BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

Form 729-230112

page 1/10

Part Number	Description
B100	16-Channel Digital Brain, Mistic Protocol

50-PIN CONNECTOR FOR CLASSIC, SNAP DIGITAL RACKS

OPTO 22 B100 굣 G_9

DIAGNOSTIC LEDS

REMOVABLE COMMUNICATION CONNECTOR

Description

** This product is obsolete and no longer available. **

The B100 is a high-performance digital brain board used to control up to 16 channels of remote digital I/O using Opto 22's digital I/O mounting racks and modules. On-board intelligence enables many distributed control features. The B100 and its analog counterpart, the B200, can be used with either an Opto 22 FactoryFloor® controller or a host computer.

The B100 communicates via RS-485 serial at communication speeds up to 115K baud using the *mistic* protocol. The B100 brain board is physically interchangeable with the older B1 Optomux brain boards for Opto 22 Classic I/O and is plugcompatible with Classic racks. This compatibility makes it possible for a "Classic I/O customer" using Standard, Quad, or G4 I/O to use the mistic communications protocol with FactoryFloor software.

Utilizing the *mistic* protocol, fast communication speed is combined with advanced I/O processing to provide performance and power at the I/O level. Timecritical functions such as high-speed counting (20,000 Hz) and pulse width measurement (100 microsecond resolution) can be off-loaded from your host processor to the B100's intelligent I/O processor.

Distributed control functions include event/ reactions, latching, pulse train generation, and time Event reactions execute high-speed, deterministic responses to sophisticated control sequences, alarm monitors, or diagnostic conditions.

In addition, the B100 can generate an interrupt signal to an Opto 22 controller or host computer, notifying the controller that an event has occurred.

For systems I/O customers, the B100 can be used with Opto 22's FactoryFloor, the legacy suite of Microsoft® Windows® 32-bit software. FactoryFloor consists of four integrated components:

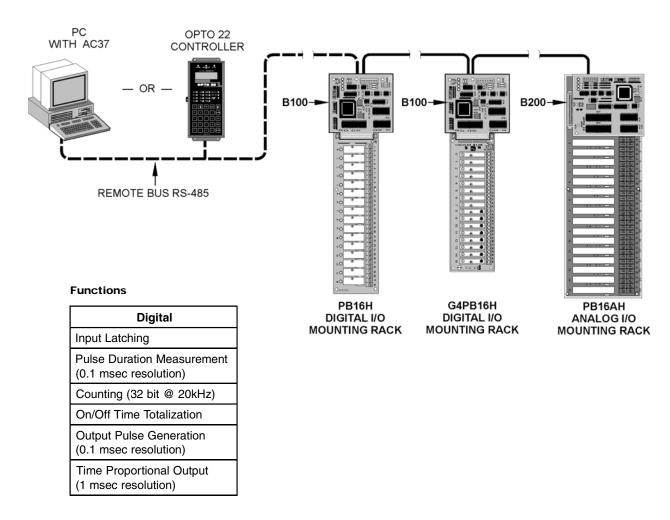
- OptoControl[™], a graphical, flowchart-based development environment for real-time control solutions.
- OptoDisplay[™], a graphical, multimedia operator interface
- OptoServer[™], a robust data server that connects the controller network with the PC-based FactoryFloor network.

The distributed intelligence of the B100 brain board is an integral part of OptoControl.

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

page 2/10


Form 729-230112

Description (Continued)

In keeping with the OptoOpen Integration™ philosophy, Opto 22's OptoDriver Toolkit™ allows you to create custom solutions utilizing the B100.The OptoDriver toolkit includes 32-bit Windows-compatible drivers, Windows 16-bit drivers, and Opto 22's Classic DOS drivers. The kit also provides the files, documentation, and real-world examples needed to write

Microsoft® Windows and DOS software applications that can access Opto 22 I/O hardware, using languages such as Microsoft Visual C++™ or Microsoft Visual Basic®. The OptoDriver Toolkit provides programmers with a simple, direct connection to Opto 22's industry-standard *mistic*, Optomux, or Pamux® I/O systems.

B100/B200 System Architecture

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

Form 729-230112

page 3/10

Specifications [OBSOLETE]

MISTIC Command Set - Digital Functions

Digital Setup/System Commands

IDENTIFY TYPE
POWER-UP CLEAR
REPEAT LAST RESPONSE
RESET
RESET ALL PARAMETERS TO DEFAULT
SET COMM LINK WATCHDOG MOMO AND DELAY
SET RESPONSE DELAY
SET SYSTEM OPTIONS

Digital I/O Configuration Commands

READ MODULE CONFIGURATION SET CHANNEL CONFIGURATION SET I/O CONFIGURATION - GROUP STORE CONFIGURATION TO EEPROM

Digital Read/Write, Latch Commands

CLEAR OUTPUT (DEACTIVATE OUTPUT)
READ AND OPTIONALLY CLEAR INPUT LATCHES
READ AND OPTIONALLY CLEAR LATCH
READ MODULE STATUS
SET OUTPUT MODULE STATE - GROUP
SET OUTPUTS (ACTIVATE OUTPUT)

Digital Counter, Frequency Commands

CLEAR COUNTER
ENABLE/DISABLE COUNTER - GROUP
ENABLE/DISABLE COUNTER
READ 16-BIT COUNTER
READ 32-BIT COUNTER - GROUP
READ 32-BIT COUNTER
READ AND CLEAR 16-BIT COUNTER

READ AND CLEAR 32-BIT COUNTER - GROUP

READ AND CLEAR 32-BIT COUNTER

READ COUNTER ENABLE/DISABLE STATUS
READ FREQUENCY MEASUREMENT

READ FREQUENCY MEASUREMENT - GROUP

Digital Time Delay, Pulse Output Commands

GENERATE N PULSES
READ OUTPUT TIMER COUNTER
SET TIME PROPORTIONAL OUTPUT PERIOD
SET TIME PROPORTIONAL OUTPUT PERCENTAGE
START CONTINUOUS SQUARE WAVE
START OFF PULSE
START ON PULSE

Digital Pulse/Period Measurement Commands

READ 16-BIT PULSE/PERIOD MEASUREMENT
READ 32-BIT PULSE/PERIOD - GROUP
READ 32-BIT PULSE/PERIOD MEASUREMENT
READ AND RESTART 16-BIT PULSE/PERIOD
READ AND RESTART 32-BIT PULSE/PERIOD
READ AND RESTART 32-BIT PULSE/PERIOD - GROUP
READ PULSE/PERIOD COMPLETE STATUS

Digital Event/Reaction Commands

CLEAR EVENT/REACTION TABLE **CLEAR EVENT TABLE ENTRY CLEAR INTERRUPT** ENABLE/DISABLE EVENT ENTRY - GROUP ENABLE/DISABLE EVENT TABLE ENTRY READ AND CLEAR EVENT LATCHES READ EVENT DATA HOLDING BUFFER READ EVENT ENTRY ENABLE/DISABLE STATUS READ EVENT LATCHES READ AND OPTIONALLY CLEAR EVENT LATCH READ EVENT TABLE ENTRY SET EVENT INTERRUPT STATUS SET EVENT ON COMM LINK WATCHDOG TIME-OUT SET EVENT ON COUNTER/TIMER >= SET EVENT ON COUNTER/TIMER <= SET EVENT ON MOMO MATCH SET EVENT REACTION COMMAND

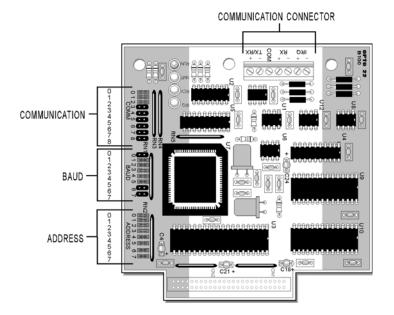
For detailed information about Mistic Command Set, refer to Mistic Protocol User's Guide (Form #270) or Misticware™ User's Guide (Form #522).

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

page 4/10

Form 729-230112


Specifications [OBSOLETE]

General

Operating Specifications

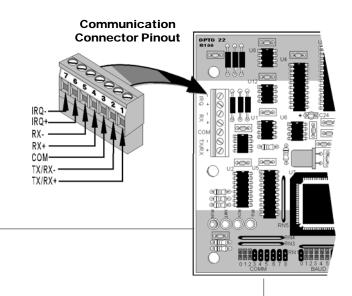
Power Requirements	5.0 VDC ± 0.1 VDC @ 600 mA max.
Operating Temperature	0° to 70°C, 95% humidity, non-condensing
CPU	16-bit Intel 80C196 I/O processor
Communications Interface	RS-485 twisted pair with shield, 2-wire or 4-wire (if using interrupts)
Data Rates	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, and 115200 baud
Range: Multidrop	Unlimited. (Up to 3,000 feet or 32 stations maximum between repeaters)
Counter and Frequency Measurement	Maximum Rate: 20 kHz Minimum Pulse Width: 10 ms
Output Pulse	Maximum Rate: 500 Hz Minimum Pulse Width: 1 ms
LED Indicators	RUN (Power On), RCV (Receive), XMT (Transmit), and (IRQ) Interrupt
Options: Jumper Selectable	Address, communication, baud rate, CRC/Checksum, Binary/ASCII

Location of Connectors and Jumpers

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

page 5/10


Form 729-230112

Specifications [OBSOLETE]

LED Descriptions, Communcation Jumpers/Wiring

LED Description Table

LED	Description			
IRQ	Processor interrupt request currently active.			
RCV	Processor is currently receiving data on communication line.			
XMT	Processor is currently transmitting data on communication line.			
RUN	Power on Processor			

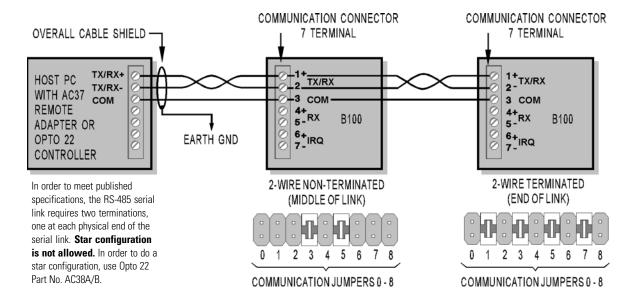
+5<math>VCommunication Terminations/Biasing Schematic (RS-485) 0 1 TX/RX 2 (2-WIRE / 4-WIRE) 3 3 4 RX (4-WIRE) 5 +5<math>Vှိ 5 6 6 7 7 8

Communication Jumper Descriptions

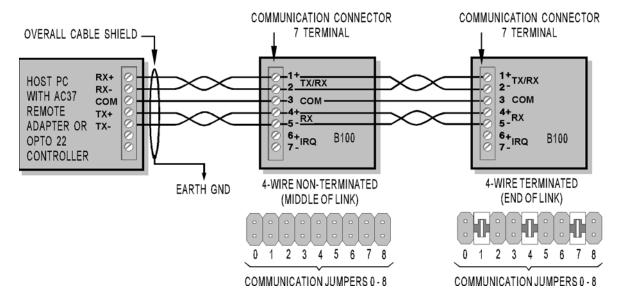
Jumper	Description				
0	Pull-up for TX/RX+				
1	Terminator for TX/RX lines				
2 Pull-down for TX/RX-					
3 Pull-up for RX+					
4	Terminator for RX lines				
5	Pull-down for RX-				
6	Pull-up for IRQ+				
7	Terminator for IRQ lines				
8	Pull-down for IRQ-				

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET


page 6/10

Form 729-230112


Specifications [OBSOLETE]

Communication Jumpers/Wiring (Continued)

Standard 2-Wire Configuration

Alternate 4-Wire Configuration

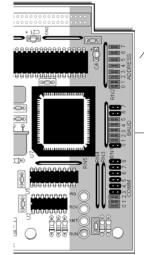
BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

page 7/10

Form 729-230112

Specifications [OBSOLETE]


Baud/Address Jumpers, LED Descriptions

Address Jumpers (ADDRESS 0-7)

Use these jumpers to select an 8-bit address from 0 to 255 (0 to FF hexadecimal). The factory default is 0 (all jumpers out). The most significant bit is 7 and the least significant bit is 0.

76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
XXXXXXXXXX	32	64	96	128	160	192	224
1	33	65	97	129	161	193	225
2	34	66	98	130	162	194	226
3 [[[[[]]]]]	35	67	99	131	163	195	227
4 [[[[]]]	36	68	100	132	164	196	228
5	37	69	101	133	165	197	229
6 [[[[]]]	38	70	102	134	166	198	230
7	39 📗 📗 📗	71	103	135	167	199	231
8 [[[[]]]	40	72	104	136	168	200	232
9 [[[]]	41	73	105	137	169	201	233
10 [[[]]	42	74	106	138	170	202	234
11 [[[]]	43	75	107	139	171	203	235
12 [[[]]	44 [[]	76	108	140	172	204	236
13 [[[]]	45	77	109	141	173	205	237
14 [[[]]	46	78	110	142	174	206	238
15	47	79	111	143	175	207	239
16 [[[]	48	80	112	144	176	208	240
17 [[[]	49	81	113	145	177	209	241
18 🔲 📗 📗 📗	50	82	114	146	178	210	242
19	51	83	115	147	179	211	243
20 [[[]	52	84	116	148	180	212	244
21	53	85	117	149	181	213	245
22 🔲 📗 📗 📗	54	86	118	150	182	214	246
23 🔲 🗎 📗 📗	55	87	119	151	183	215	247
24 [[[]	56	88	120	152	184	216	248
25 🔲 🛮 🗱 🗎 📗	57	89	121	153	185	217	249
26	58	90	122	154	186	218	250
27	59	91	123	155	187	219	251
28	∞ □□■■■■□□	92	124	156	188	220	252
29 🗰 🖽 🖽	61	93	125	157	189	221	253
30	62	94	126	158	190	222	254
31	හ □□■■■■■	95	127	159	191	223	255
	/						

■ = JUMPER INSTALLED □ = NO JUMPER

Table 1: Baud Rate Jumpers (0 - 3)

Baud Rate	Jumper Position 0	Jumper Position 1	Jumper Position 2	Jumper Position 3
115.2 KBaud (factory default setting)	Out	ln	ln	In
76.8 KBaud	ln	Out	ln	In
57.6 KBaud	Out	Out	In	In
38.4 KBaud	ln	ln	Out	In
19.2 KBaud	Out	ln	Out	In
9600 Baud	ln	Out	Out	In
4800 Baud	Out	Out	Out	In
2400 Baud	In	In	In	Out
1200 Baud	Out	ln	ln	Out
600 Baud	In	Out	In	Out
300 Baud	Out	Out	In	Out

Baud 0 - 3:

Use Table 1 to select appropriate baud rate.

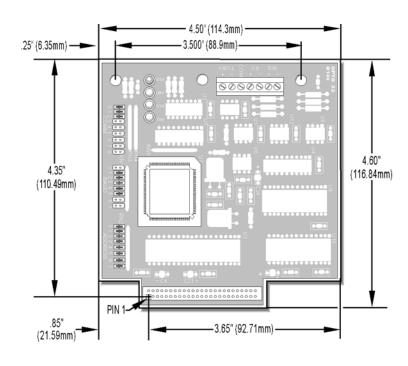
Baud 4: (Mistic mode select jumper):

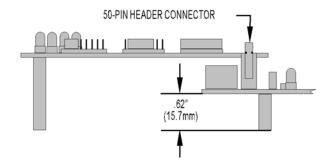
When using Mistic protocol; used to select either binary mode (jumper in, factory default setting) or ASCII mode (jumper out).

<u>Baud 5: (Data verification</u> <u>jumper):</u>

Used to select whether the type of data verification method used is Checksum Modulo 256 (jumper out) or CRC16 (jumper in, factory default setting).

Baud 6, 7: Unused.


BRAIN BOARDS
CLASSIC/MISTIC
16-CHANNEL DIGITAL


DATA SHEET

Form 729-230112

page 8/10

Dimensional Drawing

BRAIN BOARDS CLASSIC/MISTIC 16-CHANNEL DIGITAL

DATA SHEET

Form 729-230112

page 9/10

Assembly

Mounting the B100

Installing a B100 onto a Mounting Rack

- Align the brain board's header connector with the mounting rack's header connector.
- Firmly press the header connectors together until the locking tabs clamp down on the brain board as shown in Figure 1.

Installing a B100 onto a G4PB16J/K/L Mounting Rack

- 1. Attach plastic removable standoff to the brain board as shown in Figure 2.
- Align the brain board's header connector with the mounting rack's header connector and firmly press the header connectors together until the locking tabs clamp down on the brain board as shown in Figure 3.

Figure 3

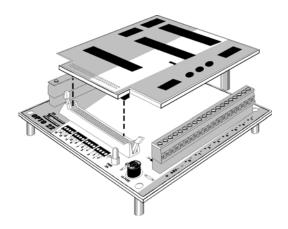


Figure 1

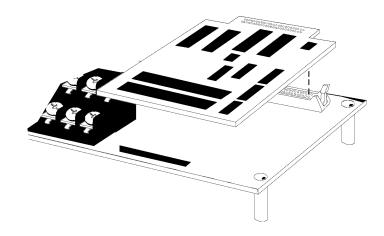
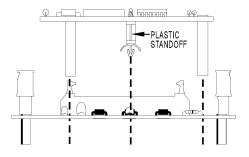



Figure 2

More about Opto 22

OPTO 22

PRODUCTS

Opto 22 develops and manufactures reliable, easy-to-use, open standards-based hardware and software products. Industrial automation, process control, remote monitoring, data acquisition, and industrial internet of things (IIoT) applications worldwide all rely on Opto 22.

groov RIO®

groov RIO edge I/O offers a single, compact, PoE-powered industrial package with web-based configuration and IIoT software built in, support for multiple OT and IT protocols, and security features like a device firewall, data encryption, and user account control.

Standing alone, *groov* RIO connects to sensors, equipment, and legacy systems, collecting and securely publishing data from field to cloud. Choose a universal I/O model with thousands of possible field I/O configurations, with or without Ignition from Inductive Automation®, or a RIO EMU energy monitoring unit that reports 64 energy data values from 3-phase loads up to 600 VAC, Delta or Wye.

You can also use *groov* RIO with a Modbus/TCP master or as remote I/O for a *groov* EPIC system.

groov EPIC® System

Opto 22's *groov* Edge Programmable Industrial Controller (EPIC) system gives you industrially hardened control with a flexible Linux®-based processor with gateway functions, guaranteed-for-life I/O, and software for your automation and IIoT applications.

groov EPIC Processor

The heart of the system is the *groov* EPIC processor. It handles a wide range of digital, analog, and serial functions for data collection, remote monitoring, process control, and discrete and hybrid manufacturing.

In addition, the EPIC provides secure data communications among physical assets, control systems, software applications, and online services, both on premises and in the cloud. No industrial PC needed.

Configuring and troubleshooting I/O and networking is easier with the EPIC's integrated high-resolution color touchscreen. Authorized users can manage the system locally on the touchscreen, on a monitor connected via the HDMI or USB ports, or on a PC or mobile device with a web browser

groov EPIC I/O

groov I/O connects locally to sensors and equipment. Modules have a spring-clamp terminal strip, integrated wireway, swing-away cover, and LEDs indicating module health and discrete channel status. groov I/O is hot swappable, UL Hazardous Locations approved, and ATEX compliant.

OPTO 22 • www.opto22.com 43044 Business Park Dr. Temecula, CA 92590-3614

groov EPIC Software

The *groov* EPIC processor comes ready to run the software you need:

- Programming: Choose flowchart-based PAC Control, CODESYS Development System for IEC61131-3 compliant programs, or secure shell access (SSH) to the Linux OS for custom applications
- Node-RED for creating simple IIoT logic flows from pre-built nodes
- Efficient MQTT data communications with string or Sparkplug data formats
- Multiple OPC UA server options
- HMI: groov View to build your own HMI viewable on touchscreen, PCs, and mobile devices; PAC Display for a

Windows HMI; Node-RED dashboard UI

 Ignition or Ignition Edge® from Inductive Automation (requires license purchase) with OPC-UA drivers to Allen-Bradley®, Siemens®, and other control systems, and MQTT communications

Older products

From solid state relays, to world-famous G4 and SNAP I/O, to SNAP PAC controllers, older Opto 22 products are still supported and working hard at thousands of installations worldwide. You can count on us for the reliability and service you expect, now and in the future.

QUALITY

Founded in 1974, Opto 22 has established a worldwide reputation for high-quality products. All are made in the U.S.A. at our manufacturing facility in Temecula, California.

Because we test each product twice before it leaves our factory rather than testing a sample of each batch, we can afford to guarantee most solid-state relays and optically isolated I/O modules for life.

FREE PRODUCT SUPPORT

Opto 22's California-based Product Support Group offers free technical support for Opto 22 products from engineers with decades of training and experience. Support is available in English and Spanish by phone or email, Monday–Friday, 7 a.m. to 5 p.m. PST.

Support is always available on our website, including free online training at OptoU, how-to videos, user's guides, the Opto 22 KnowledgeBase, and OptoForums.

PURCHASING OPTO 22 PRODUCTS

Opto 22 products are sold directly and through a worldwide network of distributors, partners, and system integrators. For more information, contact Opto 22 headquarters at **800-321-6786** (toll-free in the U.S. and Canada) or **+1-951-695-3000**, or visit our website at www.opto22.com.

SUPPORT • support@opto22.com 800-835-6786 • 1-951-695-3080

800-321-6786 • 1-951-695-3000

SALES · sales@opto22.com