Error Codes: 0 = Port is in use already
-1 = OK
-51 = Invalid port # � use port 0�7

See Also: CLEAR RECEIVE BUFFER (PORT)

OPERATIONS

Cyrano Command Reference 2-49

CONFIGURE PORT Communication

Function: To set serial port baud rate, parity, # data bits, # stop bits, and CTS on ports 0�3.

Typical Uses: � To deviate from the factory defaults (no parity, 8 data bits, 1 stop bit, CTS disabled).
� To set the baud rate independently of either the Configurator settings or the front panel

settings on the controller.
� To activate CTS control when sending to radios and modems.

Details: � Parameters are case-insensitive.
� Works only on ports 0�3.
� Sets a default port timeout delay that is baud rate-dependent.
� Use COM0 for port 0, COM1 for port 1, COM2 for port 2, COM3 for port 3.
� Valid baud rates are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, and

115200.
� Valid parity choices are N (none), E (even), O (odd).
� Valid data bit choices are 5�8.
� Valid stop bit choices are 1�2.
� Valid CTS choices are �CTS� (enabled) or no entry (disabled).

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: CONFIGURE PORT
Use COM1:38400,N,8,1,CTS constant string (the configuration)
Put Status In MY PORT STATUS variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Overrides all previous settings made by the Configurator or controller front panel.
� Use before SET PORT TIMEOUT DELAY, since this command will alter its value.
� Use the �CTS� parameter when communicating with radios and modems.

Error Codes: 0 = OK
-40 = Timeout � specified port is already in use
-50 = Improper configuration string syntax

OPERATIONS

2-50 Cyrano Command Reference

GET ARCNET DEST. ADDR. Communication

Function: To get the source address of the last ARCNET message received or the destination address of
the next message to be sent.

Typical Use: To log ARCNET activity complete with source and destination addresses when ARCNET is not
the HOST port.

Details: � When used after receiving an ARCNET message, the source address of the message
received is returned.

� When used after the command SET ARCNET DEST. ADDR., the destination address is
returned.

� All references to ARCNET use port 4.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ARCNET DEST. ADDR.
Move To ARCNET ADDR variable integer (the address)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Use before SET ARCNET DEST. ADDR., since this command will alter the value returned.

See Also: SET ARCNET DEST. ADDR

OPERATIONS

Cyrano Command Reference 2-51

GET CHAR (PORT) Communication

Function: To get a single character from the receive buffer of an open communication port and move it to a
numeric variable.

Typical Use: To get a message from another device one character at a time. Using APPEND CHARACTER, to
append these characters (selectively if desired) to a string variable.

Details: � Removes the oldest character from the receive buffer. Character values will be 0�255.
� If there are no characters in the receive buffer, this command will wait indefinitely until a

character comes in.
� A character 0 (ASCII null) will have a value of zero; a character 48 (ASCII zero) will have a

value of 48. These values will appear in the numeric variable. When appending a character
48 to a string variable, the number 0 will appear in the string.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET CHAR (PORT)
Move To CHAR variable integer (the character)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use the condition CHARACTERS WAITING (PORT)? before this command to avoid

unnecessary delays.
� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.

See Also: REQUEST PORT, GET CHR FROM PORT, CONFIGURE PORT, APPEND CHARACTER

OPERATIONS

2-52 Cyrano Command Reference

GET CHR FROM PORT Communication

Function: To get a single character from the receive buffer of a closed communication port and move it to a
numeric variable.

Typical Use: To get a message from another device one character at a time. Using APPEND CHARACTER, to
append these characters (selectively if desired) to a string variable.

Details: � Removes the oldest character from the receive buffer. Character values will be 0�255.
� If there are no characters in the receive buffer, a timeout error (-42) will eventually occur.
� A character 0 (ASCII null) will have a value of zero; a character 48 (ASCII zero) will have a

value of 48. These values will appear in the numeric variable. When appending a character
48 to a string variable, the number 0 will appear in the string.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: GET CHR FROM PORT
From Port 1 constant integer (port # to use)
Put Result In CHAR variable integer (the character)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use the condition CHARACTERS WAITING? before this command to avoid

unnecessary timeout errors.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-42 = Timeout � probably didn�t use CHARACTERS WAITING? before this command (see

SET PORT TIMEOUT DELAY also)
-51 = Invalid port # � use port 0�7

See Also: GET CHAR (PORT), CONFIGURE PORT, APPEND CHARACTER

OPERATIONS

Cyrano Command Reference 2-53

GET PEER DESTINATION ADDRESS Communication

Function: To get the source address of the last peer message received or the destination address of the
next peer message to be sent.

Typical Use: To log peer activity complete with source and destination addresses.

Details: � When used after receiving a peer message, the source address of the message received is
returned.

� When used after the command SET PEER DESTINATION ADDRESS, the destination address
is returned.

� All references to peer use port 7, which is a special gateway to the ARCNET cable.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET PEER DESTINATION ADDRESS
Move To PEER ADDR variable integer (the address)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Use before SET PEER DESTINATION ADDRESS, since this command will alter the value

returned.

See Also: SET PEER DESTINATION ADDRESS

OPERATIONS

2-54 Cyrano Command Reference

GET STRING (PORT) Communication

Function: To get a message from the receive buffer of an open communication port and move it to a
variable string.

Typical Use: To get ASCII messages from weigh scales, barcode readers, data entry terminals, and other
Mistic controllers.

Details: � The message is expected to end with a carriage return (character 13). This carriage return is
deleted as the message is moved to the variable string.

� The variable string length must be at least two greater than the longest message.
� For ports 0�3, multiple messages can be in the receive buffer as long as each is delimited by

a carriage return.
� For ports 4 and 7, only one message can be in the receive buffer. Until this message is

removed from the receive buffer, all subsequent messages are discarded without error.
� If the first set of characters in the receive buffer that is equal to the length of the variable

string does not contain a carriage return, these characters will be moved to the variable string
without error and all remaining characters up to and including the first carriage return
encountered (if any) will be deleted from the receive buffer.

� If the number of characters in the receive buffer is less than the length of the variable string,
and if none of the characters is a carriage return, this command will wait indefinitely until at
least one of these conditions is true.

Arguments: ARGUMENT 1
VARIABLE STRING

Example: GET STRING (PORT)
Move To RECEIVED MESSAGE variable string (the message)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER (PORT) once before using this command for the first

time.
� Always use the condition CHARACTERS WAITING (PORT)? before this command to avoid

unnecessary delays.
� When messages are terminated by a carriage return and a line feed (character 10), all

messages received (starting with the second message) will have a line feed as the first
character in the variable string. To remove it, get the first character of the variable string using
GET NTH CHARACTER, where n = 1. If the nth character is equal to 10, use GET SUBSTRING
with Start At set to 2 and Number Of set greater than or equal to the number of characters
expected.

� Do not use this command for binary messages, since they may contain numerous carriage
returns at unpredictable locations.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.
� Note that all ARCNET communications (ports 4 and 7) are 16-bit CRC error checked.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.

See Also: REQUEST PORT, RECEIVE FROM PORT, GET CHR FROM PORT, CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-55

MOVE FROM TABLE TO (PORT) Communication

Function: To send 32 numeric table values to an open communication port.

Typical Use: To share numeric table data with another controller. To send large amounts of numeric table
data efficiently.

Details: � Sends up to 32 table values directly from memory.
� If the table does not have at least 32 elements starting from the specified index, zeros will be

sent for the missing elements.
� 128 bytes will be sent, four bytes per value. Since values are sent directly from memory, it

doesn�t matter if the data is integer or float.
� Valid table indices range from 0 to the declared table length.
� Ports 0�3 (RS-232 mode only): Turns RTS on and leaves it on. If CTS is not connected, it is on

by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER FLOAT TABLE
VARIABLE INTEGER INTEGER TABLE

Example: MOVE FROM TABLE TO (PORT)
Index INDEX variable integer (table index to start at)
From MY TABLE integer or float table

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� Use MOVE TO TABLE FROM (PORT) to receive this data in the other controller.
� Always send the starting table index before sending the values so that the receiving

controller will know where to put the data. If there is only one block of data that always has
the same starting index, there is no need to send the starting index separately.

� If sending both integer and float values, be sure to send a type code first so that the receiving
controller will know what type of table to store the values in. If the values are stored in the
wrong type of table, their value will be interpreted incorrectly.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.
� Use error-checked communications or calculate and send a CRC first to ensure the integrity of

the 128-byte packet. Note that all ARCNET communications (ports 4 and 7) are 16-bit CRC
error checked.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: MOVE FROM TABLE TO PORT, REQUEST PORT, CONFIGURE PORT

OPERATIONS

2-56 Cyrano Command Reference

MOVE FROM TABLE TO PORT Communication

Function: To send 32 numeric table values to a closed communication port.

Typical Use: To share numeric table data with another controller. To send large amounts of numeric table
data efficiently.

Details: � Sends up to 32 table values directly from memory.
� If the table does not have at least 32 elements starting from the specified index, zeros will be

sent for the missing elements.
� 128 bytes will be sent, four bytes per value. Since the values are sent directly from memory, it

doesn�t matter if the data is integer or float.
� Valid table indices range from 0 to the declared table length.
� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will eventually timeout and return a
-41 error. No message will be sent if CTS is off. A partial message may be sent if the timeout
is too short.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT INTEGER FLOAT TABLE CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER INTEGER TABLE VARIABLE INTEGER VARIABLE INTEGER

Example: MOVE FROM TABLE TO PORT
Index INDEX variable integer (table index to start at)
From MY TABLE integer or float table
Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� Use MOVE ANL. I/O UNIT TO TABLE to read all 16 channels of an I/O unit and put the result in
a float table.

� Use MOVE TO TABLE FROM PORT to receive this data in the other controller.
� Always send the starting table index before sending the values so that the receiving

controller will know where to put the data. If there is only one block of data that always has
the same starting index, there is no need to send the starting index separately.

� If sending both integer and float values, be sure to send a type code first so that the receiving
controller will know what type of table to store the values in. If the values are stored in the
wrong type of table, their value will be interpreted incorrectly.

� Use error-checked communications or calculate and send a CRC first to ensure the integrity of
the 128-byte packet. Note that all ARCNET communications (ports 4 and 7) are 16-bit CRC
error checked.

OPERATIONS

Cyrano Command Reference 2-57

MOVE FROM TABLE TO PORT (continued) Communication

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE TO PORT to actually send the message.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-51 = Invalid port # � use port 0, 1, 2, 3, 4, 6, or 7

See Also: MOVE FROM TABLE TO (PORT), CONFIGURE PORT

OPERATIONS

2-58 Cyrano Command Reference

MOVE TO TABLE FROM (PORT) Communication

Function: To get 32 numeric table values from an open communication port.

Typical Uses: � To receive shared numeric table data from another controller.
� To get large amounts of numeric table data efficiently.

Details: � Gets 128 bytes from the receive buffer and puts them directly in memory.
� If the table does not have at least 32 elements starting from the specified index, only a

portion of the 128 bytes will be written to memory. Remaining bytes will be discarded.
� Valid table indices range from 0 to the declared table length.
� All remaining characters in the receive buffer will be discarded.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER FLOAT TABLE
VARIABLE INTEGER INTEGER TABLE

Example: MOVE TO TABLE FROM (PORT)
Index INDEX variable integer (table index)
To MY TABLE integer or float table

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use # OF CHARACTERS WAITING (PORT) to determine if the entire 128-byte packet is in the receive

buffer. This number will be higher if an index or other data is sent as well. For example, if an index of 32
followed by a carriage return (character 13) was sent along with the 128 bytes, the total number of
characters will be at least 131 (128+2+1).

� Do not use this command unless there are at least 128 bytes in the receive buffer, as the
command will wait indefinitely until there are.

� If the data received must be put in the table at a different index each time, the index must be
sent by the other controller before the data is sent. An easy way to do this is to send the
index as an integer followed by a carriage return (character 13), then send the 128 bytes. Use
GET STRING (PORT) to get the index. Then use CONVERT STRING TO NUMBER to put the
index into a variable integer. Finally, get the table data.

� Be sure to put float data into a float table, integer data into an integer table. Otherwise, data
values will be interpreted incorrectly.

� Use error-checked communications or calculate the CRC on the data to ensure the integrity of
the 128-byte packet before putting it in the destination table. Since it must be received first,
put it into a �holding table,� check the CRC, then copy it to the final destination table. Note
that all ARCNET communications (ports 4 and 7) are 16-bit CRC error checked.

� Use MOVE TABLE TO ANL I/O UNIT to write the float table data to all 16 channels of an I/O
unit.

� Use MOVE FROM TABLE TO (PORT) in the other controller to send this data.
� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.

See Also: MOVE TO TABLE FROM PORT, REQUEST PORT, CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-59

MOVE TO TABLE FROM PORT Communication

Function: To get 32 numeric table values from a closed communication port.

Typical Uses: � To receive shared numeric table data from another controller.
� To get large amounts of numeric table data efficiently.

Details: � Gets 128 bytes from the receive buffer and puts them directly in memory.
� If the table does not have at least 32 elements starting from the specified index, only a

portion of the 128 bytes will be written to memory. Remaining bytes will be discarded.
� Valid table indices range from 0 to the declared table length.
� All remaining characters in the receive buffer will be discarded.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT INTEGER FLOAT TABLE CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER INTEGER TABLE VARIABLE INTEGER VARIABLE INTEGER

Example: MOVE TO TABLE FROM PORT
Index INDEX variable integer (table index to start

putting data into)
To MY TABLE integer or float table
Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use # OF CHARS WAITING FROM PORT to determine if the entire 128-byte packet is

in the receive buffer. This number will be higher if an index or other data is sent as well. For
example, if an index of 32 followed by a carriage return (character 13) was sent along with
the 128 bytes, the total number of characters will be at least 131 (128+2+1).

� Do not use this command unless there are at least 128 bytes in the receive buffer, as the
command will result in a timeout error (-42).

� If the data received must be put in the table at a different index each time, the index must be
sent by the other controller before the data is sent. An easy way to do this is to send the
index as an integer followed by a carriage return (character 13), then send the 128 bytes. Use
RECEIVE FROM PORT to get the index. Then use CONVERT STRING TO NUMBER to put the
index into a variable integer. Finally, get the table data.

� Be sure to put float data into a float table, integer data into an integer table. Otherwise, data
values will be interpreted incorrectly.

� Use error-checked communications or calculate the CRC on the data to ensure the integrity of
the 128-byte packet before putting it in the destination table. Since it must be received first,
put it into a �holding table,� check the CRC, then copy it to the final destination table. Note
that all ARCNET communications (ports 4 and 7) are 16-bit CRC error checked.

� Use MOVE FROM TABLE TO PORT in the other controller to send this data.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.

OPERATIONS

2-60 Cyrano Command Reference

MOVE TO TABLE FROM PORT (continued) Communication

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-42 = Timeout � probably didn�t use CHARACTERS WAITING? before this command (see

SET PORT TIMEOUT DELAY also)
-51 = Invalid port # � use port # 0, 1, 2, 3, 4, 6, or 7

See Also: MOVE TO TABLE FROM PORT, REQUEST PORT, CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-61

PRINT CHARACTER (PORT) Communication

Function: To send a single character to an open communication port.

Typical Use: To send a message to another device one character at a time. Send a line feed (character 10) to
a serial printer.

Details: � Character values sent will be 0�255. Only the last eight bits are sent when the value is
greater than 255.

� A value of 256 will be sent as a zero. A value of 257 will be sent as a 1.
� To send an ASCII null, use zero. To send an ASCII zero, use 48.
� Ports 0�3 (RS-232 mode only): Turns RTS on and leaves it on. If CTS is not connected, it is on

by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), one character will be moved to the transmit buffer. When CTS turns
on, the character will be sent. Sending more than one character with CTS off will cause this
command to wait indefinitely.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT CHARACTER (PORT)
From 10 constant integer

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� Use PRINT STRING (PORT) instead when there are a lot of characters to send or when using
radios that require RTS-CTS handshaking.

� If sending an eight-bit checksum, no need to BIT AND the checksum value with 255.
� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.
� Use SET LAST CHARACTER before this command to automatically turn RTS off after the

character is sent.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, PRINT CHR TO PORT, CONFIGURE PORT, SET LAST CHARACTER

OPERATIONS

2-62 Cyrano Command Reference

PRINT CHR TO PORT Communication

Function: To send a single character to a closed communication port.

Typical Uses: � To send a message to another device one character at a time.
� To send a line feed (character 10) to a serial printer.

Details: � Character values sent will be 0�255. Only the last eight bits are sent when the value is
greater than 255.

� A value of 256 will be sent as a zero. A value of 257 will be sent as a 1.
� To send an ASCII null, use zero. To send an ASCII zero, use 48.
� Ports 0�3 (RS-232 mode only): Turns RTS on and leaves it on. If CTS is not connected, it is on

by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), one character will be moved to the transmit buffer. When CTS turns
on, the character will be sent. Sending more than one character with CTS off will eventually
result in a -41 error.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT INTEGER VARIABLE FLOAT

CONSTANT INTEGER VARIABLE INTEGER VARIABLE INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT CHR TO PORT
From 10 constant integer
To Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� Use PRINT TO PORT instead when there are a lot of characters to send or when using radios
that require RTS-CTS handshaking.

� If sending an eight-bit checksum, no need to BIT AND the checksum value with 255.
� Use SET LAST CHARACTER before this command to automatically lower RTS after the

character is sent.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE TO PORT to actually send the message.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-51 = Invalid port # � use port 0�7

See Also: PRINT CHARACTER (PORT), CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-63

PRINT DATE (PORT) Communication

Function: To send the date to an open communication port.

Typical Use: To print the date on a serial printer.

Details: � Eight characters are sent. Format used is mm:dd:yy, where mm = month (01-12), dd = day (01-
31), and yy = year (00�99).

� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not
connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: None.

Example: PRINT DATE (PORT)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, CONFIGURE PORT

OPERATIONS

2-64 Cyrano Command Reference

PRINT FORMATTED NUMBER (PORT) Communication

Function: To send a number using a specified format to an open communication port.

Typical Uses: � To print a number on a serial printer.
� To end a number with a fixed length to another device.

Details: � The value printed will always have the length specified and the number of decimal digits
specified.

� This command can be used to send integers. Set the number of decimal digits to zero. No
decimal point will be sent.

� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not
connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT INTEGER CONSTANT INTEGER

CONSTANT INTEGER VARIABLE INTEGER VARIABLE INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT FORMATTED NUMBER (PORT)
From TANK LEVEL variable float (the value)
Length 5 constant integer (total # of characters)
Decimals 2 constant integer (# of digits to the right

of the decimal)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Remember to allow room for a minus sign if one is expected.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, CONFIGURE PORT, PRINT NUMBER (PORT)

OPERATIONS

Cyrano Command Reference 2-65

PRINT NEW LINE TO PORT Communication

Function: This command has two context-sensitive functions:
� Ports 0�3: To send a carriage return (character 13) and a line feed (character 10) to a closed

port.
� Ports 4, 6, and 7: To send the message in the transmit buffer of the closed ARCNET port (port

4), the closed local port (port 6), or the closed peer port (port 7). For ports 4 and 7, a carriage
return (character 13) is appended to the message sent.

Typical Uses: � To send a carriage return/line feed to a serial printer.
� To send anything to ports 4, 6, and 7.

Details: � Ports 0�3: Sends two ASCII characters (13 and 10) to the specified port.
� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will eventually timeout and return a
-41 error.

� Ports 4, 6, and 7: Must use this command to actually send what was �sent� by any other
command. Anything �sent� to one of these ports is held in the transmit buffer of the port until
this command is used. An acknowledgment is expected from the destination. For ports 4 and
7, this acknowledgment is an automatic feature of ARCNET. This command will wait up to the
port timeout value for the acknowledgment. Retries will also be performed up to the retry
limit. If no acknowledgment is received, this command will eventually timeout and return a -
41 error.

� Ports 4 and 7: All communications are 16-bit CRC error checked.
� Caution: The message could be sent and acknowledged but discarded by the destination

with no error if a message is already held in its receive buffer.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: PRINT NEW LINE TO PORT
Port # 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� Ports 4 and 7: To be sure that a message sent was actually received, configure the
destination device to reply with an �ACK� or an empty string immediately after receiving the
message. Wait for this �ACK� for a second or so to verify receipt of the message.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4 and 7: Must use SET ARCNET DEST. ADDR. for port 4 or SET PEER DESTINATION

ADDRESS for port 7 before using this command.

OPERATIONS

2-66 Cyrano Command Reference

PRINT NEW LINE TO PORT (continued) Communication

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off (ports 0�3), timeout is too short (see SET PORT TIMEOUT

DELAY), or there is no response from peer. For ports 4 and 7, this error indicates the
transmit buffer is full.

-51 = Invalid port # � use port 0�7

See Also: PRINT NEW LINE (PORT) W/TIMEOUT, PRINT NEW LINE (PORT), CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-67

PRINT NEW LINE (PORT) Communication

Function: This command has two context-sensitive functions.
� Ports 0�3: To send a carriage return (character 13) and a line feed (character 10) to the open

port.
� Port 6: To send the message in the transmit buffer of the open local port (port 6).

Typical Uses: � To send a carriage return/line feed to a serial printer.
� To send anything to port 6 if it is open.

Details: � Ports 0�3: Sends two ASCII characters (13 and 10) to the specified port.
� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

� Port 6: Must use this command to actually send what was �sent� by any other command.
Anything �sent� to this port is held in the transmit buffer until this command is used. All
communications are 16-bit CRC error checked.

Arguments: None.

Example: PRINT NEW LINE (PORT)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Do not use for peer-to-peer communication. Use PRINT NEW LINE (PORT) W/TIMEOUT or

PRINT NEW LINE TO PORT instead.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.

See Also: PRINT NEW LINE (PORT) W/TIMEOUT, PRINT NEW LINE TO PORT, CONFIGURE PORT

OPERATIONS

2-68 Cyrano Command Reference

PRINT NEW LINE (PORT) W/TIMEOUT Communication

Function: To send the message in the transmit buffer of the open ARCNET port (port 4) or the open peer
port (port 7).

Typical Use: To send anything to ports 4 and 7 if they are open.

Details: � Must use this command to actually send what was �sent� by any other command. Anything
�sent� to one of these ports is held in the transmit buffer of the port until this command is
used. An acknowledgment is expected from the destination. This acknowledgment is an
automatic feature of ARCNET. This command will wait up to the port timeout value for the
acknowledgment. Retries will also be performed up to the retry limit. If an acknowledgment is
not received, this command will eventually timeout and return a -41 error.

� All communications are 16-bit CRC error checked. A carriage return (character 13) is
appended to the message sent.

� Caution: The message could be sent and acknowledged but discarded by the destination
with no error if a message is already held in its receive buffer.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT NEW LINE (PORT) W/TIMEOUT
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use this command to send any ARCNET message to an open port.
� To be sure that a message sent was actually received, configure the destination device to

reply with an �ACK� or an empty string immediately after receiving the message. Wait for this
�ACK� for a second or so to verify receipt of message.

Dependencies: � Must use REQUEST PORT first to open the port.
� Must use SET ARCNET DEST. ADDR. for port 4 or SET PEER DESTINATION ADDRESS for port

7 before using this command.

Error Codes: 0 = No error
-41 = Send timeout � no acknowledgment was received. For ports 4 and 7, this error

indicates the transmit buffer is full.

See Also: PRINT NEW LINE TO PORT

OPERATIONS

Cyrano Command Reference 2-69

PRINT NUMBER (PORT) Communication

Function: To send a number as is to an open communication port.

Typical Uses: � To print a number on a serial printer.
� To send a number to another device.

Details: � The value sent will have an exponential format if it is a float.
� The value sent will have a trailing space.
� Examples:

12.3456 becomes 1.23456e+01 Note the exponential format and trailing space.
12345 becomes 12345 Note that six digits are sent. There is a trailing space

after the 5.
� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT NUMBER (PORT)
From TANK LEVEL variable float (the value)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Use PRINT FORMATTED NUMBER (PORT) instead.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, CONFIGURE PORT, PRINT FORMATTED NUMBER (PORT)

OPERATIONS

2-70 Cyrano Command Reference

PRINT NUMBER AS FIELD (PORT) Communication

Function: To send a number using a specified minimum length to an open communication port.

Typical Uses: � To print an integer on a serial printer.
� To send an integer with a fixed length to another device.

Details: � A value whose length is less than that specified will have leading spaces added as
necessary.

� A value whose length is equal to or greater than the specified length will be sent as is.
� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not

connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT INTEGER

CONSTANT INTEGER VARIABLE INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PRINT NUMBER AS FIELD (PORT)
From TOTAL GALLONS variable integer (the value)
Length 6 constant integer (total # of characters)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Although floats can be sent using this command, it is not recommended since the results vary

greatly.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, CONFIGURE PORT, PRINT FORMATTED NUMBER (PORT)

OPERATIONS

Cyrano Command Reference 2-71

PRINT STR (OPTOMUX) TO PORT Communication

Function: To send an OPTOMUX command to OPTOMUX I/O or any device that uses OPTOMUX protocol.

Typical Uses: � To communicate as a master to existing OPTOMUX I/O.
� To communicate as a master to other computers that understand OPTOMUX protocol.

Details: � Adds a leading �>� (character 62) to the message.
� Calculates an eight-bit checksum and appends it to the end of the message as two hex

bytes.
� Appends a carriage return (character 13) to the end of the message.
� RS-232 mode only: Turns RTS on. Turns RTS off when finished. If CTS is not connected, it is

on by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), this command will eventually timeout and return a -41 error. No
message will be sent if CTS is off. A partial message may be sent if the timeout is too short.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: PRINT STR (OPTOMUX) TO PORT
From OPTOMUX COMMAND variable string (the command)
To Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER before using this command.
� RS-232 mode only: Always connect RTS to CTS on COM0 of the M4RTU unless RTS and CTS

must be connected to a modem, printer, or other device. Never connect anything to CTS
unless it must be used to handshake with another device.

� Consider using SEND/RECEIVE PORT (OPTOMUX) instead, since it includes a built-in send
and receive.

Dependencies: � Baud rate, parity, # data bits, # stop bits: Parity must be N; # data bits must be 8; # stop bits
must be 1.

� Must use OPTOMUX protocol.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-51 = Invalid port # � use ports 0�3

See Also:RECEIVE FROM PORT (OPTOMUX), SEND/RECEIVE PORT (OPTOMUX), CONFIGURE PORT

OPERATIONS

2-72 Cyrano Command Reference

PRINT STR WITH CRC TO PORT Communication

Function: To send a Mistic I/O unit command to a Mistic I/O unit.

Typical Use: To send special commands to Mistic I/O units as detailed in the Mistic Analog and Digital
Commands Manual (Opto 22 form 270).

Details: � Supports Opto 22 binary mode only.
� A two-byte CRC (CRC-16 Reverse with a seed of 0) is calculated and appended to the end of

the message.
� Not for use with modems, since most modems do not support 11-bit frames.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: PRINT STR WITH CRC TO PORT
From I/O UNIT COMMAND variable string (the command)
To Port 2 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER before using this command each time.
� Use APPEND CHARACTER to build the message to send.
� No need to use SET PORT TIMEOUT DELAY since the factory default is adequate.
� No need to use CONFIGURE PORT.
� No need to use on ARCNET since all ARCNET communications (ports 4 and 7) are 16-bit CRC

error checked.

Dependencies: � I/O units must be in binary mode.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-51 = Invalid port # � use port 0�7

See Also:SEND/RECEIVE PORT W/CRC

OPERATIONS

Cyrano Command Reference 2-73

PRINT STRING (PORT) Communication

Function: To send a message to an open communication port.

Typical Uses: � To send data to another device.
� To send peer messages to another Mistic controller via ARCNET.
� To send an alarm message to a serial printer.

Details: � Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not
connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

� Note that all ARCNET communications (ports 4 and 7) are 16-bit CRC error checked.

Arguments: ARGUMENT 1
CONSTANT STRING
VARIABLE STRING

Example: PRINT STRING (PORT)
From MESSAGE variable string (the data or message)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: PRINT TO PORT, PRINT CHARACTER (PORT), PRINT NEW LINE TO PORT, CONFIGURE PORT

OPERATIONS

2-74 Cyrano Command Reference

PRINT TIME (PORT) Communication

Function: To send the time to an open communication port.

Typical Use: To print the time on a serial printer.

Details: � Sends eight characters in the format hh:mm:ss, where hh = hour (00�23), mm = (00�59), and
ss = second (00�59).

� Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not
connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will wait indefinitely.

Arguments: None.

Example: PRINT TIME (PORT)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

� Use RELEASE ACTIVE PORT when finished to make the port available for other uses.

Dependencies: � Must use REQUEST PORT first to open the port.
� Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE (PORT) to actually send the message.

See Also: REQUEST PORT, CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-75

PRINT TO PORT Communication

Function: To send a message to a closed communication port.

Typical Uses: � To send data to another device.
� To send peer messages to another Mistic controller via ARCNET.
� To send an alarm message to a serial printer.

Details: � Ports 0�3 (RS-232 mode only): Turns RTS on. Turns RTS off when finished. If CTS is not
connected, it is on by default except on COM0 of the M4RTU. If CTS is off or the timeout is
too short (see SET PORT TIMEOUT DELAY), this command will eventually timeout and return a
-41 error. No message will be sent if CTS is off. A partial message may be sent if the timeout
is too short.

� Note that all ARCNET communications (ports 4 and 7) are 16-bit CRC error checked.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: PRINT TO PORT
MESSAGE1 variable string (the message)

Port # 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Ports 0�3 (RS-232 mode only): Always connect RTS to CTS on COM0 of the M4RTU unless

RTS and CTS must be connected to a modem, printer, or other device. Never connect
anything to CTS unless it must be used to handshake with another device.

� A carriage return (character 13) appended to this message acts as a message delimiter and
allows the use of the command RECEIVE FROM PORT in another Mistic controller.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.
� Ports 4, 6, and 7: Must use PRINT NEW LINE TO PORT to actually send the message.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-51 = Invalid port # � use port 0�7

See Also:PRINT STRING (PORT), PRINT CHR TO PORT , CONFIGURE PORT

OPERATIONS

2-76 Cyrano Command Reference

RECEIVE FROM PORT Communication

Function: To get a message from the receive buffer of a closed communication port and move it to a
variable string.

Typical Use: To get ASCII messages from weigh scales, barcode readers, data entry terminals, and other
Mistic controllers.

Details: � The message is expected to end with a carriage return (character 13).
� The variable string length must be at least two greater than the length of the longest

message expected.
� The carriage return in the receive buffer is deleted as the message is moved to the variable

string.
� For ports 0�3, multiple messages can be in the receive buffer as long as each is delimited by

a carriage return.
� For ports 4 and 7, only one message can be in the receive buffer. Until that message is

removed from the receive buffer, all subsequent messages are discarded without error.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any negative value indicates an error.
� If the first set of characters in the receive buffer that is equal in length to the variable string

does not contain a carriage return, these characters will be moved to the variable string
without error. In addition, all remaining characters up to and including the first carriage return
encountered (if any) will be deleted from the receive buffer.

� If the number of characters in the receive buffer is less than the length of the variable string
and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the variable string. If
this happens frequently, use SET PORT TIMEOUT DELAY to increase the timeout value. See
Notes below.

� If the communication port is already in use, this command will wait for it to become available
until a port-in-use timeout error (-40) occurs.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
VARIABLE STRING CONSTANT INTEGER VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: RECEIVE FROM PORT
Move To RECEIVED MESSAGE variable string (the message)
From Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER once before using this command for the first time.
� Always use SET PORT TIMEOUT DELAY once before using this command . As a minimum, use

the result of this formula: (longest message length / baud rate) * 40. For example, a 24-
character message at 9600 baud results in a delay of 0.1 seconds.

� Always use the condition CHARACTERS WAITING? before this command to avoid an
unnecessary timeout error (-42).

OPERATIONS

Cyrano Command Reference 2-77

RECEIVE FROM PORT (continued) Communication

� When there is a single response terminated by a carriage return and a line feed (character
10), use CLEAR RECEIVE BUFFER after this command to drop the line feed character.

� When there are multiple responses terminated by a carriage return and a line feed (character
10), all responses received starting with the second response will have a line feed as the first
character in the variable string. To remove it, get the first character of the variable string using
GET NTH CHARACTER where n=1. If the nth character is equal to 10, use GET SUBSTRING
with Start At set to 2 and Number Of set greater than or equal to the number of characters
expected.

� If a timeout error (-42) occurs and a partial string is received and this was unexpected, delay
for 1 second or so, then use CLEAR RECEIVE BUFFER. This puts the receive buffer back to a
known state.

� Do not use this command for binary messages, since they may contain numerous carriage
returns at unpredictable locations.

Dependencies: � Ports 0�3: baud rate, parity, # data bits, # stop bits.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-42 = Timeout � no carriage return found in the receive buffer within allotted time (see SET

PORT TIMEOUT DELAY)
-51 = Invalid port # � use port 0�7

See Also: GET STRING (PORT), GET CHR FROM PORT, CONFIGURE PORT

OPERATIONS

2-78 Cyrano Command Reference

RECEIVE FROM PORT (OPTOMUX) Communication

Function: To get an OPTOMUX response from the receive buffer of a closed communication port and move
it to a variable string.

Typical Use: To get OPTOMUX responses from OPTOMUX I/O.

Details: � The response is expected to start with either an A or an N and expected to end with a
carriage return. The two characters preceding the carriage return are expected to be the
checksum when data is returned. The checksum is calculated and compared with what was
sent. If there is a checksum error, or if �??� was substituted for the checksum characters, a -45
error will be returned. The checksum is not stripped from the response. Some valid responses
are: N03, AB2EB9.

� The variable string length must be greater than the longest response expected.
� The carriage return in the receive buffer is deleted as the response is moved to the variable

string.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any negative value indicates an error.
� If the number of characters in the receive buffer is less than the length of the variable string

and none of characters is a carriage return, a timeout error (-42) will eventually occur. When
this happens, all characters in the receive buffer will be moved to the variable string. If this
happens frequently, use SET PORT TIMEOUT DELAY to increase the timeout value. See Notes
below.

� If the communications port is already in use, this command will wait for it to become available
until a port-in-use timeout error (-40) occurs.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
VARIABLE STRING CONSTANT INTEGER VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: RECEIVE FROM PORT (OPTOMUX)
Move To OPTOMUX RESPONSE variable string (the response)
From Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER once before using this command for the first time.
� Always use SET PORT TIMEOUT DELAY once before using this command . As a minimum, use

the result of this formula: (longest message length / baud rate) * 40. For example, a 24-
character message at 9600 baud results in a delay of 0.1 seconds.

� Always use the condition CHARACTERS WAITING? before this command to avoid an
unnecessary timeout error (-42).

� If a timeout error (-42) occurs and a partial string is received and this was unexpected, delay
for 1 second or so, then use CLEAR RECEIVE BUFFER. This puts the receive buffer back to a
known state.

OPERATIONS

Cyrano Command Reference 2-79

RECEIVE FROM PORT (OPTOMUX) (continued) Communication

� Consider using SEND/RECEIVE PORT (OPTOMUX) instead, since it includes a built-in send
and receive.

� Error -42 indicates that checksum has already been verified and implies that the response is
not in standard OPTOMUX format.

Dependencies: � Ports 0�3: Baud rate, parity, # data bits, # stop bits: Parity must be N; # data bits must be 8; #
stop bits must be 1.

� Must use OPTOMUX protocol.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-42 = Timeout � no carriage return found in the receive buffer within allotted time (see SET

PORT TIMEOUT DELAY)
-43 = Too few characters received
-44 = Response not formatted correctly (illegal first character)
-45 = CRC or checksum failed
-47 = Received a NAK (this is OK � not an error)
-51 = Invalid port # � use port 0�3

See Also: PRINT STR (OPTOMUX) TO PORT, SEND/RECEIVE PORT (OPTOMUX), CONFIGURE PORT

OPERATIONS

2-80 Cyrano Command Reference

RECEIVE FROM PORT W/CRC Communication

Function: To get a Mistic I/O unit binary response from the receive buffer of a closed communication port
and move it to a variable string.

Typical Use: To get Mistic I/O unit binary responses from Mistic I/O.

Details: � The response is expected to be from a Mistic I/O unit in binary mode.
� The variable string length must be greater than or equal to the longest response expected.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any other value indicates an error.
� All characters with the exception of the two CRC characters are a part of the CRC calculation.
� The version of CRC used is CRC-16 Reverse with a seed of 0.
� Not for use with modems, since most modems do not support 11-bit frames.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
VARIABLE STRING CONSTANT INTEGER VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: RECEIVE FROM PORT W/CRC
Move To I/O UNIT RESPONSE variable string (the response)
From Port 1 constant integer (port # to use)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER once before using this command for the first time.
� No need to use SET PORT TIMEOUT DELAY since the factory default is adequate.
� Always use the condition CHARACTERS WAITING? before this command to avoid an

unnecessary timeout error (-42).
� If an error occurs, delay for 0.1 second or so, then use CLEAR RECEIVE BUFFER. This puts the

receive buffer back to a known state.

Dependencies: � I/O units must be in binary mode.

Error Codes: 0 = No error
Queue error 2 = Bad CRC/checksum
Queue error 3 = Bad message length received
-40 = Timeout � specified port already in use
-42 = Timeout � probably didn�t use CHARACTERS WAITING? before this

command (see SET PORT TIMEOUT DELAY also)
-48 = String too short to hold response
-51 = Invalid port # � use port 0, 1, 2, 3, or 6

See Also: PRINT STR WITH CRC TO PORT, SEND/RECEIVE PORT W/CRC

OPERATIONS

Cyrano Command Reference 2-81

RELEASE ACTIVE PORT Communication

Function: To give up exclusive rights to a port.

Typical Use: To allow other charts access to the port after communication is finished.

Details: � Only works on an open port (one that REQUEST PORT was used to open).

Arguments: None.

Example: RELEASE ACTIVE PORT

Notes: � See the Communication Overview in Chapter 1 for important information.

See Also: REQUEST PORT

OPERATIONS

2-82 Cyrano Command Reference

REQUEST PORT Communication

Function: To secure exclusive rights to a port.

Typical Use: To deny other charts access to a particular port before communication. Use prior to commands
that rely on the port being open.

Details: � Only works on a closed port (one that is not in use).
� Must use once to secure access to a port before using commands that rely on the port being

open.
� The STATUS variable indicates exclusive access was granted (-1) or the specified port was

already in use (0).

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: REQUEST PORT
Port # 0 constant integer (port # to use)
Put Status In PORT STATUS variable integer (status code)

See Also: RELEASE ACTIVE PORT

OPERATIONS

Cyrano Command Reference 2-83

SEND/RECEIVE PORT (OPTOMUX) Communication

Function: To communicate as a master with an OPTOMUX device using a closed communication port.

Typical Use: To communicate with OPTOMUX I/O.

Details: � For use with ports 0�3 only.
� Adds a leading �>� (character 62) to the OPTOMUX message.
� Calculates an eight-bit checksum and appends it to the end of the OPTOMUX message as

two hex bytes.
� Appends a carriage return (character 13) to the end of the OPTOMUX message.
� The OPTOMUX response is expected to start with either an A or an N and expected to end

with a carriage return.
� The two characters preceding the carriage return are expected to be the checksum when

data is returned.
� The checksum is calculated and compared with what was sent. If there is a checksum error,

or if �??� was substituted for the checksum characters, a -45 error will be returned. The
checksum is not stripped from the message.

� Some valid responses are: N03, AB2EB9.
� The variable string length for the OPTOMUX response must be greater than the length of the

longest response expected.
� The carriage return in the receive buffer is deleted as the response is moved to the variable

string.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any negative value indicates an error.
� If the number of characters in the receive buffer is less than the length of the variable string

and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the variable string. If
this happens frequently, use SET PORT TIMEOUT DELAY to increase the timeout value. See
Notes below.

� If the communications port is already in use, this command will wait for it to become available
until a port-in-use timeout error (-40) occurs.

� RS-232 mode only: Turns RTS on. Turns RTS off when finished. If CTS is not connected, it is
on by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), this command will eventually timeout and return a -41 error. No
message will be sent if CTS is off. A partial message may be sent if the timeout is too short.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT STRING CONSTANT INTEGER VARIABLE STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

OPERATIONS

2-84 Cyrano Command Reference

SEND/RECEIVE PORT (OPTOMUX) (continued) Communication

Example: SEND/RECEIVE PORT (OPTOMUX)
From OPTOMUX COMMAND variable string (the command)
To Port 1 constant integer (port # to use)
Move To OPTOMUX RESPONSE variable string (the response)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER before using this command each time.
� Always use SET PORT TIMEOUT DELAY once before using this command . As a minimum, use

the result of this formula: (longest message length / baud rate) * 40. For example, a 24-
character message at 9600 baud results in a delay of 0.1 seconds.

� RS-232 mode only: Always connect RTS to CTS on COM0 of the M4RTU unless RTS and CTS
must be connected to a modem, printer, or other device. Never connect anything to CTS
unless it must be used to handshake with another device.

Dependencies: � Baud rate, parity, # data bits, # stop bits: Parity must be N; # data bits must be 8; # stop bits
must be 1.

� Must use OPTOMUX protocol.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-42 = Timeout � no carriage return found in the receive buffer within allotted time (see SET

PORT TIMEOUT DELAY)
-43 = Too few characters received
-44 = Response not formatted correctly (illegal first character)
-45 = CRC or checksum failed
-47 = Received a NAK (this is OK � not an error)
-51 = Invalid port # � use port 0�3

See Also: PRINT STR (OPTOMUX) TO PORT, RECEIVE FROM PORT (OPTOMUX), CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-85

SEND/RECEIVE PORT W/CRC Communication

Function: To send a Mistic I/O unit binary command to a Mistic I/O unit and get the response using a
closed communication port.

Typical Use: To send special binary commands to Mistic I/O units as detailed in the Mistic Analog and Digital
Commands Manual (Opto 22 form 270).

Details: � For use with ports 0, 1, 2, 3, and 6 only.
� Supports Opto 22 binary mode only.
� Calculates a two-byte CRC (CRC-16 Reverse with a seed of 0) and appends it to the end of

the I/O unit command.
� Not for use with modems, since most modems do not support 11-bit frames.
� The response is expected to be from a Mistic I/O unit in binary mode.
� The variable string length for the I/O unit response must be greater than or equal to the

length of the longest response expected.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any other value indicates an error.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT STRING CONSTANT INTEGER VARIABLE STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: SEND/RECEIVE PORT W/CRC
From I/O UNIT COMMAND variable string (the command)
To Port 1 constant integer (port # to use)
Move To I/O UNIT RESPONSE variable string (the response)
Put Status In ERROR CODE variable integer (the error code)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER before using this command each time.
� Use APPEND CHARACTER to build the message to send.
� No need to use SET PORT TIMEOUT DELAY since the factory default is adequate.
� No need to use CONFIGURE PORT.

Dependencies: � I/O units must be in binary mode.

Error Codes: 0 = No error
Queue error 2 = Bad CRC/checksum
Queue error 3 = Bad message length received
-40 = Timeout � specified port already in use
-42 = Timeout � no response or timeout too short (see SET PORT

TIMEOUT DELAY)
-48 = String too short to hold response
-51 = Invalid port # � use port 0, 1, 2, 3, or 6

See Also: PRINT STR WITH CRC TO PORT, RECEIVE FROM PORT W/CRC

OPERATIONS

2-86 Cyrano Command Reference

SEND/RECEIVE USING PORT N Communication

Function: To send a ASCII message and get an ASCII response using a closed communication port.

Typical Uses: � To poll for ASCII messages from weigh scales, barcode readers, data entry terminals, and
other Mistic controllers.

� To send data to other devices where an immediate response is expected.

Details: � For use with ports 0�3 only.
� Appends a carriage return (character 13) to the end of the message sent.
� The response is expected to end with a carriage return (character 13).
� The variable string length for the response must be at least two greater than the length of the

longest message expected.
� The carriage return in the receive buffer is deleted as the response is moved to the variable

string.
� The status is an error code that indicates how successful this command was. A zero indicates

OK; any negative value indicates an error.
� If the first set of characters in the receive buffer that is equal to the length of the variable

string does not contain a carriage return, these characters will be moved to the variable string
without error and all remaining characters in the receive buffer will be discarded.

� If the number of characters in the receive buffer is less than the length of the variable string
and none of the characters is a carriage return, a timeout error (-42) will eventually occur.
When this happens, all characters in the receive buffer will be moved to the variable string. If
this happens frequently, use SET PORT TIMEOUT DELAY to increase the timeout value. See
Notes below.

� If the communication port is already in use, this command will wait for it to become available
until a port-in-use timeout error (-40) occurs.

� If the receive buffer is empty, no message will be sent and an error -42 will be returned.
� RS-232 mode only: Turns RTS on. Turns RTS off when finished. If CTS is not connected, it is

on by default except on COM0 of the M4RTU. If CTS is off or the timeout is too short (see SET
PORT TIMEOUT DELAY), this command will eventually timeout and return a -41 error. No
message will be sent if CTS is off. A partial message may be sent if the timeout is too short.

� No error checking is performed on any data passed.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT STRING CONSTANT INTEGER VARIABLE STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: SEND/RECEIVE USING PORT N
From COMMAND variable string (the message)
To Port 1 constant integer (port # to use)
Move To RESPONSE variable string (the response)
Put Status In ERROR CODE variable integer (the error code)

OPERATIONS

Cyrano Command Reference 2-87

SEND/RECEIVE USING PORT N (continued) Communication

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use CLEAR RECEIVE BUFFER before using this command each time.
� Always use SET PORT TIMEOUT DELAY once before using this command . As a minimum, use

the result of this formula: (longest message length / baud rate) * 40. For example, a 24-
character message at 9600 baud results in a delay of 0.1 seconds.

� When there are multiple responses terminated by a carriage return and a line feed (character
10), all responses received starting with the second response will have a line feed as the first
character in the variable string. To remove it, get the first character of the variable string using
GET NTH CHARACTER where n=1. If the nth character is equal to 10, use GET SUBSTRING
with Start At set to 2 and Number Of set greater than or equal to the number of characters
expected.

� Do not use this command for binary messages, since they may contain numerous carriage
returns at unpredictable locations.

� When using this command to communicate with another Mistic controller, use RECEIVE
FROM PORT in the other controller.

� RS-232 mode only: Always connect RTS to CTS on COM0 of the M4RTU unless RTS and CTS
must be connected to a modem, printer, or other device. Never connect anything to CTS
unless it must be used to handshake with another device.

Dependencies: � Baud rate, parity, # data bits, # stop bits.

Error Codes: 0 = No error
-40 = Timeout � specified port already in use
-41 = Send timeout � CTS is off or timeout is too short (see SET PORT TIMEOUT DELAY). For

ports 4 and 7, this error indicates the transmit buffer is full.
-42 = Timeout � no carriage return found in the receive buffer within allotted time (see SET

PORT TIMEOUT DELAY)
-51 = Invalid port # � use port 0�3

See Also: GET STRING (PORT), PRINT TO PORT, GET CHR FROM PORT, CONFIGURE PORT

OPERATIONS

2-88 Cyrano Command Reference

SET ARCNET DEST. ADDR. Communication

Function: To set the destination address of the next ARCNET message to be sent.

Typical Use: To direct an ARCNET message to an address other than the address of the last ARCNET
message received.

Details: � No need to use this command when the destination is the same as the last ARCNET
message received.

� All references to ARCNET use port 4.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: SET ARCNET DEST. ADDR.
To ARCNET DEST variable integer (the address)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use this command after receiving an ARCNET message unless responding to the

source of the message.

See Also: GET ARCNET DEST. ADDR.

OPERATIONS

Cyrano Command Reference 2-89

SET LAST CHARACTER Communication

Function: To inform the communication hardware that the next character sent will be the last in this
message.

Typical Use: To turn off RTS after a complete message is sent.

Details: � For use with ports 0�3 only.
� Must use when the last character of a message is sent as a single character and RTS must

be turned off to receive a response (as when using half-duplex radio with RS-232 or 2-wire
RS-485/422 communication).

� When messages are sent as a string, RTS turns off automatically after the last character in
the string is sent.

Arguments: None.

Example: SET LAST CHARACTER

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use this command immediately prior to sending the final character of a message if

you want RTS to turn off.

Dependencies: � Must be used prior to a command that sends a single character such as PRINT CHARACTER
(PORT) or PRINT CHR TO PORT.

OPERATIONS

2-90 Cyrano Command Reference

SET NUMBER OF RETRIES Communication

Function: To change the factory default retry setting.

Typical Use: To change the number of retries performed when there is a communication error.

Details: � The factory default is two retries, which results in a total of three attempts in succession
before reporting an error.

� This setting affects all communication ports simultaneously.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: SET NUMBER OF RETRIES
3 constant integer

Notes: � See the Communication Overview in Chapter 1 for important information.
� The default number of retries (two) is more than adequate for most situations.
� Before using this command, make sure the timeout value is long enough. See Notes under

SET PORT TIMEOUT DELAY for details.

See Also: SET PORT TIMEOUT DELAY

OPERATIONS

Cyrano Command Reference 2-91

SET PEER DESTINATION ADDRESS Communication

Function: To set the destination address of the next peer message to be sent.

Typical Use: To direct a peer message to an address other than the address of the last peer message
received.

Details: � No need to use this command when the destination is the same as the last peer message
received.

� All references to peer use port 7, which is a special gateway to the ARCNET cable.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: SET PEER DESTINATION ADDRESS
To PEER DEST variable integer (the address)

Notes: � See the Communication Overview in Chapter 1 for important information.
� Always use this command after receiving a peer message unless responding to the source of

the message.

See Also: GET PEER DESTINATION ADDRESS

OPERATIONS

2-92 Cyrano Command Reference

SET PORT TIMEOUT DELAY Communication

Function: To change the default timeout delay setting.

Typical Use: To change the timeout delay (the time before retries are attempted) when there is a
communication error.

Details: � The default value is based on the baud rate for the port and is usually sufficient.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT INTEGER

CONSTANT INTEGER VARIABLE INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET PORT TIMEOUT DELAY
Delay Sec. 1.5 constant float
Port # 2 constant integer

Notes: � See the Communication Overview in Chapter 1 for important information.
� If you choose to change the timeout delay, do so after using the CONFIGURE PORT command.
� Use this command to increase the delay if errors -41 or -42 are a constant problem.
� When sending or receiving long messages (50 or more characters), increase the timeout

delay. As a minimum, use the result of this formula: (longest message length / baud rate) * 40.
For example, a 24-character message at 9600 baud results in a delay of 0.1 seconds.

Dependencies: � The CONFIGURE PORT command will overwrite any value set by this command.

See Also: SET NUMBER OF RETRIES, CONFIGURE PORT

OPERATIONS

Cyrano Command Reference 2-93

VERIFY CHECKSUM ON STRING Communication

Function: To test the integrity of a message received that uses the OPTOMUX protocol.

Typical Use: To verify checksum on any string similar to the OPTOMUX format.

Details: � Checksum uses an eight-bit value ranging from 0�255.
� The first character in the received message string is not counted as part of the checksum.
� Expects the first character in the received message to be a �>,� an �A,� or an �N.�
� Expects the last two characters in the received message string to be the ASCII hex checksum.
� Since an OPTOMUX NAK does not return a checksum, a -47 code is returned indicating that a

NAK was received. This is not an error!

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: VERIFY CHECKSUM ON STRING
RECEIVED MESSAGE variable string

Put Result In CHECKSUM STATUS variable integer

Notes: � See the Communication Overview in Chapter 1 for important information.
� To use on a message where the first character is a part of the checksum, append the received

message string to another string with a single �>� (character 62) in it. This will provide the
expected legal character to ignore.

Error Codes: 0 = No error
-43 = Too few characters received
-44 = Response not formatted correctly (illegal first character)
-45 = CRC or checksum failed
-47 = Received a NAK (this is OK � not an error)
-49 = Receive string was empty

OPERATIONS

2-94 Cyrano Command Reference

DIGITAL POINT OPERATIONS

CLEAR ALL LATCHES Digital Point

Function: To reset all digital input latches on a digital multifunction I/O unit.

Typical Use: To ensure all input on- or off-latches are reset. Usually performed after a power-up sequence.

Details: � Clears all previously set on- or off-latches associated with input channels on the specified
digital multifunction I/O unit regardless of the on/off status of the inputs.

� All input channels automatically have the latch feature.
� An on-latch is set when the input channel changes from off to on.
� An off-latch is set when the input channel changes from on to off.

Arguments: ARGUMENT 1
DIGITAL MF I/O UNIT
REM SMPL I/O UNIT

Example: CLEAR ALL LATCHES
INPUT BOARD #1 digital multifunction I/O unit

Notes: � If using the latching feature on one or more digital inputs, it is a good practice to clear all the
latches after power-up or reset.

Dependencies: � Applies only to remote and local digital multifunction I/O units.

See Also: CLEAR ON-LATCH, CLEAR OFF-LATCH

OPERATIONS

Cyrano Command Reference 2-95

CLEAR OFF-LATCH Digital Point

Function: To reset a previously set digital input off-latch.

Typical Use: To reset the off-latch associated with a digital input to catch the next transition.

Details: � Resets the off-latch of a single digital input regardless of the on/off status of the input.
� The next time the input channel changes from on to off, the off-latch will be set.
� Off-latches are very useful for catching high-speed on-off-on input transitions, since they are

processed by the digital multifunction I/O unit locally.

Arguments: ARGUMENT 1
OFF LATCH

Example: CLEAR OFF-LATCH
BUTTON #1 digital input configured with the off-

latch feature

Notes: � Clear an off-latch after a GET OFF-LATCH VALUE command to re-arm the latch.

Dependencies: � Applies only to inputs configured with the off-latch feature on digital multifunction I/O units.

See Also: GET OFF-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

2-96 Cyrano Command Reference

CLEAR ON-LATCH Digital Point

Function: To reset a previously set digital input on-latch.

Typical Use: To reset the on-latch associated with a digital input to catch the next transition.

Details: � Resets the on-latch of a single digital input regardless of the on/off status of the input.
� The next time the input channel changes from off to on, the on-latch will be set.
� On-latches are very useful for catching high-speed off-on-off input transitions, since they are

processed by the digital multifunction I/O unit locally.

Arguments: ARGUMENT 1
ON LATCH

Example: CLEAR ON-LATCH
BUTTON #1 digital input configured with the on-

latch feature

Notes: � Clear an on-latch after a GET ON-LATCH VALUE command to re-arm the latch.

Dependencies: � Applies only to inputs configured with the on-latch feature on digital multifunction I/O units.

See Also: GET ON-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

Cyrano Command Reference 2-97

DISABLE DIGITAL POINT Digital Point

Function: To disable communication between the program in the Mistic controller and an individual digital
channel.

Typical Use: To disconnect the program from a specified digital channel for simulation and program testing.

Details: � All digital point communication is enabled by default.
� This command does not affect the digital channel in any way. It only disconnects the program

in the Mistic controller from the digital channel.
� When communication to a digital channel is disabled, program actions have no effect.
� When a program reads the state of a disabled channel, the last value before the channel

was disabled (IVAL) will be returned.
� Likewise, any attempts by the program to change the state of an output channel will affect

only the IVAL, not the actual output channel (XVAL). Disabling a digital channel when a
program is running has no effect on the program.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: DISABLE DIGITAL POINT
START BUTTON digital input or output channel

Notes: � Use TURN OFF instead if the objective is to shut off a digital output.
� Disabling a digital channel is ideal for a start-up situation, since the program thinks it is

reading an input or updating an output as it normally would.
� Use the IVAL field in the Debugger to change the state of an input to on or off.
� Use the XVAL field in the Debugger to change the state of an output to on or off.

See Also: ENABLE DIGITAL POINT

OPERATIONS

2-98 Cyrano Command Reference

ENABLE DIGITAL POINT Digital Point

Function: To enable communication between the program in the Mistic controller and an individual digital
channel.

Typical Use: To reconnect the program to a specified digital channel after simulation or program testing.

Details: � All digital channel communication is enabled by default.
� This command does not affect the digital channel in any way. It only connects the program in

the Mistic controller with the digital channel.
� When communication to a digital channel is enabled, program actions can affect it.
� When a program reads the state of an enabled input channel, the current status of the

channel (XVAL) will be returned to the program (IVAL).
� Likewise, an enabled output channel will update when the program writes a value. The XVAL

and IVAL will match at this time.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: ENABLE DIGITAL POINT
MOTOR START digital input or output channel

Notes: � Use TURN ON instead to turn on digital output.
� Use this command to enable a digital channel previously disabled by the DISABLE DIGITAL

POINT command.

See Also: DISABLE DIGITAL POINT

OPERATIONS

Cyrano Command Reference 2-99

GENERATE N PULSES Digital Point

Function: To output a specified number of pulses of configurable on and off times.

Typical Use: To drive stepper motor controllers, flash indicator lamps, or increment counters.

Details: � Generates a digital waveform on the specified digital output channel. On Time specifies the
amount of time in seconds that the channel will remain on during each pulse; Off Time
specifies the amount of time the channel will remain off.

� The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz.

� The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
� Valid range for # of Pulses is 0 to 2,147,483,647 if an integer is used, 0 to 4,294,967,000 if a

float is used.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT FLOAT CONSTANT FLOAT CONSTANT FLOAT SMART DIGITAL OUT

CONSTANT INTEGER CONSTANT INTEGER CONSTANT INTEGER
VARIABLE FLOAT VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER VARIABLE INTEGER

Example: GENERATE N PULSES
On Time 0.250 on duration of one pulse (in seconds)
Off Time 0.500 off duration of one pulse (in seconds)
of Pulses # PULSES number of pulses to output
To STEPPER OUT digital output

Notes: � To stop a currently executing pulse train, use TURN OFF.
� Executing a GENERATE N PULSES command will discontinue any previous GENERATE N

PULSES command.
� The minimum on or off time is 0.001 seconds; however, the digital output module�s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to be used.

Dependencies: � Applies only to outputs on digital multifunction I/O units.

See Also: TURN OFF, START CONTINUOUS SQUARE WAVE

OPERATIONS

2-100 Cyrano Command Reference

GET & CLEAR OFF-LATCH VALUE Digital Point

Function: To read and re-arm a high-speed off-latch associated with a digital input.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: � Reads and re-arms the off-latch of a single digital input.
� The next time the input channel changes from on to off, the off-latch will be set.
� Off-latches detect on-off-on input transitions that would otherwise occur too fast for the

Mistic controller to detect, since they are processed by the digital multifunction I/O unit.
� If the latch is not set, the output will turn off. If the latch is set, the output will turn on.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF LATCH DIGITAL OUT

VARIABLE FLOAT
VARIABLE INTEGER

Example: GET & CLEAR OFF-LATCH VALUE
Get BUTTON #3 LATCH digital input configured with off-latch

feature
Move To ALARM HORN digital output

Notes: � The ability of the digital multifunction I/O unit to detect fast input transitions is limited by the
input module�s turn-on and turn-off times. Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the off-latch feature on digital multifunction I/O units.

See Also: GET OFF-LATCH VALUE, CLEAR OFF-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

Cyrano Command Reference 2-101

GET & CLEAR ON-LATCH VALUE Digital Point

Function: To read and re-arm a high-speed on-latch associated with a digital input.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: � Reads and re-arms the on-latch of a single digital input.
� The next time the input channel changes from off to on, the on-latch will be set.
� On-latches detect off-on-off input transitions that would otherwise occur too fast for the

Mistic controller to detect, since they are processed by the digital multifunction I/O unit.
� The value read is placed in the argument specified by the Move To parameter. If the latch is

not set, the argument will contain the value 0 (False). If the latch is set, the argument will be
set to -1 (True).

Arguments: ARGUMENT 1 ARGUMENT 2
ON LATCH DIGITAL OUT

VARIABLE FLOAT
VARIABLE INTEGER

Example: GET & CLEAR ON-LATCH VALUE
Get E STOP BUTTON digital input configured with on-latch

feature
Move To LATCH VAR variable integer (the on-latch value)

Notes: � The ability of the digital multifunction I/O unit to detect fast input transitions is limited by the
input module�s turn-on and turn-off times. Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the off-latch feature on digital multifunction I/O units.

See Also: GET ON-LATCH VALUE, CLEAR ON-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

2-102 Cyrano Command Reference

GET AND CLEAR COUNTER VALUE Digital Point

Function: To read and clear a digital input counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.

Details: � Reads the current value of a digital input counter and places it in the Move To parameter.
� Sets the counter at the I/O unit to zero.
� Does not stop the counter from continuing to count.
� Valid range is 0 to 4,294,967,296 counts.

Arguments: ARGUMENT 1 ARGUMENT 2
COUNTER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET AND CLEAR COUNTER VALUE
From BOTTLE COUNTER digital input configured with counter

feature
Move To # OF BOTTLES variable integer (the counter value)

Notes: � The maximum speed at which the counter can operate is limited by the input module�s turn-
on and turn-off times. Check the specifications for the module to be used.

� Since 32-bit signed integers can only count up to 2,147,483,647, use a float to hold the
counts if exceeding this amount.

Dependencies: � Always use START COUNTER once before using this command for the first time.
� Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: GET AND CLEAR COUNTER VALUE, START COUNTER, STOP COUNTER, RESET COUNTER

OPERATIONS

Cyrano Command Reference 2-103

GET AND CLEAR QUADRATURE VALUE Digital Point

Function: To read and clear a quadrature counter value.

Typical Use: To read incremental encoders for positional or velocity measurement.

Details: � Reads the current value of a quadrature counter and places it in the Move To parameter.
� Resets the counter at the I/O unit to zero.
� Does not stop the quadrature counter from continuing to count.
� Valid range is -2,147,483,648 to 2,147,483,647 counts.
� A positive value indicates forward movement (phase B leads phase A), and a negative value

indicates reverse movement (phase A leads phase B).
� A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2,
3 and 4 are not.

Arguments: ARGUMENT 1 ARGUMENT 2
QUADRATURE COUNTER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET AND CLEAR QUADRATURE VALUE
From ENCODER #1 digital input configured with quadrature

feature
Move To TABLE POSITION variable integer (the quadrature count)

Notes: � The maximum encoder RPM will be related to the number of pulses per revolution that the
encoder provides.

� Max Encoder RPM = (750,000 Pulses per Minute) / (Encoder Pulses [or lines] per Revolution)

Dependencies: � Always use START QUADRATURE COUNTER once before using this command for the first
time.

� Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: GET QUADRATURE VALUE, START QUADRATURE COUNTER, STOP QUADRATURE COUNTER,
RESET QUADRATURE COUNTER

OPERATIONS

2-104 Cyrano Command Reference

GET COUNTER VALUE Digital Point

Function: To read digital input counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.

Details: � Reads the current value of a digital input counter and places it in the Move To parameter.
� Does not reset the counter at the I/O unit to zero.
� Does not stop the counter from continuing to count.
� Valid range is 0 to 4,294,967,296 counts.

Arguments: ARGUMENT 1 ARGUMENT 2
COUNTER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET COUNTER VALUE
From BOTTLE COUNTER digital input configured with counter

feature
Move To # OF BOTTLES variable float (the counter value)

Notes: � The maximum speed at which the counter can operate is limited by the input module�s
turn-on and turn-off times. Check the specifications for the module to be used.

� Since 32-bit signed integers can only count up to 2,147,483,647, use a float to hold the
counts if exceeding this amount.

Dependencies: � Always use START COUNTER once before using this command for the first time.
� Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: GET AND CLEAR COUNTER VALUE, START COUNTER, STOP COUNTER, RESET COUNTER

OPERATIONS

Cyrano Command Reference 2-105

GET FREQUENCY Digital Point

Function: To read digital input frequency value.

Typical Use: To read the speed of rotating machinery, velocity encoders, etc.

Details: � Reads the current frequency of a digital input and places it in the Move To parameter.
� Returns an integer value from 0 to 65,535 (see Notes below).
� Resolution is 1 Hertz.

Arguments: ARGUMENT 1 ARGUMENT 2
FREQUENCY VARIABLE FLOAT

VARIABLE INTEGER

Example: GET FREQUENCY
From SHAFT PICKUP digital input configured with frequency

feature
Move To MOTOR SPEED variable integer (the frequency)

Notes: � Since the resolution is 1 Hertz, significant errors may be encountered at frequencies less than
100 Hertz. Use GET PERIOD then divide 1 by the period to get the frequency with resolution to
0.2 Hertz at 60 Hertz.

� The maximum frequency that can be read is limited by the input module�s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the frequency feature on digital multifunction I/O units.

OPERATIONS

2-106 Cyrano Command Reference

GET OFF-LATCH VALUE Digital Point

Function: To read the state of an off-latch.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: � Reads an off-latch of a single digital input. Off-latches detect on-to-off input transitions that
would otherwise occur too fast for the Mistic controller to detect, since they are processed
locally by the digital multifunction I/O unit.

� Places the value read into the argument specified by the Move To parameter. The argument
will contain the value -1 (True) if the latch is set and a 0 (False) if the latch is not set.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF LATCH DIGITAL OUT

VARIABLE FLOAT
VARIABLE INTEGER

Example: GET OFF-LATCH VALUE
Get START BUTTON digital input configured with off-latch

feature
Move To RELEASED variable float (the off-latch value)

Notes: � The ability to detect fast input transitions is limited by the input module�s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the off-latch feature on digital multifunction I/O units.

See Also: GET & CLEAR OFF-LATCH VALUE, CLEAR OFF-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

Cyrano Command Reference 2-107

GET OFF-PULSE MEAS Digital Point

Function: To read the off time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: � Gets the duration of the first complete off-pulse applied to the digital input.
� Measurement starts on the first on-to-off transition and stops on the first off-to-on transition.
� Returns a float value representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET OFF-PULSE MEAS
From OVERHEAT SWITCH digital input configured with off-pulse

feature
Move To OFF TIME variable float (the duration of the pulse)

Notes: � Use GET OFF-PULSE MEAS COMP. STAT first to see if a complete off-pulse measurement has
occurred.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: GET OFF PULSE MEAS & RESTART, GET OFF-PULSE MEAS COMP. STAT

OPERATIONS

2-108 Cyrano Command Reference

GET OFF-PULSE MEAS & RESTART Digital Point

Function: To read and clear the off time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: � Gets the duration of the first complete off-pulse applied to the digital input.
� Restarts the off-pulse measurement after reading the current value.
� Measurement starts on the first on-to-off transition and stops on the first off-to-on transition.
� Returns a float value representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.
� If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new off-pulse measurement is started.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET OFF-PULSE MEAS & RESTART
From STANDBY SWITCH digital input configured with off-pulse

feature
Move To OFF TIME variable float (the duration of the pulse)

Notes: � Use GET OFF-PULSE MEAS COMP. STAT first to see if a complete off-pulse measurement has
occurred.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: GET OFF PULSE MEAS, GET OFF-PULSE MEAS COMP STAT

OPERATIONS

Cyrano Command Reference 2-109

GET OFF-PULSE MEAS COMP. STAT Digital Point

Function: To read the completion status of an off-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: � Gets the completion status of an off-pulse measurement and stores it in the Move To
parameter. The argument will contain a -1 (True) if the measurement is complete or a 0 (False)
if it is incomplete.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET OFF-PULSE MEAS COMP. STAT
From OVERHEAT SWITCH digital input configured with off-pulse

feature
Move To PULSE COMPLETE variable integer (the completion status)

Notes: � Use this command to see if a complete off-pulse measurement has occurred. The command
will not interfere with a current off-pulse measurement.

� Once the completion status is True, use GET OFF-PULSE MEAS or GET OFF-PULSE MEAS &
RESTART to read the value.

Dependencies: � Applies only to inputs configured with the off-pulse measurement feature on digital
multifunction I/O units.

See Also: GET OFF PULSE MEAS, GET OFF-PULSE MEAS & RESTART

OPERATIONS

2-110 Cyrano Command Reference

GET ON-LATCH VALUE Digital Point

Function: To read the state of an on-latch.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: � Reads an on-latch of a single digital input. On-latches detect off-to-on input transitions that
would otherwise occur too fast for the Mistic controller to detect, since they are processed
locally by the digital multifunction I/O unit.

� Places the value read into the argument specified by the Move To parameter. The argument
will contain the value -1 (True) if the latch is set and a 0 (False) if the latch is not set.

Arguments: ARGUMENT 1 ARGUMENT 2
ON LATCH DIGITAL OUT

VARIABLE FLOAT
VARIABLE INTEGER

Example: GET ON-LATCH VALUE
Get ESTOP BUTTON digital input configured with on-latch

feature
Move To EMERGENCY STOP variable float (the on-latch value)

Notes: � The ability to detect fast input transitions is limited by the input module�s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the on-latch feature on digital multifunction I/O units.

See Also: GET & CLEAR ON-LATCH VALUE, CLEAR ON-LATCH VALUE, CLEAR ALL LATCHES

OPERATIONS

Cyrano Command Reference 2-111

GET ON-PULSE MEAS Digital Point

Function: To read the on time duration of a digital input that has had an off-on-off transition

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: � Gets the duration of the first complete on-pulse applied to the digital input.
� Measurement starts on the first off-to-on transition and stops on the first on-to-off transition.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
ON PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ON-PULSE MEAS
From OVERSPEED SWITCH digital input configured with on-pulse

feature
Move To ON TIME variable float (the duration of the pulse)

Notes: � Use GET ON-PULSE MEAS COMP. STAT first to see if a complete on-pulse measurement has
occurred.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the on-pulse measurement feature on digital
multifunction I/O units.

See Also: GET ON-PULSE MEAS & RESTART, GET ON-PULSE MEAS COMP. STAT

OPERATIONS

2-112 Cyrano Command Reference

GET ON-PULSE MEAS & RESTART Digital Point

Function: To read and clear the on time duration of a digital input that has had an off-on-off transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: � Gets the duration of the first complete on-pulse applied to the digital input.
� Restarts the on-pulse measurement after reading the current value.
� Measurement starts on the first off-to-on transition and stops on the first on-to-off transition.
� Returns a float value representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.
� If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new on-pulse measurement is started.

Arguments: ARGUMENT 1 ARGUMENT 2
ON PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ON-PULSE MEAS & RESTART
From STANDBY SWITCH digital input configured with on-pulse

feature
Move To ON TIME variable float (the duration of the pulse)

Notes: � Use GET ON-PULSE MEAS COMP. STAT first to see if a complete on-pulse measurement has
occurred.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the on-pulse measurement feature on digital
multifunction I/O units.

See Also: GET ON-PULSE MEAS, GET ON-PULSE MEAS COMP. STAT

OPERATIONS

Cyrano Command Reference 2-113

GET ON-PULSE MEAS COMP. STAT Digital Point

Function: To read the completion status of an on-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: � Gets the completion status of an on-pulse measurement and stores it in the Move To
parameter. The argument will contain a -1 (True) if the measurement is complete or a 0 (False)
if it is incomplete.

Arguments: ARGUMENT 1 ARGUMENT 2
ON PULSE MEAS. VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ON-PULSE MEAS COMP. STAT
From PRESSURE SWITCH digital input configured with on-pulse

feature
Move To PULSE COMPLETE variable integer (the completion status)

Notes: � Use this command to see if a complete on-pulse measurement has occurred. The command
will not interfere with a current on-pulse measurement.

� Once the completion status is True, use GET ON-PULSE MEAS or GET ON-PULSE MEAS &
RESTART to read the value.

Dependencies: � Applies only to inputs configured with the on-pulse measurement feature on digital
multifunction I/O units.

See Also: GET ON-PULSE MEAS, GET ON-PULSE MEAS & RESTART

OPERATIONS

2-114 Cyrano Command Reference

GET PERIOD Digital Point

Function: To read the elapsed time during an on-off-on or an off-on-off transition of a digital input.

Typical Use: To measure the period of a slow shaft rotation.

Details: � Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the next
transition of the same type (one complete cycle).

� Does not restart the period measurement.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
PERIOD VARIABLE FLOAT

VARIABLE INTEGER

Example: GET PERIOD
From SHAFT INPUT digital input configured with period

feature
Move To SHAFT CYCLE variable float (the period value)

Notes: � This command measures the first complete period only. No period measurement is performed
after the first measurement until the GET PERIOD & RESTART command is used.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � The GET PERIOD & RESTART command must be used to start the measurement.
� Applies only to inputs configured with the period feature on digital multifunction I/O units.

See Also: GET PERIOD & RESTART

OPERATIONS

Cyrano Command Reference 2-115

GET PERIOD & RESTART Digital Point

Function: To read and clear the elapsed time during an on-off-on or an off-on-off transition of a digital
input

Typical Use: To measure the period of a slow shaft rotation.

Details: � Reads the period value of a digital input and places it in the argument specified by the Move
To parameter.

� Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the next
transition of the same type (one complete cycle).

� Restarts the period measurement after reading.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
PERIOD VARIABLE FLOAT

VARIABLE INTEGER

Example: GET PERIOD & RESTART
From SHAFT INPUT digital input configured with period

feature
Move To SHAFT CYCLE variable integer (the period value)

Notes: � This command should be used to start the period measurement.
� This command measures the first complete period only. No period measurement is performed

after the first measurement until another GET PERIOD & RESTART command is used.
� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.

Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the period feature on digital multifunction I/O units.

See Also: GET PERIOD

OPERATIONS

2-116 Cyrano Command Reference

GET PERIOD MEAS COMP. STAT Digital Point

Function: To read the completion status of a period measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: � Gets the completion status of a period measurement and stores it in the Move To parameter.
The argument will contain a -1 (True) if the measurement is complete or a 0 (False) if it is
incomplete.

Arguments: ARGUMENT 1 ARGUMENT 2
PERIOD VARIABLE FLOAT

VARIABLE INTEGER

Example: GET PERIOD MEAS COMP. STAT
From OVERHEAT SWITCH digital input configured with period

feature
Move To PULSE COMPLETE variable integer (the completion status)

Notes: � Use this command to see if a complete period measurement has occurred. The command will
not interfere with a current period measurement.

� Once the completion status is True, use GET PERIOD or GET PERIOD & RESTART to read the
value.

Dependencies: � Applies only to inputs configured with the period measurement feature on digital
multifunction I/O units.

See Also: GET PERIOD, GET PERIOD & RESTART

OPERATIONS

Cyrano Command Reference 2-117

GET QUADRATURE VALUE Digital Point

Function: To read a quadrature counter value.

Typical Use: To read incremental encoders for positional or velocity measurement.

Details: � Reads the current value of a quadrature counter and places it in an argument specified by the
Move To parameter.

� Does not reset the counter at the I/O unit to zero.
� Does not stop the quadrature counter from continuing to count.
� Valid range is -2,147,483,648 to 2,147,483,647 counts.
� A positive value indicates forward movement (phase B leads phase A) and a negative value

indicates reverse movement (phase A leads phase B).
� A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2,
3 and 4 are not.

Arguments: ARGUMENT 1 ARGUMENT 2
QUADRATURE COUNTER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET QUADRATURE VALUE
From ENCODER #1 digital input configured with quadrature

feature
Move To TABLE POSITION variable integer (the quadrature count)

Notes: � The maximum encoder RPM will be related to the number of pulses per revolution that the
encoder provides.

� Max Encoder RPM = (750,000 Pulses per Minute) /)Encoder Pulses [or lines] per Revolution)

Dependencies: � Always use START QUADRATURE COUNTER once before using this command for the first
time.

� Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: GET AND CLEAR QUADRATURE VALUE, START QUADRATURE COUNTER, STOP QUADRATURE
COUNTER, RESET QUADRATURE COUNTER

OPERATIONS

2-118 Cyrano Command Reference

GET TOTALIZE OFF VALUE Digital Point

Function: To read digital input total off time.

Typical Use: To accumulate total off time of a device to possibly indicate down time.

Details: � Reads the accumulated off time of a digital input since it was last reset.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.
� Does not reset the total.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF TIME TOTALIZER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET TOTALIZE OFF VALUE
From HEATER OUTPUT digital input configured with totalize-off

feature
Move To HEATER DOWN TIME variable float (the total off time)

Notes: � To ensure the totalizer is cleared at start-up, use GET/RESTART TOTALIZE OFF VAL. once
before using this command for the first time.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the totalize-off feature on digital multifunction I/O units.

See Also: GET/RESTART TOTALIZE OFF VAL.

OPERATIONS

Cyrano Command Reference 2-119

GET TOTALIZE ON VALUE Digital Point

Function: To read digital input total on time.

Typical Use: To accumulate total on time of a device.

Details: � Reads the accumulated on time of a digital input since it was last read.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Maximum duration is 4.97 days.
� Does not reset the total.

Arguments: ARGUMENT 1 ARGUMENT 2
ON TIME TOTALIZER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET TOTALIZE ON VALUE
From PUMP POWER digital input configured with totalize-on

feature
Move To PUMP RUNTIME variable float (the total on time)

Notes: � To ensure the totalizer is cleared at start-up, use GET/RESTART TOTALIZE ON VAL. once
before using this command for the first time.

� The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

Dependencies: � Applies only to inputs configured with the totalize-on feature on digital multifunction I/O units.

See Also: GET/RESTART TOTALIZE ON VAL.

OPERATIONS

2-120 Cyrano Command Reference

GET/RESTART TOTALIZE OFF VAL. Digital Point

Function: To read digital input total off time and restart.

Typical Use: To accumulate total off time of a device to possibly indicate down-time.

Details: � Reads the accumulated off time of a digital input since it was last reset.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Resets the total to zero after execution.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
OFF TIME TOTALIZER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET/RESTART TOTALIZE OFF VAL.
From POWER STATUS digital input configured with totalize-off

feature
Move To SYSTEM DOWN TIME variable integer (the total off time)

Notes: � The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

� Use GET TOTALIZE OFF VALUE to read the totalized value without resetting it.

Dependencies: � Applies only to inputs configured with the totalize-off feature on digital multifunction I/O units.

See Also: GET TOTALIZE OFF VALUE

OPERATIONS

Cyrano Command Reference 2-121

GET/RESTART TOTALIZE ON VAL. Digital Point

Function: To read digital input total on time and restart.

Typical Use: To accumulate total on time of a device.

Details: � Reads the accumulated on time of a digital input since it was last reset.
� Returns a float representing seconds with a resolution of 100 microseconds.
� Resets the total to zero after execution.
� Maximum duration is 4.97 days.

Arguments: ARGUMENT 1 ARGUMENT 2
ON TIME TOTALIZER VARIABLE FLOAT

VARIABLE INTEGER

Example: GET/RESTART TOTALIZE ON VAL.
From CIRC MOTOR PWR digital input configured with totalize-on

feature
Move To MOTOR RUNTIME variable integer (the total off time)

Notes: � The accuracy of the value returned is limited by the input module�s turn-on and turn-off times.
Check the specifications for the module to be used.

� Use GET TOTALIZE ON VALUE to read the totalized value without resetting it.

Dependencies: � Applies only to inputs configured with the totalize-on feature on digital multifunction I/O units.

See Also: GET TOTALIZE ON VALUE

OPERATIONS

2-122 Cyrano Command Reference

PULSE OFF Digital Point

Function: To turn off a digital output for a specified time or to delay turning it on.

Typical Uses: � To serve as an alternative to the TURN ON command.
� To �reset� another device.

Details: � Same as using TURN OFF followed by a delay followed by TURN ON, or if the output was off
already, same as a delay followed by TURN ON.

� After the off time expires, this command leaves the channel on.
� The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds.
� During the execution of this command, if another PULSE OFF is performed, the current off-

pulse is canceled and the new off-pulse is generated.
� The output does not have to be configured with a feature to use this command.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT SMART DIGITAL OUT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PULSE OFF
Seconds RESET TIME time the channel is to remain off
To PUMP #2 STOP any digital output channel (no feature

required)

Notes: � A TURN ON command may be used to abort an off-pulse before the end of the off time.
� The minimum off time is 0.0005 seconds; however, the digital output module�s minimum turn-

on and turn-off times may be greater. Check the specifications for the module to be used.
� Caution: If this command is used more frequently than the specified delay, the output will

remain off.

Dependencies: � Applies only to outputs on digital multifunction I/O units.

See Also: PULSE ON, TURN OFF, TURN ON

OPERATIONS

Cyrano Command Reference 2-123

PULSE ON Digital Point

Function: To turn on a digital output for a specified period or to delay turning it off.

Typical Uses: � As an alternative to the TURN OFF command.
� To �reset� another device.
� To increment a counter.
� To latch devices connected to digital outputs that require a minimum pulse duration to latch,

such as motor starters and latching relays.

Details: � Same as using TURN ON followed by a delay followed by TURN OFF, or if the output was on
already, same as a delay followed by TURN OFF.

� After the on time expires, this command leaves the channel off.
� The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds.
� During the execution of this command, if another PULSE ON is performed, the current on-

pulse is canceled and the new On-pulse is generated.
� The output does not have to be configured with a feature to use this command.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT SMART DIGITAL OUT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: PULSE ON
Seconds MIN LATCH TIME time the channel is to remain on
To PUMP #2 RUN any digital output channel (no feature

required)

Notes: � A TURN OFF command may be used to abort an on pulse before the end of the on time.
� The minimum on time is 0.0005 seconds; however, the digital output module�s minimum turn-

on and turn-off times may be greater. Check the specifications for the module to be used.
� Caution: If this command is used more frequently than the specified delay, the output will

remain on.

Dependencies: � Applies only to outputs on digital multifunction I/O units.

See Also: PULSE OFF, TURN OFF, TURN ON

OPERATIONS

2-124 Cyrano Command Reference

RESET COUNTER Digital Point

Function: To reset a digital input counter to zero.

Typical Use: To reset a digital input configured with a counter feature.

Details: � Resets the specified counter input to zero as soon as it is used.
� Does not stop the counter from continuing to run (as STOP COUNTER does).

Arguments: ARGUMENT 1
COUNTER

Example: RESET COUNTER
BOTTLE COUNTER digital input configured with counter

feature

Dependencies: � Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: GET COUNTER VALUE, GET AND CLEAR COUNTER VALUE, START COUNTER, STOP COUNTER

OPERATIONS

Cyrano Command Reference 2-125

RESET QUADRATURE COUNTER Digital Point

Function: To reset a quadrature counter to zero.

Typical Use: To reset a quadrature counter used with incremental encoders.

Details: � Resets the specified quadrature counter to zero as soon as it is used.
� Does not stop the quadrature counter from continuing to count.
� A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2,
3 and 4 are not.

Arguments: ARGUMENT 1
QUADRATURE COUNTER

Example: RESET QUADRATURE COUNTER
ENCODER #1 digital input configured with quadrature

feature

Dependencies: � Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: GET QUADRATURE VALUE, GET AND CLEAR QUADRATURE VALUE, START QUADRATURE
COUNTER, STOP QUADRATURE COUNTER

OPERATIONS

2-126 Cyrano Command Reference

SET TIME PROP OUTPUT Digital Point

Function: To set the time proportional output (TPO) period of an output channel.

Typical Use: To vary the percentage of on time (duty cycle). Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: � Sets the period of a TPO to the specified value.
� The period is specified from 0.1 to 429,496.7000 seconds (4.97 days), with a resolution of 100

microseconds.
� This command must be used before the SET TIME PROP PERCENT command.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT TIME PROP. OUTPUT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET TIME PROP OUTPUT
Period 60.0 time proportion period
To HEATER OUTPUT digital output configured with TPO

feature

Notes: � The time proportion period only specifies the total time the output is varied over. SET TIME
PROP PERCENT sets the on and off time within this period. For example, a TPO period of 30
seconds and an output of 25 percent will cause the output channel to go on for 7.5 seconds
(30 seconds x .25) and off for 22.5 seconds at 30-second intervals.

� Although the minimum TPO period is 0.1 seconds (and the resolution is 100 microseconds), at
low percentages the minimum turn-on and turn-off times of the digital output module may be
greater. Check the specifications for the module to be used.

� To ensure that the TPO period will always be correct, store this and other changeable I/O unit
values in permanent memory at the I/O unit. (You can do so through the Debugger.)

� If the TPO period is not stored in permanent memory at the I/O unit, use this command
immediately before SET TIME PROP PERCENT every time. This ensures that the TPO period
will be configured properly if the I/O unit has experienced loss of power. However, do not
issue these commands more frequently than necessary, since this can be counterproductive.

Dependencies: � Applies only to output channels configured with the TPO feature on digital multifunction I/O
units.

See Also: SET TIME PROP PERCENT

OPERATIONS

Cyrano Command Reference 2-127

SET TIME PROP PERCENT Digital Point

Function: To set the on time of an output channel as a percentage.

Typical Use: To vary the net output percentage over time. Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: � Sets the percentage of on time for an output configured as a TPO.
� Valid range is 0 (always off) to 100 (always on).
� A TPO period of 10 seconds and an output of 20 percent will cause the output channel to go

on for 2.0 seconds (10 seconds x .20) and off for 8.0 seconds at 10-second intervals.
� Changes to the output percentage take effect at the beginning of the next period.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT TIME PROP. OUTPUT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET TIME PROP PERCENT
Percent NEW OUTPUT percentage output
To HEATER OUTPUT digital output configured with TPO

feature

Notes: � When using the output of a PID to drive a digital TPO, scale the analog output channel (for the
PID) to 0�100. (This analog channel does not have to exist physically, but must be one of the
16 channels on the I/O unit). Use MOVE to copy the PID analog output value to the digital TPO
channel periodically.

� At low percentages, the output module�s minimum turn-on and turn-off times may affect the
accuracy of control. Check the specifications for the module to be used.

Dependencies: � A SET TIME PROP OUTPUT command must be used at least once before this command to
define the time period.

� Applies only to output channels configured with the TPO feature on digital multifunction I/O
units.

See Also: SET TIME PROP OUTPUT

OPERATIONS

2-128 Cyrano Command Reference

START CONTINUOUS SQUARE WAVE Digital Point

Function: To generate a square wave on an output channel.

Typical Use: To drive stepper motor controllers, pulse indicator lamps, or horns or counters connected to
digital outputs.

Details: � Generates a digital waveform on the specified digital output channel. On Time specifies the
amount of time in seconds that the channel will remain on during each pulse; Off Time
specifies the amount of time the channel will remain off.

� The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz.

� The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
� Timing begins with the off state. If a square wave is already running when this command is

used, the new timing will become effective on the next transition (on-to-off or off-to-on).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT SMART DIGITAL OUT

CONSTANT INTEGER CONSTANT INTEGER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: START CONTINUOUS SQUARE WAVE
On Time 0.100 on duration of one pulse (in seconds)
Off Time 0.500 off duration of one pulse (in seconds)
To BLINKING LAMP digital output

Notes: � Once the pulse train has started, the digital I/O unit maintains the waveform indefinitely.
� Use only to start or change the square wave.
� To stop a currently executing pulse train, use TURN OFF.
� The minimum on or off time is 0.001 second; however, the digital output module�s minimum

turn-on and turn-off times may be greater. Check the specifications for the module to be used.

Dependencies: � Applies only to outputs on digital multifunction I/O units.

See Also: TURN OFF, GENERATE N PULSES

OPERATIONS

Cyrano Command Reference 2-129

START COUNTER Digital Point

Function: To activate a digital input counter.

Typical Use: Once at the beginning of a program to activate a digital input counter.

Details: � Must be used to activate the specified counter input.
� Does not reset the counter to zero.
� Retains any previously accumulated counts.

Arguments: ARGUMENT 1
COUNTER

Example: START COUNTER
BAGGAGE COUNTER digital input configured with counter

feature

Notes: � To keep a counter active after a power failure at the I/O unit, use the Debugger to write or
�burn� the current I/O unit configuration to EEPROM after the counter is started.

� Use RESET COUNTER to clear a counter to zero.

Dependencies: � Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: GET COUNTER VALUE, GET AND CLEAR COUNTER VALUE, RESET COUNTER, STOP COUNTER

OPERATIONS

2-130 Cyrano Command Reference

START QUADRATURE COUNTER Digital Point

Function: To activate a digital input quadrature counter.

Typical Use: Once at the beginning of a program to activate a quadrature counter.

Details: � Must use to activate the specified quadrature counter as soon as it is used.
� Does not reset the quadrature counter to zero.
� Retains any previously accumulated counts.
� A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2,
3 and 4 are not.

Arguments: ARGUMENT 1
QUADRATURE COUNTER

Example: START QUADRATURE COUNTER
ENCODER #1 digital input configured with quadrature

feature

Notes: � Before using a quadrature counter, you must activate it with the START QUADRATURE
COUNTER command or no additional counts will accumulate.

� Use RESET QUADRATURE COUNTER to set the counts to zero.

Dependencies: � Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: GET QUADRATURE VALUE, GET AND CLEAR QUADRATURE VALUE, RESET QUADRATURE
COUNTER, STOP QUADRATURE COUNTER

OPERATIONS

Cyrano Command Reference 2-131

STOP COUNTER Digital Point

Function: To deactivate a digital input counter.

Typical Use: To inhibit a counter until further notice.

Details: � Deactivates the specified counter.
� Stops counting incoming pulses to the digital input channel until START COUNTER is used.
� Does not reset the counter to zero.
� Retains any previously accumulated counts.

Arguments: ARGUMENT 1
COUNTER

Example: STOP COUNTER
BEAN COUNTER digital input configured with counter

feature

Notes: � Use RESET COUNTER to set counts to zero.

Dependencies: � Applies only to inputs configured with the counter feature on digital multifunction I/O units.

See Also: GET COUNTER VALUE, GET AND CLEAR COUNTER VALUE, RESET COUNTER, START COUNTER

OPERATIONS

2-132 Cyrano Command Reference

STOP QUADRATURE COUNTER Digital Point

Function: To deactivate a quadrature counter.

Typical Use: To inhibit a quadrature counter until further notice.

Details: � Stops the specified quadrature counter.
� Stops counting incoming quadrature pulses until START QUADRATURE COUNTER is used.
� Does not reset the quadrature counter to zero.
� Retains any previously accumulated counts.
� A quadrature counter occupies two adjacent channels. Input module pairs specifically made

for quadrature counting must be used. The first channel must be an even channel number on
the digital multifunction I/O unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2,
3 and 4 are not.

Arguments: ARGUMENT 1
QUADRATURE COUNTER

Example: STOP QUADRATURE COUNTER
TABLE POSITION digital input configured with quadrature

feature

Notes: � Use RESET QUADRATURE COUNTER to set quadrature counts to zero.

Dependencies: � Applies only to input channels configured with the quadrature feature on digital multifunction
I/O units.

See Also: GET QUADRATURE VALUE, GET AND CLEAR QUADRATURE VALUE, RESET QUADRATURE
COUNTER, START QUADRATURE COUNTER

OPERATIONS

Cyrano Command Reference 2-133

TURN OFF Digital Point

Function: To turn off a digital output channel.

Typical Use: To deactivate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: � Turns off the specified output.
� Discontinues any previously executing pulse, square wave, or TPO command immediately.
� The output will remain off until directed otherwise.

Arguments: ARGUMENT 1
DIGITAL OUT

Example: TURN OFF
THE LIGHTS any digital output channel (no feature

required)

Notes: � Use MOVE to cause an output on one I/O unit to assume the state of an input on another I/O
unit.

� Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

� Use event/reactions to cause an output to track an input on the same digital multifunction I/O
unit.

� Speed Tip: Use DO BINARY WRITE (with a value of 0) or DO BINARY DEACTIVATE (with a
value of -1) to turn off all 16 outputs at once.

Dependencies: � If the output channel or the I/O unit is disabled, no action will occur at the output channel
(XVAL). The IVAL, however, will be updated.

� Applies to all digital outputs on digital multifunction I/O units and local simple I/O units.

See Also: DO BINARY WRITE, DO BINARY DEACTIVATE, PULSE ON, PULSE OFF, TURN ON

OPERATIONS

2-134 Cyrano Command Reference

TURN ON Digital Point

Function: To turn on a digital output channel.

Typical Use: To activate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: � Turns on the specified output.
� Discontinues any previously executing pulse, square wave, or TPO command immediately.
� The output will remain on until directed otherwise.

Arguments: ARGUMENT 1
DIGITAL OUT

Example: TURN ON
INLET VALVE any digital output channel (no feature

required)

Notes: � Use MOVE to cause an output on one I/O unit to assume the state of an input on another I/O
unit.

� Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

� Use event/reactions to cause an output to track an input on the same digital multifunction I/O
unit.

� Speed Tip: Use DO BINARY WRITE (with a value of -1) or DO BINARY ACTIVATE (with a value
of -1) to turn on all 16 outputs at once.

Dependencies: � If the output channel or the I/O unit is disabled, no action will occur at the output channel
(XVAL). The IVAL, however, will be updated.

� Applies to all outputs on digital multifunction I/O units and local simple I/O units.

See Also: DO BINARY WRITE, DO BINARY ACTIVATE, PULSE ON, PULSE OFF, TURN OFF

OPERATIONS

Cyrano Command Reference 2-135

EVENT/REACTION OPERATIONS

CLEAR ALL EVENT LATCHES Event/Reaction

Function: To reset all 256 event latches on the I/O unit.

Typical Use: In the POWERUP chart, to reset all event latches on the I/O unit to a known or default state.

Details: � Each event sets a latch at the moment its criteria is True. This command resets all latches.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

Example: CLEAR ALL EVENT LATCHES
On I/O Unit ESTOP BUTTONS name of digital multifunction I/O unit

Notes: � Use with care since this command will erase the history of all event latches.
� Normally CLEAR EVENT LATCH is used to reset a single event latch after it has been

evaluated.

Dependencies: � Event/reactions are not supported on local simple I/O units.

See Also: CLEAR EVENT LATCH

OPERATIONS

2-136 Cyrano Command Reference

CLEAR EVENT LATCH Event/Reaction

Function: To reset a specified event latch on the I/O unit.

Typical Use: After an event has been evaluated.

Details: � To determine that a specified event has occurred, the event latch must be checked. One way
to check the event latch is to use the condition HAS EVENT OCCURRED?. To detect the next
incident of the event, the event latch must be reset using this command.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: CLEAR EVENT LATCH
Event/Reaction ESTOP BUTTON 1 name of the event/reaction

Notes: � Always use after CLEAR I/O UNIT INTERRUPT (if using interrupts).

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: CLEAR I/O UNIT INTERRUPT, CLEAR ALL EVENT LATCHES, HAS EVENT OCCURRED?

OPERATIONS

Cyrano Command Reference 2-137

CLEAR I/O UNIT INTERRUPT Event/Reaction

Function: To reset the interrupt latch, which turns off the interrupt line on the I/O unit.

Typical Use: In the INTERRUPT chart, to reset the interrupt latch immediately after determining that an I/O
unit has generated an interrupt.

Details: � Resets the interrupt latch to off.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

Example: CLEAR I/O UNIT INTERRUPT
I/O UNIT ESTOP BUTTONS name of digital multifunction I/O unit

Notes: � Use GENERATING INTERRUPT? to determine if a specified I/O unit has generated an interrupt.
� Clear the interrupt first, then check all event latches, to ensure that a new event latch will

generate a new interrupt.

Dependencies: � Event/reactions are not supported on local simple I/O units.

See Also: GENERATING INTERRUPT?, HAS EVENT OCCURRED?, CLEAR EVENT LATCH

OPERATIONS

2-138 Cyrano Command Reference

DISABLE EVENT SCANNING Event/Reaction

Function: To deactivate all event/reactions on the specified I/O unit.

Typical Use: To shut off all event/reactions during a planned shutdown or an emergency stop.

Details: � Disables the scanning of all event/reactions, directing the I/O unit to stop looking for any
events. No logic is executed; no reaction occurs.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

Example: DISABLE EVENT SCANNING
On I/O Unit OVERTEMP SENSORS name of digital multifunction I/O unit

Notes: � To stop a specific event/reaction, use DISABLE SCAN FOR EVENT.

Dependencies: � Event/reactions are not supported on local simple I/O units.

See Also: DISABLE SCAN FOR EVENT, ENABLE SCAN FOR EVENT, ENABLE EVENT SCANNING

OPERATIONS

Cyrano Command Reference 2-139

DISABLE EVENT/REACTION Event/Reaction

Function: To disable communication between the program in the Mistic controller and the specified event/
reaction.

Typical Use: To disconnect the program from a specified event/reaction for simulation and program testing.

Details: � All event/reaction communication is enabled by default.
� Does not affect the event/reaction at the I/O unit in any way. While communication to the

event/reaction is disabled, any Cyrano command that refers to it by name will not affect it
because the command only has access to the IVAL.

� If the event/reaction is disabled and it�s active, reactions will occur. If an interrupt is enabled,
it will try to interrupt the Mistic controller. However, the program in the Mistic controller will
not be able to read or clear any status bits associated with the event/reaction until it is
enabled (see ENABLE EVENT/REACTION).

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: DISABLE EVENT/REACTION
ESTOP BUTTON 1 name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� To actually stop an event/reaction, use DISABLE SCAN FOR EVENT.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE EVENT/REACTION

OPERATIONS

2-140 Cyrano Command Reference

DISABLE INTERRUPT ON EVENT Event/Reaction

Function: To disable interrupt notification for a specified event/reaction.

Typical Use: To accommodate situations where the specified event/reaction is still needed but the interrupt
notification is not.

Details: � See the Event/Reaction Overview in Chapter 1 for important information.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: DISABLE INTERRUPT ON EVENT
Event/Reaction ESTOP BUTTON 1 name of the event/reaction

Notes: � To disable both the interrupt notification and the event/reaction, use DISABLE SCAN FOR
EVENT.

Dependencies: � Event/reactions must be configured on the I/O unit before they can be referenced.
� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE INTERRUPT ON EVENT, DISABLE SCAN FOR EVENT

OPERATIONS

Cyrano Command Reference 2-141

DISABLE SCAN FOR EVENT Event/Reaction

Function: To deactivate a specific event/reaction.

Typical Use: To shut off a specific event/reaction during a planned shutdown or an emergency stop.

Details: � Disables the scanning of an event/reaction, directing the I/O unit to stop looking for the event.
No logic is executed; no reaction occurs.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: DISABLE SCAN FOR EVENT
Event/Reaction ESTOP BUTTON 1 name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� To disable all event/reactions, use DISABLE EVENT SCANNING.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: DISABLE EVENT SCANNING, ENABLE SCAN FOR EVENT, ENABLE EVENT SCANNING

OPERATIONS

2-142 Cyrano Command Reference

ENABLE EVENT/REACTION Event/Reaction

Function: To enable communication between the program in the Mistic controller and the specified event/
reaction.

Typical Use: To reconnect the program to a specified event/reaction after simulation and program testing.

Details: � All event/reaction communication is enabled by default.
� Does not affect the event/reaction at the I/O unit in any way.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: ENABLE EVENT/REACTION
ESTOP BUTTON 1 name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� To enable all event/reactions, use ENABLE EVENT SCANNING.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE EVENT/REACTION, ENABLE EVENT SCANNING

OPERATIONS

Cyrano Command Reference 2-143

ENABLE EVENT SCANNING Event/Reaction

Function: To activate all event/reactions on the specified I/O unit.

Typical Use: To reactivate all event/reactions after a planned shutdown or an emergency stop.

Details: � Whenever scanning for event/reactions is started, all events found to be True on the first
scan will be considered to have just occurred. Therefore, the reactions will follow.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

Example: ENABLE EVENT SCANNING
On I/O Unit OVERTEMP SENSORS name of digital multifunction I/O unit

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� To activate a specific event/reaction, use ENABLE SCAN FOR EVENT.
� Normally used after DISABLE EVENT SCANNING.

Dependencies: � Event/reactions are not supported on local simple I/O units.

See Also: DISABLE SCAN FOR EVENT, ENABLE SCAN FOR EVENT, DISABLE EVENT SCANNING

OPERATIONS

2-144 Cyrano Command Reference

ENABLE INTERRUPT ON EVENT Event/Reaction

Function: To activate interrupt notification for a specified event/reaction.

Typical Use: To provide interrupt notification to the Mistic program so it can resume.

Details: � The event/reaction must be active (scanning enabled) for the interrupt to work.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: ENABLE INTERRUPT ON EVENT
Event/Reaction ACID TANK 1 HIGH LEVEL name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� Use ENABLE EVENT/REACTION to enable a disabled event/reaction.

Dependencies: � Event/reactions must be configured on the I/O unit before they can be referenced.
� Event/reactions are not supported on local simple I/O units.

See Also: DISABLE INTERRUPT ON EVENT, DISABLE SCAN FOR EVENT

OPERATIONS

Cyrano Command Reference 2-145

ENABLE SCAN FOR EVENT Event/Reaction

Function: To activate a specific event/reaction.

Typical Use: To reactivate a specific event/reaction after a planned shutdown.

Details: � If the event is found to be True when scanning for an event/reaction is started, the reaction
will occur.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: ENABLE SCAN FOR EVENT
Event/Reaction ACID TANK 1 HIGH LEVEL name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� To activate all event/reactions, use ENABLE EVENT SCANNING.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE EVENT SCANNING, ENABLE SCAN FOR EVENT, ENABLE EVENT SCANNING

OPERATIONS

2-146 Cyrano Command Reference

READ E/R HOLD BUFFER Event/Reaction

Function: To get a value that was stored at the I/O unit as a reaction to a specific event.

Typical Use: To capture a counter value at the moment a digital input turned on (or off).

Details: � There are 256 32-bit holding buffers, one for each event/reaction. If a channel is configured
as a counter and the reaction is to send its value to the hold buffer, the counts will be in the
hold buffer for the specified event/reaction.

� Other values, such as period measurements and analog inputs, may also be captured.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG E/R VARIABLE FLOAT
DIGITAL E/R VARIABLE INTEGER

Example: READ E/R HOLD BUFFER
Event/Reaction SEQUENCE FINISHED name of the event/reaction
Put Result In COUNTER VALUE variable integer

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� Use HAS EVENT OCCURRED? to determine if there is a value to be read.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

OPERATIONS

Cyrano Command Reference 2-147

GENERAL PURPOSE OPERATIONS

CALCULATE STRATEGY CRC General Purpose

Function: Calculates and returns a 16-bit CRC on the strategy that is currently resident in the controller.

Typical Use: Periodically used in an error handler to check the integerity of the running program.

Details: � Use the result to compare with the original CRC that was automatically calculated during the
last download. The original CRC is obtained by using RETRIEVE STRATEGY CRC. These two
values should match exactly.

Arguments: ARGUMENT 1
VARIABLE INTEGER

Example: CALCULATE STRATEGY CRC
Put Result In NEW_CRC_CALC variable integer

Notes: � This command could take several minutes to execute when 30 tasks are running and the
program is very large. Therefore, do not use it in a chart where timing is critical.

See Also: RETRIEVE SAVED CRC

OPERATIONS

2-148 Cyrano Command Reference

CLEAR ALL ERRORS General Purpose

Function: To clear the error queue in the controller.

Typical Use: To clear all errors from a full error queue.

Details: � This function clears all errors in the queue. Normally this is never done. If the user program
performs error checking, it will eventually clear the error queue. If no error checking is done,
simply let the queue fill up.

Arguments: None.

Example: CLEAR ALL ERRORS

Notes: � Performing a download and run does an automatic CLEAR ALL ERRORS.

See Also: GET ERROR CODE, GET ERROR COUNT, POINT TO NEXT ERROR

OPERATIONS

Cyrano Command Reference 2-149

DELAY (MSEC) General Purpose

Function: To slow the execution of program logic and to release the remaining time of a chart�s time slice.

Typical Use: To cause a chart to give up the remaining time of its time slice.

Details: � Units are in milliseconds.
� When this command is used, the chart is suspended immediately, since it would be inefficient

to utilize CPU time just to wait.
� The chart is continued automatically at the DELAY (MSEC) command at its next scheduled

time in the 32-task queue. If the delay has not expired, the suspend/continue cycle continues.
� The actual minimum delay is usually greater than 1 millisecond and is a function of how many

tasks are running concurrently. For example, if there are 10 tasks running, each with a priority
of 1, the minimum delay would be 10 x 1 x 0.5 milliseconds = 5 milliseconds.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: DELAY (MSEC)
1 constant integer (number of

milliseconds)

Notes: � For readability, use DELAY (SEC) for delays longer than 10 seconds.
� When high accuracy is needed, reduce the number of tasks running concurrently.
� Speed Tip: Use this command in an operation block connected to the False exit of

CHARACTERS WAITING? to give up the time slice while waiting. Connect the DELAY (MSEC)
operation block back to the CHARACTERS WAITING? condition block.

Dependencies: � Minimum time is increased as the number of concurrent tasks increases.

Error Codes: Queue error 33 = Overflow error � delay value larger than 2,147,483,647

See Also: DELAY (SEC)

OPERATIONS

2-150 Cyrano Command Reference

DELAY (SEC) General Purpose

Function: To slow the execution of program logic and to release the remaining time of a chart�s time slice.

Typical Use: To pause logic execution in a chart.

Details: � Units are in seconds with millisecond resolution.
� When this command is used, the chart is suspended immediately, since it would be inefficient

to utilize CPU time just to wait.
� The chart is continued automatically at the DELAY (SEC) command at its next scheduled time

in the 32-task queue. If the delay has not expired, the suspend/continue cycle continues.
� The actual minimum delay is usually greater than 1 millisecond and is a function of how many

tasks are running concurrently. For example, if there are 10 tasks running, each with a priority
of 1, the minimum delay would be 10 x 1 x 0.5 milliseconds = 5 milliseconds.

Arguments: ARGUMENT 1
CONSTANT FLOAT
VARIABLE FLOAT

Example: DELAY (SEC)
10.525 constant float (number seconds to

delay)

Notes: � Use DELAY (MSEC) for delays shorter than 10 seconds.
� When high accuracy is needed, reduce the number of tasks running concurrently.

Dependencies: � Minimum time is increased as the number of concurrent tasks increases.

See Also: DELAY (MSEC)

OPERATIONS

Cyrano Command Reference 2-151

GET ERROR CODE General Purpose

Function: To return the oldest error code in the error queue.

Typical Use: To allow a chart to perform error handling.

Details: � Returns a zero if the queue is empty.
� The same error code is read each time unless POINT TO NEXT ERROR is used first.
� The error queue can hold up to 64 errors.
� The following is a list of errors that can appear in the error queue:

CODE ERRORS FROM I/O UNITS (BRICKS) CODE ERRORS FROM MISTIC CONTROLLER

1 Undefined command 31 Send timeout; Mistic couldn�t send message
2 Bad CRC or checksum 32 Bad table index value
3 Buffer overrun 33 Arithmetic overflow
4 I/O unit has powered up since last access 35 Not a real number
5 Incorrect command length 36 Division by zero
6 Communication watchdog timeout 38 Processor failure or factory software fault
7 Specified data invalid 39 Port already in use
8 Busy error 40 E/R does not have a �read &hold� reaction
9 Command & channel configuration mismatch 41 Invalid E/R hold buffer at I/O unit (brick)
10 Invalid event type 42 ARCNET port busy
11 Invalid time for TPO, sq. wave or pulse 43 Host relock
29 I/O unit response timeout 44 Invalid board type
30 Invalid serial port number 45 String too short to hold data

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ERROR CODE
Move to ERROR CODE variable integer

Notes: � Use POINT TO NEXT ERROR to drop the oldest error from the queue so the next error can be
evaluated.

� Use the Debugger to view the error queue for detailed information.

See Also: CLEAR ALL ERRORS, GET ERROR COUNT, POINT TO NEXT ERROR

OPERATIONS

2-152 Cyrano Command Reference

GET ERROR COUNT General Purpose

Function: To determine the number of errors in the queue.

Typical Use: To allow an error handling chart to determine that there are no more errors to process.

Details: � Returns a zero if the queue is empty.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET ERROR COUNT
Move to ERROR COUNT variable integer

Notes: � To eliminate all errors from the queue, use CLEAR ALL ERRORS.
� Use the Debugger to view the error queue for detailed information.

See Also: CLEAR ALL ERRORS, GET ERROR CODE, POINT TO NEXT ERROR

OPERATIONS

Cyrano Command Reference 2-153

GET RTU TEMPERATURE General Purpose

Function: To obtain the temperature inside the M4RTU controller case.

Typical Use: To determine if heating or cooling is required or has failed.

Details: � The temperature is reported in either Celsius or Fahrenheit depending on how I/O unit 1 on
the local bus is configured.

� The temperature range is -40°C to 125°C (-40°F to 257°F).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET RTU TEMPERATURE
Move to RTU TEMP variable float

Notes: � If I/O unit 1 is not configured, this command returns the temperature in degrees Celsius.
� To read temperature in degrees Fahrenheit, make sure TEMP CNV is set to Degrees F when

configuring I/O unit 1. (To verify, select I/O Unit from the Configurator�s Configure menu, select
the I/O unit, and click CHANGE.)

� Accuracy is:
±0.5°C from 0°C to 70°C
±1°C from -40°C to 0°C and from 70°C to 85°C
±2°C from -55°C to -40°C and from 85°C to 125°C

Dependencies: � An M4RTU must be in use.

Error Codes: � If this command is used for a controller other than an M4RTU, an error value of -32,768 is
returned.

See Also: GET RTU VOLTAGE

OPERATIONS

2-154 Cyrano Command Reference

GET RTU VOLTAGE General Purpose

Function: To read the input voltage furnished to the M4RTU power supply.

Typical Use: To monitor battery voltage supplied to the M4RTU power supply to determine if it�s getting low.

Details: � Reads voltage supplied to the input terminals by others.
� Accuracy is plus or minus five percent.
� Works with both AC and DC.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET RTU VOLTAGE
Move to RTU VOLTAGE variable float

Dependencies: � An M4RTU must be in use.

Error Codes: � If this command is used for a controller other than an M4RTU, an error value of -32,768 is
returned.

See Also: GET RTU TEMPERATURE

OPERATIONS

Cyrano Command Reference 2-155

GET SIZE OF NUMERIC TABLE General Purpose

Function: To obtain the declared length (size) of a float or integer table.

Typical Use: To determine the last index when reading or writing to a numeric table.

Details: � A size of 10, for example, means there are 11 elements numbered 0�10.

Arguments: ARGUMENT 1 ARGUMENT 2
FLOAT TABLE VARIABLE FLOAT

INTEGER TABLE VARIABLE INTEGER

Example: GET SIZE OF NUMERIC TABLE
Table CONFIG DATA numeric table
Move to CONFIG DATA SIZE variable integer (the table size)

Notes: � Always use to determine table size when program logic must act on all elements of a table.
Then if the size of the table is later changed, the program will automatically adjust to the new
size.

See Also: GET SIZE OF STRING TABLE

OPERATIONS

2-156 Cyrano Command Reference

GET SIZE OF STRING TABLE General Purpose

Function: To obtain the declared length (size) of a string table.

Typical Use: To determine the last index when reading or writing to a string table.

Details: � A size of 19, for example, means there are 20 elements numbered 0�19.

Arguments: ARGUMENT 1 ARGUMENT 2
STRING TABLE VARIABLE FLOAT

VARIABLE INTEGER

Example: GET SIZE OF STRING TABLE
Table CONFIG NAMES string table
Move to CONFIG NAMES SIZE variable integer (the table size)

Notes: � Always use to determine table size when program logic must act on all elements of a table.
Then if the size of the table is later changed, the program will automatically adjust to the new
size.

See Also: GET SIZE OF NUMERIC TABLE

OPERATIONS

Cyrano Command Reference 2-157

GET THIS CONTROLLER�S ADDRESS General Purpose

Function: To obtain the controller�s assigned HOST port address.

Typical Use: To execute program logic branching based on the controller�s address or serial port message ID.

Details: � The range of values returned is from 1 to 255.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET THIS CONTROLLER�S ADDRESS
Move to LC ADDR variable integer (the address)

Notes: � Use to determine if messages received from a non-HOST serial port are for this controller.

OPERATIONS

2-158 Cyrano Command Reference

MOVE General Purpose

Function: To copy a digital, analog, or numeric value to another location.

Typical Use: To copy values between objects, even if they are dissimilar types.

Details: � Cyrano automatically converts the type of Argument 1 to match that of Argument 2. The
following rules are employed when copying values between objects of different types:
� From Float to Integer: Floats are rounded up for fractions of 0.5 or greater, otherwise they

are rounded down.
� From Integer to Float: Integer values are converted directly to floats.
� From Digital Input or Output: A value of -1 is returned for on, 0 for off.
� From Latch: A value of -1 is returned for set latches, 0 for latches that are not set.
� To Digital Output: A value of 0 turns the output off. Any non-zero value turns the output on.
� To Analog Output: Values are sent as is. Expect some rounding consistent with the analog

resolution of the I/O unit. If the value sent is outside the allowable range for the channel,
the output will go to the nearest range limit, either zero or full scale.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT DIGITAL OUT
CONSTANT FLOAT TIME PROP. OUTPUT

CONSTANT INTEGER VARIABLE FLOAT
COUNTER VARIABLE INTEGER
DIGITAL IN VARIABLE TIMER

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: MOVE
From DIG1 digital point
To DIG1 STATUS variable integer

Notes: � After moving a new value to an analog output, anywhere from 0�50 milliseconds will elapse
before the analog output is actually updated. Reading the output value during this period will
show the previous value. This limitation may be improved in future versions of analog I/O
units.

Error Codes: Queue error 33 = Overflow error � integer or float value was too large

See Also: MOVE STRING and all MOVE TO or MOVE FROM table commands.

OPERATIONS

Cyrano Command Reference 2-159

MOVE FLOAT TABLE TO FLOAT TABLE General Purpose

Function: To copy a single value from one float table to another.

Typical Use: To reorder the way data are arranged or to copy temporary values to a final location.

Details: � The two tables can be the same.
� Any value sent to an invalid index is discarded, and an error 32 is added to the queue.
� The valid range for each index is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT INTEGER FLOAT TABLE CONSTANT INTEGER FLOAT TABLE
VARIABLE INTEGER VARIABLE INTEGER

Example: MOVE FLOAT TABLE TO FLOAT TABLE
Source Index SOURCE INDEX variable integer
Source Table FTABLE1 float table
Dest. Index DEST INDEX variable integer
Dest. Table FTABLE2 float table

Notes: � The contents of one table can be duplicated into another by using this command with the
same value for the source and destination index. A loop structure can be used to increment
the index for subsequent calls of this command.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE FROM TABLE, MOVE INT TABLE TO INT TABLE, MOVE TO FLOAT TABLE, MOVE TO
INTEGER TABLE, SHIFT TABLE

OPERATIONS

2-160 Cyrano Command Reference

MOVE FROM TABLE General Purpose

Function: To copy one value from either an integer or float table.

Typical Use: To copy a numeric table value to an I/O point or another numeric variable.

Details: � All numeric type conversions are automatically handled according to the rules detailed for the
MOVE command.

� The valid range for the index is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT INTEGER FLOAT TABLE ANALOG OUT
VARIABLE INTEGER INTEGER TABLE DIGITAL OUT

TIME PROP. OUTPUT
VARIABLE FLOAT

VARIABLE INTEGER

Example: MOVE FROM TABLE
Index 0 constant integer
From LOOK UP TABLE float table
To PRESS OUT analog output (destination for the data)

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE FLOAT TABLE TO FLOAT TABLE, MOVE INT TABLE TO INT TABLE, MOVE TO FLOAT TABLE,
MOVE TO INTEGER TABLE, SHIFT TABLE

OPERATIONS

Cyrano Command Reference 2-161

MOVE INT TABLE TO INT TABLE General Purpose

Function: To copy a single value from one integer table to another.

Typical Use: To reorder the way data is arranged or copy temporary values to a final location.

Details: � The two tables can be the same.
� Any value sent to an invalid index is discarded, and an error 32 is added to the queue.
� The valid range for the index is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT INTEGER INTEGER TABLE CONSTANT INTEGER INTEGER TABLE
VARIABLE INTEGER VARIABLE INTEGER

Example: MOVE INT TABLE TO INT TABLE
Source Index SOURCE INDEX variable integer
Source Table ITABLE1 integer table
Dest. Index DEST INDEX variable integer
Dest. Table ITABLE2 integer table

Notes: � The contents of one table can be duplicated into another by using this command with the
same variable for the source and destination index. A loop structure can be used to increment
the index for subsequent calls of this command.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE FROM TABLE, MOVE FLOAT TABLE TO FLOAT TABLE, MOVE TO FLOAT TABLE, MOVE TO
INTEGER TABLE, SHIFT TABLE

OPERATIONS

2-162 Cyrano Command Reference

MOVE TO FLOAT TABLE General Purpose

Function: To copy a value to a specified float table.

Typical Use: To store numeric data in a float table.

Details: � All numeric type conversions are automatically handled according to the rules detailed for the
MOVE command.

� The valid range for the index is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER

Example: MOVE TO FLOAT TABLE
From DATA VALUE variable float
Index 4 constant integer
To MY TABLE float table name

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

Queue error 33 = Overflow � integer or float value was too large

See Also: MOVE FLOAT TABLE TO FLOAT TABLE, MOVE FROM TABLE, MOVE INT TABLE TO INT TABLE,
MOVE TO INTEGER TABLE, SHIFT TABLE

OPERATIONS

Cyrano Command Reference 2-163

MOVE TO INTEGER TABLE General Purpose

Function: To copy a value to a specified integer table.

Typical Use: To store numeric data in a integer table.

Details: � All numeric type conversions are automatically handled according to the rules detailed for the
MOVE command.

� The valid range for the index is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER

Example: MOVE TO INTEGER TABLE
From MY DIG INPUT digital input
Index 4 constant integer
To MY INT TABLE integer table name

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

Queue error 33 = Overflow � integer or float value was too large

See Also: MOVE FLOAT TABLE TO FLOAT TABLE, MOVE FROM TABLE, MOVE INT TABLE TO INT TABLE,
MOVE TO FLOAT TABLE, SHIFT TABLE

OPERATIONS

2-164 Cyrano Command Reference

POINT TO NEXT ERROR General Purpose

Function: To drop the oldest error from the queue and bring the next error to the top of the queue.

Typical Use: To access items in the error queue during error handling within the Cyrano strategy.

Details: � Must use before the next error in the queue can be evaluated.
� Once this command is executed, the previous error can no longer be accessed.
� Commands that have the word ERROR in their name always evaluate the top (oldest) error in

the queue.

Arguments: None.

Example: POINT TO NEXT ERROR

Notes: � Always use the condition ERROR? to determine if there are errors in the queue before using
this command.

� Use the Debugger to view the error queue for detailed information.

Dependencies: � At least one error must exist in the error queue.

See Also: GET ERROR COUNT GET ERROR CODE, GET ERROR BOARD NAME, GET ERROR TASK NAME,
ERROR?

OPERATIONS

Cyrano Command Reference 2-165

RETRIEVE SAVED CRC General Purpose

Function: Retrieves the 16-bit CRC calculated when the strategy was initially downloaded to the controller.

Typical Use: Periodically used in an error handler to check the integrity of the running program.

Details: � Use the returned value to compare with a newly calculated CRC that was obtained by using
CALCULATE STRATEGY CRC. These two values should match exactly.

Arguments: ARGUMENT 1
VARIABLE INTEGER

Example: RETRIEVE SAVED CRC
Put Result In ORIGINAL_CRC variable integer

See Also: CALCULATE STRATEGY CRC

OPERATIONS

2-166 Cyrano Command Reference

SHIFT TABLE General Purpose

Function: To shift numeric table elements up or down.

Typical Use: To follow items on a conveyor.

Details: � For positive shift counts, entries shift toward the end of the table. For negative shift counts,
entries shift toward the beginning (index zero) of the table.

� Entries at the beginning or end of the table are lost when shifted beyond those limits.
� Zeros are written to entries left empty by shifting.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT INTEGER FLOAT TABLE
VARIABLE INTEGER INTEGER TABLE

Example: SHIFT TABLE
Shift Count -5 constant integer
Table MY TABLE integer or float table name

Notes: � Use MOVE FROM TABLE before this command to capture values that will be shifted out of the
table, if they need to be used.

� Use MOVE TO INTEGER TABLE (for example) after this command to fill vacated entries, if
desired.

See Also: MOVE FLOAT TABLE TO FLOAT TABLE, MOVE FROM TABLE, MOVE INT TABLE TO INT TABLE,
MOVE TO FLOAT TABLE, MOVE TO INTEGER TABLE

OPERATIONS

Cyrano Command Reference 2-167

\ COMMENT General Purpose

Function: To add a comment to an operation block.

Typical Use: To document commands within a block.

Details: � Comments are string constants. They use controller memory.

Arguments: ARGUMENT 1
CONSTANT STRING

Example: \ COMMENT
PID Loop Control Start constant string

Notes: � To conserve memory, use the TEXT command button to create comments outside a block.

See Also: \\ COMMENT

OPERATIONS

2-168 Cyrano Command Reference

\\ COMMENT General Purpose

Function: To disable one or more commands in an operation block.

Typical Use: To temporarily disable commands within an operation block during debugging.

Details: � This command is normally used in pairs. Everything between the pair of \\ COMMENT
commands is considered a comment and is ignored when the strategy is compiled and
downloaded.

� This command is useful for temporarily disabling a group of commands within an operation
block while debugging a program.

� If the second \\ COMMENT is omitted, everything from the first \\ COMMENT to the end of the
operation block is considered a comment.

Arguments: ARGUMENT 1
CONSTANT STRING

Example: \\ COMMENT
Command
Command
Command

\\ COMMENT

See Also: \ COMMENT

OPERATIONS

Cyrano Command Reference 2-169

I/O UNIT OPERATIONS

DISABLE I/O UNIT I/O Unit

Function: To disable communication between the program in the Mistic controller and all channels on the
I/O unit.

Typical Uses: � To prohibit the program in the Mistic controller from reading or writing to the I/O unit for
simulation and program testing.

� To gain fast I/O processing. With communication disabled, all logic is executed using values
within the Mistic controller.

Details: � All program references to I/O will be restricted to the use of internal I/O values (IVAL).
� Input IVALs will remain in their current state (unless changed by the user via the Debugger or

with special simulation commands).
� Output IVALs will reflect what the program is instructing the outputs to do.
� Caution: Event/reactions (if any) will still be operational at the I/O unit. Any outputs that are on

may remain on.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT

Example: DISABLE I/O UNIT
VAPOR EXTRACTION I/O unit

Notes: � Communication to I/O units is normally disabled using the Cyrano Configurator or Debugger.
� If I/O units are disabled to speed logic execution, perform the following in the order shown:

1. MOVE ANL. I/O UNIT TO TABLE (with I/O unit still disabled): Copies analog output IVALs
updated by program.

2. DO BINARY READ (with I/O unit still disabled): Copies digital output IVALs updated by
program.

3. ENABLE I/O UNIT: Re-establishes communications.
4. MOVE TABLE TO ANL I/O UNIT: Writes to the table MOVEd to above. Updates analog

outputs.
5. DO BINARY WRITE: Writes to the value read above. Updates digital outputs.
6. MOVE ANL. I/O UNIT TO TABLE: Updates analog input IVALs.
7. DO BINARY READ: Updates digital input IVALs.
8. DISABLE I/O UNIT: Disconnects communications.
9. Program logic . . . (Not for use with commands that access MIN, MAX, AVERAGE,

COUNTS, etc.)
10. Repeat 1 through 9.

See Also: ENABLE I/O UNIT

OPERATIONS

2-170 Cyrano Command Reference

DISABLE ON I/O UNIT ERROR I/O Unit

Function: To disable communication between the program in the Mistic controller and all channels on the
I/O unit if the I/O unit generated the top queue error.

Typical Use: Since the I/O unit is automatically disabled after a queue error 29, this command is not currently
needed.

Details: � The Mistic controller generates a queue error 29 (timeout) whenever an I/O unit does not
respond. When this happens, all further communication to the I/O unit is disabled to ensure
that communication to other I/O units does not slow down.

� I/O unit errors other than 29 will not disable communication.

Arguments: None.

Example: DISABLE ON I/O UNIT ERROR

Notes: � This command is typically used in an error handling chart.

Dependencies: � For this command to have any effect, the top error in the queue must be generated by an I/O
unit, as listed below:
� Queue error 2 = Bad CRC/checksum
� Queue error 3 = Bad message length received
� Queue error 4 = I/O unit has powered up since last access
� Queue error 6 = Watchdog timeout has occurred on I/O unit
� Queue error 29 = I/O unit did not respond within specified time

See Also: ENABLE ON I/O UNIT ERROR, ERROR ON I/O UNIT?

OPERATIONS

Cyrano Command Reference 2-171

DO BINARY ACTIVATE I/O Unit

Function: To turn on multiple digital output channels on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: � This command is 16 times faster than using TURN ON 16 times.
� Updates the IVALs and XVALs for all 16 channels.
� Does not affect input channels or channels not specified.
� Truncates floats (if used) to integers.
� Uses only the lowest (least significant) 16 bits of the integer.
� A channel is selected for activation by setting the respective bit in the 16-bit data field to �1.�
� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.
� The least significant bit corresponds to channel zero.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER DIGITAL NMF I/O UNIT
VARIABLE FLOAT REM SMPL I/O UNIT

VARIABLE INTEGER

Example: DO BINARY ACTIVATE
From 35888 constant integer
Move To LIGHT CONTROL digital I/O unit

The effect of this is illustrated below:
Channel_Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit_Mask 35888 decimal 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

Hex 8C30 8 C 3 0

In this example, channels 15, 11, 10, 5 and 4 will be turned on. The other channels (set to �0�
only for this illustration) are unaffected. They will remain in their original state.

Notes: � Switch the Cyrano Configurator to binary or hex mode before using this command to make it
easier to determine the mask value. Use ALT-B to switch to binary mode, ALT-H to switch to hex
mode, ALT-D to switch to decimal mode.

� Use BIT SET or BIT CLEAR to change individual bits in a variable integer under program
control.

See Also: DO BINARY DEACTIVATE, DO BINARY WRITE

OPERATIONS

2-172 Cyrano Command Reference

DO BINARY DEACTIVATE I/O Unit

Function: To turn off multiple digital output channels on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: � This command is 16 times faster than using TURN OFF 16 times.
� Updates the IVALs and XVALs for all 16 channels.
� Does not affect input channels or channels not specified.
� Truncates floats (if used) to integers.
� Uses only the lowest (least significant) 16 bits of the integer.
� A channel is selected for deactivation by setting the respective bit in the 16-bit data field to

�1.�
� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.
� The least significant bit corresponds to channel zero.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER DIGITAL NMF I/O UNIT
VARIABLE FLOAT REM SMPL I/O UNIT

VARIABLE INTEGER

Example: DO BINARY DEACTIVATE
From 9217 constant integer
Move To LIGHT CONTROL digital I/O unit

The effect of this is illustrated below:
Channel_Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit_Mask 9217 decimal 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1

Hex 2401 2 4 0 1

In this example, channels 13, 10, and 0 will be turned off. The other channels (set to �0� only for
this illustration) are unaffected. They will remain in their original state.

Notes: � Switch the Cyrano Configurator to binary or hex mode before using this command to make it
easier to determine the mask value. Use ALT-B to switch to binary mode, ALT-H to switch to hex
mode, ALT-D to switch to decimal mode.

� Use BIT SET or BIT CLEAR to change individual bits in a variable integer under program
control.

See Also: DO BINARY ACTIVATE, DO BINARY WRITE

OPERATIONS

Cyrano Command Reference 2-173

DO BINARY READ I/O Unit

Function: To read the current on/off status of all channels on the specified digital I/O unit.

Typical Use: To efficiently read the status of all digital channels on a single I/O unit with one command.

Details: � Reads the current on/off status of all 16 channels on the digital I/O unit specified.
� Updates the IVALs and XVALs for all 16 channels.
� Reads outputs as well as inputs.
� Returns status (a 16-bit integer) to the numeric variable specified.
� If a channel is on, there will be a �1� in the respective bit. If the channel is off, there will be a

�0� in the respective bit.
� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.
� The least significant bit corresponds to channel zero.

Arguments: ARGUMENT 1 ARGUMENT 2
DIGITAL MF I/O UNIT VARIABLE FLOAT

DIGITAL NMF I/O UNIT VARIABLE INTEGER
REM SMPL I/O UNIT

Example: DO BINARY READ
From INPUT BOARD_#1 digital I/O unit
Move To IN BD1 STATUS variable integer

The effect of this is illustrated below:
Channel_Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit_Mask 27714 decimal 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6C42 6 C 4 2

In this example, channels 14, 13, 11, 10, 6, and 1 are currently on. The other channels are off.

Notes: � Use BIT TEST to examine individual bits.

See Also: DO BINARY WRITE

OPERATIONS

2-174 Cyrano Command Reference

DO BINARY WRITE I/O Unit

Function: To control multiple digital output channels on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: � This command is 16 times faster than using TURN ON or TURN OFF 16 times.
� Updates the IVALs and XVALs for all 16 channels.
� Affects all output channels.
� Does not affect input channels.
� Uses only the lowest (least significant) 16 bits of the integer.
� A channel is selected for activation by setting the respective bit in the 16-bit data field to �1.�
� A channel is selected for deactivation by setting the respective bit in the 16-bit data field to

�0.�
� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.
� The least significant bit corresponds to channel zero.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER DIGITAL NMF I/O UNIT
VARIABLE FLOAT REM SMPL I/O UNIT

VARIABLE INTEGER

Example: DO BINARY WRITE
From 146 constant integer
Move To OUT BD1 digital I/O unit

The effect of this is illustrated below:
Channel_Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit_Mask 146 decimal 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

Hex 0092 0 0 9 2

In this example, channels 7, 4, and 1 are turned on. The other output channels are turned off.

Notes: � Use BIT SET or BIT CLEAR to change individual bits in a variable integer under program
control.

See Also: DO BINARY READ, DO BINARY ACTIVATE, DO BINARY DEACTIVATE

OPERATIONS

Cyrano Command Reference 2-175

ENABLE I/O UNIT I/O Unit

Function: To enable communication between the program in the Mistic controller and all channels on the
I/O unit.

Typical Use: To re-establish communication between the Mistic controller and the I/O unit after it was
automatically disabled due to a timeout error (29).

Details: � Attempts to communicate with the I/O unit.
� If the communication succeeds and the I/O unit reports that it has lost power since the last

communication, all channels will be configured and all event/reactions (if any) will be sent.
Counters will have to be restarted under program control.

� If this command fails because the I/O unit specified is still not responding, a new error 29 will
be added to the bottom of the error queue.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT

Example: ENABLE I/O UNIT
VAPOR EXTRACTION I/O unit

Notes: � This command is sometimes useful for debugging and/or system start-up.

Error Codes: Queue error 29 = I/O unit did not respond within specified time

See Also: DISABLE I/O UNIT

OPERATIONS

2-176 Cyrano Command Reference

ENABLE ON I/O UNIT ERROR I/O Unit

Function: To enable communication between the program in the Mistic controller and all channels on the
I/O unit if the top queue error is a 29.

Typical Use: To re-establish communication between the Mistic controller and the I/O unit after it was
automatically disabled due to a timeout error (29).

Details: � The Mistic controller generates a queue error 29 (timeout) whenever an I/O unit does not
respond. When this happens, all further communication to the I/O unit is disabled to ensure
that communication to other I/O units does not slow down. This may be undesirable in some
cases. This command can be used to re-establish communication.

� If this command fails because the I/O unit specified is still not responding, a new error 29 will
be added to the bottom of the error queue.

Arguments: None.

Example: ENABLE ON I/O UNIT ERROR

Notes: � This command is typically used in an error handling chart.
� Always use ERROR ON I/O UNIT? to determine if the top error in the error queue is an I/O unit

error before using this command.
� Always use POINT TO NEXT ERROR after using this command.

Dependencies: � For this command to have any effect, the top error in the queue must be a 29.

Error Codes: Queue error 29 = I/O unit did not respond within specified time

See Also: DISABLE ON I/O UNIT ERROR, ERROR ON I/O UNIT?

OPERATIONS

Cyrano Command Reference 2-177

GET BAD I/O UNIT ADDRESS I/O Unit

Function: To return the address of the I/O unit that failed to respond if the top queue error is a 29.

Typical Uses: � Within an error handler, to log the date and time of a timeout error and the name of the I/O
unit that failed to respond.

� Within an error handler, to alert an operator as to which I/O units are off-line.

Details: � The Mistic controller generates a queue error 29 (timeout) whenever an I/O unit does not
respond. This command can be used to determine the address of the I/O unit that failed to
respond.

Arguments: ARGUMENT 1
VARIABLE INTEGER

Example: GET BAD I/O UNIT ADDRESS
Put Result In I/O UNIT ADDR variable integer

Notes: � This command is typically used in an error handling chart.
� In a system with many I/O units, this command can pinpoint exactly which I/O units are not

responding. The result can be put in an integer table or appended to an error message string
for display on an MMI screen.

� Always use ERROR ON I/O UNIT? to determine if the top error in the error queue is an I/O unit
error before using this command.

� Always use POINT TO NEXT ERROR after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be a 29.

See Also: GET BAD I/O UNIT PORT, ERROR ON I/O UNIT?, POINT TO NEXT ERROR

OPERATIONS

2-178 Cyrano Command Reference

GET BAD I/O UNIT PORT I/O Unit

Function: To return the port number of the I/O unit that failed to respond if the top queue error is a 29.

Typical Use: Within an error handler in conjunction with GET BAD I/O UNIT ADDRESS, to log the date and
time of a timeout error as well as the name and port number of the I/O unit that failed to
respond. Use only when there are several I/O units with the same address on different ports.

Details:· The Mistic controller generates a queue error 29 (timeout) whenever an I/O unit does not
respond. This command can be used to determine the port number of the I/O unit that failed to
respond.

Arguments: ARGUMENT 1
VARIABLE INTEGER

Example: GET BAD I/O UNIT PORT
Put Result In I/O UNIT PORT variable integer

Notes: � This command is typically used in an error handling chart.
� In a system with many I/O units, this command can pinpoint exactly which I/O units are not

responding. The result can be put in an integer table or appended to an error message string
for display on an MMI screen.

� Always use ERROR ON I/O UNIT? to determine if the top error in the error queue is an I/O unit
error before using this command.

� Always use POINT TO NEXT ERROR after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be a 29.

See Also: GET BAD I/O UNIT ADDRESS, ERROR ON I/O UNIT?, POINT TO NEXT ERROR

OPERATIONS

Cyrano Command Reference 2-179

MOVE ANL. I/O UNIT TO TABLE I/O Unit

Function: To read all 16 channels of an analog I/O unit and move the returned values to a float table.

Typical Use: To efficiently read all 16 channels of analog data on a single I/O unit with one command.

Details: � This command is four times faster than using MOVE 16 times.
� Reads both inputs and outputs.
� Updates the IVALs and XVALs for all 16 channels.
� Transfers 16 channels of float data (in engineering units) from the analog I/O unit to a float

table beginning at the index specified. If there are fewer than 16 elements of data from the
specified index to the end of the table, no data will be written to the table and a 32 will be
placed in the error queue.

� Channels that are not configured will return a value of 0.0.
� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be read.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG MF I/O UNIT CONSTANT INTEGER FLOAT TABLE

VARIABLE INTEGER

Example: MOVE ANL. I/O UNIT TO TABLE
From ANALOG UNIT 255 analog I/O unit
Index 16 constant integer (starting index of table)
Move To DATA TABLE float table (holds 16 channels of analog

data)

Notes: � To speed up analog logic execution, use DISABLE I/O UNIT after this command. This forces all
references to channels on the I/O unit to use IVAL data rather than getting data from the I/O
unit one channel at a time. If this procedure is followed, use ENABLE I/O UNIT before using
this command again. See Notes under MOVE TABLE TO ANL I/O UNIT for more information.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE TABLE TO ANL I/O UNIT

OPERATIONS

2-180 Cyrano Command Reference

MOVE TABLE TO ANL I/O UNIT I/O Unit

Function: To write values in a float table to all 16 channels of an analog I/O unit.

Typical Use: To efficiently write all 16 channels of analog data on a single I/O unit with one command.

Details: � This command is four times faster than using MOVE 16 times.
� Updates the IVALs and XVALs for all 16 channels except XVALs for input channels.
� Transfers 16 channels of data from the float table beginning at the index specified to the

analog I/O unit. If there are fewer than 16 elements of data from the specified index to the
end of the table, no data will be written to the I/O unit and a 32 will be placed in the error
queue.

� If a specific channel is disabled or if the entire I/O unit is disabled, only the internal values
(IVALs) will be written.

� Caution: Writes to IVALs of input channels.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT INTEGER FLOAT TABLE ANALOG MF I/O UNIT
VARIABLE INTEGER

Example: MOVE TABLE TO ANL I/O UNIT
Index 16 constant integer (starting index of table)
From DATA TABLE float table (holds 16 values)
To ANALOG UNIT 255 analog I/O unit

Notes: � If analog I/O units are disabled using DISABLE I/O UNIT to speed up analog logic execution,
perform the following in the order shown:
1. MOVE ANL. I/O UNIT TO TABLE (with the I/O unit still disabled): Copies output IVALs

updated by program.
2. ENABLE I/O UNIT: Re-establishes communications.
3. MOVE TABLE TO ANL I/O UNIT: Writes to the table MOVEd to above. Updates analog

outputs.
4. MOVE ANL. I/O UNIT TO TABLE: Updates analog input IVALs.
5. DISABLE I/O UNIT: Disconnects communications.
6. Program logic . . . (not for use with commands that access MIN, MAX, AVERAGE, etc.)
7. Repeat 1 through 6.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE ANL. I/O UNIT TO TABLE

OPERATIONS

Cyrano Command Reference 2-181

LOGICAL OPERATIONS

AND Logical

Function: To perform a logical AND on any two allowable values.

Typical Use: To determine if each of a pair of values is non-zero (True).

Details: � Performs a logical AND on Arguments 1 and 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
-1 0 0
0 -1 0
-1 -1 -1

� The result is -1 (True) if both values are non-zero, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL OUT

CONSTANT INTEGER CONSTANT INTEGER VARIABLE FLOAT
DIGITAL IN DIGITAL IN VARIABLE INTEGER

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: AND
LIMIT SWITCH1 digital input

With LIMIT SWITCH2 digital input
Move To BOTH SWITCHES CLOSED variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� To AND multiple variables (such as A, B, C, and D) into one variable (such as RESULT), do the

following:
1. AND A with B Move To RESULT
2. AND C with RESULT Move To RESULT
3. AND D with RESULT Move To RESULT

� To test for individual bits, use BIT TEST or BIT AND.

See Also: BIT TEST, BIT AND, AND (Condition)

OPERATIONS

2-182 Cyrano Command Reference

BIT AND Logical

Function: To perform a 32-bit bitwise AND on any two allowable values.

Typical Use: To clear one or more bits as specified by a �mask� (zero bits will clear).

Details: � Performs a bitwise AND on Arguments 1 and 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
1 0 0
0 1 0
1 1 1

� Acts on all 32 bits.
� One value is the mask for selecting specific bits in the other value.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER CONSTANT INTEGER DIGITAL NMF I/O UNIT
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT DIGITAL OUT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT REM SMPL I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT VARIABLE FLOAT

VARIABLE FLOAT VARIABLE FLOAT VARIABLE INTEGER
VARIABLE INTEGER VARIABLE INTEGER

Example: This example copies the four least significant bits from VALUE to RESULT and sets all remaining
bits in RESULT to zero.

BIT AND
VALUE variable integer

With 15 constant integer (the mask, binary
1111)

Move To RESULT variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� To clear bits in Argument 1, set a zero for each bit to clear in the mask (all remaining bits must

be 1), and make Arguments 1 and 3 the same.
� It may be preferable to set a 1 for each bit to clear in the mask, then use BIT NOT to invert all

the bits.
� Use 255 as the mask to keep the lower eight bits.
� To clear only one bit, use BIT CLEAR.
� To test for non-zero values, use AND.

See Also: BIT CLEAR, AND, AND (Condition)

OPERATIONS

Cyrano Command Reference 2-183

BIT CLEAR Logical

Function: To clear a specified bit (set it to zero) in an allowable value.

Typical Use: To clear one bit of a particular variable integer.

Details: � Performs this operation on a copy of Argument 1, then moves the copy to Argument 3.
� Valid range for the bit to clear is 0�31.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
DIGITAL MF I/O UNIT CONSTANT INTEGER DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT VARIABLE INTEGER DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT
VARIABLE INTEGER VARIABLE INTEGER

Example: This example does a binary read of the I/O unit I/O_UNIT_1, clears bit 0, and does a binary write
of the data back out to I/O_UNIT_1. This will cause channel 0 of the I/O unit to be turned off. If
channel 0 happens to be an input, nothing will happen.

BIT CLEAR
Data Source I/O_UNIT_1 digital I/O unit
Bit to Clear 0 constant integer
Put Result In I/O_UNIT_1 digital I/O unit

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� Although this command can be used to turn off digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, fault (real-time), fault (latch), and needs acknowledgment.

� To clear bits in Argument 1, make Arguments 1 and 3 the same.
� To clear several bits at once, use BIT AND.

See Also: BIT AND, BIT TEST, BIT SET

OPERATIONS

2-184 Cyrano Command Reference

BIT NOT Logical

Function: To invert all 32 bits of an allowable value.

Typical Use: To invert �mask� bits.

Details: � Inverts Argument 1 and puts result in Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2

0 1
1 0

� Performs this operation on a copy of Argument 1, then moves the copy to Argument 2.
� Acts on all 32 bits.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER DIGITAL NMF I/O UNIT
DIGITAL MF I/O UNIT DIGITAL OUT

DIGITAL NMF I/O UNIT REM SMPL I/O UNIT
REM SMPL I/O UNIT VARIABLE FLOAT

VARIABLE FLOAT VARIABLE INTEGER
VARIABLE INTEGER

Example: BIT NOT
DATA variable integer

Move To DATA variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� To invert all bits in Argument 1, make both arguments the same.
� To clear one or more specific bits, use this command to invert the mask bits. Then, BIT AND

the mask with the value containing the bits to be cleared.
� To toggle True/False, use NOT.

See Also: NOT, BIT XOR, XOR, BIT NOT? (Condition)

OPERATIONS

Cyrano Command Reference 2-185

BIT OR Logical

Function: To perform a 32-bit bitwise OR on any two allowable values.

Typical Use: To set one or more bits as specified by a �mask.�

Details: � Performs a bitwise OR on Arguments 1 and 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
1 0 1
0 1 1
1 1 1

� Combines all bits set to 1 in Arguments 1 and 2. The result (Argument 3) can be put into either
of the first two items or into a different item.

� Acts on all 32 bits. One value is the mask for selecting specific bits to set in the other value.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER CONSTANT INTEGER DIGITAL NMF I/O UNIT
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT DIGITAL OUT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT REM SMPL I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT VARIABLE FLOAT

VARIABLE FLOAT VARIABLE FLOAT VARIABLE INTEGER
VARIABLE INTEGER VARIABLE INTEGER

Example: This example sets bit 2 in a copy of Argument 1 and puts the result in Argument 3.

BIT OR
VALUE variable integer

With 4 constant integer (the �mask,� binary 10)
Move To RESULT variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� Although this command can be used to turn on digital points, it is used primarily to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, fault (real-time), fault (latch), needs acknowledgment, etc.

� To set bits in Argument 1, make Arguments 1 and 3 the same.
� To set only one bit, use BIT SET.
� To test if either of two values is True, use OR.

See Also: BIT SET, OR, BIT XOR, XOR

OPERATIONS

2-186 Cyrano Command Reference

BIT ROTATE Logical

Function: To rotate all 32 bits of an allowable value to the left or right.

Typical Use: To shift bits left or right with wraparound.

Details: � Acts on all 32 bits. All bits rotated past one end reappear at the other end.
� Valid range for the Count parameter (Argument 2) is 0�32. If Argument 2 is positive, bits will

rotate left. If it is negative, bits will rotate right. If it is zero, no rotation will occur.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT INTEGER CONSTANT INTEGER DIGITAL MF I/O UNIT
DIGITAL MF I/O UNIT VARIABLE INTEGER DIGITAL NMF I/O UNIT

DIGITAL NMF I/O UNIT DIGITAL OUT
REM SMPL I/O UNIT REM SMPL I/O UNIT
VARIABLE INTEGER VARIABLE FLOAT

VARIABLE INTEGER

Example: BIT ROTATE
MASK VARIABLE variable integer

Count 4 constant integer
Move To RESULT VARIABLE variable integer

This example shows the bits of a copy of MASK VARIABLE rotated to the left by 4, with the result
placed in RESULT VARIABLE. If MASK VARIABLE is -2,147,483,904 (10000000 00000000
00000000 00000000 binary), then after the rotation RESULT VARIABLE would be 8 (00000000
00000000 00000000 00001000 binary).

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� To rotate bits in Argument 1, make Arguments 1 and 3 the same.
� To get rid of all bits that move past either end, use BIT SHIFT.

See Also: BIT SHIFT

OPERATIONS

Cyrano Command Reference 2-187

BIT SET Logical

Function: To set a specified bit (set it to 1) in an allowable value.

Typical Use: To set a bit in an integer variable that is used as a flag.

Details: � Performs this operation on a copy of Argument 1, then moves the copy to Argument 3.
� Valid range for Argument 2 is 0�31.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
DIGITAL MF I/O UNIT CONSTANT INTEGER DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT VARIABLE INTEGER DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT
VARIABLE INTEGER VARIABLE INTEGER

Example: BIT SET
Data Source PUMP3 CTRL BITS variable integer
Bit to Set 15 constant integer
Put Result In I/ PUMP3 CTRL BITS variable integer

If PUMP3 CTRL BITS is 8 (00000000 00000000 00000000 00001000 binary), then after the BIT
SET, I/ PUMP3 CTRL BITS would be 32776 (00000000 00000000 10000000 00001000 binary).

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� Although this command can be used to turn on digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, fault (real-time), fault (latch), and needs acknowledgment.

� To set bits in Argument 1, make Arguments 1 and 3 the same.
� To set several bits at once, use BIT OR.

See Also: BIT OR, BIT TEST, BIT CLEAR

OPERATIONS

2-188 Cyrano Command Reference

BIT SHIFT Logical

Function: To shift the bits of an allowable value to the right or left.

Typical Use: To evaluate the four bytes of a 32-bit integer one at a time. A faster integer multiply or divide.

Details: � Functionally equivalent to integer multiply or divide, except faster.
� Acts on all 32 bits. Valid range for the Count parameter (Argument 2) is 0�32.
� BIT SHIFT with a Count of 2 is the same as multiplying by 4. BIT SHIFT with a Count of -3 is the

same as dividing by 8.
� All bit positions vacated by the shift are filled with zeros.
� If Argument 2 is positive, bits will shift left. If it is negative, bits will shift right. If it is zero, no

shifting will occur.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT INTEGER CONSTANT INTEGER DIGITAL MF I/O UNIT
DIGITAL MF I/O UNIT VARIABLE INTEGER DIGITAL NMF I/O UNIT

DIGITAL NMF I/O UNIT DIGITAL OUT
REM SMPL I/O UNIT REM SMPL I/O UNIT
VARIABLE INTEGER VARIABLE FLOAT

VARIABLE INTEGER

Example: BIT SHIFT
MASK VARIABLE variable integer

Count -8 constant integer
Move To RESULT VARIABLE variable integer

This example shows the bits of a copy of MASK VARIABLE shifted to the right by 8, with the
result placed in RESULT VARIABLE. If MASK VARIABLE is -2,147,483,904 (10000000 00000000
00000000 00000000 binary), then after the shift RESULT VARIABLE would be 8,388,608
(00000000 10000000 00000000 00000000 binary).

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� To shift bits in Argument 1, make Arguments 1 and 3 the same.
� To retain all bits that move past either end, use BIT ROTATE.

See Also: BIT ROTATE

OPERATIONS

Cyrano Command Reference 2-189

BIT TEST Logical

Function: To determine the status of a specific bit in an allowable value.

Typical Use: To test a bit in an integer variable that is used as a flag.

Details: � Valid range for the Bit to Test parameter (Argument 2) is 0�31.
� If the bit is clear (0), 0 is moved to Argument 3.
� If the bit is set (1), -1 is moved to Argument 3.
� Note that the result can be sent directly to a digital output.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
DIGITAL MF I/O UNIT CONSTANT INTEGER DIGITAL OUT

DIGITAL NMF I/O UNIT VARIABLE INTEGER VARIABLE INTEGER
REM SMPL I/O UNIT
VARIABLE INTEGER

Example: BIT TEST
Data Source PUMP3 CTRL BITS variable integer
Bit to Test 15 constant integer
Put Result In I/ PUMP3 CTRL BITS variable integer

If PUMP3 CTRL BITS is 00000000 00000000 10000000 00001000, the result would be set to
True.

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers with this command.
� Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, fault (real-time), fault (latch), and needs acknowledgment.

� To test several bits at once, use BIT AND.

See Also: BIT CLEAR, BIT SET

OPERATIONS

2-190 Cyrano Command Reference

BIT XOR Logical

Function: To perform a 32-bit bitwise EXCLUSIVE OR on any two allowable values.

Typical Uses: � To toggle one or more bits as specified by a �mask.�
� To toggle an integer between zero and any other value.

Details: � Performs a bitwise EXCLUSIVE OR on Arguments 1 and 2 and puts result in Argument 3.
Examples:

BIT MANIPULATION VALUE MANIPULATION
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0 0 22 22
0 1 1 22 22 0
1 0 1 255 65280 65535
1 1 0 0 -1 -1

-1 0 -1

� Acts on all 32 bits.
� One value is the mask for selecting specific bits in the other value.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL MF I/O UNIT

CONSTANT INTEGER CONSTANT INTEGER DIGITAL NMF I/O UNIT
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT DIGITAL OUT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT REM SMPL I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT VARIABLE FLOAT

VARIABLE FLOAT VARIABLE FLOAT VARIABLE INTEGER
VARIABLE INTEGER VARIABLE INTEGER

Example: BIT XOR
DATA variable integer

With 22 constant integer (the �mask,� binary
10110)

Move To DATA NEW variable integer

This example performs a BIT XOR on a copy of DATA with the constant 22 (binary 10110). The
result (DATA NEW) has bits 1, 2, and 4 inverted. If DATA = 0, DATA NEW = 22. If DATA = 22, DATA
NEW = 0.

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use this command only with integers.
� This command can be used to toggle digital outputs as well as bits in an integer variable.

These bits can be used as flags to carry information such as status, control, fault (real-time),
fault (latch), and needs acknowledgment.

� To toggle bits in Argument 1, make Arguments 1 and 3 the same.
� To toggle a bit, BIT XOR with 1. Zero leaves the bit unchanged.
� To toggle an integer value between 0 and -1, use XOR.

See Also: XOR, BIT NOT, NOT

OPERATIONS

Cyrano Command Reference 2-191

NOT Logical

Function: To perform a logical NOT (True/False toggle) on any allowable value.

Typical Uses: � To invert the logical state of an integer variable.
� To toggle the state of a digital output.
� To have a digital output assume the inverse state of a digital input.

Details: � Performs a logical NOT on Argument 1 and puts result in Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2

0 -1
-1 0
22 0

� Performs this operation on a copy of Argument 1, then moves the copy to Argument 2.
� If Argument 1 is True (non-zero), the result will be False (0). If Argument 1 is False (0), the result

will be True (-1).

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT DIGITAL OUT

CONSTANT INTEGER VARIABLE FLOAT
DIGITAL IN VARIABLE INTEGER

DIGITAL OUT
VARIABLE FLOAT

VARIABLE INTEGER

Example: NOT
CURRENT STATE variable integer

Move To DOUT1 digital output

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� To invert the TRUE/FALSE state of Argument 1, make both arguments the same.
� To toggle all 32 bits, use BIT NOT.

See Also: BIT NOT

OPERATIONS

2-192 Cyrano Command Reference

OR Logical

Function: To perform a logical OR on any two allowable values.

Typical Use: To use the True state of either value to control an output or set an alarm.

Details: � Performs a logical OR on Arguments 1 and 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
-1 0 -1
0 -1 -1
-1 -1 -1

� The result is -1 (True) if either value is non-zero, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL OUT

CONSTANT INTEGER CONSTANT INTEGER VARIABLE FLOAT
DIGITAL IN DIGITAL IN VARIABLE INTEGER

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: OR
LIMIT SWITCH1 digital input

With LIMIT SWITCH2 digital input
Move To MOTOR1 OUTPUT digital output

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� To OR multiple variables (such as A, B, C, and D) into one variable (such as RESULT), do the

following:
1. OR A with B Move To RESULT
2. OR C with RESULT Move To RESULT
3. OR D with RESULT Move To RESULT

� To test or manipulate individual bits, use BIT OR.

See Also: BIT OR

OPERATIONS

Cyrano Command Reference 2-193

SET VARIABLE FALSE Logical

Function: To move a False (0) value into an allowable value.

Typical Use: To clear a variable after it has been used for program logic.

Details: � All numeric variables are False by default unless initialized by the user to a non-zero value.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET VARIABLE FALSE
FLAG-HOPPER FULL variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Speed Tip: This command is faster than MOVE for moving a 0 to a variable.

See Also: SET VARIABLE TRUE

OPERATIONS

2-194 Cyrano Command Reference

SET VARIABLE TRUE Logical

Function: To move a True (-1) value into an allowable value.

Typical Use: To set a variable to -1.

Details: � All numeric variables are False by default unless initialized by the user to a non-zero value.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET VARIABLE TRUE
FLAG-JOB DONE variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Speed Tip: This command is faster than MOVE for moving a -1 to a variable.

See Also: SET VARIABLE FALSE

OPERATIONS

Cyrano Command Reference 2-195

TEST EQUAL Logical

Function: To determine if two values are equal.

Typical Use: To perform logic branching based on whether an argument equals a set value.

Details: � Determines if Argument 1 is equal to Argument 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 -1
-1 0 0

255 65280 0
22.22 22.22 -1

� The result is -1 (True) if both values are the same, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST EQUAL
TOP LEVEL variable integer

With 1000 constant integer
Put Result In FLAG-AT THE TOP variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� When working with floats, this command is useful for determining if two numeric values are

exactly the same.
� It may be safer to use TEST GREATER OR EQUAL or TEST LESS OR EQUAL instead, since

exact matches of non-integer types are rare.

See Also: Any �TEST . . .� logical operations

OPERATIONS

2-196 Cyrano Command Reference

TEST GREATER Logical

Function: To determine if one value is greater than another.

Typical Use: To determine if a counter has reached an upper limit or if an analog value is too high.

Details: � Determines if Argument 1 is greater than Argument 2 and puts result in Argument 3.
Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
-1 0 0
-1 -3 -1

22.221 22.220 -1

� The result is -1 (True) if Argument 1 is greater than Argument 2, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST GREATER
MY DATA COUNT digital counter

Greater than 1000 constant integer
Put Result In FLAG-MY DATA IS DONE variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Consider using TEST GREATER OR EQUAL instead.

See Also: Any �TEST . . .� logical operations

OPERATIONS

Cyrano Command Reference 2-197

TEST GREATER OR EQUAL Logical

Function: To determine if one value is greater than or equal to another.

Typical Use: To determine if an analog value has reached a maximum allowable value.

Details: � Determines if Argument 1 is greater than or equal to Argument 2 and puts result in Argument
3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 -1
1 0 -1

-32768 -32767 0
22221 2222 -1

� The result is -1 (True) if Argument 1 is greater than or equal to Argument 2, 0 (False)
otherwise.

� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST GREATER OR EQUAL
ROOM TEMP analog input

> or = 78.5000 constant float
Put Result In FLAG-ROOM TEMP OK variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: Any �TEST . . .� logical operations

OPERATIONS

2-198 Cyrano Command Reference

TEST LESS Logical

Function: To determine if one value is less than another.

Typical Use: To determine if a tank needs to be filled.

Details: � Determines if Argument 1 is less than Argument 2 and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
-1 0 -1
-1 -3 0

22.221 22.220 0

� The result is -1 (True) if Argument 1 is less than Argument 2, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST LESS
TANK LEVEL analog input

Less than FULL TANK LEVEL variable integer
Put Result In FLAG-TANK FILL VALVE digital output

Notes: � See the Logical Overview in Chapter 1 for important information.
� Consider using TEST LESS OR EQUAL instead.

See Also: Any �TEST . . .� logical operations

OPERATIONS

Cyrano Command Reference 2-199

TEST LESS OR EQUAL Logical

Function: To determine if one value is less than or equal to another.

Typical Use: To determine if a temperature is below or the same as a certain value.

Details: � Determines if Argument 1 is less than or equal to Argument 2 and puts result in Argument 3.
Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 -1
-1 0 -1
-1 -3 0

22.221 22.220 0

� The result is -1 (True) if Argument 1 is less than or equal to Argument 2, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST LESS OR EQUAL
TEMPERATURE variable float

< or = 98.6 constant float
Put Result In FLAG-TEMP OK variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: Any �TEST . . .� logical operations

OPERATIONS

2-200 Cyrano Command Reference

TEST NOT EQUAL Logical

Function: To determine if two values are different.

Typical Use: To check a counter.

Details: � Determines if Argument 1 is different from Argument 2 and puts result in Argument 3.
Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
-1 0 -1

255 65280 -1
22.22 22.22 0

� The result is -1 (True) if both values are not the same, 0 (False) otherwise.
� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN DIGITAL OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: TEST NOT EQUAL
COUNTER VAL variable integer

With 100 constant integer
Put Result In FLAG-NOT DONE variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.

See Also: Any �TEST . . .� logical operations

OPERATIONS

Cyrano Command Reference 2-201

XOR Logical

Function: To perform a logical EXCLUSIVE OR on any two allowable values.

Typical Use: To toggle a logic state such as a digital output from True to False or False to True.

Details: � Performs a logical EXCLUSIVE OR on Arguments 1 and 2 and puts result in Argument 3.
Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

0 0 0
0 1 -1
1 0 -1
1 1 0
0 -1 -1
-1 0 -1
-1 -1 0
22 0 -1
22 22 0

� The result is -1 (True) if either Argument 1 or Argument 2 value is non-zero but not both,
otherwise the result is 0 (False).

� The result can be sent directly to a digital output if desired.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT FLOAT CONSTANT FLOAT DIGITAL OUT

CONSTANT INTEGER CONSTANT INTEGER VARIABLE FLOAT
DIGITAL IN DIGITAL IN VARIABLE INTEGER

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: XOR
SUPPLY FAN digital output

With -1 constant integer
Move To SUPPLY FAN digital output

In this example, if SUPPLY FAN is on it will turn off, and vice versa.

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� To manipulate individual bits or toggle a value between zero and any other value, use BIT

XOR.

See Also: BIT XOR, NOT EQUAL?

OPERATIONS

2-202 Cyrano Command Reference

MATHEMATICAL OPERATIONS

COMPLEMENT Mathematical

Function: To change the sign of a number from positive to negative or from negative to positive.

Typical Use: To make a result positive after subtracting a large number from a small number.

Details: � Same as multiplying by -1. Thus, -1 becomes 1, 1 becomes -1, etc.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: COMPLEMENT
TEMPERATURE DIFFERENCE variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� The complement of zero is zero.
� Executes faster than multiplying by -1.

See Also: BIT NOT, NOT, TAKE ABSOLUTE VALUE OF

OPERATIONS

Cyrano Command Reference 2-203

DECREMENT VARIABLE Mathematical

Function: To decrease the value specified by 1.

Typical Use: To control count-down loops and other counting applications.

Details: � Same as subtracting 1: 9 becomes 8, 0 becomes -1, 22.22 becomes 21.22, etc.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: DECREMENT VARIABLE
NUM HOLES LEFT TO PUNCH variable integer

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Executes faster than subtracting 1.

See Also: INCREMENT VARIABLE

OPERATIONS

2-204 Cyrano Command Reference

DO ADDITION Mathematical

Function: To add two numeric values.

Typical Use: To add two numbers to get a third number, or to add one number to a running total.

Details: � Adds Arguments 1 and 2 and places the result in Argument 3.
� Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .
� Accommodates different item types such as float, integer, analog, and digital without

restriction.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: DO ADDITION
INGREDIENT 1 WEIGHT analog input

Plus INGREDIENT 2 WEIGHT analog input
Put Result In TOTAL WEIGHT analog output

Notes: � See the Mathematical Overview in Chapter 1 for rounding and other important information.

Error Codes: Queue error 33 = Overflow error � result too large

See Also: INCREMENT VARIABLE, DO SUBTRACTION

OPERATIONS

Cyrano Command Reference 2-205

DO DIVIDE Mathematical

Function: To divide two numerical values.

Typical Use: To perform a standard division operation.

Details: � Divides Argument 1 by Argument 2 and places the result in Argument 3.
� Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .
� If Argument 2 is 0, an error 36 (divide by zero) is added to the error queue.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: DO DIVIDE
TOTAL DISTANCE variable float

By 2.0 constant float
Put Result In HALF DISTANCE variable float

Notes: � See the Mathematical Overview in Chapter 1 for rounding and other important information.
� Avoid divide-by-zero errors by checking Argument 2 before doing the division to be sure it

does not equal zero. Use VARIABLE TRUE? (if it�s True, it�s not zero) or TEST NOT EQUAL (to
zero).

� Speed Tip: Use BIT SHIFT instead of DO DIVIDE for integer math when the multiplier is 2, 4, 8,
16, 32, 64, etc.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 36 = Divide by zero

See Also: DO MODULO, DO MULTIPLY, BIT SHIFT

OPERATIONS

2-206 Cyrano Command Reference

DO MODULO Mathematical

Function: To generate the remainder resulting from integer division.

Typical Use: To capture the remainder whenever integer modulo calculations are needed.

Details: � Always results in an integer value. Examples: 40 modulo 16 = 8, 8 modulo 8 = 0.
� If any arguments are floats, they are rounded to integers before the division occurs.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: DO MODULO
NUM PARTS PRODUCED variable integer

By MINUTES ELAPSED variable integer
Put Result In PRODUCTIVITY REMAINDER variable integer

Notes: � See the Mathematical Overview in Chapter 1 for important information.

See Also: DO DIVIDE, DO MULTIPLY

OPERATIONS

Cyrano Command Reference 2-207

DO MULTIPLY Mathematical

Function: To multiply two numeric values.

Typical Use: To multiply two numbers to get a third number or to modify one of the original numbers.

Details: � Multiplies Arguments 1 and 2 and places the result in Argument 3.
� Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: DO MULTIPLY
INGREDIENT 1 WEIGHT analog input

Times TEMPERATURE ADJUST variable float
Put Result In CORRECTED WEIGHT analog output

Notes: � See the Mathematical Overview in Chapter 1 for rounding and other important information.
� Speed Tip: Use BIT SHIFT instead for integer math where the multiplier is 2, 4, 8, 16, 32, 64,

etc.

Error Codes: Queue error 33 = Overflow error � result too large

See Also: DO DIVIDE, BIT SHIFT

OPERATIONS

2-208 Cyrano Command Reference

DO SUBTRACTION Mathematical

Function: To find the difference between two numeric values

Typical Use: To subtract two numbers to get a third number, or to reduce the first number by the amount of
the second.

Details: � Subtracts Argument 2 from Argument 1 and places the result in Argument 3.
� Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument .

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: DO SUBTRACTION
NUM WIDGETS TO PRODUCE variable integer

Minus NUM WIDGETS PRODUCED variable integer
Put Result In NUM WIDGETS LEFT TO MAKE variable integer

Notes: � See the Mathematical Overview in Chapter 1 for rounding and other important information.

Error Codes: Queue error 33 = Overflow error � result too large

See Also: DECREMENT VARIABLE, DO ADDITION

OPERATIONS

Cyrano Command Reference 2-209

INCREMENT VARIABLE Mathematical

Function: To increase the value specified by 1.

Typical Use: To control loop counters and other counting applications.

Details: � Same as adding 1: 8 becomes 9, -1 becomes 0, 12.33 becomes 13.33, etc.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: INCREMENT VARIABLE
LOOP COUNTER variable integer

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Executes faster than adding 1.

See Also: DECREMENT VARIABLE

OPERATIONS

2-210 Cyrano Command Reference

RAISE E TO Mathematical

Function: To raise the constant e to a specified power.

Typical Use: To solve mathematical equations where the constant e is required.

Details: � Raises e to the power specified in Argument 1.
� The constant e, the base of the natural system of logarithms, has a value of 2.7182818.
� The power (Argument 1) must be between -88.33654 and 88.72283.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: RAISE E TO
GAS PRESSURE analog input

Put Result In PRESSURE CALCULATION variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.

Error Codes: Queue error 33 = Overflow error � result too large

See Also: TAKE NATURAL LOG OF, RAISE TO POWER

OPERATIONS

Cyrano Command Reference 2-211

RAISE TO POWER Mathematical

Function: To raise a value to a specified power.

Typical Use: To solve exponentiation calculations.

Details: � Raises Argument 1 to the power specified by Argument 2 and places the result in Argument
3.

� For use with positive numbers only.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN ANALOG IN ANALOG OUT

ANALOG OUT ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: RAISE TO POWER
10 constant integer

To The 2 constant integer
Put Result In TEN SQUARED variable integer

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Multiplying a number by itself is faster than raising a number to the power of 2.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: RAISE E TO, TAKE SQUARE ROOT OF

OPERATIONS

2-212 Cyrano Command Reference

TAKE ABSOLUTE VALUE OF Mathematical

Function: To ensure that a value is positive.

Typical Use: To ensure a positive value when the result of a subtraction operation may be negative.

Details: � Copies Argument 1 to Argument 2, dropping the minus sign if it exists.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
VARIABLE FLOAT VARIABLE INTEGER

VARIABLE INTEGER

Example: TAKE ABSOLUTE VALUE OF
NEGATIVE VALUE variable float

Put Result In POSITIVE VALUE variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� To change a negative value to a positive value, make Arguments 1 and 2 the same.
� Use to convert a -1 Boolean result to a 1 for programs communicating with the Mistic

controller that represent logical True with 1 rather than -1. This is required only when such
programs read Boolean values from the Mistic controller.

See Also: COMPLEMENT

OPERATIONS

Cyrano Command Reference 2-213

TAKE ARC COS OF Mathematical

Function: To derive the angular value from a cosine value.

Typical Use: To solve trigonometric calculations.

Details: � Calculates the arc cosine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a cosine value with a range of -1.0 to 1.0.
� The angular value returned is in radians with a range of 0 to 6.283185. (To convert radians to

degrees, multiply by 57.29578.)

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE ARC COS OF
X variable float

Put Result In RADIANS variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Use TAKE COS OF if the angle is known and the cosine is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE COS OF, TAKE ARC SIN OF, TAKE ARC TAN OF

OPERATIONS

2-214 Cyrano Command Reference

TAKE ARC SIN OF Mathematical

Function: To derive the angular value from a sine value.

Typical Use: To solve trigonometric calculations.

Details: � Calculates the arc sine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a sine value with a range of -1.0 to 1.0.
� The angular value returned is in radians with a range of 0 to 6.283185. (To convert radians to

degrees, multiply by 57.29578.)

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE ARC SIN OF
X variable float

Put Result In RADIANS variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Use TAKE SIN OF if the angle is known and the sine is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE SIN OF, TAKE ARC COS OF, TAKE ARC TAN OF

OPERATIONS

Cyrano Command Reference 2-215

TAKE ARC TAN OF Mathematical

Function: To derive the angular value from a tangent value.

Typical Use: To solve trigonometric calculations.

Details: � Calculates the arc tangent of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a tangent value.
� The angular value returned is in radians with a range of 0 to 6.283185. (To convert radians to

degrees, multiply by 57.29578.)

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE ARC TAN OF
X variable float

Put Result In RADIANS variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Use TAKE TAN OF if the angle is known and the tangent is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE ARC COS OF, TAKE ARC SIN OF

OPERATIONS

2-216 Cyrano Command Reference

TAKE COS OF Mathematical

Function: To derive the cosine of an angle.

Typical Use: To solve trigonometric and electrical power calculations.

Details: � Calculates the cosine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be expressed in radians. (To convert degrees to radians,

divide by 57.29578.)
� Negative radians are converted to positive radians before the cosine is calculated.
� Radian values in excess of 6.283185 (360°) will be treated as increments of 6.283185 before

the cosine is calculated.
� The result is a sinusoidal value ranging from -1.0 to 1.0 that repeats every 6.283185 radians

(360°).
� The following are examples of cosine calculations:

RADIANS DEGREES RESULT

0.0 0.0 1.0
0.785398 45 0.707106
1.570796 90 0.0
2.356194 135 -0.707106
3.141592 180 -1.0
3.926991 225 -0.707106
4.712388 270 0.0
5.497787 315 0.707106
6.283185 360 1.0

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE COS OF
RADIANS variable float

Put Result In COSINE variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Electrical power factor is equal to the cosine of the angle by which the current lags the

voltage.
� Use TAKE ARC COS OF if the cosine is known and the angle is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE ARC COS OF, TAKE SIN OF, TAKE TAN OF

OPERATIONS

Cyrano Command Reference 2-217

TAKE COSH OF Mathematical

Function: To derive the hyperbolic cosine of a value.

Typical Use: To solve hyperbolic calculations.

Details: � Calculates the hyperbolic cosine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a value from -88.33654 to 88.72283.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE COSH OF
2.0 constant float

Put Result In ANSWER variable float

Error Codes: Queue error 33 = Overflow error � result too large

See Also: TAKE SINH OF, TAKE TANH OF

OPERATIONS

2-218 Cyrano Command Reference

TAKE NATURAL LOG OF Mathematical

Function: To calculate the natural log (base e) of a value.

Typical Use: To solve natural log calculations.

Details: � Takes the natural log of Argument 1 and places the result in Argument 2.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE NATURAL LOG OF
FERMENTATION RATE variable float

Put Result In RATE CALCULATION variable float

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE NATURAL LOG OF, RAISE TO POWER

OPERATIONS

Cyrano Command Reference 2-219

TAKE SIN OF Mathematical

Function: To derive the sine of an angle.

Typical Use: To solve trigonometric calculations.

Details: � Calculates the sine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be expressed in radians. (To convert degrees to radians,

divide by 57.29578.)
� Negative radians are converted to positive radians before the sine is calculated.
� Radian values in excess of 6.283185 (360°) will be treated as increments of 6.283185 before

the sine is calculated.
� The result is a sinusoidal value ranging from -1.0 to 1.0 that repeats every 6.283185 radians

(360°).
� The following are examples of sine calculations:

RADIANS DEGREES RESULT

0.0 0.0 0.0
0.785398 45 0.707106
1.570796 90 1.0
2.356194 135 0.707106
3.141592 180 0.0
3.926991 225 -0.707106
4.712388 270 -1.0
5.497787 315 -0.707106
6.283185 360 0.0

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE SIN OF
RADIANS variable float

Put Result In SINE variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Use TAKE ARC SIN OF if the sine is known and the angle is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE ARC SIN OF, TAKE COS OF, TAKE TAN OF

OPERATIONS

2-220 Cyrano Command Reference

TAKE SINH OF Mathematical

Function: To derive the hyperbolic sine of a value.

Typical Use: To solve hyperbolic calculations.

Details: � Calculates the hyperbolic sine of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a value from -88.33654 to 88.72283.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE SINH OF
2.0 constant float

Put Result In ANSWER variable float

Error Codes: Queue error 33 = Overflow error � result too large

See Also: TAKE COSH OF, TAKE TANH OF

OPERATIONS

Cyrano Command Reference 2-221

TAKE SQUARE ROOT OF Mathematical

Function: To calculate the square root of a value.

Typical Use: To solve square root calculations.

Details: � Takes the square root of Argument 1 and places the result in Argument 2.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE SQUARE ROOT OF
4 constant integer

Put Result In TWO variable integer

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Executes faster than raising a number to the 0.5 power.
� Taking the square root of a negative value will result in zero.
� To convert a differential pressure value representing flow to the proper engineering units,

convert its current value to a number between 0 and 1, take the square root of this number,
then convert it to the desired engineering units. For example: A 0�100" flow signal that
represents 0�50,000 CFH has a value of 50. 50/100 = 0.5. The square root of 0.5 is 0.7071.
0.7071 times 50,000 = 35355 CFH.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: RAISE TO POWER

OPERATIONS

2-222 Cyrano Command Reference

TAKE TAN OF Mathematical

Function: To derive the tangent of an angle.

Typical Use: To solve electrical Q factor and trigonometric calculations.

Details: � Calculates the tangent of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be expressed in radians. (To convert degrees to radians,

divide by 57.29578.)
� Negative radians are converted to positive radians before the tangent is calculated.
� Radian values in excess of 6.283185 (360°) will be treated as increments of 6.283185 before

the tangent is calculated.
� The result is an extremely nonlinear value ranging from -¥ to ¥ that repeats every 6.283185

radians (360°).

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE TAN OF
RADIANS variable float

Put Result In TANGENT variable float

Notes: � See the Mathematical Overview in Chapter 1 for important information.
� Electrical Q factor is equal to the tangent of the angle by which the current lags the voltage in

a coil.
� Use TAKE ARC TAN OF if the tangent is known and the angle is desired.

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE ARC TAN OF, TAKE COS OF, TAKE SIN OF

OPERATIONS

Cyrano Command Reference 2-223

TAKE TANH OF Mathematical

Function: To derive the hyperbolic tangent of a value.

Typical Use: To solve hyperbolic calculations.

Details: � Calculates the hyperbolic tangent of Argument 1 and places the result in Argument 2.
� Argument 1 (the operand) must be a value between -8.21 and 8.665.
� The result is a value ranging from -1.0 to 1.0.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG OUT

ANALOG OUT VARIABLE FLOAT
CONSTANT FLOAT VARIABLE INTEGER

CONSTANT INTEGER VARIABLE TIMER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: TAKE TANH OF
2.0 constant float

Put Result In ANSWER variable float

Error Codes: Queue error 33 = Overflow error � result too large
Queue error 35 = Not a number � result invalid

See Also: TAKE COSH OF, TAKE SINH OF

OPERATIONS

2-224 Cyrano Command Reference

PID OPERATIONS

DISABLE PID LOOP PID

Function: To disable communication between the program in the Mistic controller and the PID.

Typical Use: To disconnect the program from a specified PID for simulation and program testing.

Details: � All PID communication is enabled by default.
� Does not affect the PID at the I/O unit in any way. While communication to the PID is disabled,

any Cyrano command that refers to it by name will not affect it because the command will
only have access to the IVAL.

� No changes can be made to the PID by the program in the Mistic controller while the PID is
disabled.

Arguments: ARGUMENT 1
PID LOOP

Example: DISABLE PID LOOP
HEATER 3 PID loop name

Notes: � To stop updating the PID output, use SET PID MANUAL MODE instead of DISABLE PID LOOP.
� Many additional PID loop control features are available, including DEACTIVATE PID OUTPUT.

See the Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult the Opto
22 BBS.

Dependencies: � Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET PID MANUAL MODE

OPERATIONS

Cyrano Command Reference 2-225

ENABLE PID LOOP PID

Function: To enable communication between the program in the Mistic controller and the PID.

Typical Use: To reconnect the program to a specified PID after simulation or program testing.

Details: � All PID communication is enabled by default.
� Does not affect the PID at the I/O unit in any way. While communication to the PID is enabled,

any Cyrano command that refers to it by name will have full access.

Arguments: ARGUMENT 1
PID LOOP

Example: ENABLE PID LOOP
HEATER 3 PID loop name

Notes: � Many additional PID loop control features are available, including ACTIVATE PID OUTPUT. See
the Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult the Opto 22
BBS.

Dependencies: � Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: DISABLE PID LOOP

OPERATIONS

2-226 Cyrano Command Reference

READ OUTPUT RATE OF CHANGE PID

Function: To read the output rate-of-change limit of the PID.

Typical Use: To verify that the output rate-of-change limit is as expected.

Details: � The output rate-of-change value defines how much the PID output can change per scan
period. The units are the same as those defined for the PID output channel.

� The default value is the span of the output channel. This allows the PID output to move as
much as 100% per scan period. For example, if the PID output channel is 4�20 mA, 16.00
would be returned by default, representing 100% of the span.

Arguments: ARGUMENT 1 ARGUMENT 2
PID LOOP VARIABLE FLOAT

VARIABLE INTEGER

Example: READ OUTPUT RATE OF CHANGE
From HEATER 3 PID loop name
Move To PID RATE LIMIT variable float (the value read)

Notes: � See the PID Overview in Chapter 1 for important information.
� Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270) or consult the Opto 22 BBS.

Dependencies: � Communication to the PID must be enabled for this command to read the actual value from
the PID.

� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET OUTPUT RATE OF CHANGE, SET PID SCAN RATE

OPERATIONS

Cyrano Command Reference 2-227

READ PID INPUT PID

Function: To read the input value (also known as the process variable) of the PID.

Typical Use: To verify that the input to the PID is within the working range.

Details: � The value read has the same engineering units as the specified PID input channel.
� A value of -32,768 means the input is out of range and the PID output is no longer being

updated.

Arguments: ARGUMENT 1 ARGUMENT 2
PID LOOP VARIABLE FLOAT

VARIABLE INTEGER

Example: READ PID INPUT
From HEATER 3 PID loop name
Move To PID INPUT VALUE variable float (the value read)

Notes: � See the PID Overview in Chapter 1 for important information.
� Use to detect bad or out-of-range PID input values. When such a value is found, use the

MOVE command to change the PID output as required.

Dependencies: � Communication to the PID must be enabled for this command to read the actual value from
the PID.

� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP

OPERATIONS

2-228 Cyrano Command Reference

READ PID OUTPUT PID

Function: To read the output value of the PID.

Typical Use: To read the PID output and send it to a digital time proportional output (TPO) on a digital I/O unit.

Details: � The value read has the same engineering units as the specified PID output channel.

Arguments: ARGUMENT 1 ARGUMENT 2
PID LOOP VARIABLE FLOAT

VARIABLE INTEGER

Example: READ PID OUTPUT
From HEATER 3 PID loop name
Move To PID OUTPUT VALUE variable float (the value read)

Notes: � See the PID Overview in Chapter 1 for important information.
� Define the output channel as one of the upper eight channels (these channels do not have to

physically exist).
� Scale this output channel 0�100, since the digital TPO wants to see a range of 0�100.
� Use SET TIME PROP PERCENT to send the value read from the PID output to the digital TPO.

Do this based on elapsed time. For example, if the TPO period is five seconds, send the value
read at least every five seconds.

� This command can also be used to detect when the PID output updates (which is always at
the end of the scan period).

Dependencies: � Communication to the PID must be enabled for this command to read the actual value from
the PID.

� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET TIME PROP PERCENT, SET TIME PROP OUTPUT

OPERATIONS

Cyrano Command Reference 2-229

READ PID SETPOINT PID

Function: To read the setpoint value of the PID.

Typical Use: To verify that the setpoint of the PID is as expected and to store the setpoint for later use.

Details: � The value read has the same engineering units as the specified PID setpoint.
� The setpoint can be an analog channel or it can come from the program in the Mistic

controller using SET PID SETPOINT.

Arguments: ARGUMENT 1 ARGUMENT 2
PID LOOP VARIABLE FLOAT

VARIABLE INTEGER

Example: READ PID SETPOINT
From HEATER 3 PID loop name
Move To PID SETPOINT VALUE variable float (the value read)

Notes: � See the PID Overview in Chapter 1 for important information.
� Can be used to detect and log changes made to the PID setpoint.

Dependencies: � Communication to the PID must be enabled for this command to read the actual value from
the PID.

� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET PID SETPOINT.

OPERATIONS

2-230 Cyrano Command Reference

SET D TERM PID

Function: To change the derivative value of the PID.

Typical Use: To improve PID performance in systems with long delays.

Details: � The derivative is used to determine how much effect the change-in-slope of the PID input
should have on the PID output.

� Derivative is useful in predicting the future value of the PID input based on the change in
trend of the PID input as recorded during the last three scan periods.

� Derivative is used in systems with long delays between the time that the PID output changes
and the time that the PID input responds to the change.

� Too much derivative results in excessive amounts of PID output change.
� Too little derivative results in a PID output that is always out of phase with the PID input in

systems with long delays.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT PID LOOP

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET D TERM
From D TERM VALUE variable float (the value to send)
To HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Leave the derivative at zero unless you are sure you need it and until the gain and integral

have been determined.
� The derivative is multiplied by the gain. Hence, for example, if the gain is doubled, you may

wish to cut the derivative in half to keep its effect the same.
� Typical derivative values range from 0.001 to 20.
� Use sparingly. A little derivative goes a long way!

Dependencies: � The P term (gain) must not be zero.
� Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP

OPERATIONS

Cyrano Command Reference 2-231

SET I TERM PID

Function: To change the integral value of the PID.

Typical Use: To improve PID performance in systems with steady-state errors.

Details: � The integral is used to reduce the error between the PID setpoint and the PID input to zero
under steady-state conditions. Its value determines how much the error affects the PID
output.

� Always use a positive integral value. Do not use zero.
� Too much integral results in excessive amounts of PID output change.
� Too little integral results in long lasting errors between the PID input and the PID setpoint.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT PID LOOP

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET I TERM
From I TERM VALUE variable float (the value to send)
To HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Use an initial value of 1.0 until a better value is determined.
� The integral is multiplied by the gain. Hence, for example, if the gain is doubled, you may wish

to cut the integral in half to keep its effect the same.
� Typical integral values range from 0.1 to 20.

Dependencies: � P term (gain) must not be zero.
� Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP

OPERATIONS

2-232 Cyrano Command Reference

SET OUTPUT RATE OF CHANGE PID

Function: To change the output rate-of-change limit of the PID.

Typical Use: To slow down the PID output rate-of-change as it responds to large input or setpoint changes.

Details: � Slows the PID output rate-of-change when a large change occurs to the setpoint or the input.
� The output rate-of-change value defines how much the PID output can change per scan

period. The units are the same as those defined for the PID output channel.
� The default value is the span of the output channel. This allows the PID output to move as

much as 100% per scan period. For example, if the PID output channel is 4�20 mA, 16.00
would be returned by default, representing 100% of the span.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT PID LOOP

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET OUTPUT RATE OF CHANGE
From PID RATE LIMIT variable float (the value to send)
To HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Tune the loop before reducing the output rate-of-change.
� Set the output rate-of-change back to 100% before retuning the PID.
� Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270) or consult the Opto 22 BBS.

Dependencies: � Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, READ OUTPUT RATE OF CHANGE, SET PID SCAN RATE

OPERATIONS

Cyrano Command Reference 2-233

SET P TERM PID

Function: To change the gain value of the PID.

Typical Use: To tune the PID for more or less aggressive performance.

Details: � Gain is the inverse of �proportional band,� a term used in many PID applications.
� Gain is used to determine the amount of PID output response to a change in PID input or PID

setpoint.
� Always use a non-zero gain value.
� Gain has a direct multiplying effect on the integral and derivative values.
� Use a negative gain to reverse the direction of the PID output (typical for cooling applications).
� Too much gain results in excessive amounts of PID output change.
� Too little gain results in long lasting errors between the PID input and the PID setpoint.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT PID LOOP

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET P TERM
From GAIN variable float (the value to send)
To HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Use an initial value of 1.0 or -1.0 until a better value is determined.
� Typical gain values range from 1 to 40 and -1 to -40.
� Use more gain to improve response to step changes.
� Use less gain to improve stability.

Dependencies: � Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP

OPERATIONS

2-234 Cyrano Command Reference

SET PID AUTO MODE PID

Function: To change the mode of the PID to auto.

Typical Use: To put the PID in auto mode from manual mode.

Details: � While in auto mode, the PID output functions normally.

Arguments: ARGUMENT 1
PID LOOP

Example: SET PID AUTO MODE
HEATER 3 PID loop name

Notes: � Use SET PID SETPOINT after using this command to restore the PID setpoint to its original
value. This assumes that �setpoint tracking� is enabled (as it is by factory default) and that
the original setpoint was saved prior to switching to manual mode.

� Even when the PID is in auto mode, the PID output can be changed manually. Use the MOVE
command, the Debugger, or an MMI to write directly to the PID output analog channel. The
new PID output value will be the starting value used at the end of the next PID scan period.
This procedure can be helpful in pre-setting the PID output where it needs to be.

Dependencies: � Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET PID MANUAL MODE

OPERATIONS

Cyrano Command Reference 2-235

SET PID INPUT PID

Function: To send an input value (also known as the process variable) to the PID when its input does not
come from an analog input channel on the same I/O unit.

Typical Use: To get an input from another I/O unit and forward it to the PID.

Details: � Use this command based on a timed interval. For example, if the PID scan rate is 1 second,
send the input value to the PID approximately every second (anywhere from 0.9 seconds to
1.0 seconds would be adequate).

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN PID LOOP

ANALOG OUT
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET PID INPUT
To INPUT VALUE variable float (the value to send)
On HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Do not send the input value to the PID any slower than the PID scan rate, since this will

adversely affect the PID performance.
� Sending the input value to the PID more than 10 times per second can slow the performance

of event/reactions on the I/O unit.

Dependencies: � Must configure the PID input to be FROM HOST.
� Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET PID SCAN RATE

OPERATIONS

2-236 Cyrano Command Reference

SET PID MANUAL MODE PID

Function: To change the mode of the PID to manual.

Typical Use: To put the PID in manual mode for maintenance, for testing, or simply to turn it off.

Details: � While in manual mode, the PID output is not updated by the PID calculation. Instead, it retains
its last value.

� To change the PID output value, use the MOVE command, the Debugger, or an MMI to write
directly to the PID output analog channel. The new PID output value will be the starting value
when the PID is changed to auto mode.

� While in manual mode, the PID setpoint is changed to match the PID input value. Although
this provides for a �bumpless transfer� when switching back to auto mode, the original PID
setpoint is lost. This feature can be disabled by changing the PID control word. See the Mistic
Analog and Digital Commands Manual (Opto 22 form 270) or consult the Opto 22 BBS.

Arguments: ARGUMENT 1
PID LOOP

Example: SET PID MANUAL MODE
HEATER 3 PID loop name

Notes: � Use READ PID SETPOINT first to save the PID setpoint to a variable float.

Dependencies: � Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, SET PID AUTO MODE

OPERATIONS

Cyrano Command Reference 2-237

SET PID SCAN RATE PID

Function: To change the scan rate (update period) for a PID calculation.

Typical Use: To adapt a PID to the characteristics of the closed-loop control system under program control.

Details: � This is the most important parameter of all the configurable PID parameters. Note that the
loop may be impossible to tune if the scan rate is significantly different from the loop dead
time.

� The value to send is in seconds. Values range from 0.1 to 6553.5 seconds in 0.1-second
increments. The default is 0.1 seconds.

� This command is useful for adapting a PID to work for either heating or cooling when the heat
mode has a different loop dead time than the cool mode.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT PID LOOP

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET PID SCAN RATE
To SCAN RATE variable float (the value to send)
On HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Do not use frequently since this will adversely affect the PID performance.

Dependencies: � Communication to the PID must be enabled for this command to send the value to the PID.
� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP

OPERATIONS

2-238 Cyrano Command Reference

SET PID SETPOINT PID

Function: To change the setpoint value of the PID.

Typical Use: To raise or lower the setpoint or to restore it to its original value.

Details: � The value to send has the same engineering units as the specified PID input.
� Values are the same as those for the PID input.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN PID LOOP

ANALOG OUT
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET PID SETPOINT
From PID SETPOINT VALUE variable float (the value to send)
To HEATER 3 PID loop name

Notes: � See the PID Overview in Chapter 1 for important information.
� Sending the setpoint value to the PID more than 10 times per second can slow the

performance of event/reactions on the I/O unit.
� Send a new setpoint value only when necessary.

Dependencies: � Communication to the PID must be enabled for this command to read the actual value from
the PID.

� Requires an analog multifunction I/O unit (HRD I/O units are not supported).

See Also: ENABLE PID LOOP, READ PID SETPOINT

OPERATIONS

Cyrano Command Reference 2-239

STRING OPERATIONS

APPEND CHARACTER String

Function: To add a character to the end of a variable string.

Typical Use: To build strings consisting of non-printable or binary characters.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� The character is represented by an ASCII value. A space is a character 32 and a �1� is a
character 49.

� Appending a value of zero is legal and will append a null byte.
� If the appended value is greater than 255 (hex FF) or less than 0, the value will be truncated to

eight bits, i.e., -2 becomes hex FE and 257 (hex 101) becomes 1.
� Floats (if used) are automatically rounded to integers before conversion.
� If the string cannot hold any more characters, the character will not be appended.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT VARIABLE STRING

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: The following example appends a �!� to a string (for example, �Hello� would become �Hello!�):

APPEND CHARACTER
From 33 constant integer for �!�
To HELLO STRING variable string

The following example appends an ETX (character 3) to a string. An ETX or some other
terminating character may be required when sending commands to serial devices, such as
barcode printers, scales, or single-loop controllers.

APPEND CHARACTER
From 3 constant integer for �ETX�
To COMMAND STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Always use MOVE STRING before using this command if the string needs to be cleared.

Moving an empty string (��) to a variable string will clear it.

Dependencies: � The variable string must be wide enough to hold one more character.

See Also: APPEND STRING

OPERATIONS

2-240 Cyrano Command Reference

APPEND STRING String

Function: To add a string to the end of another variable string.

Typical Use: To build strings.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� If the variable string cannot hold all of the appended string, the remaining portion of the string
to be appended will be discarded.

� Single characters can be appended (yielding the same result as an APPEND CHARACTER).
For example, to append a �space,� use the space bar rather than the number 32.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE STRING
VARIABLE STRING

Example: The following example appends the string � world� to a string. For example, �Hello� would
become �Hello world� (note the space before the �w� in � world�).

APPEND STRING
From � world� constant string
To HELLO STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Always use MOVE STRING before using this command if the string needs to be cleared.

Moving an empty string (��) to a variable string will clear it.

Dependencies: � The variable string must be wide enough to hold the appended string.

See Also: APPEND CHARACTER

OPERATIONS

Cyrano Command Reference 2-241

CONV. FORMATTED # TO HEX STR String

Function: To convert an integer to a formatted hex string having a specified length, or to convert a float to
an eight-byte IEEE hex format.

Typical Uses: � To allow efficient transfer of numeric data via a serial port. (The largest number can be sent
using only eight hex characters.)

� To print a hex number or to send it to another device with a fixed length.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� The Length parameter (Argument 2) specifies the final length of the resulting string. Leading
zeros are added if required.

� To send a float value in native IEEE format, set Argument 2 to 8 and use a variable or constant
float. Use CONV. IEEE HEX STRING TO NUMBER to convert the eight hex characters back to a
float.

� If the resulting hex string is wider than the specified length, the most significant hex
characters will be discarded.

� If the declared width of the variable string is less than the specified length, the remaining portion (least
significant characters) of the formatted string will be discarded.

� Upper case is used for all hex characters, i.e., 1000 decimal is represented as 3E8 rather than
3e8.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER VARIABLE STRING

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: The following example converts a decimal integer to a hex string. If MY ADDRESS has the value
255, the resulting hex string would be �00FF� because Length is 4. If Length had been 2, the hex
string would have become �FF.�

CONV. FORMATTED # TO HEX STR
From MY ADDRESS variable integer
Length 4 constant integer
Move to ADDRESS AS HEX variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Caution: Do not use a float where an integer would suffice. Floats are not automatically

converted to integers with this command.
� Must use a Length of 8 when converting a float.

Dependencies: � The variable string must be wide enough to hold the hex string.

See Also: CONVERT FORMATTED # TO STR., CONVERT NUMBER TO HEX STRING, CONVERT NUMBER
TO STRING, CONVERT NUMBER TO STR. FIELD

OPERATIONS

2-242 Cyrano Command Reference

CONV. IEEE HEX STRING TO NUMBER String

Function: To convert a hex string representing an IEEE float in native IEEE format to a number.

Typical Use: To retrieve the float value previously stored as hex after using CONV. FORMATTED # TO HEX
STR.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Use between Mistic controllers or other computers that use the IEEE format when efficiency
of communications is desired.

� The four bytes in memory (in IEEE float format) that hold the float value are converted to eight
hex bytes.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: The following example converts a hex string into a float value. For example, if STRING FROM
PORT contains �418E6666� then MY FLOAT VAL becomes 17.8.

CONV. IEEE HEX STRING TO NUMBER
From STRING FROM PORT variable string
Move To MY FLOAT VAL variable float

Notes: � See the String Overview in Chapter 1 for important information.

See Also: CONV. FORMATTED # TO HEX STR, CONVERT HEX STRING TO NUMBER

OPERATIONS

Cyrano Command Reference 2-243

CONV. FLOATING POINT # TO STR. String
(formerly CONV. FORMATTED # TO STR.)

Function: To convert a float to a formatted string having a specified length and number of digits to the right
of the decimal.

Typical Use: To print a float or send it to another device using a specific format or length.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� The Length parameter (Argument 2) specifies the final length of the resulting string, including
the decimal point. Leading spaces (character 32) are added if required.

� The Decimals parameter (Argument 3) specifies the number of digits to the right of the
decimal point.

� Rounding occurs whenever digits on the right must be dropped.
� Digits to the left of the decimal point are never dropped.
� If the whole number portion (digits to the left of the decimal plus the decimal itself) of the resulting

string would be larger than its allocated space, the resulting string will be filled with asterisks to alert
you to the problem. For example, if the value to convert is 123.4567 with a Length value of 5 and a
Decimals value of 2, the space allocated to the whole number portion is only three (5 - 2). Since four
characters (�123.�) are required, the formatted number �123.46� will not fit, so �*****� will be moved to
the destination string.

� If the declared width of the variable string is less than the specified length, the remaining portion (least
significant characters) of the formatted string will be discarded.

� Although integers can also be converted, significant rounding errors will occur for values of
1,000,000 or more.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
ANALOG IN CONSTANT INTEGER CONSTANT INTEGER VARIABLE STRING

ANALOG OUT VARIABLE INTEGER VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: The following example converts a decimal number in variable MY VALUE to a string (for
example, if MY VALUE is 12.3435, the string becomes �12.34�):

CONV. FLOATING POINT # TO STR.
From MY VALUE variable float
Length 5 constant integer
Decimals 2 constant integer
Move to VALUE AS STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Set decimals to zero to get an integer. Normal rounding will occur.

Dependencies: � The variable string must be wide enough to hold the resulting formatted string.

See Also: CONV. STR. TO FLOATING POINT #, CONVERT NUMBER TO STRING

OPERATIONS

2-244 Cyrano Command Reference

CONVERT HEX STRING TO NUMBER String

Function: To convert a hex string value to an integer value.

Typical Use: To accommodate communications where values may be represented by hex strings.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� An empty string results in a value of zero.
� Conversion is not case-sensitive. For example, the strings �FF,� �ff,� �fF,� and �Ff� all convert

to a value of 255.
� Legal hex characters are �0� through �1,� �A� through �F,� and �a� through �f.�
� A string containing an illegal character will be converted up to the point just before the illegal

character. For example, the strings �AG� and �A 123� will both convert to 10 (the value of
�A�).

� Leading spaces in strings will convert to zeros.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: CONVERT HEX STRING TO NUMBER
From STRING FROM PORT variable string
Move To INT VALUE variable integer

Notes: � See the String Overview in Chapter 1 for important information.
� Must use CONV. IEEE HEX STRING TO NUMBER if the hex string contains an IEEE float.

See Also: CONVERT NUMBER TO HEX STRING, CONVERT STRING TO NUMBER, CONV. IEEE HEX STRING
TO NUMBER

OPERATIONS

Cyrano Command Reference 2-245

CONVERT NUMBER TO HEX STRING String

Function: To convert a decimal integer to a hex string.

Typical Uses: � To send an integer value with a predetermined length to another Mistic controller.
� To print a hex representation of a number or to send it to another device.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Does not add leading zeros or spaces.
� If the resulting string is too big, the string will be truncated. No error will be reported and

memory will not be corrupted.
� If the declared width of the variable string is less than the resulting hex string length, the

remaining portion of the hex string (least significant characters) will be discarded.
� Upper case is used for all hex characters, i.e., 1000 decimal is represented as 3E8 rather than

3e8.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE STRING

ANALOG OUT
CONSTANT FLOAT

CONSTANT INTEGER
DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT

VARIABLE FLOAT
VARIABLE INTEGER
VARIABLE TIMER

Example: The following example converts a number in MY ADDRESS to a hex string (for example, if MY
ADDRESS has the value 256, the hex string becomes �100�):

CONVERT NUMBER TO HEX STRING
From MY ADDRESS variable integer
Move to ADDRESS AS HEX variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Must use CONV. FORMATTED # TO HEX STR when converting floats.

Dependencies: � The variable string must be wide enough to hold the resulting hex string.

See Also: CONV. FORMATTED # TO HEX STR, CONVERT FORMATTED # TO STR., CONVERT NUMBER TO
STRING, CONVERT NUMBER TO STR. FIELD

OPERATIONS

2-246 Cyrano Command Reference

CONVERT NUMBER TO STR. FIELD String

Function: To convert a number to a string using a specified minimum length.

Typical Use: To fix the length of an integer before sending it to a serial printer or to another device.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� The resulting string length will be greater than or equal to the length specified in the Length
parameter (Argument 2).

� If the declared width of the variable string is less than the resulting string length, the
remaining portion of the string (characters on the right) will be discarded.

� A value whose length is less than that specified will have leading spaces added as
necessary.

� A value whose length is equal to or greater than the specified length will be sent as is.
� Examples:

23456 becomes 23456 There are six digits (one leading space in front of the 2).
0 becomes 0 There are six digits (five leading spaces in front of the 0).

2345678 becomes 2345678 The six-digit specified length is ignored.
12.3 becomes 1.23e01 The six-digit specified length is ignored.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER VARIABLE STRING

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: CONVERT NUMBER TO STR. FIELD
From VALUE variable integer
Length 6 constant integer
Move to VALUE AS STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Use CONV. FORMATTED # TO STR. to better control the resulting format, if desired.

Dependencies: � The variable string must be wide enough to hold the resulting string.

See Also: CONV. FORMATTED # TO HEX STR, CONVERT FORMATTED # TO STR., CONVERT NUMBER TO
STRING, CONVERT NUMBER TO HEX STRING

OPERATIONS

Cyrano Command Reference 2-247

CONVERT NUMBER TO STRING String

Function: To convert a decimal number to a string.

Typical Use: To print a number or send it to another device.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Represents floating point values in scientific notation (e.g., 1.234e+01 rather than 12.34).
� If the declared width of the variable string is less than the resulting string length, the

remaining portion of the string (characters on the right) will be discarded.
� Examples:

12.3456 becomes 1.23456e+01 Note the exponential format for floats.
12345 becomes 12345 Note no change for integers.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE STRING

ANALOG OUT
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: The following example converts a decimal number in MY VALUE to a string (for example, if MY
VALUE is 12.34, the string becomes �1.234e+01�; if MY VALUE is the integer value 1234, the
string becomes �1234�):

CONVERT NUMBER TO STRING
From MY VALUE variable float
Move to VALUE AS STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� To avoid scientific notation or to have greater control over format, use CONV. FORMATTED #

TO STR. instead.

Dependencies: � The variable string must be wide enough to hold the resulting string.

See Also: CONV. STR. TO INTEGER #, CONV. FLOATING POINT # TO STR.,

OPERATIONS

2-248 Cyrano Command Reference

CONV. STR. TO FLOATING POINT # String
(formerly CONVERT STRING TO NUMBER)

Function: To convert a string to a float value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources are
strings.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Although this command can be used to convert a string to an integer, significant rounding
errors will occur for values of 1,000,000 or more.

� Valid, convertible characters are 0 to 9, the decimal point, and �e� (natural log base). Spaces
are also considered valid, although they are not converted. Note in particular that commas
are invalid.

� Strings are analyzed from left to right.
� Spaces divide text blocks within a string.
� If a space appears to the right of a valid text block, the space and all characters to its right will

be ignored. For example, �123 4� and �123.0 X� both convert to 123.0.
� If an invalid character is found, the string will be converted to 0.0. For example, �X 22.2 4� and �1,234 45�

both convert to 0.0, since the X in the first string and the comma in the second are invalid. Note, however,
that �45 1,234� would convert to 45.0, since the invalid character (�,�) would be ignored once the valid text
block (�45�) was found.

� The following are string-to-float conversion examples:
STRING FLOAT

�� 0.0
�A12� 0.0
�123P� 0.0

�123 P� 123.0
�123.456� 123.456

�22 33 44� 22.0
� 22.11� 22.11

�1,234.00� 0.0
�1234.00� 1234.0
�1.23e01� 12.3

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN VARIABLE STRING

ANALOG OUT
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: CONV. STR. TO FLOATING POINT #
From STRING FROM PORT variable string
Move To FLOAT VALUE variable float

Notes: � See the String Overview in Chapter 1 for important information.

See Also: CONV. FLOATING POINT # TO STR., CONV. STR. TO INTEGER #

OPERATIONS

Cyrano Command Reference 2-249

CONV. STR. TO INTEGER # String

Function: To convert a string to an integer value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources are
strings.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Valid, convertible characters are 0 to 9. Decimals are valid if they are a part of text that can be
considered a float value. Spaces are also considered valid, although they are not converted.
Note in particular that commas are invalid.

� Strings are analyzed from left to right.
� Text that could be read as a float value is rounded to an integer value. For example, �123.6�

converts to 124.
� Spaces divide text blocks within a string.
� If a space appears to the right of a valid text block, the space and all characters to its right will

be ignored. For example, �123 4� and �123.0 X� both convert to 123.
� If an invalid character is found, the string will be converted to 0. For example, �X 22 4� and �1,234 45�

both convert to 0, since the X in the first string and the comma in the second are invalid. Note, however, that
�45 1,234� would convert to 45, since the invalid character (�,�) would be ignored once the valid text block
(�45�) was found.

� The following are string-to-integer conversion examples:
STRING INTEGER

�� 0
�A12� 0
�123P� 0

�123 P� 123
�123.456� 123

�22 33 44� 22
� 22.51� 23
�1,234� 0

�1234.00� 1234

Arguments: ARGUMENT 1 ARGUMENT 2

CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: CONV. STR. TO INTEGER #
From STRING FROM PORT variable string
Move To INT VAL variable integer

Notes: � See the String Overview in Chapter 1 for important information.
� Avoid alpha characters. Stick with 0 to 9.

See Also: CONV. STR. TO FLOATING POINT #, CONVERT NUMBER TO STRING

OPERATIONS

2-250 Cyrano Command Reference

GET NTH CHARACTER String

Function: To get the decimal ASCII value for a character in a string.

Typical Use: To examine characters in a string one by one especially when the characters may not be
printable ASCII.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Valid range for the Index parameter (Argument 2) is 1 to the string length.
� A negative result (-46) indicates an error in the value of the Index parameter used.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: The following example gets the decimal ASCII value for a character in the string �ABC.� If the
Index is 1, the returned value will be 65 (the decimal ASCII value for �A�).

GET NTH CHARACTER
�ABC� constant string

Index INDEX variable integer
Put Result In ASCII VAL variable integer

Notes: � See the String Overview in Chapter 1 for important information.
� Use to search a string for a particular character, such as a carriage return (character 13).
� To avoid searching past the end of the string, use GET STRING LENGTH to determine the end

of the string.

Error Codes: -46 = Bad limit � index was negative or greater than the string length

See Also: GET SUBSTRING, APPEND CHARACTER, GET STRING LENGTH

OPERATIONS

Cyrano Command Reference 2-251

GET STRING LENGTH String

Function: To get the length of a string.

Typical Use: To determine if a string is empty prior to searching it for a character.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� An empty string has a length of zero.
� The string length is not the same as the width. Width is the maximum string length and is set

in the Cyrano Configurator; it does not change at run time. String length, on the other hand,
may change dynamically as the string is modified at run time.

� Spaces and nulls count as part of the length.
� A string with width 10 containing �Hello � has a length of six (five for �Hello� plus one for the

trailing space).

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: The following example gets the length of the string MY STRING (for example, if MY STRING is
�ABC� then STRING LEN is 3):

GET STRING LENGTH
MY STRING constant string

Put Result In STRING LEN variable integer

Notes: � See the String Overview in Chapter 1 for important information.
� Use before GET NTH CHARACTER to stay within the string length.

See Also: GET NTH CHARACTER

OPERATIONS

2-252 Cyrano Command Reference

GET SUBSTRING String

Function: To copy a portion of a string.

Typical Uses: � To parse or extract data from a string.
� To skip leading or trailing characters.
� To extract data from strings that may contain starting and ending character sequences

generated by barcode readers or scales.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Valid range for Start At (Argument 2) is 1 to the string length. If it is less than 1, 1 will be
assumed.

� If the combination of Start At (Argument 2) and Number Of (Argument 3) extend beyond the
length of the source string, only the available portion of the source string will be returned.

� The following are examples of this command applied to the string �MONTUEWEDTHRFRI�:
START AT NUMBER OF SUBSTRING RETURNED

1 3 �MON�
4 3 �TUE�
1 4 �MONT�

14 3 �RI�
16 5 ��

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 ARGUMENT 4
CONSTANT STRING CONSTANT INTEGER CONSTANT INTEGER VARIABLE STRING
VARIABLE STRING VARIABLE INTEGER VARIABLE INTEGER

Example: The following example gets a single day from the string �MONTUEWEDTHRFRI�:

GET SUBSTRING
�MONTUEWEDTHRFRI� constant string

Start At INDEX variable integer
Number Of 3 constant integer
Move To STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.
� You can get text that follows a delimiter (such as a space) within a string. Create a loop that

first uses GET NTH CHARACTER to extract a character, then compares it to the delimiter
(character 32 in the case of a space). If the character is equal to the delimiter, add 1 to the N
argument and use the new N as the Start At parameter above.

� See MOVE FROM STRING TABLE for a similar example.

See Also: GET NTH CHARACTER

OPERATIONS

Cyrano Command Reference 2-253

MOVE FROM STRING TABLE String

Function: To copy a string from a string table.

Typical Uses: � To create a numeric-to-string lookup table.
� To retrieve strings from a table for further processing.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Valid range for Index (Argument 1) is zero to the table length (size).

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT INTEGER STRING TABLE VARIABLE STRING
VARIABLE INTEGER

Example: The following example performs a numeric-to-string-table lookup. Given the numeric value for
the day of week, the command below gets the name of the day of week from a string table. Use
GET DAY OF WEEK to get the value to use for the Index.

MOVE FROM STRING TABLE
Index INDEX variable integer
From STRING TABLE string table
To STRING variable string

The results of this command are as follows:
INDEX STRING

0 �SUN�
1 �MON�
2 �TUE�
3 �WED�
4 �THU�
5 �FRI�
6 �SAT�

Notes: � See the String Overview in Chapter 1 for important information.
� A string table is a good way to correlate a number to a string.
� Use MOVE TO STRING TABLE or the Init utility to load the table with data.
� Multiple string tables can be used to create small databases of information. For example, one

string table could contain a product name and another could contain the product ID code or
barcode. It is essential to keep all related information at the same Index in each table.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE TO STRING TABLE, EQUAL TO STRING TABLE DATA, GET SUBSTRING, GET SIZE OF
STRING TABLE

OPERATIONS

2-254 Cyrano Command Reference

MOVE STRING String

Function: To copy the contents of one string to another.

Typical Use: To save, initialize, or clear strings.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� If the width of the destination variable string is less than the width of the source, the
remaining portion of the source string (characters on the right) will be discarded.

� The contents of the destination string are replaced with the source string.
� The length of the destination string will become that of the source string unless the declared

width of the destination is less than the length of the source, in which case the length of the
destination will match its declared width.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE STRING
VARIABLE STRING

Example: The following example initializes a string variable to �Hello�:

MOVE STRING
From �Hello� constant string
To HELLO STRING variable string

The following example clears a variable string:

MOVE STRING
From �� constant string (empty)
Move to MY STRING variable string

Notes: � See the String Overview in Chapter 1 for important information.

Dependencies: � The destination variable string must be wide enough to hold the source string.

See Also: APPEND STRING, COPY TIME TO STRING, GET STRING (PORT), PRINT STRING (PORT)

OPERATIONS

Cyrano Command Reference 2-255

MOVE TO STRING TABLE String

Function: To put a string into a string table.

Typical Use: To load strings into a table for later retrieval.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� Valid range for Index (Argument 2) is zero to the table length (size).
� Strings with a length greater than the width of the table will be truncated to fit.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER STRING TABLE
VARIABLE STRING VARIABLE INTEGER

Example: MOVE TO STRING TABLE
From �MON� constant string
Index INDEX variable integer
To STRING TABLE string table

Notes: � See the String Overview in Chapter 1 for important information.
� Use to log key events or application errors as if the string table were a �virtual line printer.�

For example, a string table called EVENT LOG could be used as a circular buffer to store
strings containing the time, the date, and a description such as �12-25-96, 1:00:00, Clogged
chimney alarm.� A variable integer would also be required to �remember� the next available
Index (where the next entry goes).

� Many additional string commands are available. These are �external� commands that require
library support. Consult the Opto 22 BBS.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: MOVE FROM STRING TABLE, GET SIZE OF STRING TABLE

OPERATIONS

2-256 Cyrano Command Reference

TEST EQUAL STRINGS String

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: � Determines if Arguments 1 and 2 are equal and puts result in Argument 3. Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

�OPTO� �OPTO� -1
�OPTO� �Opto� 0

�22� �22� -1
�2 2� �22� 0

� The result is -1 (True) if both strings are exactly the same, 0 (False) otherwise.
� Only an exact match on all characters (including leading or trailing spaces) will return a True.
� This test is case-sensitive. For example, a �T� does not equal a �t.�
� The result can be sent directly to a digital output if desired.
� This operation is functionally equivalent to the STRING EQUAL condition.
� Quotes (��) are used for readability only. They are not part of the string. Do not type them or

expect to see them.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT STRING DIGITAL OUT
VARIABLE STRING VARIABLE STRING VARIABLE FLOAT

VARIABLE INTEGER

Example: The following example compares a password variable to a string constant. The resulting value in
IS AUTHORIZED could be used at several points in the program to determine if the user has
sufficient authorization.

TEST EQUAL STRINGS
PASSWORD variable string

With �LISA� constant string
Put Result In IS AUTHORIZED variable integer

The following example compares a barcode to a string retrieved from a string table. This
instruction would be located in a loop that retrieves each entry from a string table and performs
this comparison.

TEST EQUAL STRINGS
BARCODE variable string

With BARCODE FROM LIST variable string
Put Result In IS IN LIST variable integer

Notes: � See the String Overview in Chapter 1 for important information.
� Use EQUAL TO STRING TABLE DATA to compare with strings in a table.

See Also: STRING EQUAL, EQUAL TO STRING TABLE DATA

OPERATIONS

Cyrano Command Reference 2-257

VERIFY CRC ON STRING String

Function: To check the integrity of the contents of a string with imbedded CRC-16 Reverse characters.

Typical Use: In communications, to validate a received string before use.

Details: � Quotes (��) are used for readability only. They are not part of the string. Do not type them or
expect to see them.

� The last two characters of the string must be the CRC characters.
� All characters with the exception of the two CRC characters are a part of the CRC calculation.
� The version of CRC used is CRC-16 Reverse with a seed of 0.
� Returns a zero for OK.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING VARIABLE FLOAT
VARIABLE STRING VARIABLE INTEGER

Example: VERIFY CRC ON STRING
RECV$ variable string

Put Result In CRC STATUS variable integer

Notes: � See the String Overview in Chapter 1 for important information.

Error Codes: 0 = No error
-45 = CRC or checksum failed

See Also: SEND/RECEIVE PORT W/CRC, VERIFY CHECKSUM ON STRING

OPERATIONS

2-258 Cyrano Command Reference

TIME/DATE OPERATIONS

COPY DATE TO STRING (EUR) Time/Date

Function: To read the date from the Mistic controller�s real-time clock/calendar and put it into a string
variable in the standard European format dd/mm/yy, where dd = day (01�31), mm = month (01�
12), and yy = year (00�99).

Typical Use: To date stamp an event in a Cyrano program.

Details: � If the current date is March 1, 1995, this operation would place the string �01/03/95� into the
String parameter (Argument 1).

� The destination string should have a minimum width of eight.

Arguments: ARGUMENT 1
VARIABLE STRING

Example: COPY DATE TO STRING (EUR)
String EUROPEAN DATE STRING variable string

Notes: � This is a one-time read of the date. If the date changes, you will need to execute the
command again to get the current date.

Error Codes: -48 = String too short

See Also: COPY DATE TO STRING (US), COPY TIME TO STRING, SET DATE, SET TIME

OPERATIONS

Cyrano Command Reference 2-259

COPY DATE TO STRING (US) Time/Date

Function: To read the date from the Mistic controller�s real-time clock/calendar and put it into a string
variable in the standard United States format mm/dd/yy, where mm = month (01�12), dd = day
(01�31), and yy = year (00�99).

Typical Use: To date stamp an event in a Cyrano program.

Details: � If the current date is March 1, 1995, this operation would place the string �03/01/95� into the
String parameter (Argument 1).

� The destination string should have a minimum width of eight.

Arguments: ARGUMENT 1
VARIABLE STRING

Example: COPY DATE TO STRING (US)
String US DATE STRING variable string

Notes: � This is a one-time read of the date. If the date changes, you will need to execute the
command again to get the current date.

Error Codes: -48 = String too short

See Also: COPY DATE TO STRING (EUR), COPY TIME TO STRING, SET DATE, SET TIME

OPERATIONS

2-260 Cyrano Command Reference

COPY TIME TO STRING Time/Date

Function: To read the time from the Mistic controller�s real-time clock/calendar and put it into a string
variable in the format hh:mm:ss, where hh = hours (00�23), mm = minutes (00�59), and
ss = seconds (00�59).

Typical Use: To time stamp an event in a Cyrano program.

Details: � Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00
p.m. = 23:59:00.

� If the current time is 2:35 p.m., this operation would place the string �14:35:00� into the String
parameter (Argument 1).

� The destination string should have a minimum width of eight.

Arguments: ARGUMENT 1
VARIABLE STRING

Example: COPY TIME TO STRING
String TIME STRING variable string

Notes: � This is a one-time read of the time. If the time changes, you will need to execute the
command again to get the current time.

� Put this command in a small program loop that executes frequently to ensure that the string
always contains the current time.

Error Codes: -48 = String too short

See Also: COPY DATE TO STRING (EUR), COPY DATE TO STRING (US), SET DATE, SET TIME

OPERATIONS

Cyrano Command Reference 2-261

GET DAY Time/Date

Function: To read the day of the month (1 through 31) from the Mistic controller�s real-time clock/calendar
and put it into a numeric variable.

Typical Use: To trigger an event in a Cyrano program based on the day of the month.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� If the current date is March 2, 1995, this operation would place the value 2 into the Move To

parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET DAY
Move To DAY OF MONTH variable integer

Notes: � This is a one-time read of the day of the month. If the date changes, you will need to execute
this command again to get the current day of the month.

� To detect the start of a new day, use GET DAY and put the result into a variable called DAY OF
MONTH. Do this once in the POWERUP chart and then continually in another chart. In this
other chart, move DAY OF MONTH to DAY OF MONTH(LAST) just before executing GET DAY,
then compare DAY OF MONTH with DAY OF MONTH(LAST) using NOT EQUAL? When they are
not equal, midnight has just occurred.

See Also: GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET YEAR, SET
DAY, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-262 Cyrano Command Reference

GET DAY OF WEEK Time/Date

Function: To read the number of the day of the week (0 through 6) from the Mistic controller�s real-time
clock/calendar and put it into a numeric variable.

Typical Use: To trigger an event in a Cyrano program based on the day of the week.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� Days are numbered as follows:

Sunday = 0 Tuesday = 2 Thursday = 4 Saturday = 6
Monday = 1 Wednesday = 3 Friday = 5

� If the current day is a Wednesday, this operation would place the value 3 into the Move To
parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET DAY OF WEEK
Move To DAY OF WEEK variable integer

Notes: � This is a one-time read of the day of the week. If the date changes, you will need to execute
this command again to get the current day of the week.

� It is advisable to use this operation once in the POWERUP chart and once after midnight
rollover thereafter. See Notes for GET DAY.

See Also: GET DAY, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET YEAR, SET DAY, SET
DAY OF WEEK, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

Cyrano Command Reference 2-263

GET HOURS Time/Date

Function: To read the hour (0 through 23) from the Mistic controller�s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To trigger an event in a Cyrano program based on the hour of the day or to log an event.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
� If the current time is 2:35 p.m. (14:35:00), this operation would place the value 14 into the

Move To parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET HOURS
Move To HOURS variable integer

Notes: � This is a one-time read of the hour. If the hour changes, you will need to execute this
command again to get the current hour.

� Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current hour.

See Also: GET DAY, GET DAY OF WEEK, GET MINUTES, GET MONTH, GET SECONDS, GET YEAR, SET DAY,
SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-264 Cyrano Command Reference

GET MINUTES Time/Date

Function: To read the minute (0 through 59) from the Mistic controller�s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To trigger an event in a Cyrano program based on minutes past the hour or to log an event.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
� If the current time is 2:35 p.m. (14:35:00), this operation would place the value 35 into the

Move To parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET MINUTES
Move To MINUTES variable integer

Notes: � This is a one-time read of the minutes. If the minute changes, you will need to execute this
command again to get the current minute value.

� Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current minute value.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MONTH, GET SECONDS, GET YEAR, SET DAY,
SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

Cyrano Command Reference 2-265

GET MONTH Time/Date

Function: To read the month value (1 through 12) from the Mistic controller�s real-time clock/calendar and
put it into a numeric variable.

Typical Use: To determine when to begin and end Daylight Savings Time.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� If the current date is March 2, 1995, this operation would place the value 3 into the Move To

parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET MONTH
Move To MONTH variable integer

Notes: � This is a one-time read of the month. If the month changes, you will need to execute this
command again to get the value of the current month.

� Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current month value.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET SECONDS, GET YEAR, SET DAY,
SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-266 Cyrano Command Reference

GET SECONDS Time/Date

Function: To read the second (0 through 59) from the Mistic controller�s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To use seconds information in a Cyrano program.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� If the current time is 08:51:26, this operation would place the value 26 into the Move To

parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET SECONDS
Move To SECONDS variable integer

Notes: � This is a one-time read of the seconds. If the second changes, you will need to execute this
command again to get the value of the current second.

� Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current seconds value.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET YEAR, SET DAY,
SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

Cyrano Command Reference 2-267

GET YEAR Time/Date

Function: To read the year value (00 through 99) from the Mistic controller�s real-time clock/calendar and
put it into a numeric variable.

Typical Use: To use year information in a Cyrano program.

Details: � The destination variable can be an integer or a float, although an integer is preferred.
� If the current date is March 2, 1995, this operation would place the value 95 into the Move To

parameter (Argument 1).

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: GET YEAR
Move To YEAR variable integer

Notes: � This is a one-time read of the year. If the year changes, you will need to execute this
command again to get the value of the current year.

� Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current year value.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MONTH, GET MINUTES, GET SECONDS, SET
DAY, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-268 Cyrano Command Reference

SET DATE Time/Date

Function: To set the date in the Mistic controller�s real-time clock/calendar to the value contained in a
string variable, using the standard United States format mm/dd/yy, where mm = month (01�12),
dd = day (01�31), and yy = year (00�99).

Typical Use: To set the date from a Cyrano program.

Details: � The destination can be a variable string or a constant string.
� If the desired date to set is March 1, 1995, the From parameter (Argument 1) should contain

the string �03/01/95.�
� Executing this command would set the Mistic controller�s real-time clock/calendar to March

1, 1995.
� Updates day of week also.
� All erroneous date strings are ignored.

Arguments: ARGUMENT 1
CONSTANT STRING
VARIABLE STRING

Example: SET DATE
From US DATE STRING variable string

Notes: � The Cyrano Debugger always sets the date, time, and day of week to the PC clock at the end
of a download.

� To change the date, use a variable integer as a change trigger. Set the trigger variable True
after the date string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

� The Mistic controller�s real-time clock/calendar will automatically increment the time and
date after they are set.

� Do not issue this command continuously.

See Also: COPY DATE TO STRING (EUR), COPY DATE TO STRING (US), COPY TIME TO STRING

OPERATIONS

Cyrano Command Reference 2-269

SET DAY Time/Date

Function: To set the day of the month (1 through 31) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the day of the month from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� If the desired day of the month to set is March 2, 1995, the To parameter (Argument 1) should

contain the value 2.
� Executing this command would then set the day of the month in the Mistic controller�s real-

time clock/calendar.
� Updates day of week also.
� All erroneous day values are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET DAY
To DAY OF MONTH variable integer

Notes: � Use to change the DAY to test program logic. Use a variable integer as a change trigger. Set
the trigger variable True after the DAY OF MONTH variable has the desired value. When the
trigger is True, the program executes this command, then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-270 Cyrano Command Reference

SET DAY OF WEEK Time/Date

Function: To set the day of the week value (0 through 6) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the day of the week from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� Days are numbered as follows:

Sunday = 0 Tuesday = 2 Thursday = 4 Saturday = 6
Monday = 1 Wednesday = 3 Friday = 5

� If the desired day of week to set is Wednesday, then the To parameter (Argument 1) should
contain the value 3.

� Executing this command would set the day of the week in the Mistic controller�s real-time
clock/calendar.

� All erroneous day of week values are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET DAY OF WEEK
To DAY OF WEEK variable integer

Notes: � Use to change the day of the week to test program logic. Use a variable integer as a change
trigger. Set the trigger variable True after the To parameter (DAY OF WEEK, in the example
above) has the desired value. When the trigger is True, the program executes this command,
then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

Cyrano Command Reference 2-271

SET HOURS Time/Date

Function: To set the hours value (0 through 23) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the hours value from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
� If the desired hour to set is 2 p.m. (14:00:00), the To parameter (Argument 1) should contain

the value 14.
� Executing this command would set the hours value in the Mistic controller�s real-time clock/

calendar.
� The Mistic controller�s real-time clock/calendar will automatically increment the time and

date after they are set.
� All erroneous hour values are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET HOURS
To HOURS variable integer

Notes: � Use to change the HOUR to test program logic. Use a variable integer as a change trigger. Set
the trigger variable True after the HOURS variable has the desired value. When the trigger is
True, the program executes this command, then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY, SET DAY OF WEEK, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

2-272 Cyrano Command Reference

SET MINUTES Time/Date

Function: To set the minutes (0 through 59) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the minutes value from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
� If the desired time to set is 2:35 p.m. (14:35:00), the To parameter (Argument 1) should contain

the value 35.
� Executing this command would set the minutes value in the Mistic controller�s real-time

clock/calendar.
� The Mistic controller�s real-time clock/calendar will automatically increment the time and

date after they are set.
� All erroneous values for minutes are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET MINUTES
To MINUTES variable integer

Notes: � Use to change the MINUTES to test program logic. Use a variable integer as a change trigger.
Set the trigger variable True after the MINUTES variable has the desired value. When the
trigger is True, the program executes this command, then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MONTH, GET SECONDS, GET YEAR, SET DAY,
SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET SECONDS, SET YEAR

OPERATIONS

Cyrano Command Reference 2-273

SET MONTH Time/Date

Function: To set the month value (1 through 12) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the month from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� If the desired month to set is March, the To parameter (Argument 1) should contain the value

3.
� Executing this command would set the month in the Mistic controller�s real-time clock/

calendar.
� The Mistic controller�s real-time clock/calendar will automatically increment the time and

date after they are set.
� All erroneous month values are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET MONTH
To MONTH variable integer

Notes: � Use to change the MONTH to test program logic. Use a variable integer as a change trigger.
Set the trigger variable True after the MONTH variable has the desired value. When the
trigger is True, the program executes this command, then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET SECONDS, SET YEAR

OPERATIONS

2-274 Cyrano Command Reference

SET SECONDS Time/Date

Function: To set the seconds (0 through 59) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the seconds value from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
� If the desired time to set is 2:35:26 p.m., then the To parameter (Argument 1) should contain

the value 26.
� Executing this command would set the seconds value in the Mistic controller�s real-time

clock/calendar.
� The Mistic controller�s real-time clock/calendar will automatically increment the time and

date after they are set.
� All erroneous values for seconds are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET SECONDS
To SECONDS variable integer

Notes: � Use to change the SECONDS to test program logic. Use a variable integer as a change trigger.
Set the trigger variable True after the SECONDS variable has the desired value. When the
trigger is True, the program executes this command, then sets the trigger variable False.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET MONTH, SET YEAR

OPERATIONS

Cyrano Command Reference 2-275

SET TIME Time/Date

Function: To set the time in the Mistic controller�s real-time clock/calendar from a string variable.

Typical Use: To set the time from a Cyrano program.

Details: � The From parameter (Argument 1) can be a constant or variable string, although a variable
string is preferred.

� Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00
p.m. = 23:59:00.

� If the desired time to set is 2:35:00 p.m., the From parameter (Argument 1) should contain the
string �14:35:00.�

� Executing this command would set the time value in the Mistic controller�s real-time clock/
calendar.

� The Mistic controller�s real-time clock/calendar will automatically increment the time and
date after they are set.

� All erroneous time strings are ignored.

Arguments: ARGUMENT 1
CONSTANT STRING
VARIABLE STRING

Example: SET TIME
From TIME STRING variable string

Notes: � The Cyrano Debugger always sets the date, time, and day of week to the PC clock at the end
of a download.

� To change the time, use a variable integer as a change trigger. Set the trigger variable True
after the time string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

� The Mistic controller�s real-time clock/calendar will automatically increment the time and
date after they are set.

� Do not issue this command continuously.

See Also: COPY DATE TO STRING (EUR), COPY DATE TO STRING (US), COPY TIME TO STRING, SET DATE.

OPERATIONS

2-276 Cyrano Command Reference

SET YEAR Time/Date

Function: To set the year (00 through 99) in the Mistic controller�s real-time clock/calendar.

Typical Use: To set the year from a Cyrano program.

Details: � The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
� If the desired year to set is 1995, the To parameter (Argument 1) should contain the value 95.
� Executing this command would set the year (00 through 99) in the Mistic controller�s real-time

clock/calendar.
� The Mistic controller�s real-time clock/calendar will automatically increment the time and

date after they are set.
� All erroneous month values are ignored.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
VARIABLE FLOAT

VARIABLE INTEGER

Example: SET YEAR
To YEAR variable integer

Notes: � The Cyrano Debugger always sets the date, time, and day of week to the PC clock at the end
of a download.

� To change the year, use a variable integer as a change trigger. Set the trigger variable True
after the year variable has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

� The Mistic controller�s real-time clock/calendar will automatically increment the time and
date after they are set.

� Do not issue this command continuously.

See Also: GET DAY, GET DAY OF WEEK, GET HOURS, GET MINUTES, GET MONTH, GET SECONDS, GET
YEAR, SET DAY, SET DAY OF WEEK, SET HOURS, SET MINUTES, SET SECONDS, SET YEAR

Cyrano Command Reference 3-1

CONDITIONS

OVERVIEW

This appendix provides reference data on all Cyrano condition commands.

To locate a command, look it up in the index below or browse through the appropriate command group
(Chart, Digital Point, etc.) in this chapter.

INDEX OF CONDITION COMMAND GROUPS

Chart Conditions .. 3-4

Digital Point Conditions .. 3-10

Event/Reaction Conditions ... 3-15

General Purpose Conditions ... 3-22

Logical Conditions .. 3-38

String Conditions ... 3-67

INDEX OF CONDITION COMMANDS

\ COMMENT .. 3-36

\\ COMMENT ... 3-37

AND .. 3-38

BIT AND 3-39

BIT NOT? ... 3-40

BIT OFF? 3-41

BIT ON? 3-42

BIT OR ... 3-43

BIT XOR 3-44

CALLING CHART RUNNING? .. 3-4

CALLING CHART STOPPED? ... 3-5

CALLING CHART SUSPENDED? .. 3-6

CAUSED A CHART ERROR? .. 3-22

CAUSED AN I/O UNIT ERROR? ... 3-23

CONDITIONS

3-2 Cyrano Command Reference

CHARACTERS WAITING (PORT)? .. 3-24

CHARACTERS WAITING? ... 3-25

CHART RUNNING? ... 3-7

CHART STOPPED? .. 3-8

CHART SUSPENDED? .. 3-9

CLOSED? .. 3-10

EQUAL 3-45

EQUAL TO FLOAT TABLE DATA.. 3-46

EQUAL TO INTEGER TABLE DATA ... 3-47

EQUAL TO STRING TABLE DATA ... 3-67

ERROR ON I/O UNIT? .. 3-26

ERROR? 3-27

EVENT SCANNING DISABLED? .. 3-15

EVENT SCANNING ENABLED?... 3-16

GENERATING INTERRUPT? .. 3-17

GREATER .. 3-48

GREATER OR EQ TO FLT TABLE DATA ... 3-49

GREATER OR EQ TO INT TABLE DATA ... 3-50

GREATER OR EQUAL ... 3-51

GREATER THAN FLOAT TABLE DATA .. 3-52

GREATER THAN INTEGER TABLE DATA .. 3-53

HAS EVENT OCCURRED? ... 3-18

INTERRUPT DISABLED FOR EVENT? .. 3-20

INTERRUPT ENABLED FOR EVENT? ... 3-21

IS ARCNET CONNECTED? .. 3-28

IS ARCNET MSG ADDR EQUAL TO? ... 3-29

IS ARCNET NODE PRESENT? ... 3-30

IS EVENT OCCURRING? ... 3-19

LATCH SET? ... 3-11

LESS ... 3-54

LESS OR EQ TO FLT TABLE DATA .. 3-56

LESS OR EQ TO INT TABLE DATA .. 3-57

LESS OR EQUAL ... 3-55

LESS THAN FLOAT TABLE DATA ... 3-58

LESS THAN INTEGER TABLE DATA ... 3-59

LOW BATTERY? ... 3-31

NOT EQUAL .. 3-60

CONDITIONS

Cyrano Command Reference 3-3

NOT EQUAL TO FLOAT TABLE DATA .. 3-61

NOT EQUAL TO INTEGER TABLE DATA ... 3-62

NOT? .. 3-63

OFF? .. 3-12

ON? ... 3-13

OPEN? 3-14

OR .. 3-64

RECEIVED MESSAGE FROM HOST? .. 3-32

STRING EQUAL ... 3-68

TIMER EXPIRED? .. 3-33

VARIABLE FALSE? .. 3-34

VARIABLE TRUE? .. 3-35

WITHIN LIMITS? ... 3-65

XOR .. 3-66

CONDITIONS

3-4 Cyrano Command Reference

CHART CONDITIONS

CALLING CHART RUNNING? Chart

Function: To check if the calling chart (the one that started this chart) is in the running state.

Typical Use: To determine the status of the chart that started this chart.

Details: � Evaluates True if the calling chart is running, False if not.

Arguments: None.

Example: CALLING CHART RUNNING?

Notes: � See the Chart Overview in Chapter 1 for important information.

See Also: CONTINUE CALLING CHART, CALLING CHART SUSPENDED?, CALLING CHART STOPPED?

CONDITIONS

Cyrano Command Reference 3-5

CALLING CHART STOPPED? Chart

Function: To check if the calling chart (the one that started this chart) is in the stopped state.

Typical Use: To determine the status of the chart that started this chart.

Details: � Evaluates True if the calling chart is stopped, False if not.

Arguments: None.

Example: CALLING CHART STOPPED?

Notes: � See the Chart Overview in Chapter 1 for important information.

See Also: CONTINUE CALLING CHART, CALLING CHART SUSPENDED?, CALLING CHART RUNNING?

CONDITIONS

3-6 Cyrano Command Reference

CALLING CHART SUSPENDED? Chart

Function: To check if the calling chart (the one that started this chart) is in the suspended state.

Typical Use: Called before CONTINUE CALLING CHART to ensure its success.

Details: � Evaluates True if the calling chart is suspended, False if not.

Arguments: None.

Example: CALLING CHART SUSPENDED?

Notes: � See the Chart Overview in Chapter 1 for important information.
� Always use before CONTINUE CALLING CHART to ensure its success. See the CONTINUE

CALLING CHART operation for details.

See Also: CONTINUE CALLING CHART, CALLING CHART STOPPED?, CALLING CHART RUNNING?

CONDITIONS

Cyrano Command Reference 3-7

CHART RUNNING? Chart

Function: To check if the specified chart is in the running state.

Typical Use: To determine the status of the specified chart.

Details: � Evaluates True if the specified chart is running, False if not.

Arguments: ARGUMENT 1
CHART

Example: Is CHART_B chart name
CHART RUNNING?

Notes: � See the Chart Overview in Chapter 1 for important information.

See Also: CHART SUSPENDED?, CHART STOPPED?

CONDITIONS

3-8 Cyrano Command Reference

CHART STOPPED? Chart

Function: To check if the specified chart is in the stopped state.

Typical Use: Used before START CHART to ensure its success when it is imperative that START CHART
succeed.

Details: � Evaluates True if the specified chart is stopped, False if not.

Arguments: ARGUMENT 1
CHART

CHART STOPPED?

Example: Is CHART_B chart name
CHART STOPPED?

Notes: � See the Chart Overview in Chapter 1 for important information.
� When a chart calls a START CHART followed immediately by a SUSPEND CHART to suspend

itself, it depends on the target chart to continue it later. Hence, it is imperative that the target
chart be started, otherwise the original (calling) chart will remain suspended. This condition
can determine if the target chart has started.

See Also: CHART SUSPENDED?, CHART RUNNING?

CONDITIONS

Cyrano Command Reference 3-9

CHART SUSPENDED? Chart

Function: To check if the specified chart is in the suspended state.

Typical Use: To determine the status of the specified chart.

Details: � Evaluates True if the specified chart is suspended, False if not.

Arguments: ARGUMENT 1
CHART

Example: Is CHART_B chart name
CHART SUSPENDED?

Notes: � See the Chart Overview in Chapter 1 for important information.
� Use before CONTINUE CHART to ensure success.

See Also: CHART

CONDITIONS

3-10 Cyrano Command Reference

DIGITAL POINT CONDITIONS

CLOSED? Digital Point

Function: To determine if a digital input or output is on.

Typical Use: To determine the status of a digital input or output channel.

Details: � Evaluates True if the specified channel is on, False if the channel is off.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: START SWITCH any digital input or output channel
CLOSED?

Notes: � May be used with either input or output channels.
� This condition is identical to the ON? condition.
� Speed Tip: Use DO BINARY READ to get the state of all 16 channels at once. Then use BIT

TEST to determine the state of individual channels.

Dependencies: � Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: OPEN?, ON?, OFF?

CONDITIONS

Cyrano Command Reference 3-11

LATCH SET? Digital Point

Function: To determine if a digital input on-latch or off-latch is set.

Typical Use: To see if a momentary button was pressed.

Details: � Evaluates True if the specified on-latch or off-latch is set, False if not.

Arguments: ARGUMENT 1
OFF LATCH

OFF TIME TOTALIZER
ON LATCH

ON TIME TOTALIZER
QUADRATURE COUNTER

Example: E STOP digital input configured with an on- or
off-latch feature

LATCH SET?

Notes: � Don�t confuse the latch status with the on or off status of a channel. An on-latch may be set
even though the channel is currently off.

Dependencies: � Applies only to inputs configured with the on- or off-latch feature on digital multifunction I/O
units.

See Also: ON?, OFF?

CONDITIONS

3-12 Cyrano Command Reference

OFF? Digital Point

Function: To determine if a digital input or output is off.

Typical Use: To determine the status of a digital input or output channel.

Details: � Evaluates True if the specified channel is off, False if the channel is on.
� Speed Tip: Use DO BINARY READ to get the state of all 16 channels at once. Then use BIT

TEST to determine the state of individual channels.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: SAFETY INTERLOCK digital input or output channel
OFF?

Notes: � May be used with either input or output channels.
� This condition is identical to the OPEN? condition.

Dependencies: � Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: CLOSED?, OPEN?, ON?

CONDITIONS

Cyrano Command Reference 3-13

ON? Digital Point

Function: To determine if a digital input or output is on.

Typical Use: To determine the status of a digital input or output channel.

Details: � Evaluates True if the specified channel is on, False if the channel is off.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: MOTOR POWER digital input or output channel
ON?

Notes: � May be used with either input or output channels.
� This condition is identical to the CLOSED? condition.
� Speed Tip: Use DO BINARY READ to get the state of all 16 channels at once. Then use BIT

TEST to determine the state of individual channels.

Dependencies: � Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: OPEN?, CLOSED?, OFF?

CONDITIONS

3-14 Cyrano Command Reference

OPEN? Digital Point

Function: To determine if a digital input or output is off.

Typical Use: To determine the status of a digital input or output channel.

Details: � Evaluates True if the specified channel is off, False if the channel is on.

Arguments: ARGUMENT 1
DIGITAL IN

DIGITAL OUT

Example: BRAKE RELEASE digital input or output channel
OPEN?

Notes: � May be used with either input or output channels.
� This condition is identical to the OFF? condition.
� Speed Tip: Use DO BINARY READ to get the state of all 16 channels at once. Then use BIT

TEST to determine the state of individual channels.

Dependencies: � Applies to all inputs and outputs on digital multifunction I/O units and local simple I/O units.

See Also: CLOSED?, ON?, OFF?

CONDITIONS

Cyrano Command Reference 3-15

EVENT/REACTION CONDITIONS

EVENT SCANNING DISABLED? Event/Reaction

Function: To determine if a specific event/reaction is active or not.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: � Evaluates True if the specified event/reaction is not being scanned, False if it is being
scanned.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: EVENT SCANNING DISABLED?
Event/Reaction SEQUENCE FINISHED name of the event/reaction

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.

See Also: EVENT SCANNING ENABLED?

CONDITIONS

3-16 Cyrano Command Reference

EVENT SCANNING ENABLED? Event/Reaction

Function: To determine if a specific event/reaction is active or not.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: � Evaluates True if the specified event/reaction is being scanned, False if it�s not being
scanned.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: EVENT SCANNING ENABLED?
Event/Reaction SEQUENCE FINISHED name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: EVENT SCANNING DISABLED?

CONDITIONS

Cyrano Command Reference 3-17

GENERATING INTERRUPT? Event/Reaction

Function: To determine if a specific I/O unit is generating an interrupt.

Typical Use: In the INTERRUPT chart, to determine which I/O unit is generating an interrupt when more than
one is configured to do so.

Details: � Evaluates True if the specified I/O unit is generating an interrupt, False if it�s not.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

Example: OVERTEMP SENSORS name of I/O unit
GENERATING INTERRUPT?

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� Use CLEAR I/O UNIT INTERRUPT immediately after determining the interrupt is on. Then use

HAS EVENT OCCURRED? for each event/reaction configured to interrupt.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: HAS EVENT OCCURRED?, CLEAR I/O UNIT INTERRUPT

CONDITIONS

3-18 Cyrano Command Reference

HAS EVENT OCCURRED? Event/Reaction

Function: To determine if a specific event has occurred.

Typical Use: To determine which event caused an interrupt.

Details: � Evaluates True if the specified event/reaction has occurred, False if it has not.
� When the event occurs, its event latch is set. It will remain set until cleared with CLEAR

EVENT LATCH.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: HAS EVENT OCCURRED?
SEQUENCE FINISHED name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� The current state of the event is not relevant to this condition. See IS EVENT OCCURRING?
� Always use CLEAR EVENT LATCH after the event has occurred. This allows detection of

subsequent events.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: IS EVENT OCCURRING?, CLEAR EVENT LATCH, CLEAR I/O UNIT INTERRUPT, GENERATING
INTERRUPT?

CONDITIONS

Cyrano Command Reference 3-19

IS EVENT OCCURRING? Event/Reaction

Function: To determine if the criteria for a specific event is currently true.

Typical Use: To determine if a specific situation still exists.

Details: � Evaluates True if the criteria for the specified event are still true, False if the criteria are no
longer true.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: IS EVENT OCCURRING?
SEQUENCE FINISHED name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.
� This is an easy way to test for an I/O state pattern.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: HAS EVENT OCCURRED?

CONDITIONS

3-20 Cyrano Command Reference

INTERRUPT DISABLED FOR EVENT? Event/Reaction

Function: To determine if the interrupt for a specific event/reaction is inactive.

Typical Use: To verify the active/inactive state of the interrupt for a specific event/reaction.

Details: � Evaluates True if the interrupt for the specified event/reaction is not active, False if it is active.
� Event/reactions still occur when the interrupt is disabled as long as they are active.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: INTERRUPT DISABLED FOR EVENT?
SEQUENCE FINISHED name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE INTERRUPT ON EVENT, INTERRUPT ENABLED FOR EVENT?

CONDITIONS

Cyrano Command Reference 3-21

INTERRUPT ENABLED FOR EVENT? Event/Reaction

Function: To determine if the interrupt for a specific event/reaction is active.

Typical Use: To verify the active/inactive state of the interrupt for a specific event/reaction.

Details: � Evaluates True if the interrupt for the specified event/reaction is active, False if it is not active.
� Event/reactions still occur when the interrupt is disabled as long as they are active.

Arguments: ARGUMENT 1
ANALOG E/R
DIGITAL E/R

Example: INTERRUPT ENABLED FOR EVENT?
SEQUENCE FINISHED name of the event/reaction

Notes: � See the Event/Reaction Overview in Chapter 1 for important information.

Dependencies: � Event/reactions must be named and configured on the I/O unit before they can be
referenced.

� Event/reactions are not supported on local simple I/O units.

See Also: ENABLE INTERRUPT ON EVENT, INTERRUPT DISABLED FOR EVENT?

CONDITIONS

3-22 Cyrano Command Reference

GENERAL PURPOSE CONDITIONS

CAUSED A CHART ERROR? General Purpose

Function: To determine if the specified chart caused the current error in the error queue.

Typical Use: To determine which chart caused the current error.

Details: � Evaluates True if the specified chart caused the error, False otherwise.
� The current error is the oldest one and is always at the top of the error queue.

Arguments: ARGUMENT 1
CHART

Example: CAUSED A CHART ERROR?
Has POWERUP chart name

Notes: � Use the Debugger to view the error queue for detailed information.

Dependencies: � Prior to using this call, you should ensure that the error of interest is pointed to by using the
POINT TO NEXT ERROR command.

See Also: GET ERROR CODE, POINT TO NEXT ERROR

CONDITIONS

Cyrano Command Reference 3-23

CAUSED AN I/O UNIT ERROR? General Purpose

Function: To determine if the specified I/O unit caused the top error in the error queue.

Typical Use: To determine which I/O unit caused an error.

Details: � Evaluates True if the specified I/O unit caused the error, False otherwise.
� Must use ERROR ON I/O UNIT? before using this command, since this command assumes the

top error is an I/O error.

Arguments: ARGUMENT 1
ANALOG MF I/O UNIT
DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT

Example: CAUSED AN I/O UNIT ERROR?
Has DIG BRICK 1 I/O unit name

Notes: � Be sure the top error in the queue is an I/O error.
� Use the Debugger to view the error queue for detailed information.

Dependencies: � Must use ERROR ON I/O UNIT? before using this command.

See Also: ERROR ON I/O UNIT?, GET ERROR CODE, POINT TO NEXT ERROR

CONDITIONS

3-24 Cyrano Command Reference

CHARACTERS WAITING (PORT)? General Purpose

Function: To determine if there are characters in the receive buffer of an open communication port.

Typical Use: To communicate with other Mistic controllers and other serial devices.

Details: � Evaluates True if there is at least one character in the receive buffer, False otherwise.

Arguments: None.

Example: CHARACTERS WAITING (PORT)?

Notes: � See the Communication Overview in Chapter 1 for important information.
� Must use before commands such as GET CHAR (PORT) and GET STRING (PORT), otherwise

these commands will wait indefinitely.

Dependencies: � Must use REQUEST PORT first to open the port.

See Also: # OF CHARACTERS WAITING (PORT), # OF CHARACTERS WAITING FROM PORT, CHARACTERS
WAITING?

CONDITIONS

Cyrano Command Reference 3-25

CHARACTERS WAITING? General Purpose

Function: To determine if there are characters in the receive buffer of a closed communication port.

Typical Use: To communicate with other Mistic controllers and other serial devices.

Details: � Evaluates True if there is at least one character in the receive buffer, False otherwise.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: CHARACTERS WAITING?
Port 1 constant integer (port # to use)

Notes: � See the Communication Overview in Chapter 1 for important information.

Error Codes: -40 = Timeout � specified port already in use

See Also: # OF CHARACTERS WAITING (PORT), # OF CHARACTERS WAITING FROM PORT, CHARACTERS
WAITING (PORT)?

CONDITIONS

3-26 Cyrano Command Reference

ERROR ON I/O UNIT? General Purpose

Function: To determine if the top error in the error queue is an I/O-related error.

Typical Use: To determine if further error handling for I/O units should be performed.

Details: � Evaluates True if the current error in the error queue is an I/O unit error, False otherwise.
� Queue errors 2 through 29 are considered I/O unit errors, with 29 being the most common.

Arguments: None.

Example: ERROR ON I/O UNIT?

Notes: � Use CAUSED AN I/O UNIT ERROR? to determine which I/O unit caused the error.

Error Codes: Use the Debugger to view the error queue for detailed information.

See Also: CAUSED AN I/O UNIT ERROR?, POINT TO NEXT ERROR

CONDITIONS

Cyrano Command Reference 3-27

ERROR? General Purpose

Function: To determine if there is an error in the error queue.

Typical Use: To determine if further error handling should be performed.

Details: � Evaluates True if there is an error in the error queue, False otherwise.

Arguments: None.

Example: ERROR?

Notes: � Use ERROR ON I/O UNIT? to determine if it is an I/O related error.
� Use the Debugger to view the error queue for detailed information.

See Also: ERROR ON I/O UNIT?

CONDITIONS

3-28 Cyrano Command Reference

IS ARCNET CONNECTED? General Purpose

Function: To determine if the Mistic controller is connected to an active ARCNET link.

Typical Use: To detect a failure of the ARCNET link so that a backup communication path can be enabled.

Details: � Evaluates True if there is at least one other active ARCNET device on the link, False
otherwise.

� This �active� ARCNET device can be another Mistic controller or a PC, etc.

Arguments: None.

Example: IS ARCNET CONNECTED?

Notes: � See the Communication Overview in Chapter 1 for important information.

Dependencies: � This command does not work with LC32 controllers that do not have Flash memory.

See Also: RECEIVED MESSAGE FROM HOST?, IS ARCNET NODE PRESENT?

CONDITIONS

Cyrano Command Reference 3-29

IS ARCNET MSG ADDR EQUAL TO? General Purpose

Function: To determine if the message received in the ARCNET port originated from a specified address.

Typical Use: To determine the source of the last ARCNET message received.

Details: � Evaluates True if the addresses match, False otherwise.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: IS ARCNET MSG ADDR EQUAL TO?
Address 3 constant integer (node address)

Notes: � See the Communication Overview in Chapter 1 for important information.

See Also: IS ARCNET NODE PRESENT?

CONDITIONS

3-30 Cyrano Command Reference

IS ARCNET NODE PRESENT? General Purpose

Function: To determine if a specific node on the ARCNET is present.

Typical Use: To determine if a specific node on the ARCNET link has gone off line.

Details: � Evaluates True if the specified node responds, False otherwise.
� The ARCNET chip set cannot directly detect the presence of the next logical node on the

network. The next logical node is defined as the first address found on the link either
immediately before or after the Mistic controller�s address. Knowledge of the addresses of
each device on the network can be used with this function to determine if the next logical
node is present.

� If there are Mistic controllers at addresses 1 and 2, and if there is a PC at address 3, then the
controller at address 1 can determine if the ARCNET card in the PC at 3 is responding. If it is,
this implies that the node at address 2 must exist also.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: IS ARCNET NODE PRESENT?
Node Number 247 constant integer (node address)

Notes: � See the Communication Overview in Chapter 1 for important information.

Dependencies: � This command does not work with LC32 controllers that do not have Flash memory.

See Also: IS ARCNET CONNECTED?, IS ARCNET MSG ADDR EQUAL TO?

CONDITIONS

Cyrano Command Reference 3-31

LOW BATTERY? General Purpose

Function: To determine if the battery backing up the static RAM on the controller is weak.

Typical Use: To determine if the battery needs to be replaced.

Details: � Evaluates True if the voltage for the battery backing up static RAM is low, False otherwise.

Arguments: None.

Example: LOW BATTERY?

Notes: � On the LC32, if the keypad (port 5) is in use by a chart, this condition will return False.

Error Codes: Queue error 39 = Port already in use � LC32 keypad (port 5) is in use by another chart
Queue error 29 = Timeout � LC32 keypad (port 5) does not respond

See Also: GET RTU VOLTAGE

CONDITIONS

3-32 Cyrano Command Reference

RECEIVED MESSAGE FROM HOST? General Purpose

Function: To determine if a message has been received on the specified HOST port.

Typical Use: To determine if an MMI has stopped communicating to the Mistic controller.

Details: � Evaluates True if a message has been received on the specified HOST port since the last use
of this command, False otherwise.

Arguments: ARGUMENT 1
CONSTANT INTEGER
VARIABLE INTEGER

Example: RECEIVED MESSAGE FROM HOST?
Host Port # 4 constant integer (the HOST port

number)

Notes: � See the Communication Overview in Chapter 1 for important information.

Error Codes: Queue error 30 = Incorrect port number � use 0 to 4

See Also: IS ARCNET NODE PRESENT?, IS ARCNET MSG ADDR EQUAL TO?

CONDITIONS

Cyrano Command Reference 3-33

TIMER EXPIRED? General Purpose

Function: To determine if the specified timer has counted down to zero.

Typical Use: To determine if it is time to take an appropriate action.

Details: � Evaluates True if the specified timer has reached zero, False otherwise.

Arguments: ARGUMENT 1
VARIABLE TIMER

Example: TIMER EXPIRED?
Is EGG TIMER variable timer (the timer variable)

Notes: � Although the timer resolution is 1 millisecond, the accuracy of a time period is limited by the
number of charts running concurrently as well as by the charts� priority.

See Also: MOVE

CONDITIONS

3-34 Cyrano Command Reference

VARIABLE FALSE? General Purpose

Function: To determine if the specified variable is zero.

Typical Use: To determine if further processing should take place.

Details: � Evaluates True if the specified variable has a value of zero, False otherwise.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: VARIABLE FALSE?
Is PRESSURE DIFFERENCE variable integer

See Also: VARIABLE TRUE?

CONDITIONS

Cyrano Command Reference 3-35

VARIABLE TRUE? General Purpose

Function: To determine if the specified variable is non-zero.

Typical Use: To determine if further processing should take place.

Details: � Evaluates True if the specified variable has a non-zero value, False otherwise.

Arguments: ARGUMENT 1
VARIABLE FLOAT

VARIABLE INTEGER

Example: VARIABLE TRUE?
Is PRESSURE DIFFERENCE variable integer

See Also: VARIABLE FALSE?

CONDITIONS

3-36 Cyrano Command Reference

\ COMMENT General Purpose

Function: To add a comment to a condition block.

Typical Use: To document commands within a condition block.

Details: � Comments are string constants. They use controller memory.

Arguments: ARGUMENT 1
CONSTANT STRING

Example: \ COMMENT
Check for PID Loop Enabled constant string

Notes: � Use text outside a block for comments to conserve memory.

See Also: \\ COMMENT

CONDITIONS

Cyrano Command Reference 3-37

\\ COMMENT General Purpose

Function: To disable one or more conditions in a condition block.

Typical Use: To temporarily disable conditions within a condition block during debugging.

Details: � This command is normally used in pairs. Everything between the pair of \\ COMMENT
commands is considered a comment and is ignored when the strategy is compiled and
downloaded. This is useful for temporarily disabling a group of conditions within a condition
block while debugging a program.

� If the second \\ COMMENT is omitted, everything from the first \\ COMMENT to the end of the
condition block is considered a comment.

Arguments: ARGUMENT 1
CONSTANT STRING

Example: \\ COMMENT
Condition
Condition
Condition

\\ COMMENT

See Also: \ COMMENT

CONDITIONS

3-38 Cyrano Command Reference

LOGICAL CONDITIONS

AND Logical

Function: To perform a logical AND on any two allowable values.

Typical Use: Used in place of calling VARIABLE TRUE? twice.

Details: � Performs a logical AND on Arguments 1 and 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
-1 0 False
0 -1 False
-1 -1 True

� Evaluates True if both values are non-zero, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: AND
Is LIMIT SWITCH1 digital input
Is LIMIT SWITCH2 digital input

Notes: � See the Logical Overview in Chapter 1 for important information.
� Multiple values can be ANDed by repeating this condition or the VARIABLE TRUE? condition

several times in the same block.
� Use BIT AND if the objective is to test for individual bits.
� Executes faster than using VARIABLE TRUE? twice.

See Also: BIT AND, VARIABLE TRUE?, VARIABLE FALSE?

CONDITIONS

Cyrano Command Reference 3-39

BIT AND Logical

Function: To perform a 32-bit bitwise AND on any two allowable values.

Typical Use: To determine if the individual bits of one value match the on bits of a mask value.

Details: � Performs a bitwise AND on Arguments 1 and 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
1 0 False
0 1 False
1 1 True

� Evaluates True if any bit set to 1 in the mask (Argument 2) is also set to 1 in Argument 1.
Evaluates False if all of the mask�s 1 bits are set to 0 in Argument 1.

� Acts on all 32 bits.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT

VARIABLE FLOAT VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: This example reads the current state of all channels on a digital I/O unit and BIT ANDs the value
with the constant 33,280 (1000 0010 0000 0000 binary). Evaluates True if either channel 15 or 9
is on, False if both channels are off.

BIT AND
Is BRICK 1 digital I/O unit

33280 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command.
� Use 255 as the constant to check the lower eight channels.

See Also: AND, BIT OR

CONDITIONS

3-40 Cyrano Command Reference

BIT NOT? Logical

Function: To invert all 32 bits of an allowable value and determine if the result is True or False.

Typical Use: To determine if any bit is off.

Details: � Inverts Argument 1 and evaluates whether the result is True or False. Examples:
ARGUMENT 1 RESULT

0 True
1 False

� Evaluates True if any bit is set to 0, False otherwise.
� Acts on all 32 bits.

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT

VARIABLE FLOAT
VARIABLE INTEGER

Example: This example reads the state of all channels of the specified digital I/O unit and then inverts
them. Evaluates True if any channel is off, False otherwise.

BIT NOT?
Is BRICK1 digital I/O unit

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command.
� Use NOT if the objective is to toggle the value between True and False.

See Also: BIT ON?, BIT OFF?

CONDITIONS

Cyrano Command Reference 3-41

BIT OFF? Logical

Function: To test the False status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: � Evaluates True if the bit in Argument 1 specified by Argument 2 is set to 0. Evaluates False if
the bit is set to 1.

� Valid range for the Bit to Test parameter (Argument 2) is 0�31.

Arguments: ARGUMENT 1 ARGUMENT 2
DIGITAL MF I/O UNIT CONSTANT INTEGER

DIGITAL NMF I/O UNIT VARIABLE INTEGER
REM SMPL I/O UNIT
VARIABLE INTEGER

Example: This example evaluates to True if channel 15 of I/O UNIT 1 is off, False otherwise.

BIT OFF?
Data Source I/O UNIT 1 digital I/O unit
Bit to Test 15 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command. Although this

condition can be used to determine the status of digital points, it is primarily used to test bits
in an integer variable. These bits can be used as flags to carry information such as status,
control, fault (real-time or latch), and needs acknowledgment.

� Use BIT AND if the objective is to test several bits at once.

See Also: BIT ON?, BIT AND, BIT TEST (operation)

CONDITIONS

3-42 Cyrano Command Reference

BIT ON? Logical

Function: To test the True status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: � Evaluates True if the bit specified in Argument 2 is set to 1 in Argument 1. Evaluates False if
the bit is set to 0.

� Valid range for the Bit to Test parameter (Argument 2) is 0�31.

Arguments: ARGUMENT 1 ARGUMENT 2
DIGITAL MF I/O UNIT CONSTANT INTEGER

DIGITAL NMF I/O UNIT VARIABLE INTEGER
REM SMPL I/O UNIT
VARIABLE INTEGER

Example: This example evaluates to True if channel 0 of I/O UNIT 1 is on, False otherwise.

BIT ON?
Data Source I/O UNIT 1 digital I/O unit
Bit to Test 0 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command. Although this

condition can be used to determine the status of digital points, it is primarily used to test bits
in an integer variable. These bits can be used as flags to carry information such as status,
control, fault (real-time or latch), and needs acknowledgment.

� Use BIT AND if the objective is to test several bits at once.

See Also: BIT OFF?, BIT AND, BIT TEST (operation)

CONDITIONS

Cyrano Command Reference 3-43

BIT OR Logical

Function: To perform a 32-bit bitwise OR on any two allowable values.

Typical Use: To determine if any bit is set to 1 in either of two values.

Details: � Performs a bitwise OR on Arguments 1 and 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
1 0 True
0 1 True
1 1 True

� Evaluates to True if any bit is set to 1 in either of the two allowable values, False otherwise.
� Acts on all 32 bits.
� Functionally equivalent to the OR condition.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT

VARIABLE FLOAT VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: BIT OR
Is FAULT BITS 1 variable integer

FAULT BITS 2 variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command. Although this

condition can be used to determine the status of digital points, it is primarily used to test bits
in an integer variable. These bits can be used as flags to carry information such as status,
control, fault (real-time or latch), and needs acknowledgment.

� Use BIT ON? or BIT OFF? if the objective is to test only one bit.

See Also: BIT ON?, BIT OFF?, OR

CONDITIONS

3-44 Cyrano Command Reference

BIT XOR Logical

Function: To determine the inequality of any two allowable values.

Typical Use: To detect a change of state of any bit in either of two values.

Details: � Performs a bitwise XOR on Arguments 1 and 2. Examples:
BIT TEST VALUE TEST

ARGUMENT 1 ARGUMENT 2 RESULT ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False 0 0 False
0 1 True -1 0 True
1 0 True 255 65280 True
1 1 False 22 22 False

� Evaluates True if the two allowable values are not equal, False if they are equal.
� Acts on all 32 bits.
� Functionally equivalent to the NOT EQUAL condition when used with integer types.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL MF I/O UNIT DIGITAL MF I/O UNIT

DIGITAL NMF I/O UNIT DIGITAL NMF I/O UNIT
REM SMPL I/O UNIT REM SMPL I/O UNIT

VARIABLE FLOAT VARIABLE FLOAT
VARIABLE INTEGER VARIABLE INTEGER

Example: BIT XOR
Is BRICK 0 digital I/O unit

PREV BRICK 0 variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital I/O units with this command. Although this

condition can be used to determine the status of digital points, it is primarily used to test bits
in an integer variable. These bits can be used as flags to carry information such as status,
control, fault (real-time or latch), and needs acknowledgment.

� Use the False exit if the objective is to test for an exact match, or use the EQUAL condition if
using numeric values.

See Also: EQUAL, BIT AND, BIT NOT, BIT OR

CONDITIONS

Cyrano Command Reference 3-45

EQUAL Logical

Function: To determine the equality of two values.

Typical Use: To branch program logic based on the sequence number of the process.

Details: � Determines if Argument 1 is equal to Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

-1 -1 True
-1 1 False

22.22 22.22 True
22.22 22.221 False

� Evaluates True if both values are the same, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: EQUAL
Is BATCH STEP variable integer
To 4 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER OR EQUAL or LESS OR EQUAL when testing floats or analog values,

since exact matches are rare.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either NOT EQUAL or the False exit if the objective is to test for inequality.

See Also: GREATER, LESS, NOT EQUAL, GREATER OR EQUAL, LESS OR EQUAL, WITHIN LIMITS?

CONDITIONS

3-46 Cyrano Command Reference

EQUAL TO FLOAT TABLE DATA Logical

Function: To determine if a numeric value is exactly equal to the specified value in a float table.

Typical Use: To perform lookup table matching.

Details: � Determines if one value (Argument 1) is equal to another (a value at index Argument 2 in float
table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 True
0.0001 0.0 False
-98.765 -98.765 True
22.22 22.22 True

� Evaluates True if both values are exactly the same, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: EQUAL TO FLOAT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER OR EQ TO FLT TABLE DATA or LESS OR EQ TO FLT TABLE DATA when

testing floats or analog values unless an exact match is required.
� Use either NOT EQUAL TO FLOAT TABLE DATA or the False exit if the objective is to test for

inequality.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-47

EQUAL TO INTEGER TABLE DATA Logical

Function: To determine if a numeric value is exactly equal to the specified value in an integer table.

Typical Use: To perform lookup table matching.

Details: � Determines if one value (Argument 1) is equal to another (a value at index Argument 2 in
integer table Argument 3). Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 True
1 0 False

-32768 -32768 True
2222 2222 True

� Evaluates True if both values are exactly the same, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: EQUAL TO INTEGER TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF COUNTS integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER OR EQ TO INT TABLE DATA or LESS OR EQ TO INT TABLE DATA when

testing integer values unless an exact match is required.
� Use either NOT EQUAL TO INTEGER TABLE DATA or the False exit if the objective is to test for

inequality.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

3-48 Cyrano Command Reference

GREATER Logical

Function: To determine if one numeric value is greater than another.

Typical Use: To determine if a counter has reached an upper limit.

Details: � Determines if Argument 1 is greater than Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
-1 0 False
-1 -3 True

22.221 22.220 True

� Evaluates True if Argument 1 is greater than Argument 2, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: GREATER
Is CALCULATED VALUE variable integer
Than 1000 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either LESS OR EQUAL or the False exit if the objective is to test for less than or equal.

See Also: LESS, NOT EQUAL, GREATER OR EQUAL, LESS OR EQUAL, WITHIN LIMITS?

CONDITIONS

Cyrano Command Reference 3-49

GREATER OR EQ TO FLT TABLE DATA Logical

Function: To determine if a numeric value is greater than or equal to a specified value in a float table.

Typical Use: To store peak values.

Details: � Determines if one value (Argument 1) is greater than or equal to another (a value at index
Argument 2 in float table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 True
0.0001 0.0 True
-98.765 -98.765 True
22.22 22.222 False

� Evaluates True if the first value is greater than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: GREATER OR EQ TO FLT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either LESS THAN FLOAT TABLE DATA or the False exit if the objective is to test for less

than.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

3-50 Cyrano Command Reference

GREATER OR EQ TO INT TABLE DATA Logical

Function: To determine if a numeric value is greater than or equal to a specified value in an integer table.

Typical Use: To store peak values.

Details: � Determines if one value (Argument 1) is greater than or equal to another (a value at index
Argument 2 in integer table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0 0 True
1 0 True

-32768 -32767 False
22221 2222 True

� Evaluates True if the first value is greater than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: GREATER OR EQ TO INT TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF RANGES integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either LESS THAN INTEGER TABLE DATA or the False exit if the objective is to test for less

than.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-51

GREATER OR EQUAL Logical

Function: To determine if one numeric value is greater than or equal to another.

Typical Use: To determine if a value has reached an upper limit.

Details: � Determines if Argument 1 is greater than or equal to Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 True
1 0 True

-32768 -32767 False
22221 2222 True

� Evaluates True if the first value is greater than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: GREATER OR EQUAL
Is ROOM TEMP analog input
To 78.5000 constant float

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either the LESS condition or the False exit if the objective is to test for less than.
� When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: LESS, NOT EQUAL, LESS OR EQUAL, WITHIN LIMITS?

CONDITIONS

3-52 Cyrano Command Reference

GREATER THAN FLOAT TABLE DATA Logical

Function: To determine if a numeric value is greater than a specified value in a float table.

Typical Use: To store peak values.

Details: � Determines if one value (Argument 1) is greater than another (a value at index Argument 2 in
float table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 False
0.0001 0.0 True
-98.765 -98.765 False
22.22 22.22 False

� Evaluates True if the first value is greater than the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: GREATER THAN FLOAT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either LESS OR EQ TO FLT TABLE DATA or the False exit if the objective is to test for less

than or equal to.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-53

GREATER THAN INTEGER TABLE DATA Logical

Function: To determine if a numeric value is greater than a specified value in an integer table.

Typical Use: To store peak values.

Details: � Determines if one value (Argument 1) is greater than another (a value at index Argument 2 in
integer table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0 0 False
1 0 True

-32768 -32767 False
22221 2222 True

� Evaluates True if the first value is greater than the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: GREATER THAN INTEGER TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF RANGES integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either LESS OR EQ TO INT TABLE DATA or the False exit if the objective is to test for less

than or equal to.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

3-54 Cyrano Command Reference

LESS Logical

Function: To determine if one numeric value is less than another.

Typical Use: To determine if a value is too low.

Details: � Determines if Argument 1 is less than Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
-1 0 True
-1 -3 False

22.221 22.220 False

� Evaluates True if the first value is less than the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: LESS
Is TANK LEVEL analog input
Than FILL SETPOINT variable float

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either GREATER OR EQUAL or the False exit if the objective is to test for greater than or

equal to.

See Also: GREATER, NOT EQUAL, EQUAL, GREATER OR EQUAL

CONDITIONS

Cyrano Command Reference 3-55

LESS OR EQUAL Logical

Function: To determine if one numeric value is less than or equal to another.

Typical Use: To determine if a value is too low.

Details: � Determines if Argument 1 is less than or equal to Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 True
-1 0 True
-1 -3 False

22.221 22.220 False

� Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: LESS OR EQUAL
Is TEMPERATURE variable float
To 98.60 constant float

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either the GREATER condition or the False exit if the objective is to test for greater than.

See Also: GREATER OR EQUAL, NOT EQUAL, GREATER

CONDITIONS

3-56 Cyrano Command Reference

LESS OR EQ TO FLT TABLE DATA Logical

Function: To determine if a numeric value is less than or equal to a specified value in a float table.

Typical Use: To store low values.

Details: � Determines if one value (Argument 1) is less than or equal to another (a value at index
Argument 2 in float table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 True
0.0001 0.0 False
-98.765 -98.765 True
22.22 22.222 True

� Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: LESS OR EQ TO FLT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER THAN FLOAT TABLE DATA or the False exit if the objective is to test for

greater than.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-57

LESS OR EQ TO INT TABLE DATA Logical

Function: To determine if a numeric value is less than or equal to a specified value in an integer table.

Typical Use: To store low values.

Details: � Determines if one value (Argument 1) is less than or equal to another (a value at index
Argument 2 in integer table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0 0 True
1 0 False

-32768 -32767 True
22221 2222 False

� Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: LESS OR EQ TO INT TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF RANGES integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER THAN INTEGER TABLE DATA or the False exit if the objective is to test for

greater than.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

3-58 Cyrano Command Reference

LESS THAN FLOAT TABLE DATA Logical

Function: To determine if a numeric value is less than a specified value in a float table.

Typical Use: To store low values.

Details: � Determines if one value (Argument 1) is less than another (a value at index Argument 2 in
float table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 False
0.0001 0.0 False
-98.766 -98.765 True
22.22 22.22 False

� Evaluates True if the first value is less than the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: LESS THAN FLOAT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER OR EQ TO FLT TABLE DATA or the False exit if the objective is to test for

greater than or equal to.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-59

LESS THAN INTEGER TABLE DATA Logical

Function: To determine if a numeric value is less than a specified value in an integer table.

Typical Use: To store low values.

Details: � Determines if one value (Argument 1) is less than another (a value at index Argument 2 in
integer table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0 0 False
1 0 False

-32768 -32767 True
22221 2222 False

� Evaluates True if the first value is less than the second, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: LESS THAN INTEGER TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF RANGES integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either GREATER OR EQ TO INT TABLE DATA or the False exit if the objective is to test for

greater than or equal to.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

3-60 Cyrano Command Reference

NOT EQUAL Logical

Function: To determine if two values are different.

Typical Use: To perform reverse logic.

Details: � Determines if Argument 1 is different from Argument 2. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
-1 0 True

255 65280 True
22.22 22.22 False

� Evaluates True if the two values are different, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2
ANALOG IN ANALOG IN

ANALOG OUT ANALOG OUT
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
COUNTER COUNTER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
FREQUENCY FREQUENCY
OFF LATCH OFF LATCH

OFF PULSE MEAS. OFF PULSE MEAS.
OFF TIME TOTALIZER OFF TIME TOTALIZER

ON LATCH ON LATCH
ON PULSE MEAS. ON PULSE MEAS.

ON TIME TOTALIZER ON TIME TOTALIZER
PERIOD PERIOD

QUADRATURE COUNTER QUADRATURE COUNTER
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER
VARIABLE TIMER VARIABLE TIMER

Example: NOT EQUAL
Is BATCH STEP variable integer
To 4 constant integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use WITHIN LIMITS? to test for an approximate match.
� Use either the EQUAL condition or the False exit if the objective is to test for equality.

See Also: GREATER, LESS, LESS OR EQUAL, GREATER OR EQUAL, EQUAL

CONDITIONS

Cyrano Command Reference 3-61

NOT EQUAL TO FLOAT TABLE DATA Logical

Function: To determine if a numeric value is different from a specified value in a float table.

Typical Use: To perform reverse logic.

Details: � Determines if one value (Argument 1) is different from another (a value at index Argument 2 in
float table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0.0 0.0 False
0.0001 0.0 True
-98.765 -98.765 False
22.22 22.22 False

� Evaluates True if the two values are different, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER FLOAT TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: NOT EQUAL TO FLOAT TABLE DATA
Is THIS READING variable float
At Index TABLE INDEX variable integer
Of Table TABLE OF READINGS float table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either EQUAL TO FLOAT TABLE DATA or the False exit if the objective is to test for equality.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....FLOAT TABLE DATA� conditions

CONDITIONS

3-62 Cyrano Command Reference

NOT EQUAL TO INTEGER TABLE DATA Logical

Function: To determine if a numeric value is different from a specified value in an integer table.

Typical Use: To perform reverse logic.

Details: � Determines if one value (Argument 1) is different from another (a value at index Argument 2 in
integer table Argument 3). Examples:

VALUE 1 VALUE 2 RESULT

0 0 False
1 0 True

-32768 -32768 False
2222 2222 False

� Evaluates True if the two values are different, False otherwise.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT INTEGER INTEGER TABLE

ANALOG OUT VARIABLE INTEGER
CONSTANT FLOAT

CONSTANT INTEGER
COUNTER
DIGITAL IN

DIGITAL OUT
FREQUENCY
OFF LATCH

OFF PULSE MEAS.
OFF TIME TOTALIZER

ON LATCH
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

QUADRATURE COUNTER
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: NOT EQUAL TO INTEGER TABLE DATA
Is THIS READING variable integer
At Index TABLE INDEX variable integer
Of Table TABLE OF COUNTS integer table

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use either EQUAL TO INTEGER TABLE DATA or the False exit if the objective is to test for

equality.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: Other �....INTEGER TABLE DATA� conditions

CONDITIONS

Cyrano Command Reference 3-63

NOT? Logical

Function: To determine if a value is False (zero, off).

Typical Use: To perform False testing.

Details: � Determines if Argument 1 is False. Examples:
ARGUMENT 1 RESULT

0 True
-1 False
22 False

� Evaluates True if Argument 1 is False (zero, off). Evaluates False if Argument 1 is True (non-
zero, on).

� Functionally equivalent to VARIABLE FALSE?

Arguments: ARGUMENT 1
CONSTANT FLOAT

CONSTANT INTEGER
DIGITAL IN

DIGITAL OUT
VARIABLE FLOAT

VARIABLE INTEGER

Example: NOT?
Is CURRENT STATE variable integer

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� Use either VARIABLE TRUE? or the False exit if the objective is to determine whether a value

is True (non-zero).

See Also: AND, OR, XOR, VARIABLE TRUE?

CONDITIONS

3-64 Cyrano Command Reference

OR Logical

Function: To determine if either or both of two values are True.

Typical Use: To OR two values within an AND type condition block.

Details: � Determines if Argument 1 or Argument 2 is non-zero. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
-1 0 True
0 -1 True
-1 -1 True

� Evaluates True if either argument is True (non-zero, on). Evaluates False if both arguments are
False (zero, off).

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: OR
Is LIMIT SWITCH1 digital input
Is LIMIT SWITCH2 digital input

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� Use either VARIABLE FALSE? or the False exit if the objective is to determine whether both

values are False (zero, off).
� Multiple uses of OR within a condition block result in the OR pairs being ANDed.

See Also: NOT, AND, XOR

CONDITIONS

Cyrano Command Reference 3-65

WITHIN LIMITS? Logical

Function: To determine if a value is greater than or equal to a low limit and less than or equal to a high
limit.

Typical Use: To check if a temperature is within an acceptable range.

Details: � Determines if Argument 1 is no less than Argument 2 and no greater than Argument 3.
Examples:
ARGUMENT 1 ARGUMENT 2 ARGUMENT 3 RESULT

0.0 0.0 100.0 True
-32768 0.0 100.0 False
72.1 68.0 72.0 False
-1.0 -45.0 45.0 True

� Evaluates True if Argument 1 falls between Arguments 2 and 3 or equals either value.
Evaluates False if Argument 1 is less than Argument 2 or greater than Argument 3.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
ANALOG IN CONSTANT FLOAT CONSTANT FLOAT

ANALOG OUT CONSTANT INTEGER CONSTANT INTEGER
CONSTANT FLOAT VARIABLE FLOAT VARIABLE FLOAT

CONSTANT INTEGER VARIABLE INTEGER VARIABLE INTEGER
COUNTER

FREQUENCY
OFF PULSE MEAS.

OFF TIME TOTALIZER
ON PULSE MEAS.

ON TIME TOTALIZER
PERIOD

TIME PROP. OUTPUT
VARIABLE FLOAT

VARIABLE INTEGER
VARIABLE TIMER

Example: This example evaluates True if CURRENT TEMP is greater than or equal to COLDEST TEMP and
less than or equal to HOTTEST TEMP. It evaluates False otherwise.

WITHIN LIMITS?
Is CURRENT TEMP variable float
Low Limit COLDEST TEMP variable float
High Limit HOTTEST TEMP variable float

Notes: � See the Logical Overview in Chapter 1 for important information.
� Use to replace two conditions: LESS OR EQUAL and GREATER OR EQUAL.

See Also: LESS OR EQUAL, GREATER OR EQUAL

CONDITIONS

3-66 Cyrano Command Reference

XOR Logical

Function: To determine if two values are at opposite True/False states.

Typical Use: To determine if a logic value has changed state.

Details: � Determines if Argument 1 and Argument 2 have different True/False states. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

0 0 False
0 1 True
1 0 True
1 1 False
0 -1 True
-1 0 True
-1 -1 False
22 0 True
22 -4 False

� Evaluates True if one item is True (non-zero, on) and the other is False (zero, off). Evaluates
False if both items are True or if both items are False.

� Functionally equivalent to the NOT EQUAL condition when using allowable values.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT FLOAT CONSTANT FLOAT

CONSTANT INTEGER CONSTANT INTEGER
DIGITAL IN DIGITAL IN

DIGITAL OUT DIGITAL OUT
VARIABLE FLOAT VARIABLE FLOAT

VARIABLE INTEGER VARIABLE INTEGER

Example: XOR
Is LIMIT SWITCH1 PREV variable integer
Is LIMIT SWITCH1 digital input

Notes: � See the Logical Overview in Chapter 1 for important information.
� It is advisable to use only integers or digital channels with this command.
� Use the False exit if the objective is to test two values for equivalent True/False states.

See Also: NOT, AND, OR

CONDITIONS

Cyrano Command Reference 3-67

STRING CONDITIONS

EQUAL TO STRING TABLE DATA String

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match with an entry in a string table.

Details: � Determines if one string (Argument 1) is equal to another (a string at index Argument 2 in
string table Argument 3). Examples:

STRING 1 STRING 2 RESULT

�OPTO� �OPTO� True
�OPTO� �Opto� False

�22� �22� True
�2 2� �22� False

� Evaluates True if both strings are exactly the same, False otherwise.
� Only an exact match on all characters (including leading or trailing spaces) will return a True.
� This test is case-sensitive. For example, a �T� does not equal a �t.�
� Valid range for the At Index parameter (Argument 2) is zero to the table length (size).
� Functionally equivalent to the TEST EQUAL STRINGS operation.
� Quotes (��) are used for readability only. They are not part of the string. Do not type them or

expect to see them.

Arguments: ARGUMENT 1 ARGUMENT 2 ARGUMENT 3
CONSTANT STRING CONSTANT INTEGER STRING TABLE
VARIABLE STRING VARIABLE INTEGER

Example: The following example compares a new barcode to a string in a string table. This could be done
in a loop to see if the new barcode exists in a table.

EQUAL TO STRING TABLE DATA
Is NEW BARCODE variable string with barcode
At Index LOOP INDEX variable integer
Of Table CURRENT PRODUCTS string table

Notes: � See the String Overview in Chapter 1 for important information.
� Many additional string commands are available. These are �external� commands that require

library support. Consult the Opto 22 BBS.

Error Codes: Queue error 32 = Bad table index value � index was negative or greater than the
table size

See Also: TEST EQUAL STRINGS, STRING EQUAL, GET SIZE OF STRING TABLE

CONDITIONS

3-68 Cyrano Command Reference

STRING EQUAL String

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: � Determines if strings Argument 1 and Argument 2 are equal. Examples:
ARGUMENT 1 ARGUMENT 2 RESULT

�OPTO� �OPTO� True
�OPTO� �Opto� False

�22� �22� True
�2 2� �22� False

� Evaluates True if both strings are exactly the same, False otherwise.
� Only an exact match on all characters (including leading or trailing spaces) will return a True.
� This test is case-sensitive. For example, a �T� does not equal a �t.�
� Functionally equivalent to the TEST EQUAL STRINGS operation.
� Quotes (��) are used for readability only. They are not part of the string. Do not type them or

expect to see them.

Arguments: ARGUMENT 1 ARGUMENT 2
CONSTANT STRING CONSTANT STRING
VARIABLE STRING VARIABLE STRING

Example: STRING EQUAL
Is NEW ENTRY variable string
To PASSWORD variable string

Notes: � See the String Overview in Chapter 1 for important information.
� Use EQUAL TO STRING TABLE DATA to compare with strings in a table.

See Also: TEST EQUAL STRINGS, EQUAL TO STRING TABLE DATA

Cyrano Command Reference 4-1

ERROR CODES

I/O UNIT ERRORS

These errors are reported to the error queue by the Mistic controller.

1 I/O unit received an inappropriate command

Generated by: Mistic I/O unit

Possible causes: � A digital I/O unit with the address and port of an analog I/O unit or vice
versa.

2 Bad CRC on a message to or from an I/O unit

Generated by: Mistic I/O unit or the Mistic controller

Possible causes: � Incorrect or loose communications wiring.

� High noise level on the communications line.

� Missing terminator on the ends of the communication cable.

� Twisted pair cable not used.

� Two or more I/O units with the same address.

3 Length of received message is too long

Generated by: Mistic I/O unit

Possible causes: � Incorrect or loose communications wiring.

� High noise level on the communications line.

� Missing terminator on the ends of the communication cable.

� Twisted pair cable not used.

� Two or more I/O units with the same address.

� Improperly formatted message sent to I/O unit.

4 Powerup has occurred

Generated by: Mistic I/O unit

Possible causes: � Power has been cycled on the I/O unit.

Important notes: � This is not an error. It is notification that communication to the I/O unit has
 been re-established following an error 29.

ERROR CODES

4-2 Cyrano Command Refererence

5 I/O unit received insufficient data in a particular data field

Generated by: Mistic I/O unit

Possible causes: � A digital I/O unit with the address and port of an analog I/O unit.

6 I/O unit watchdog timeout

Generated by: Mistic I/O unit

Possible causes: � Lack of communication to the I/O unit.

Important notes: � This is not an error. It is notification that communication to the I/O unit
was interrupted.

� The command that returned this code will not be executed.

7 I/O unit received invalid data in a particular data field

Generated by: Mistic I/O unit

Possible causes: � Sending a value greater than 65535 to an analog channel.

� Sending a RAMP TO POINT command with a value of 0 units/sec.

� Sending a GENERATE N PULSES command with an on or off time value that is
 too small.

9 I/O unit has an invalid module type

Generated by: Mistic I/O unit

Possible causes: � No module installed.

� An output module installed in a channel configured as an input.

� Sending an input command to an analog channel with either no module
 installed or an output module installed.

� Sending an output command to an analog channel with an input module
 installed.

� Sending an analog single-point I/O unit command to an analog HRD I/O unit or
 vice-versa.

� An event/reaction referencing a digital output that was later changed to a
 digital input.

10 I/O unit has an invalid event/reaction entry

Generated by: Mistic I/O unit

Possible causes: � An attempt to enable an event interrupt on a null entry in the event/reaction
 table.

� An illegal reaction command specified.

ERROR CODES

Cyrano Command Reference 4-3

11 I/O unit digital time delay capability exceeded

Generated by: Mistic I/O unit

Possible causes: � An attempt to start a square wave, generate N pulses, or set up a TPO with a
 value of less than 10 milliseconds or with more than eight output channels on
 the same digital I/O unit.

29 No response from I/O unit

Generated by: Mistic controller

Possible causes: � Improper jumper settings (address, baud, protocol) at the I/O unit.

� Low power supply voltage at the I/O unit.

� No power at the I/O unit.

� Bad communication link to the I/O unit.

� Missing terminator on the ends of the communication cable.

� Two or more I/O units with the same address.

GENERAL ERRORS

These errors are reported to the error queue by the Mistic controller.

30 Invalid port number

Generated by: Mistic controller

Possible causes: � Sending a peer message to the same Mistic controller (analogous to talking to
 yourself).

� Firmware error.

31 Send timeout

Generated by: Mistic controller

Possible causes: � CTS low on an RS-232 HOST port.

� Sending long strings to a HOST port.

� Port timeout delay too short.

� Firmware error.

32 Bad table index

Generated by: Mistic controller

Possible causes: � Negative table index value.

� Table index value greater than the table length.

ERROR CODES

4-4 Cyrano Command Refererence

33 Numeric overflow

Generated by: Mistic controller

Possible causes: � The result of a calculation is larger than the numeric type used.

35 Not a number

Generated by: Mistic controller

Possible causes: � A math operation resulting in a complex or imaginary number, such as the
 square root of a negative number.

36 Divide by zero

Generated by: Mistic controller

Possible causes: � A math operation tried to divide a constant or variable by 0.

38 Bus fault

Generated by: Mistic controller

Possible causes: � Attempt to access invalid memory areas (firmware or library bug).

� Failure in the Mistic controller hardware.

39 Port already in use

Generated by: Mistic controller

Possible causes: � Attempt to have more than one port �open� in a chart.

41 Invalid E/R hold buffer

Generated by: Mistic I/O unit

Possible causes: � Attempt to read the event/reaction data hold buffer for an event/reaction
 that is not configured with a �read and hold� reaction.

45 String too short to hold data

Generated by: Mistic controller

Possible causes: � String variable too short for data specified.

� Attempt to put the date or time in a string with a length less than eight.

ERROR CODES

Cyrano Command Reference 4-5

ERRORS REPORTED TO HOST PORT DEVICES

These errors are reported to HOST port devices (such as the Cyrano Debugger and MMI) by the Mistic
controller.

0 �Is not Unique�: Mistic controller received a new word that already existed

Generated by: Mistic controller during a download

Important note: � This is not an error. It is notification that the word just defined has actually
 been redefined, since a word by the original name already existed.

1 �Undefined Command�: Mistic controller received an undefined command

Generated by: Mistic controller during a download

Possible causes: � Old Mistic controller firmware.

� Not selecting YES for MISTIC.LIB under Download Options in the Cyrano
 Configurator when using commands that require library support.

� MISTIC.LIB does not include the referenced command.

� Typo in a file being downloaded (MISTIC.LIB, MISTIC.###, MISTIC.INC, or
 MISTIC.TRM).

2 Mistic controller received a message with a bad CRC

Generated by: Mistic controller while communicating with a PC

Possible causes: � Incorrect or loose communications wiring.

� High noise level on the communications line.

� Missing terminator on the ends of the communication cable
 (RS-485/422 only).

� Twisted pair cable not used (RS-485/422 only).

� Incorrect cable used for ARCNET or Ethernet connections.

4 Mistic controller power-up clear

Generated by: Mistic controller

Possible causes: � Mistic controller lost power since last communication.

Important notes: � This is not an error. It is a notification only.

� The command that returned this code will not be executed.

5 Mistic controller received insufficient data in a particular data field

Generated by: Mistic controller

Possible causes: � Error in command syntax.

ERROR CODES

4-6 Cyrano Command Refererence

38 Mistic controller bus fault

Generated by: Mistic controller

Possible causes: � An attempt to access invalid or protected memory areas (firmware or library
 bug).

� Failure in the Mistic controller hardware.

40 I/O unit not configured

Generated by: Mistic controller

Possible causes: � Communicating to an I/O unit that has not been configured.

� I/O unit configured as the wrong type.

42 �Mistic Controller Busy�: Mistic controller HOST port is busy

Generated by: Mistic controller

Possible causes: � Another device has locked the HOST port while downloading to the Mistic
 controller.

Important notes: � This is not an error. It is notification that the Mistic controller is busy.

� The command that returned this code will not be executed.

43 HOST port relock

Generated by: Mistic controller.

Possible causes: � An error occurring after the UNLOCK command.

50 �Empty Stack�: Mistic controller stack is empty

Generated by: Mistic controller during a download or while running

Possible causes: � A command requesting more items from the stack than are available.

� An ENDIF (Forth �THEN�) without a corresponding IF.

� An UNTIL (Forth �UNTIL�) without a corresponding LOOP ... UNTIL (Forth
 �BEGIN�).

� An ENDSWITCH (Forth �ENDCASE�) without a corresponding SWITCH
 (Forth �CASE�).

� A BREAK (Forth �ENDOF�) without a corresponding CASE (Forth �OF�).

51 �Dictionary Full�: Mistic controller dictionary is full

Generated by: Mistic controller during a download

Possible causes: � Allocated word dictionary space is full. Too many words were downloaded.

ERROR CODES

Cyrano Command Reference 4-7

52 �Stack Full�: Mistic controller stack is full

Generated by: Mistic controller

Possible causes: � A command leaving one or more items on the stack.

53 �Compilation Only�: Mistic controller compilation only

Generated by: Mistic controller during a download

Possible causes: � A word that can only be used within a definition being used outside the
 definition.

54 �Execution Only�: Mistic controller execution only

Generated by: Mistic controller during a download

Possible causes: � A word being defined within a word that is being defined.

� A missing semicolon from a Forth word definition.

55 �DEF Not Finished�: Mistic controller DEF not finished

Generated by: Mistic controller during a download

Possible causes: � An unfinished loop construct used when terminating the definition (for
 example, an IF without a THEN).

� A missing semicolon from a Forth word definition.

58 �Out of Memory�: Mistic controller is out of memory

Generated by: Mistic controller during a download

Possible causes: � A program too large to fit in memory.

ERROR CODES

4-8 Cyrano Command Refererence

59 �Invalid Data�: Mistic controller received invalid data

Generated by: Mistic controller during a download or while running

Possible causes: � Data type or range invalid for the command.

� ARCNET card not responding at configured address

Generated by: Cyrano

Possible causes: � Invalid ARCNET BASE address.

� Send error: Controller offline or address incorrect

Generated by: Cyrano

Possible causes: � I/O defined on the same port used by the HOST task.

� Controller powered off.

� Controller configured with wrong address.

� Timeout interval too short.

� Timeout error

Generated by: Cyrano

Possible causes: � Communication cannot be completed within the time specified through the
 CONFIGURE MISTIC COMMUNICATIONS dialog box.

COMMUNICATION AND STRING COMMAND ERRORS

These errors are reported to the Put Result In parameter of Cyrano by the Mistic controller.

-40 Port busy

Generated by: Mistic controller

Possible causes: � Specified port already in use.

-41 Send timeout

Generated by: Mistic controller

Possible causes: � CTS low on a serial port in RS-232 mode.

� Sending long strings to a serial port.

� Serial port timeout delay too short.

� For ports 4 and 7, transmit buffer is full.

ERROR CODES

Cyrano Command Reference 4-9

-42 No response

Generated by: Mistic controller

Possible causes: � No carriage return (character 13) in the receive buffer.

� Serial port timeout delay too short.

-43 Not enough data returned

Generated by: Mistic controller

Possible causes: � Invalid response to an OPTOMUX command.

-44 Invalid data returned

Generated by: Mistic controller

Possible causes: � Illegal first character in response to an OPTOMUX command.

-45 Bad checksum or CRC on received message

Generated by: Mistic controller

Possible causes: � Incorrect or loose communications wiring.

� High noise level on the communications line.

� Missing terminator on the ends of the communication cable.

� Twisted pair cable not used.

� Two or more devices with the same address.

-46 Invalid limits

Generated by: Mistic controller when using GET NTH CHARACTER

Possible causes: � Index into a string variable was negative or greater than the STRING LENGTH.

-47 NAK returned

Generated by: Mistic controller

Possible causes: � NAK returned in response to an OPTOMUX command (usually followed by an
 error code).

-48 String too short

Generated by: Mistic controller

Possible causes: � Target string variable too short to hold response to an OPTOMUX or CRC
 command.

ERROR CODES

4-10 Cyrano Command Refererence

-49 String was empty

Generated by: Mistic controller

Possible causes: � A command that expected a string variable to contain one or more characters.

-50 Invalid characters in string

Generated by: Mistic controller

Possible causes: � Unexpected characters in the string passed to the CONFIGURE PORT
 command.

MOTION CONTROL ERRORS

These errors are reported to the error queue by the Mistic controller.

128 Invalid command

Indicates that the motion I/O unit did not recognize the command. Make sure the motion axis is
configured as the correct type (servo or stepper) at the correct address. Also check that the motion I/O
unit�s firmware is consistent with the current version of Cyrano (see page vi). If it isn�t, contact Opto
22 for an update.

129 Limit switch active

Occurs when a START MOTION operation is executed while a limit switch is active.

130 Cannot load acceleration

Occurs when a SET ACCELERATION operation is executed while the axis running. The acceleration
can be set only when motion is stopped.

131 Cannot set direction

Occurs when a SET DIRECTION FORWARD or SET DIRECTION REVERSE operation is executed and
the axis is configured for position-relative or position-absolute mode. The SET DIRECTION
operations are valid only when the axis is configured for velocity mode.

132 Cannot load position

Occurs when a SET TARGET POSITION operation is executed and the axis is configured for
velocity mode. The SET TARGET POSITION operation is valid only when the axis is configured for
position-relative or position-absolute mode.

133 Busy executing FIND HOME sequence

Occurs when an operation is executed that affects motion while the specified axis is busy
executing a FIND HOME operation. Your strategy must wait until the FIND HOME sequence is
complete before attempting the operation.

ERROR CODES

Cyrano Command Reference 4-11

134 Limit and home switches disabled

Occurs when an operation is executed that depends on the limit or home switches (e.g., FIND HOME,
FIND INDEX) and the inputs are disabled. The inputs must be enabled and have their polarities
properly configured before they are used.

135 Trigger buffer enabled

Occurs when an operation is executed that involves the trigger or watchdog buffer while the buffer is
in use. Disable the buffer first before trying to program it.

136 Both limit switches True

Occurs when an operation is executed that may be affected by the limit switches and both limit
switches are indicating a True condition. This may indicate a mechanical failure, or the polarity of the
inputs may not be set up correctly.

137 Trigger buffer empty

Occurs when execution of operations in the trigger buffer is attempted (via use of the FORCE
TRIGGER operation or activation of a configured trigger input) and the trigger buffer is empty.

138 Servo command sent to stepper

Occurs when a command issued to a stepper axis on a multi-axis motion brick is not a valid stepper
axis command (the command was a servo ONLY command).

139 No velocity mode support

Occurs because the stepper axis does not support velocity mode.

140 Motion step count too high

Occurs when the commanded motion (in relative or absolute mode) exceeds 0x00200000 (2,097,152)
steps in a single move.

141 Clear position counter

Occurs when a CLEAR POSITION COUNTER is issued while a stepper axis is in motion. You must
wait for a MOTION COMPLETE before issuing this command.

142 Feedback encoder missing

A stepper motor must be equipped with a feedback device (encoder) to work in closed-loop
mode.

143 Start motion

Occurs when a START MOTION is issued while a stepper axis is in motion. You must wait for a
MOTION COMPLETE before issuing this command.

144 Cannot execute FIND INDEX while axis is running

Occurs when the FIND INDEX operation is executed while the specified axis is running. Your strategy
should make sure that the move is complete before attempting to execute the FIND INDEX operation.

ERROR CODES

4-12 Cyrano Command Refererence

145 Invalid data

Occurs if a FIND INDEX operation is executed and the Encoder Lines per Revolution parameter is
configured as zero.

146 Busy executing FIND INDEX

Occurs when an operation is executed that affects motion, and the axis is busy executing a FIND
INDEX operation. Your strategy must wait until the FIND INDEX sequence is complete before
attempting the operation.

147 Limit switch True

Occurs when a FIND INDEX operation is executed and one of the limit switches is active. Make sure
the axis is in a position where it will not trip a limit switch when the FIND INDEX operation is
executed.

148 Anticipation time break point warning

This warning occurs when an anticipation time break point is set with a time that calculates to less
time than is required to complete the move. In this case, the break point output will trip immediately
at the beginning of the move. Remember, anticipation time is calculated with respect to the end of
the motion profile of the axis.

149 Invalid scale factor

Occurs if the scale factor is configured with a value that is zero or less.

150 Scale factor divide by zero

Occurs if a divide-by-zero error occurs while the axis is doing scale factor calculations.

151 Anticipation time break point

Occurs when a SET ANTICIPATION TIME BREAKPT. operation is executed and the specified axis is in
velocity mode.

152 FIND HOME sequence active

Occurs when an operation is executed that interferes with a FIND HOME sequence that is in
progress on the axis.

153 Following error

Occurs if the axis did not start motion because of an existing following error condition.

154 Cannot change loop mode

Occurs when a SET OPEN LOOP MODE or SET CLOSED LOOP MODE command is issued while a
stepper axis is in motion. You must wait for a MOTION COMPLETE before issuing this command.

ERROR CODES

Cyrano Command Reference 4-13

155 FIND INDEX command error

Occurs because there is no feedback (encoder) on an open loop stepper, so there is no index to find.
The FIND INDEX command cannot be issued in open loop mode.

156 ENABLE BREAKPOINT command error

Occurs when an ENABLE BREAKPOINT command is issued while a stepper axis is in motion. You
must wait for a MOTION COMPLETE before issuing this command.

157 Trigger buffer storage already enabled

Occurs because a BEGIN GLOBAL TRIGGER BUFFER PRESTORE command was followed by another
BEGIN TRIGGER BUFFER PRESTORE command (multi or single) without an END GLOBAL TRIGGER
BUFFER PRESTORE command in between. Once global trigger buffer storage has begun, it must be
completed before any new trigger buffer storage can begin (on any axis on the brick).

160 BEGIN TRIGGER BUFFER command error

Occurs when a BEGIN TRIGGER BUFFER PRESTORE or BEGIN WATCHDOG BUFFER PRESTORE
operation is executed while the specified axis is in trigger buffer storage mode. An END TRIGGER
BUFFER PRESTORE or END WATCHDOG BUFFER PRESTORE operation must first be executed.

161 Trigger buffer full

Occurs when the trigger buffer or watchdog buffer is in storage mode and an operation is executed
(sent to the buffer for storage) that causes the buffer to overflow. Reduce the number of operations
being stored in the buffer.

162 TRIGGER BUFFER command error

Occurs when an operation that reads or returns status information is executed while the axis is in
trigger or watchdog buffer storage mode. Only operations that control motion and do not return
values may be stored in the buffers.

163 END TRIGGER BUFFER command error

Occurs when an END TRIGGER BUFFER PRESTORE or END WATCHDOG BUFFER PRESTORE operation
is executed and the specified axis is not in trigger or watchdog buffer storage mode.

164 Trigger buffer delimiter error

Occurs when an INSERT BUFFER DELIMITER operation is executed and the specified axis is not in
trigger or watchdog buffer storage mode.

ERROR CODES

4-14 Cyrano Command Refererence

TECHNICAL SUPPORT

Cyrano Command Reference A-1

PRODUCT SUPPORT

If you have any questions about this product, contact Opto 22 Product Support Monday through
Friday, 8 a.m. to 5 p.m. Pacific Time.

Phone: 800-TEK-OPTO (835-6786)
951-695-3080

Fax: 951-695-3017

E-mail: support@opto22.com

Opto 22 Web site: www.opto22.com

When calling for technical support, be prepared to provide the following information about your
system to the Product Support engineer:

• Software and version being used

• Controller firmware version

• PC configuration

• A complete description of your hardware and operating systems, including:
— jumper configuration
— accessories installed (such as expansion daughter cards)
— type of power supply
— types of I/O units installed
— third-party devices installed (e.g., barcode readers)

• Specific error messages seen

TECHNICAL SUPPORT

A-2 Cyrano Command Reference

Cyrano Command Reference 1

INDEX

Symbols
32-task queue. See task queue

A
about this manual, ix
alarm enunciation, 1-10
analog inputs, monitoring, 1-10
Analog Point operations, 2-9
angular measurement, 1-18
ARCNET, 1-1, 1-2, 1-6

port modes, 1-6
troubleshooting, 1-8

ASCII mode, 1-1, 1-2, 1-5, 1-6
ASCII table, 1-30

B
baud rate, 1-7
biasing, analog, 1-10
binary mode, 1-1, 1-2, 1-5, 1-6
buffer, hold, 1-11, 1-15
buffers, 1-7
bulletin board service, A-1

C
C, 1-28
Chart

conditions, 3-4
operations, 2-30
overview, 1-1

charts. See also task
definition of, 1-1
maximum number of, 1-1
maximum number running concurrently, 1-4

clamps, setting, 1-21
COM ports, 1-2. See ports
command descriptions, explanation of, ix

Communication
command errors, 4-8
operations, 2-45
overview, 1-5

communication
modes, 1-1, 1-2, 1-5
overhead, 1-10
ports, 1-6
troubleshooting, 1-7
watchdog timer. See watchdog timer

condition blocks, evaluating, 1-16, 1-17
condition command groups, index of, 3-1
condition commands, index of, 3-1
Configurator, setting baud rates in, 1-7
control characters in strings, 1-24
conventions, document, x
converting Boolean True to standard True, 1-17
counters, 1-8
CPU time, 1-2, 1-3
customer support, A-1
Cyrano, introduction to, vii

D
data bits, 1-7
Debugger, 1-1, 1-5, 1-6, 1-8, 1-14, 1-15

disabling outputs in, 1-8
supporting, 1-2
viewing binary bytes in, 1-24

decimal equivalents of ASCII values, 1-30
delay, maximum, 1-4
derivative

definition of, 1-19
determining, 1-21

digital counters, 1-8
digital operations, additional commands for, 1-9
Digital Point

conditions, 3-10
operations, 2-94
overview, 1-8

INDEX

2 Cyrano Command Reference

document conventions, x
drum sequencers, 1-10

E
EEPROM, 1-8
emergency stop buttons, 1-10
EPROM, vii
errors

Communication and String commands, 4-8
general, 4-3
I/O unit, 4-1
motion control, 4-9
reported to HOST port devices, 4-5

event criteria, changing on the fly, 1-16
Event/Reaction

conditions, 3-15
operations, 2-135
overview, 1-9

event/reactions
applications for, 1-10
definition of, 1-9
enhancements, 1-13
example of, 1-12
execution of, 1-13, 1-14
purpose of, 1-10
questions and answers about, 1-13
removing from Flash EEPROM, 1-16
storing in Flash EEPROM, 1-15

events, list of, 1-10

F
False, definition of, 1-17
feed forward applications, 1-19
firmware, viii
Flash EEPROM, vii, 1-14

removing event/reactions from, 1-16
storing event/reactions in, 1-15

floats
definition of, 1-18
mixing with integers, 1-18
using in logic, 1-17

flow control, 1-7
flowchart. See chart

G
gain

definition of, 1-19
determining, 1-20

general errors, 4-3
General Purpose

conditions, 3-22
operations, 2-147

H
hardware, vii
hex equivalents of ASCII characters, 1-30
hold buffer, 1-11, 1-15
HOST port, 1-5
HOST task, 1-1, 1-3

additional, 1-2
default, 1-1

I
I/O unit errors, 4-1
I/O Unit operations, 2-169
input filtering, 1-21
inputs, disabling, 1-8
integers

definition of, 1-17
mixing with floats, 1-18

integral
definition of, 1-19
determining, 1-20

integral-derivative interaction, 1-19
INTERRUPT chart, 1-1

definition of, 1-2
using to handle reactions, 1-15

IVAL, 1-8, 1-15
definition of, 1-8

K
kernel, 1-2

L
Logical

conditions, 3-38
operations, 2-181
overview, 1-16

Logical commands, values that can be used
with, 1-17

INDEX

Cyrano Command Reference 3

M
manual

conventions used in, x
organization of, ix

mask, 1-17
Mathematical

operations, 2-202
overview, 1-17

Mistic
controllers, viii

communication between, 1-6, 1-10
port assignments, 1-5

MMI, 1-1, 1-2, 1-5, 1-6
modems, 1-1, 1-2, 1-5
MOMO match event, 1-11
motion control errors, 4-9
multitasking, 1-4, 1-24

N
numeric tables, 1-23

O
on-the-fly configuration, 1-14, 1-16
operation command groups, index of, 2-1
operation commands, index of, 2-1
Opto 22

ASCII communication mode. See ASCII
mode

binary communication mode. See binary
mode

PID formula, 1-22
Opto 22 Product Support, A-1
output

change rate, 1-21
clamps, setting, 1-21
disabling, 1-8

overviews, 1-1

P
peer-to-peer communication, 1-6
PID

formula, 1-22
operations, 2-224
overview, 1-19
theory, 1-19
tuning, 1-20

port assignments, 1-5
ports, number allowed per chart, 1-6
power-up sequencing, 1-10
POWERUP chart

selecting ASCII mode for additional HOST
tasks fro, 1-5

setting serial port parameters in, 1-7
priority, definition of, 1-3
product support, A-1
program execution speed, 1-10
proportional band, 1-19

Q
queue. See task queue
quotes in strings, 1-24

R
radian, 1-18
reactions, list of, 1-11
read-and-hold reactions, 1-11
receive buffer, 1-7
requirements

firmware, viii
hardware, vii

rounding, 1-18

S
scan rate, 1-20
serial communication, troubleshooting, 1-7
serial ports

flow control, 1-7
modes, 1-6

setpoints, 1-10
speed, 1-10
speed tips, 2-133, 2-134, 2-149, 2-193, 2-205,

2-207, 2-241, 3-10, 3-12, 3-13, 3-14
standard mode, 1-6
String

command errors, 4-8
conditions, 3-67
operations, 2-239
overview, 1-22

INDEX

4 Cyrano Command Reference

string
adding control characters to, 1-24
and double quotes, 1-24
building, example of, 1-26
commands, equivalents in Visual Basic and

C, 1-28
conversion examples, 1-28
data extraction, example of, 1-26
definition of, 1-22
length, 1-23
table, example of, 1-25
width, 1-23

subroutines, 1-3

T
task, HOST. See HOST task
task queue, 1-1, 1-2

definition of, 1-2
technical support, A-1
time slice

definition of, 1-3
usage, 1-3

Time/Date operations, 2-258
transmit buffer, 1-7
troubleshooting, communication, 1-7
True, definition of, 1-16

V
Visual Basic, 1-28

W
watchdog timeout, 1-11
watchdog timer, 1-9

X
XVAL, 1-8, 1-15

definition of, 1-8

	Table of Contents
	Welcome
	What is Cyrano?
	What is Cyrano Used With?
	About This Manual
	Document Conventions
	About Opto 22

	CH.1: Overviews
	Chart Overview
	Communication Overview
	Digital Point Overview
	Event/Reaction Overview
	How to use the Interrupt Chart to Handle Reactions...
	Logical Overview
	Mathematical Overview
	PID Overview
	String Overview
	Timers Overview
	Analog I/O Overview

	CH.2: Operations
	Overview
	Index of Operation Command Groups
	Index of Operation Commands
	Analog Point Operations
	Chart Operations
	Communication Operations
	Digital Point Operations
	Event/Reaction Operations
	General Purpose Operations
	I/O Unit Operations
	Logical Operations
	Mathematical Operations
	PID Operations
	String Operations
	Time/Date Operations

	CH.3: Conditions
	Overview
	Index of Condition Command Groupts
	Index of Condition Commands
	Chart Conditions
	Digital Point Conditions
	Event/Reaction Conditions
	General Purpose Conditions
	Logical Conditions
	String Conditions

	CH.4: Error Codes
	I/O Unit Errors
	General Errors
	Errors Reported to Host Port Devices
	Communication and String Command Errors
	Motion Control Errors

	Appendix A: Product Support
	Index

