
OPTOTERMINAL™

QLARITY FOUNDRY™

USER'S MANUAL
REVISION 2.5

Opto 22
43044 Business Park Drive
Temecula, CA 92590-3614

USA

Phone 800.321.OPTO (6786) or 951.695.3000
Fax 800.832OPTO (6786) or 951.695.2712

Email: sales@opto22.com
www.opto22.com

Manual 0059-01 (Opto 22 form 1344-070321)
6345E1 - Printed in USA

© Copyright QSI Corporation 2006–2007

QSI reserves the right to modify this manual and/or the product(s) it describes without notice. In no event shall QSI be liable for incidental or consequential
damages, or for the infringement of any patent rights or third party rights, due to the use of its products.

QTERM-G70, QTERM-G75, QTERM-G55, QTERM-Z60, QTERM, G70, G75, G55, Z60, Qlarity and Qlarity Foundry are trademarks of QSI Corpora-
tion.OptoTerminal is a trademark of Opto 22. Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and their respective logos are trademarks

or registered trademarks of Microsoft Corporation in the United States and other countries.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

FOREWORD

Qlarity Foundry™ is a Windows®-based design tool that uses the Qlarity™ programming language to help you design user
applications for a Qlarity-based terminal.

Chapter 1 Introduction. This chapter explains how to use this manual to get the most out of Qlarity Foundry and
describes Qlarity Foundry.

Chapter 2 Installation. This chapter covers the installation and setup of the Qlarity Foundry software.

Chapter 3 Getting Started. This chapter outlines Qlarity Foundry’s features and functions.

Chapter 4 Workspaces. This chapter explains how to start, open, close, save, and use workspaces in Qlarity Foundry.

Chapter 5 Templates, Resources and Libraries. This chapter explains how to add and edit templates (advanced func-
tion), edit resources, and edit libraries.

Chapter 6 Qlarity Foundry Preferences. This chapter explains how to set up and define your terminal settings for
Qlarity Foundry and enter Qlarity Foundry preferences.

Chapter 7 Download Software to the Terminal. This chapter explains how to configure the terminal communications
port, download user applications and BFF files, and upgrade new firmware.

Chapter 8 Basic Design. This chapter explains how to get started using Qlarity Foundry and covers user application
design basics.

Chapter 9 Intermediate Design. This chapter provides instructions a step beyond design basics.

Chapter 10 Advanced Design. This chapter provides instructions for advanced user application design.

Appendix A Glossary of Software Terms. This appendix provides definitions of the terms used in Qlarity Foundry.

Appendix B AutoDoc Specification. This appendix contains the complete specification on how to write AutoDoc meta
data to document the source code in a workspace and Qlarity libraries.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

MANUAL CONVENTIONS

Within Qlarity Foundry, functions can be selected using a mouse, a keyboard shortcut, or an icon on a toolbar. The following
conventions are used to identify selections in this manual.

When instructed to press a specific key, it is shown in a bold, sans serif typeface and is
enclosed in angle brackets: <Enter>

When instructed to press a key and hold it down while typing another key, the keys are
shown together: <CTRL>+<V>

When instructed to click a button or icon, it is shown in a bold, sans serif typeface and is
enclosed in square brackets: [OK]

Icons on toolbars are represented graphically: Click on the toolbar.

When instructed to type a character or a word, it is shown in the Courier typeface: e:\setup

Directory paths, file names, and file name extensions are indicated by italics: eventbuilder.qly

Syntax, commands, and examples are shown in the Courier typeface: dim count as integer

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CONTENTS

CHAPTER 1.
INTRODUCTION.. 1

1.1 How to Use This Manual... 1
1.2 Description... 1

CHAPTER 2.
INSTALLATION... 3

2.1 System Requirements .. 3
2.2 Install Qlarity Foundry .. 3

CHAPTER 3.
GETTING STARTED ... 5

3.1 Start Qlarity Foundry... 5
3.1.1 Hardware Configuration Assistant .. 5

3.2 Open a Workspace... 5
3.3 Main Window .. 7
3.4 Menu Options .. 8

3.4.1 File Menu .. 8
3.4.2 Edit Menu .. 9
3.4.3 View Menu .. 10
3.4.4 Tools Menu.. 10
3.4.5 Help Menu... 12

3.5 Toolbar... 12
3.5.1 Layout View Toolbar .. 12
3.5.2 Code View Toolbar ... 13
3.5.3 Simulation View Toolbar .. 14

3.6 Miscellaneous Bar ... 14
3.7 Navigation Bar (Code View only)... 15

3.7.1 Global, Template, or Library Code ... 15
3.7.2 Object Instance Code... 15

3.8 Object Tree .. 15
3.8.1 Globals... 16
3.8.2 Object Templates... 16

3.9 Layout and Code Views .. 17
3.10 Simulation View .. 17

3.10.1 Serial I/O Support.. 18
3.10.2 Simulation View Limitations .. 18
3.10.3 Source-Level Debugger... 19
3.10.4 Call Stack Window.. 19
3.10.5 Watch Window.. 19

3.11 Properties Window .. 19
3.12 Object Palette... 21

3.12.1 Add a New Object Instance... 21
3.13 Move and Resize Windows ... 22
3.14 Where to Go From Here .. 22

CHAPTER 4.

ii OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

WORKSPACES.. 23
4.1 Start a New Workspace ... 23
4.2 Open a Workspace... 24
4.3 Close a Workspace .. 25
4.4 Save a Workspace.. 25

4.4.1 Save Workspace .. 25
4.4.2 Save Workspace As... 25
4.4.3 Collect for Output.. 25

4.5 Compile a Workspace.. 26
4.6 Generate a BFF File... 26

CHAPTER 5.
TEMPLATES, RESOURCES, AND LIBRARIES ... 27

5.1 Add/Edit Templates ... 27
5.1.1 Add a New Object Template ... 27
5.1.2 Edit a Template Icon ... 28
5.1.3 Rename a Template ... 29
5.1.4 Remove a Template... 29
5.1.5 Send Template to Library.. 29
5.1.6 Change Template Type ... 29
5.1.7 Extend a Template... 30

5.2 Edit Resources ... 30
5.2.1 Add a Resource ... 31
5.2.2 Preview Resources .. 31
5.2.3 Rename a Resource ... 31
5.2.4 Change a Resource File ... 32
5.2.5 Remove a Resource ... 32
5.2.6 Bitmaps.. 32
5.2.7 Fonts .. 32
5.2.8 Audio ... 33
5.2.9 Binary .. 33

5.3 Edit Libraries ... 33
5.3.1 Add Existing Library... 33
5.3.2 Remove Library... 34
5.3.3 Edit Library ... 34

5.3.3.1 Edit Entry ... 35
5.3.3.2 Rename Entry ... 35
5.3.3.3 Remove Entry... 35
5.3.3.4 Set Entry Version ... 35
5.3.3.5 Add New Entry... 35

5.3.4 Advanced... 36
5.3.4.1 Edit Standard (natives.lib).. 36
5.3.4.2 Edit Core (core.qlib.qhide)... 37
5.3.4.3 System Libraries That Are Not Explicitly Included in This Workspace ... 37

5.3.5 Create a New Library .. 37
5.4 Edit Named Colors .. 38

5.4.1 Themes .. 38
5.4.2 Named Colors.. 39

5.4.2.1 Change Named Color ... 39
5.4.2.2 Create New Named Color .. 39
5.4.2.3 Delete Named Color... 39

OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

5.4.2.4 Rename Named Color .. 39
5.4.2.5 Reset Color to Theme Default.. 39

5.5 Edit Named Borders .. 39
5.5.1 Themes .. 40
5.5.2 Named Borders.. 40

5.5.2.1 General Effects ... 40
5.5.2.2 Rounded Corners.. 41
5.5.2.3 Double Border .. 41
5.5.2.4 Preview... 41
5.5.2.5 Create New Named Border .. 41
5.5.2.6 Delete Named Border... 41
5.5.2.7 Rename Named Border .. 41
5.5.2.8 Reset Border to Default .. 41

CHAPTER 6.
QLARITY FOUNDRY PREFERENCES ... 43

6.1 Terminal... 43
6.1.1 Display Setup .. 43
6.1.2 Input... 44
6.1.3 Communications.. 44
6.1.4 Miscellaneous .. 44

6.2 Layout .. 44
6.3 Editor ... 45

6.3.1 Colors .. 45
6.3.2 Font.. 46
6.3.3 Tab Spacing ... 46
6.3.4 Show Advanced Code Sections in Object Tree... 46
6.3.5 Fast Selection .. 46
6.3.6 Parenthesis Matching .. 46
6.3.7 Edit Events in the Event Builder ... 46
6.3.8 AutoHelp Settings ... 46

6.3.8.1 Functions and Methods .. 47
6.3.8.2 Identifier Completion ... 47
6.3.8.3 Assignment and Parameters ... 47
6.3.8.4 Show Global Variables and Functions ... 47
6.3.8.5 Show Object Properties and Methods .. 47
6.3.8.6 Show for Built In Data Types... 47
6.3.8.7 Fade AutoHelp Tips ... 47

6.4 Compile ... 48
6.5 Simulation View .. 48

6.5.1 Communications Window Settings ... 49
6.5.2 Keypad Settings... 50
6.5.3 Serial Port Setup .. 50

CHAPTER 7.
DOWNLOAD SOFTWARE TO THE TERMINAL ... 53

7.1 Configure Communications Port ... 53
7.1.1 Serial Port Settings .. 53
7.1.2 Ethernet Port Settings .. 53

7.2 Download a User Application ... 54
7.2.1 Prepare the Terminal for Downloading... 54

iv OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

7.2.2 Download the User Application .. 54
7.3 Download a BFF File .. 55
7.4 Upgrade the Firmware ... 55

7.4.1 Determine Current Firmware Version... 55
7.4.2 Prepare Terminal for Upgrade... 56
7.4.3 Download New Firmware ... 56
7.4.4 Induce Bootloader ... 56
7.4.5 Set Unit Time .. 57

CHAPTER 8.
BASIC DESIGN ... 59

8.1 Prepare Qlarity Foundry for Application Design .. 59
8.1.1 Basic Design Layout ... 59
8.1.2 Simulate the Terminal Display.. 60
8.1.3 Drawing Aids .. 61
8.1.4 Add/Remove Resources .. 61
8.1.5 Add/Remove Libraries .. 62

8.1.5.1 Libraries Provided with Qlarity Foundry ... 62
8.2 Understanding Qlarity for Basic Design ... 63

8.2.1 Workspaces and User Applications... 63
8.2.2 Qlarity Objects .. 63
8.2.3 Parent/Child Relationships .. 63
8.2.4 Z-Order .. 64
8.2.5 Events and Messaging ... 64
8.2.6 Enabled/Disabled Objects ... 65

8.3 Design a User Application... 65
8.3.1 Add an Object Instance ... 65

8.3.1.1 Add an Object From the Object Palette.. 65
8.3.1.2 Add an Object From the Shortcut Menu .. 65

8.3.2 Move, Resize and Reorder Objects ... 66
8.3.2.1 Move an Object .. 66
8.3.2.2 Resize an Object... 66
8.3.2.3 Change the Order of Objects .. 66
8.3.2.4 Align/Size/Space Objects ... 67

8.3.3 Change an Object’s Properties .. 68
8.3.3.1 Select Color .. 69

8.4 Event Builder ... 70
8.4.1 Overview of Event Builder Steps .. 70
8.4.2 Event Builder Dialog Box ... 70
8.4.3 Select and Configure Actions.. 71

8.4.3.1 Select Actions... 71
8.4.3.2 Configure Actions .. 72

8.4.4 Load Event Builder Sample Workspace ... 74
8.4.4.1 Tank Demo... 74
8.4.4.2 Toggle Demo.. 74
8.4.4.3 Keypad Demo... 75

8.4.5 Qlarity Code and Event Builder .. 75
8.4.6 Troubleshooting... 75

8.5 Communication Objects .. 75
8.5.1 Serial Objects .. 75
8.5.2 Ethernet Objects .. 76
8.5.3 Receive Data.. 76

OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

8.6 Test the User Application .. 77
8.7 Save and Compile a Workspace .. 77

8.7.1 Save a Workspace ... 77
8.7.2 Compile a Workspace ... 77

8.8 Download a User Application ... 77

CHAPTER 9.
INTERMEDIATE DESIGN.. 79

9.1 Viewing the Code .. 79
9.2 Understanding Qlarity for Intermediate Design .. 80

9.2.1 Qlarity Programming Language .. 80
9.2.2 Objects and Templates .. 80

9.3 Qlarity Code for Objects.. 81
9.3.1 Property Initializations .. 81
9.3.2 Method Overrides.. 81

9.4 Handling Events With Qlarity Code.. 81
9.4.1 Override an Object Method... 82

9.5 Global Code... 83
9.5.1 Add a Global Variable to a Workspace... 83

9.5.1.1 Add a Global Variable Using New Variable.. 83
9.5.1.2 Add a Global Variable in the Global Code Section ... 83

9.5.2 Add a Global Function to a Workspace .. 84
9.5.3 Add a Global Message Handler to a Workspace... 84

9.5.3.1 Add a Global Message Handler From a List .. 85
9.5.3.2 Add a Global Message Handler in the Global Code Section ... 85

9.6 Create a New Object Template.. 86
9.7 Where to Go From Here .. 87

CHAPTER 10.
ADVANCED DESIGN... 89

10.1 Advanced Code Sections ... 89
10.1.1 Advanced Code ... 89
10.1.2 Libraries... 89

10.2 Validation Functions.. 89
10.3 The Qlarity API Library .. 90
10.4 Exception Handling ... 90
10.5 Create a New Object Template.. 92

10.5.1 New Template Boilerplate Code ... 93
10.5.1.1 Non-Drawable Objects ... 95
10.5.1.2 Area Objects ... 95
10.5.1.3 Container Objects ... 96

10.5.2 Getting New Object Templates to Work in Qlarity Foundry .. 96
10.5.3 Adding Object Template Documentation.. 100

10.6 Guidelines for Designing New Object Templates ... 101
10.7 Where to Go From Here .. 102

APPENDIX A.
GLOSSARY OF SOFTWARE TERMS ... 103

APPENDIX B.

vi OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

AUTODOC SPECIFICATION.. 105
B.1 Documentation Declaration .. 105
B.2 Documentation Body .. 105
B.3 Linking Items .. 105
B.4 Importing Items... 106
B.5 Function Parameters.. 106
B.6 Data Type Elements .. 107
B.7 Grouping Items ... 107
B.8 Hiding Documentation.. 107
B.9 Property Flags ... 107
B.10 Sample Code ... 108
B.11 Property Categories... 108
B.12 Default Items... 108
B.13 Defining Border Styles ... 109
B.14 Defining Named Colors .. 109

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 1

INTRODUCTION

1.1 How to Use This Manual

For instructions on installing Qlarity Foundry™, see Chap-
ter 2, “Installation.”

To get started using Qlarity Foundry and to learn design
basics, review the following chapters:

❒ Chapter 3, “Getting Started”

❒ Chapter 8, “Basic Design”

To learn more about user application design, refer to the fol-
lowing chapters:

❒ Chapter 9, “Intermediate Design”

❒ Chapter 10, “Advanced Design”

Use the following chapters to learn about specific Qlarity
Foundry functions:

❒ Chapter 4, “Workspaces”
How to start, open, close, save, and use workspaces in
Qlarity Foundry.

❒ Chapter 5, “Templates, Resources, and Libraries”
How to add and edit templates (advanced function), edit
resources, and edit libraries.

❒ Chapter 6, “Qlarity Foundry Preferences”
How to set up and define your terminal settings for
Qlarity Foundry and enter Qlarity Foundry preferences.

❒ Chapter 7, “Download Software to the Terminal”
How to configure the terminal communications port,
download user applications and BFF files, and upgrade
new firmware.

❒ Appendix A, “Glossary of Software Terms”
A list of Qlarity™ terms and their definitions. You
should read and understand these terms before you
attempt to perform the functions described in Chapter 9
and Chapter 10.

Also available is the OptoTerminal Quick Start Guide (Opto
22 form 1338).

1.2 Description

Qlarity (pronounced “clarity”), the programming language
used to program the Qlarity-based terminal, is a powerful,
BASIC-like language that utilizes the full potential of the
Qlarity-based terminal. Qlarity Foundry is a Windows®-
based design tool that uses Qlarity to help you design user
applications for the Qlarity-based terminal.

Qlarity uses “objects” as the building blocks for all user
applications. An object can take many forms, including text
labels and fields, bitmaps, lines, forms, key definitions,
clocks, counters, and so on.

Libraries, which are supplied with Qlarity Foundry, contain
predefined objects for which the programming is already
done. To adapt a library object to a user application, you
typically only need to enter properties (e.g., name, location,
color, bitmap, etc.). If custom programming is required,
Qlarity Foundry contains the tools you need to modify
library objects or create your own objects.

Qlarity Foundry provides all the tools you need to work
with user applications, including those used to do the fol-
lowing:

• Create a user application (basic to advanced levels).

• Modify a user application.

• Compile and download a user application to the Qlarity-
based terminal.

2 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 2

INSTALLATION

This chapter provides instructions for installing and setting
up the Qlarity Foundry software.

2.1 System Requirements

Computer Requirements:

• Pentium 166 or better

• 32 Mbytes of RAM (64 Mbytes recommended)

• 30 Mbytes available hard disk space

Operating System Requirements:

Microsoft® Windows® 95, 98, 2000, NT, or XP (4.0 or
later). Qlarity Foundry will not run in Windows 3.x or DOS.
Windows 95 requires Internet Explorer 4.01 or higher. Win-
dows NT requires Service Pack 6.

2.2 Install Qlarity Foundry

To install Qlarity Foundry, take the following steps.

1. Close any open Windows applications.

2. Insert the OptoTerminal CD-ROM into your CD-ROM
drive.

The Setup program should auto-start. If it does not,
click [Start], and click Run. The following window
appears.

3. Type e:\setup (in which “e” is the letter of your
CD-ROM drive). The following window appears.

4. If no other Windows-based applications are running,
click [Next], and the License Agreement window is dis-
played.

4 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

5. Read the agreement and click [Yes] if you accept the
terms. The following window appears.

6. Accept the destination folder shown, or click [Browse]
to select a different folder or create a new folder in
which to install Qlarity Foundry. Click [Next] to con-
tinue. The following window appears.

7. Click each type of system setup to read a description of
the files that are installed. Then, select the type of setup
that best suits your needs: Complete, Custom, Mini-
mal, or Typical. Click [Next] to continue. If you

selected “Custom,” a dialog box appears for you to
select the files and features you want to install.

The Setup Status window appears and displays the sta-
tus of the installation as each file is installed in the
specified destination folder.

After all of the files are copied to your hard disk, the
following window appears.

8. Click [Finish]. Installation is complete.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 3

GETTING STARTED

3.1 Start Qlarity Foundry

To start Qlarity Foundry, click [Start], then click Programs
and select QSI Corporation. Click Launch Qlarity
Foundry to start the program.

3.2 Open a Workspace

A workspace is a file created in Qlarity Foundry that you
will compile into a user application. In Qlarity Foundry, you
use the workspace to define functions for the terminal; at
the Qlarity-based terminal, you use the user application to
perform the functions.

When Qlarity Foundry starts, a dialog box appears so you
can open a workspace.

Open Selected
Recently opened files, if any, are listed. To open a recent
file, click the file name to select it, then click [Open
Selected] (or double-click the file name). The workspace is
opened in the main window. Only one workspace at a time
can be open in Qlarity Foundry.

Open Other File
Click [Open Other File] and the Open dialog box appears
showing workspaces in the default folder. Use the Windows
tools to change folders if necessary. Click a file to select it,
then click [Open]. The workspace is opened in the main
window (see next page).

Start New
To start a new workspace, click [Start New]. The New
Qlarity Project dialog box appears. Refer to section 4.1,
“Start a New Workspace” for information.

Tutorials
Click [Tutorials] to open a sample workspace and to start a
tutorial to help you learn the basics of Qlarity Foundry. The
Object Documentation Help file is opened with the list of
tutorials displayed. Click the tutorial you want to work, and
the tutorial (.pdf file) is opened in Adobe Acrobat. Read
through the tutorial and follow the instructions using the
sample workspace.

Begin editing in Layout View
If this option is enabled, a workspace is automatically com-
piled and shown in the “Layout View” when it is opened. If
disabled, the workspace is displayed in “Code View” and
will need to be compiled before it can be displayed in Lay-
out View. You can also change this setting using the Set-
tings function, Compile tab (see section 6.4, “Compile”).

6 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

3.3 Main Window

The Qlarity Foundry main window is shown below.

Menu Bar
The menu bar contains the File, Edit, View, Tools, and Help
menus. Refer to section 3.4 for a brief description of the
menu options. You can access all Qlarity Foundry options
from the menus.

Toolbar
The toolbar contains tools that provide quick links to com-
monly used Qlarity Foundry functions. The tools available
change depending on the selected view mode (Layout View
or Code View). Refer to section 3.5 for a description of
each tool on the toolbar.

Miscellaneous Bar
The miscellaneous bar contains options to select the scale of
the work area, to add an outline to all objects, and to select a

color and border theme for the objects in the workspace.
Refer to section 3.6 for more information on the miscella-
neous bar options.

Object Tree
Object instances that have been added to the workspace are
listed under “Globals” and object templates are listed under
“Templates” in the Object Tree. Some objects may be auto-
matically added to a workspace when it is created, including
the following:

• ScreenBlanker—blanks the screen after a period of inac-
tivity

• ExceptionDisplay—displays unhandled Qlarity Excep-
tions

Object Tree

Menu Bar
Toolbar

Work Area

Properties window

Object Palette

Messages and Errors window

Status Bar

View Tabs

Misc. Bar

OptoTerminal Qlarity Foundry User’s Manual 7

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Work Area
This is the area in Layout View in which you place object
instances to add them to the workspace. The work area sim-
ulates the display of the Qlarity-based terminal.

Object Palette
The Object Palette contains an icon for each object template
in the workspace and in any active libraries. You click the
icons to add new object instances. Move the mouse pointer
over an icon to display the object’s name. Refer to
section 3.12 for more information.

Properties Window
The Properties window is displayed by default. Click an
object instance in the Object Tree or work area and its prop-
erties are displayed. Refer to section 3.11 for information.

View Tabs
To set up the workspace, you can work in either Layout
View or Code View. Simulation View can be used after you
have created a workspace to simulate the performance of
the workspace objects on the Qlarity-based terminal. Click
the Layout View tab or Code View tab at the bottom of the
work area (default location) to change views. Click the Sim-
ulation View tab to start the terminal simulation.

Layout View is a graphics mode used to lay out the terminal
display. Generally, unless you are making changes to the
programming code, you will work in Layout View.

Code View is used to write or edit an object’s programming
code. You will generally only work in Code View if you are
customizing objects or creating your own objects.

Refer to section 3.9 for more information on the Layout and
Code Views. Refer to section 3.10 for more information on
Simulation View.

Messages and Errors Window
The Messages and Errors window displays any errors or
other messages generated when the workspace is compiled
or during a “debug” operation. These messages can help
you identify and correct problems with the workspace.

Status Bar
The status bar shows the status of the workspace and the
coordinates at which the mouse pointer is positioned in the
work area. Also, if you position the mouse pointer over an
option on a menu or a tool on the toolbar, the function of the
option or tool is displayed in the status bar.

3.4 Menu Options

The following sections describe the options available on
each menu on the menu bar.

3.4.1 File Menu

New Workspace
Use this option to start a new workspace. Refer to
section 4.1 for information.

Open Workspace
Use this option to open an existing workspace. Refer to
section 4.2 for information.

Close Workspace
Select this option to close the current workspace and open a
new workspace.

Save Workspace
Use this option to save the current workspace. Refer to
section 4.4 for information.

Save Workspace As
Select this option to save a copy of the current workspace to
a different file name. The Save As dialog box is displayed.
Enter the new file name (the extension is added automati-
cally), and click [Save].

Collect for Output
Use this option to transfer a workspace to another computer
See section 4.4.3 for information.

Compile (Layout and Code View only)
Use this option to compile the current workspace into the
format required for a user application. A workspace must
also be compiled to properly display in Layout View. Refer
to section 4.5 for information on compiling a workspace.

Generate BFF File (Layout and Code View only)
You can download a user application that is not currently
loaded in Qlarity Foundry to the Qlarity-based terminal, but
the file must be in binary file format (BFF). Use this option
to save a file to BFF. Refer to section 4.6 for information.

Download Application (Layout and Code View only)
Select this option to download files to the Qlarity-based ter-
minal. You can download the currently loaded workspace,
any BFF file, or a firmware upgrade. Refer to Chapter 7,
“Download Software to the Terminal” for information.

8 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Recent Files
After you have created and saved Qlarity files, you can use
this option as a shortcut to open a file that was recently
opened. Click Recent Files, and a list of previously opened
files is displayed. Click the file that you want to open.

Exit
Select this option to exit Qlarity Foundry.

3.4.2 Edit Menu

The options in the Edit menu change depending on whether
you are in Layout View or Code View. (The Edit menu is
not available in Simulation View.)

Select All (Code View only)
Select this option to select all code in the Code View win-
dow.

Cut
In Layout View, select an object in the work area, then
select this option (or press <Ctrl>+<X>) to cut the object
from the workspace. In Code View, select code, then select
this option (or press <Ctrl>+<X>) to cut the selected code
from the workspace. The object or code remains on the
Windows clipboard until replaced by another “cut” or
“copy” operation.

Copy
In Layout View, select an object in the work area, then
select this option (or press <Ctrl>+<C>) to make a copy of
the object. In Code View, select code, then select this option
(or press <Ctrl>+<C>) to copy the selected code. The object
or code remains on the Windows clipboard until replaced by
another “cut” or “copy” operation.

Paste
In Layout View, select this option (or press <Ctrl>+<V>) to
place a cut or copied object in a new location in the same
workspace or in a different workspace. In Code View, select
this option (or press <Ctrll>+<V>) to place cut or copied
code at the cursor position in the same or a different work-
space or in a different Windows application.

Find (Code View only)
Select this option to find code in the displayed object
instance, template, or workspace. Enter the characters or
code you want to find, and click [Find Next]. To find only
characters matching the entered case (upper or lower),
select Match Case. To search through all object instances
and templates in the workspace, select Entire Workspace.

Replace (Code View only)
Select this option to find code in the displayed object
instance or template and replace it with specified code. In
the “Find What” field, enter the characters or code you want
to find. In the “Replace With” field, enter the code with
which you want to replace it. Click [Find Next] to find the
code. Then click [Replace] to replace it. Or, click [Replace
All] to automatically find and replace all occurrences of the
code. To find only characters matching the entered case
(upper or lower), select Match Case.

Undo
Select this option to undo the last action performed.

Redo (Code View only)
Select this option to redo the most recent undone action.
This option is only available after you have selected Undo
in Code View.

Goto Bookmark (Code View only)
Select this option to go to the next bookmark in the dis-
played object’s code. Use Set Bookmark to add or remove
bookmarks in an object’s code.

Set Bookmark (Code View only)
Select this option to add or remove a bookmark in an
object’s code at the cursor location. Bookmarks make it
possible to find a location quickly, which is useful in objects
with several lines of code.

Go to Next Message (Code View only)
If there are messages in the Messages and Errors window,
select this option to select the next message (or the first one
if none is selected) and position the cursor on the line that
generated the message. This applies to messages due to
compile errors, compile warnings, or runtime messages
generated by the Tool_Trace API and runtime exceptions.

Add/Edit Templates
Select this option to open the Add/Edit Templates dialog
box to add or edit an object template. Refer to section 5.1,
“Add/Edit Templates” and to Chapter 10, “Advanced
Design” for information on creating templates.

Edit Resources
Use this option to open the Qlarity Resources dialog box to
add resources to or remove them from the workspace. Refer
to section 5.2, “Edit Resources” for information.

OptoTerminal Qlarity Foundry User’s Manual 9

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Edit Libraries
Use this option to open the Libraries dialog box to add
libraries to or remove libraries from the workspace. Refer to
section 5.3 for information.

Edit Named Colors (Layout View only)
Select this option to define “named colors.” You assign
named colors to objects to specify the object’s background
and foreground colors. Refer to section 5.4 for information.

Edit Named Borders (Layout View only)
Select this option to define “named borders.” You assign
named borders to objects to specify border attributes. Refer
to section 5.5 for information.

3.4.3 View Menu

Toolbar
Select this option to show or hide the toolbar. Refer to
section 3.5 for information.

Status Bar
Select this option to show or hide the status bar at the bot-
tom of the main window.

Misc. Bar
Select this option to show or hide the Layout Scale, Outline
All Objects, and Theme functions next to the toolbar. Refer
to section 3.6 for information.

Messages and Errors
Select this option to show or hide the Messages and Errors
window, which displays any errors or other messages gener-
ated when the workspace is compiled or during a “debug”
operation. These messages can help you identify and correct
problems with the workspace.

Object Tree
Select this option to show or hide the Object Tree. Refer to
section 3.8 for information.

Object Palette (Layout View only)
Select this option to show or hide the Object Palette. Refer
to section 3.12 for information.

Properties Window (Layout View only)
Select this option to show or hide the Properties window.
Refer to section 3.11 for information.

Communications (Simulation View only)
Select this option to show or hide the Communications win-
dow in Simulation View. Refer to section 3.10.1 for infor-
mation.

Keyboard (Simulation View only)
If you will be using keyboard input, select this option to
show or hide the Keyboard Entry window in Simulation
View.

Keypad (Simulation View only)
If you will be using keypad input, select this option to show
or hide the simulated keypad in Simulation View.

NOTE: keyboard/keypad input devices
The Keyboard and Keypad options are only available if you
have selected “Keyboard” or “Keypad” as an input device in
the Qlarity Foundry Preferences, Terminal tab (see
section 6.1).

Watch Window (Simulation View only)
Select this option to show or hide the Watch window in
Simulation View. Refer to section 3.10.5 for information.

Call Stack (Simulation View only)
Select this option to show or hide the Call Stack window in
Simulation View. Refer to section 3.10.4 for information.

Refresh (Layout View and Simulation View only)
Select this option to redraw the graphics on the screen in
Layout View.

Layout View
Select this option to switch to Layout View.

Code View
Select this option to switch to Code View.

Simulation View
Select this option to switch to Simulation View.

3.4.4 Tools Menu

View Only Enabled Objects (Layout View only)
Disabled objects are displayed in Layout View by default.
Select this option if you want to see only enabled objects in
the work area.

NOTE: disabled objects vs. hidden objects
Keep in mind that the “enable/disable” option is different
from the “show/hide” option. Disabled objects are not dis-

10 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

played on the Qlarity-based terminal; hidden objects are
displayed on the terminal (unless they are disabled), they
are only hidden in Qlarity Foundry. Refer to section 3.8 for
information on the “show/hide” option.

Stop Qlarity Interpreter
When a workspace is compiled, the Qlarity interpreter runs
a portion of the user application in Qlarity Foundry. Select
this option to stop the user application from running. For
example, if an object instance contains an infinite loop, you
will not be able to work in Layout View. You can select this
option to terminate the interpreter and switch to Code View
so you can correct the problem.

NOTE: error message
The Qlarity interpreter may detect the infinite loop when it
tries to run the application and display a prompt for you to
stop the application.

Settings
Use this option to open the Qlarity Foundry Preferences dia-
log box to define the Qlarity-based terminal’s configuration
and to enter Qlarity Foundry preferences. Qlarity Foundry
attempts to simulate the terminal’s display area, input type,
and so on as closely as possible. Refer to Chapter 6, “Qlar-
ity Foundry Preferences” for information.

Snap to Grid (Layout View only)
Select this option to enable or disable the “snap to grid”
function. If enabled, this feature forces objects to “snap” to
the nearest grid point when added or moved. The top left
corner of an object’s rectangle snaps to the nearest grid
point when you release the mouse button.

View Grid (Layout View only)
Select this option to show or hide the “grid.” You can dis-
play a grid over the work area to help you more accurately
place and align objects. For information on changing the
spacing or color of the grid, refer to section 8.1.3, “Drawing
Aids.”

Align/Size/Space Objects (Layout View only)
This option provides several tools for aligning, sizing, and
spacing objects in your workspace. Select the object you
want to manipulate, then select the tool from the submenu.
Refer to section 8.3.2.4, “Align/Size/Space Objects” for
more information.

Add Theme Selection Listbox (Layout View only)
Select this option to create a listbox object that can be used
to dynamically select color and border themes for all

objects in the workspace. (See section 5.4 and section 5.5
for information on themes.) The current themes available to
the workspace will be listed. If you previously created a
theme selection listbox and have not renamed the object,
when you select this option the previous theme selection
object is replaced with a new one.

Add Theme Selection DropDownList (Layout View
only)
Select this option to create a drop-down list object that can
be used to dynamically select color and border themes for
all objects in the workspace (similar to a theme selection
listbox but uses less display space). (See section 5.4 and
section 5.5 for information on themes.) The current themes
available to the workspace will be listed. If you previously
created a theme selection drop-down list and have not
renamed the object, when you select this option the previ-
ous theme selection object is replaced with a new one.

Rescale Application (Code View only)
When migrating an application from a terminal with a
320x240 display to one with a 640x480 display, select this
option to automatically resize the objects in your workspace
based on the new display settings. A dialog box is displayed
to specify the changes you want to make.

NOTE: no undo for Rescale Application
The Rescale Application feature should be used with care.
The changes cannot be undone, so it is recommended that
you save a backup copy of your workspace first. Also, res-
caling an application is just the first step in migration. You
should examine each object in the workspace after the
rescale has occurred to ensure that it scaled correctly.

Toggle Breakpoint (Code View and Simulation View)
Select this option to set or remove a breakpoint in Code
View or while running a simulation.

New Variable (Code View only)
Select this option to insert a new variable or property in the
code. A dialog box is displayed to specify the attributes of
the new variable or property.

Mark Selected Code as Sample (Code View only)
Select this option to flag or unflag selected code lines as
sample code. Sample code is a form of comment used by
the AutoDocumentation system in Qlarity Foundry. Sample
code is ignored by the compiler and appears “grayed out” in
Qlarity Foundry.

OptoTerminal Qlarity Foundry User’s Manual 11

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Run (Simulation View only)
Select this option to continue running the simulation after it
has paused or stopped.

Single Step (Simulation View only)
Select this option to execute the current line and stop on the
next line.

Step Into (Simulation View only)
Select this option to step into a function call. If no function
is on the current line, this acts as a “single step.”

Step Out Of (Simulation View only)
Select this option to step out of a function call. This exe-
cutes the rest of the current function and returns to the call-
ing function. It stops on the first executable line outside of
the function call. If there is another breakpoint in the current
function, execution stops there.

Pause Execution (Simulation View only)
Select this option to stop execution at the next executable
line of Qlarity code. If no Qlarity code is executing (i.e., the
application is idle), execution does not pause until after it
has been started by an event such as a screen touch or time
tick.

Clear All Breakpoints (Simulation View only)
Select this option to remove all of the breakpoints that were
set.

3.4.5 Help Menu

Show Object Documentation (F1)
Select this option, or press <F1>, to view Object Documen-
tation, which is a Help file containing information on
library and workspace object templates, as well as func-
tions, variables, and APIs in the workspace. Documentation
is included for all libraries provided with Qlarity Foundry.
Advanced users can add documentation for object templates
they create (refer to section 10.5.3, “Adding Object Tem-
plate Documentation” for information).

To use Object Documentation, in the Qlarity Documenta-
tion index, double-click the item for which you want to
view Help. You can also type a keyword in the text box to
search for an item, then double-click the item in the key-
word list.

Show Qlarity Language Help (Ctrl + F1)

Select this option, or press <Ctrl>+<F1>, to view the Pro-
grammer’s Reference Help file. The Programmer’s Refer-
ence provides information on the Qlarity programming
language and message handling system, detailed informa-
tion on the syntax to write programs in the Qlarity language,
descriptions of system messages, a Qlarity API (Applica-
tion Programming Interface) function reference, and other
information on programming in the Qlarity language.

Show Qlarity Foundry Help (Shift + F1)
Select this option, or press <Shift>+<F1>, to view the Qlar-
ity Foundry Help file. The Help file provides the informa-
tion in this Qlarity Foundry manual so that you can access it
online while you are working in Qlarity Foundry.

Sample Workspaces (Code View only)
Select this option to open the Object Documentation Help
file and select a sample workspace from the contents.

Tutorials (Code View only)
Select this option to open the Object Documentation Help
file and select a tutorial from the contents.

About Qlarity Foundry
Select this option to identify the version of Qlarity Foundry,
BFF, and the firmware that you are running.

3.5 Toolbar

The Qlarity Foundry toolbar contains icons for commonly
used functions. Click an icon to open the function. Select
Toolbar from the View menu to show or hide the toolbar.

The following sections describe the tools available on the
toolbar in Layout View, Code View, and Simulation View.

3.5.1 Layout View Toolbar

Click to start a new workspace. Refer to section 4.1
for information.

Click to open an existing workspace. Refer to
section 4.2 for information.

Click to save the current workspace. Refer to
section 4.4 for information.

12 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Click to compile the current workspace into the for-
mat required for a user application. A workspace also
must be compiled to properly display in Layout View.
Refer to section 4.5 for information on compiling a
workspace.

Click to open the Download Application dialog box.
Refer to Chapter 7, “Download Software to the Ter-
minal” for information.

Select an object in the work area, then click to cut
the object from the workspace. The object remains in
the Windows buffer until replaced by another “cut” or
“copy” operation.

Select an object in the work area, then click to
make a copy of the object. The object remains in the
Windows buffer until replaced by another “cut” or
“copy” operation.

Click to place a cut or copied object in a new location
in the same workspace or in a different workspace.

Click to undo the last action performed. (The Undo
buffer is cleared after the workspace is compiled.)

Click to open the Add/Edit Templates dialog box to
add or edit an object template. Refer to section 5.1,
“Add/Edit Templates” and to Chapter 10, “Advanced
Design” for information on creating templates.

Click to open the Qlarity Resources dialog box to add
resources to or remove them from the workspace.
Refer to section 5.2, “Edit Resources” for informa-
tion.

Click to open the Libraries dialog box to add libraries
to or remove libraries from the workspace. Refer to
section 5.3 for information.

Click to turn on/off the “snap to grid” function. If
enabled, this feature forces objects to “snap” to the
nearest grid line when added or moved. The top left
corner of an object’s rectangle snaps to the nearest
horizontal and vertical grid lines when you release
the mouse button.

Click to show or hide the “grid.” You can display a
grid over the work area to help you more accurately
place and align objects. For information on changing

the spacing or color of the grid, refer to section 8.1.3,
“Drawing Aids.”

Click to open the Qlarity Foundry Preferences dialog
box to define the Qlarity-based terminal’s configura-
tion and to enter Qlarity Foundry preferences. Qlarity
Foundry attempts to simulate the terminal’s display
area, input type, and so on as closely as possible.
Refer to Chapter 6, “Qlarity Foundry Preferences” for
information.

Click to identify the version of Qlarity Foundry you
are running.

3.5.2 Code View Toolbar

Click to start a new workspace. Refer to section 4.1
for information.

Click to open an existing workspace. Refer to
section 4.2 for information.

Click to save the current workspace. Refer to
section 4.4 for information.

Click to compile the current workspace into the for-
mat required for a user application. A workspace also
must be compiled to properly display in Layout View.
Refer to section 4.5 for more information.

Click to open the Download Application dialog box.
Refer to Chapter 7 for information.

Select code, then click to cut the selected code
from the workspace. The code remains in the Win-
dows buffer until replaced by other “cut” or “copied”
code.

Select code, then click to copy the selected code.
The code remains in the Windows buffer until
replaced by other “cut” or “copy” operation.

Click to place cut or copied code into a workspace or
another Windows application at the cursor position.

Click to undo the last action performed.

Click to redo the most recent undone action.

OptoTerminal Qlarity Foundry User’s Manual 13

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Click to go to the next bookmark in the displayed
object. Use the Toggle Bookmark tool to add book-
marks to an object’s code.

Click to add or remove a bookmark in an object’s
code at the cursor location. Bookmarks make it possi-
ble to find a location quickly, which is useful in
objects with several lines of code.

Click to open the Add/Edit Templates dialog box to
add or edit an object template. Refer to section 5.1,
“Add/Edit Templates” and to Chapter 10, “Advanced
Design” for information on creating templates.

Click to open the Edit Resources dialog box to add
resources to, or remove them from, the workspace.
Refer to section 5.2, “Edit Resources” for informa-
tion.

Click to open the Libraries dialog box to add libraries
to or remove libraries from the workspace. Refer to
section 5.3 for information.

Click to open the Qlarity Foundry Preferences dialog
box to define the Qlarity-based terminal’s configura-
tion and to enter Qlarity Foundry preferences. Qlarity
Foundry attempts to simulate the terminal’s display
area, input type, and so on as closely as possible.
Refer to Chapter 6, “Qlarity Foundry Preferences” for
information.

Click to identify the version of Qlarity Foundry you
are running.

3.5.3 Simulation View Toolbar

Click to start a new workspace. Refer to section 4.1
for information.

Click to open an existing workspace. Refer to
section 4.2 for information.

Click to save the current workspace. Refer to
section 4.4 for information.

Click to identify the version of Qlarity Foundry you
are running.

Click to set or remove a breakpoint while running a
simulation.

Click to continue running the simulation after it has
paused or stopped.

Click to execute the current line and stop on the next
line.

Click to step into a function call. If no function is on
the current line, this acts as a “single step.”

Click to step out of a function call. This executes the
rest of the current function and returns to the calling
function. It stops on the first executable line outside
of the function call. If there is another breakpoint in
the current function, execution stops there.

Click to stop execution at the next executable line of
Qlarity code.

Click to remove all of the breakpoints that were set.

3.6 Miscellaneous Bar

The miscellaneous bar next to the toolbar contains the Lay-
out Scale, Outline All Objects, and Theme functions in Lay-
out View, an error indicator in Code View, and the Layout
Scale in Simulation View. Select Misc. Bar from the View
menu to show or hide the miscellaneous bar functions.

Layout View Misc. Bar

To change the scale of the work area, click the drop-down
arrow and select the scale from the drop-down list. This
function is also available in Simulation View.

Select this option to draw a line around all defined objects.
This is useful when you want to know the exact border loca-
tion of each object or when one or more objects were acci-
dently moved out of the work area.

To select a theme for the colors and borders of the objects in
the workspace, click the drop-down arrow and select the
theme you want to use from the list. See section 5.4 and
section 5.5 for information on themes.

14 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Code View Misc. Bar

This box indicates if the selected line of code contains an
error.

3.7 Navigation Bar (Code View only)

The top of the Code View window contains a navigation bar
to aid in code development. The contents of the navigation
bar may vary based on the section of code you are editing.

3.7.1 Global, Template, or Library Code

When editing Global, Template, or Library code, the navi-
gation bar contains the following components:

Message Handlers
Click the drop-down arrow to display a list of valid message
handlers in the current code section. Message handlers that
have already been implemented are shown in bold. Select a
message handler to either add it to the selected message or
to move the cursor to the selected message handler if it has
already been added. Refer to section 9.5.3 for more infor-
mation on message handlers.

Existing Functions or Existing and Inherited Functions
Click the drop-down arrow to display a list of all existing
functions in the current code section. If you are editing a
template that extends another template, functions in the
base template are also listed. Existing functions appear in
bold; select one to move the cursor to the function. If you
select a function that only exists in a base template, the
function is added to the template you are currently editing
and overrides the existing function in the template.

New Variable
Click [New Variable] to add a new variable to the code sec-
tion you are currently editing. A dialog box appears to spec-
ify the variable name, data type, validation function, and
any documentation. Refer to section 9.5.1.1 for more infor-
mation on adding a new variable using this method.

Insert at Cursor
Select this option before selecting a new function or vari-
able to place the item at the cursor location. If not selected,
new functions and variables are added to the end of the cur-
rent code section.

3.7.2 Object Instance Code

When editing Object Instance code, the navigation bar con-
tains the following components:

Events/Overrides
Click the drop-down arrow to display a list of events that
can be handled. Events that have already been implemented
are shown in bold. Select an item to either add an event han-
dler or to position the cursor on an existing event handler

Show Only Event Functions
When this option is selected, only those functions that are
designated as event functions are shown in the Events/Over-
rides drop-down list. If this option is not selected, all func-
tions that are eligible to be overridden are listed.

3.8 Object Tree

The Object Tree contains four branches:

• Globals

• Templates

• Advanced Code

• Libraries

The Globals branch is always visible; the Templates,
Advanced Code, and Libraries branches are only visible in
Code View. The Advanced Code and Libraries branches are
disabled by default as they are intended only for advanced
users (refer to section 6.3 for information on enabling these
sections). The illustration below shows all branches of the
Object Tree in Code View.

OptoTerminal Qlarity Foundry User’s Manual 15

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Each object instance listed in the Object Tree has an icon
that shows the type of object (label, button 3D, event timer,
form, line, etc.). The objects are listed in Z-order (see
Appendix A, “Glossary of Software Terms”), but you can
move an object up or down the list using drag and drop.

The Object Tree also contains icons that can be used to
show/hide or lock/unlock an object instance, as follows:

Click to show (eye open) or hide (eye closed) the
object instance in the work area. This is useful if you
have objects “stacked.” You can hide an object if you
want to see an object that is behind it.

This icon indicates objects that have no display repre-
sentation and are never displayed (generally serial or
Ethernet objects).

Click to lock (lock closed) or unlock (lock open) an
object instance. When an object is locked, it cannot
be changed or moved with the mouse.

3.8.1 Globals

In Layout View (default view), you see only the Globals
branch of the Object Tree. Under the Globals branch, all
object instances defined for the workspace are listed.

To add a new object instance to a workspace, you can right-
click “Globals” and select New Object Instance from the
shortcut menu, or use the icons on the Object Palette.

If any global code has been written for the workspace, you
can click Globals and see the properties associated with the
global code. Global properties apply to the entire work-
space.

3.8.2 Object Templates

A Qlarity program consists primarily of objects. An object
template contains the programming code that defines the
object and how it behaves. Once object templates are cre-
ated, any number of object “instances” based on the tem-
plate can be added to a workspace. Each object instance in a
workspace must be associated with a template.

You will create object templates only if you are an advanced
user. Most users create object instances from predefined
templates in libraries.

16 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

NOTE: library object templates
Object templates in libraries are not listed in the Object Tree
under the Templates heading. Only object templates created
in the workspace are listed under the Templates heading.

3.9 Layout and Code Views

Layout View is the default view mode. You will generally
use only Layout View unless you are customizing objects or
creating your own objects using the Qlarity programming
language.

An example of the work area of a workspace in Layout
View is shown below.

Layout View closely simulates how the workspace will
appear after it has been compiled and downloaded to the
Qlarity-based terminal.

If you understand the Qlarity programming language, you
may use Code View to work with an object’s programming
code. Select an object instance and click the Code View tab
to display the property initializations for the object instance.
Object instance code may also contain method overrides,
which change the behavior of an object instance from that
specified in the object template.

The following example shows the code for a text object in
the sample workspace (in the Layout View example above).

The following example shows the first portion of the pro-
gramming code for the “TemperatureUpdate” template.

3.10 Simulation View

Simulation View is used to simulate (with some limitations)
the operation of a user application after it is downloaded to
the Qlarity-based terminal. Both touch screen and keyboard
actions are simulated. On a simulated touch screen, for
example, you can activate a button by clicking it with the
mouse. When you click it, the programmed action occurs.
In the following illustrations, the mouse pointer (a hand) is
positioned over the activated button.

OptoTerminal Qlarity Foundry User’s Manual 17

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

NOTE: required settings for simulation
To effectively simulate a Qlarity-based terminal, you need
to define the terminal’s hardware in Qlarity Foundry,
including whether you use a touch screen or keyboard. Use
the “Settings” option to define the terminal’s hardware and
to set the simulation’s volume and display functions. Refer
to Chapter 6, “Qlarity Foundry Preferences.”

3.10.1 Serial I/O Support

Simulation View partially supports serial I/O using the
Communications window (bottom-left corner of the dis-
play).

Serial data programmed to be transmitted through the termi-
nal’s Com1 or Com2 port appears in the lower portion of the
Communications window. You can also enter data in the
upper portion of the window and click [Xmit] to simulate
data being sent to the terminal.

Click to access the Communications Settings dialog box
(see section 6.5.1 for information).

Click to clear (flush) the contents of the window.

3.10.2 Simulation View Limitations

Simulation View has the following limitations:

• When using a keyboard:

– the repeat delay/rate is determined by the global set-
ting in Windows. This will only match your terminal's
settings if you set it to match on your PC.

– PrintScreen and Pause/Break keys cannot be properly
simulated.

• SetSystemSetting() (and related API functions) may not
be fully simulated.

• The flash file system is simulated but not persistent (i.e.,
it is erased when you leave Simulation View).

18 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

3.10.3 Source-Level Debugger

A source-level debugger is included in Qlarity Foundry.
This allows an application developer to look at the execu-
tion of the Qlarity code line by line in order to find pro-
gramming errors. If an error is expected in a specific place
in the code, a breakpoint can be set at that point and execu-
tion will stop when that point is reached during simulation.
Then variable values, as well as the flow of execution, can
be examined to determine the problem.

The following options are available on the Simulation View
Tools menu and toolbar to help debug an application:

ToggleBreakpoint (<F9>)
Select to set or remove a breakpoint.

Run (<F5>)
Select to continue running the simulation after it has
paused or stopped.

Single Step (<F8>)
Select to execute the current line and stop on the next
line.

Step Into (<F11>)
When you select this option, if the current line con-
tains a function call, the first executable line of the
function is displayed in the code, otherwise performs
a single step.

Step Out Of (<Shift>+<F11>)
Select to execute the rest of the current function and
return to the calling function. Stops on the first exe-
cutable line outside of the function call. If there is
another breakpoint in the current function, execution
stops there.

Pause Execution (<Ctrl>+<Break>)
Select to stop execution at the next executable line of
Qlarity code. If no Qlarity code is executing (i.e., the
application is idle), execution does not pause until
after it has been started by an event such as a screen
touch or time tick.

3.10.4 Call Stack Window

The Call Stack window displays the line number and the
object of the current function as well as that of all of its call-

ers. Select Call Stack from the View menu to display the
Call Stack window.

This window only displays information when execution has
paused or stopped at a breakpoint. By default, the call stack
is not displayed.

3.10.5 Watch Window

The Watch window allows you to monitor the value of any
workspace variables. To display the Watch window, select
Watch Window from the View menu (or press <Ctrl>+9).

Type the name of the desired variables in the “Name” col-
umn. When execution has paused or stopped at a break-
point, the variables’ values are shown. If execution is not
within the scope of the variable, no value is displayed.

Click to show or hide the data type for each variable.

3.11 Properties Window

The Properties window displays the properties of the
selected object instance. An example of a keypad object is
shown below.

OptoTerminal Qlarity Foundry User’s Manual 19

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Click an object in the work area, or click its object name in
the Object Tree, to display its properties. If the Properties
window is not displayed, pull down the View menu, and
click Properties Window.

NOTE: more than one object selected
If more than one object is selected, only those properties
that are common to all selected objects are shown in the
Properties window. If the same value is assigned to a prop-
erty for all selected objects, that value is displayed. If the
selected objects have different values for the same property,
“<multiple values>” appears in grayed text. In either case,
setting a value in the Properties window when more than
one object is selected sets the property in all selected
objects to the new value.

Properties are the data in an object instance. They are
grouped into categories to help you find and edit a defined
property. Properties are normally grouped into the follow-
ing categories:

Main
Contains properties that you must set to use the object.
These might include enabling the status of the object or the
object’s current value.

Border and Color
Contains properties that set the appearance of the object.

General
Contains properties that are required by the object but are
rarely set in the Properties window. These might include the
position and size of the object.

Text Settings
Contains properties that set the less common text attributes
in an object, such as the inset of the text from the edge of
the object or the justification of the text within the object.

Misc
Contains properties that do not fit into any of the above cat-
egories.

Some objects may contain other categories that are specific
to the object.

Examples of properties include:

• Instance name (required)

• Enabled/disabled switch

• Parent (object to which the instance is attached, often a
form)

• xy coordinates (x and y positions on the terminal display)

• Color (including color of background, text, border, etc.;
selected from drop-down lists or the Select Color palette)

• Font (selected from a drop-down list)

• Bitmap image (selected from a drop-down list)

• Transparent (true/false)

You can edit property values by clicking the property you
want to edit. Many properties have a drop-down list from
which to choose a valid entry. You may also type in a value.

Click to group or ungroup the properties by category.

Click to toggle between sorting the properties alphabeti-
cally or by the order defined by the object’s author.

Click to show or hide the data type for each property.

You can close the Properties window by clicking the Close
button . Normally, however, you will want to keep the
Properties window open.

20 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

3.12 Object Palette

The Object Palette contains a tab for each library in the
workspace, as well as an All tab and an Other tab. Each tab
has icons for all of the object templates in the library.

Click a tab to select an object from the specified library.

The All tab contains icons for all objects available to the
workspace (from all of the libraries in the workspace). The
background color of each icon identifies the library in
which the object can be found. The Other tab contains
objects from various small libraries.

For more information on object libraries, refer to
section 5.3, “Edit Libraries.”

Move the mouse pointer over an icon to display the object’s
name and description.

Click to place the mouse pointer in “select” mode. In
this mode, click an existing object to select it. The pointer
remains in select mode until you click a different icon.

Click to place the mouse pointer in “scroll” mode. If the
layout scale is larger than the work area, use the scroll mode
to view the parts of the workspace that are not visible. Click

, then click anywhere in the work area and hold the
mouse button as you “drag” in the direction you want to
view. When the section you want to view is visible, release
the mouse button. The pointer remains in scroll mode until
you click a different icon or exit the workspace.

You can close the Object Palette by clicking the Close but-
ton , or you can show or hide it by clicking Object Pal-
ette on the View menu.

3.12.1 Add a New Object Instance

Do the following to add a new object instance from the pal-
ette.

1. Click the icon of the object instance you want to add.

2. Move the mouse pointer to the work area. The pointer
changes to a cross hair.

3. Click and hold the mouse button, and drag the mouse to
draw a rectangle in the work area. Then release the
mouse button.

Some objects have a default starting size and shape, so
the size of the rectangle doesn’t matter, only its posi-
tion in the work area. The size of other objects, such as
a line or rectangle, is initially determined by the size of
the rectangle you draw.

NOTE: add multiple instances of the same object type
To add more than one instance of the same type of object,
press and hold the <Shift> key when you click the object
icon. The object type remains selected, and you can just
click and drag in the workspace to add objects until you
release the <Shift> key.

4. After you add an object, it remains selected and its
properties are displayed. You can then edit the proper-
ties as required, including assigning the object a unique
name.

To resize an object, do one of the following.

• Use the mouse. If the object has “resize grips” (sizing
handles), you can click and drag any handle to resize the
object.

• Use the Properties window. Change the height and/or
width integer in the Properties window. Select from the
drop-down list, or type in the new value.

To move an object, do one of the following.

• Click in the center of the object, hold down the mouse
button, and drag the object to a different position. You
can hold down the <Shift> key while moving an object
to limit its movement to horizontal, vertical, or a 45°
angle.

OptoTerminal Qlarity Foundry User’s Manual 21

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

• Change the x and/or y position integer in the Properties
window. Select from the drop-down list, or type in the
new value.

3.13 Move and Resize Windows

The following windows can be moved, resized, or
undocked (separated) from the main window:

• Object Tree

• Properties window (Layout View)

• Object Palette (Layout View)

• Messages and Errors

• Miscellaneous bar

• Communications window (Simulation View)

• Keyboard (Simulation View)

• Keypad (Simulation View)

Each window has its own title bar at the top (the Miscella-
neous bar has a title bar on the left side under the Close but-
ton). To move a window, click the title bar, hold down the
mouse button, and drag the window to another location,
either in the main window or outside the main window. As
you drag it, you will see an outline that indicates the posi-
tion and size it will be. When it is in the position you want,
release the mouse button. If you release the mouse button

close to a “docked” position in the main window, the win-
dow snaps into place.

NOTE: floating windows
If you do not want the window to “snap” into a docked posi-
tion, hold down the <Ctrl> key as you drag it. It then
becomes a floating window that can be positioned any-
where on the screen.

To resize a window, move the mouse pointer over any side
or corner until the pointer changes to directional arrows.
Click and hold the mouse button, and drag the side or corner
of the window until it is the size you want, then release the
mouse button.

NOTE: resize the main window
You can resize the main window using the same method.

To close a window, click . To open a closed window,
select its name from the View menu.

3.14 Where to Go From Here

When you have finished reviewing Getting Started, refer to
Chapter 8, “Basic Design” to learn about the Qlarity design
process, and specifically to section 8.4, “Event Builder” for
information on Qlarity Foundry’s user-friendly design tool
for creating user applications. Refer to chapters 3 through 7,
as required, to answer specific questions about using Qlarity
Foundry.

22 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 4

WORKSPACES

4.1 Start a New Workspace

When you first start Qlarity Foundry, the “Welcome to
Qlarity Foundry” dialog box is displayed. To start a new
workspace from this dialog box, click [Start New].

To start a new workspace with Qlarity Foundry open, click
 on the toolbar, or select New Workspace from the File

menu.

The following dialog box is displayed.

The upper box lists several types of workspaces you can
create. The difference between workspace types is deter-
mined by the library or libraries included with the selection.
The following workspace types are available:

PAC Control, ioControl, and/or OptoMMP operation
This option includes the Opto 22 PAC library
(Opto22_PAC.qlib), the Basic library (basic.qlib), and the
Extra library (extra.qlib). These include drawing, naviga-
tion, keyboard, and data communication and protocol

objects required in all workspaces. This workspace also
includes default resources to communicate to Opto 22 prod-
ucts either through a PAC Control strategy, ioControl strat-
egy, or memory map location. An OptoPACComm object is
included in the workspace by default. Configure this object
to communicate with the Opto 22 controller.

PAC Control or ioControl communication only
This option includes the Opto 22 ioControl library
(Opto_ioControl.lib), the Basic library (basic.qlib), and the
Extra library (extra.qlib). These include drawing, naviga-
tion, keyboard, and data communication and protocol
objects required in all workspaces. This workspace also
includes default resources to communicate to Opto 22 prod-
ucts through a PAC Control or ioControl strategy. An
ioControlComm object is included in the workspace by
default. Configure this object to communicate with the Opto
22 controller.

OptoMMP communication only
This option includes the Opto 22 library (Opto22_1394.lib),
the Basic library (basic.qlib), and the Extra library
(extra.qlib). These include drawing, navigation, keyboard,
and data communication and protocol objects required in all
workspaces. This workspace also includes default resources
to communicate to Opto 22 products through memory map
addresses. An Opto22_Comm object is included in the
workspace by default. Configure this object to communi-
cate with the Opto 22 I/O unit.

Create workspace like the last one created
This option appears if you have previously created a work-
space. Select this option to create a workspace containing
the same libraries and resources that were in the last work-
space created.

Click the workspace type that you want to use, and click
[Finish] or [Show Options] (depending on the workspace
option you selected).

If you click [Show Options], the following dialog box is
displayed.

24 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

This dialog box allows you to\ add or remove resources.

Include a default font and bitmap
Before some objects can be added to a workspace, at least
one font or bitmap image must already exist in the work-
space (if not, an error occurs). For this reason, it is recom-
mended that you include the default fonts and bitmaps.

Include extra fonts
To include additional fonts in your workspace, select this
option.

Include an error handling object
By default, an error handling object (ExceptionDisplay) is
added to your workspace that identifies and displays
descriptions of any errors in your code. It is recommended
that you include this object in all of your workspaces.

Screen Saver
The default screen saver displays a pattern of dancing lines
for a period of time before it blanks the display. By default,
the display switches to dancing lines after fifteen minutes
and to a blank display after thirty minutes. You can change
the default by selecting a new screen saver from the Screen
Saver drop-down box.

When you are done, click [Finish] to proceed. The default
workspace name is “New Workspace” until you save it with

a new file name. The Object Palette includes tools to create
all of the objects contained in the supported libraries.

NOTE: editing resources
You can add or remove resources and libraries after the
workspace is created using the options on the Edit menu.
Refer to section 5.2, “Edit Resources” and section 5.3,
“Edit Libraries.”

4.2 Open a Workspace

To open a workspace, click on the toolbar, or select
Open Workspace from the File menu. The following dia-
log box is displayed.

Workspace files have a .qly extension. All workspace files
in the default folder are listed (change folders if necessary).
Click a file to select it, and its name is displayed in the “File
name” field. Click [Open] to open the workspace. You can
also double-click a file name to open it.

If you select a workspace that is open in another instance of
Qlarity Foundry on the same computer, a warning appears
indicating that the workspace is in use. If you want to save
the workspace, you will have to save it with a different
name (select Save Workspace As from the File menu) to
ensure that no data is overwritten.

4.3 Close a Workspace

Select Close Workspace from the File menu to close the
current workspace and start a new workspace. The follow-
ing prompt appears.

OptoTerminal Qlarity Foundry User’s Manual 25

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Click [Yes] if you want to save the workspace that was
loaded, or click [No] if you do not want to save it. A new,
unnamed project is started using the default resources from
the previous workspace. At this point, you can start a new
project or open a different project using the “Open Work-
space” option.

4.4 Save a Workspace

The first time you save a new workspace, the Save As dia-
log box appears so that you can enter a name for the work-
space file (see section 4.4.2). Then, when you save the file,
it is saved to the file name you entered.

If you want to make a copy of the workspace or change the
file name, use “Save Workspace As.”

If you want to transfer a workspace to another computer,
use the “Collect for Output” function (see section 4.4.3
below).

4.4.1 Save Workspace

To save a workspace, click on the toolbar, or select
Save Workspace from the File menu. If you have already
named the workspace, the file is saved. If it is a new work-
space and you have not yet named it, the Save As dialog
box appears (see section 4.4.2).

4.4.2 Save Workspace As

To save a workspace to a different name, select Save Work-
space As from the File menu. The following dialog box is
displayed.

Select the folder in which you want to save the file. In the
“File name” field, type the name that you want to give the
workspace (you do not have to type the extension). Click
[Save] to save the workspace.

The original file is retained. The new file is a copy of the
original file. If you are renaming the file, you will need to
delete the original file.

4.4.3 Collect for Output

Use this option to collect all of the resources used in a
workspace into one file. You can then move the file to
another computer, and all resources will be available to
open the workspace.

To transfer a workspace to another computer, select Collect
for Output from the File menu. The following dialog box is
displayed.

In the “File name” field, type the name that you want to
give the output file (you do not have to type the extension).
Click [Save] to save the file.

26 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

4.5 Compile a Workspace

Click on the toolbar, or select Compile Workspace
from the File menu to compile the current workspace into
the format required for a user application. Compiling is also
required to update modifications made in Code View before
they can be seen in Layout View. However, if you make
changes in Code View and then switch to Layout View, the
program compiles automatically.

If the compile is successful, the program displays the appli-
cation in Layout View. If any errors occur during the com-
pile, the program switches to Code View and the error
messages are displayed in the Compile dialog box. Double-
click an error message to go to the location of the error in
the code. You can also select Goto Next Message from the
Edit menu to select the next error message and view its
location in Code View.

4.6 Generate a BFF File

Use this function to save a Qlarity workspace file to binary
file format (BFF), which is the application format required
by the terminal.

When you use the “Download Application” option to down-
load the current workspace to the Qlarity-based terminal,
Qlarity Foundry automatically compiles the workspace into
a BFF file; however, the BFF file is not saved.

To save a workspace’s BFF file so that you can download it
at any time without loading the workspace in Qlarity
Foundry, do the following.

1. Load the workspace that you want to save to a BFF file.

2. Select Generate [filename].bff from the File menu
(where [filename] is the name of the current work-
space). The following dialog box is displayed.

3. In the “File name” field, type a name for the BFF file,
or accept the default file name (you do not have to type
the extension). The workspace file name with a .bff
extension in place of the .qly extension is used as the
default.

4. Click [Save] to generate the BFF file.

You can download the BFF file using the [Download Other
BFF] option in the Download Application function (File
menu). Refer to section 7.3, “Download a BFF File” for
information.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 5

TEMPLATES, RESOURCES, AND LIBRARIES

5.1 Add/Edit Templates

Creating and designing object templates is an advanced
function, which is covered in depth in Chapter 10,
“Advanced Design.” This section provides an overview of
the Add/Edit Templates function.

Use Add/Edit Templates to create a new object template.
The new template may be blank, it may contain only boiler-
plate code, or it may be based on a library object template.
New object templates are added to the Template branch of
the Object Tree. After adding a template, you use Code
View to add or edit your custom programming code.

You can also use the Add/Edit Templates function to
change the name of an existing template.

Click on the toolbar, or select Add/Edit Templates
from the Edit menu, and the Add/Edit Templates dialog box
is displayed. (You can also right-click anywhere in the
Templates branch of the Object Tree, and click Add/Edit
Templates on the shortcut menu).

5.1.1 Add a New Object Template

In the Add/Edit Templates dialog box, do the following to
create a new object template.

1. Click [New Template] and the following dialog box is
displayed.

2. Select one of the following options to start the new
template:

Create a template ready to operate in Qlarity
Foundry
Use this option to create a new object template by start-
ing with the programming code for a basic object that
will function in Qlarity Foundry and display on the
screen. Additional programming is required to define
the object’s function, appearance, and so on.

Create a completely blank template
Use this option to start with a blank, unprogrammed
object template.

Copy the code of an existing template in a library
Use this option to copy an object template from an
existing library object. When you select this option, a
“Based on” box replaces the “Object type” box. Select
the object you want to copy from the drop-down list.

Extend (inherit) a template from an existing tem-
plate in a library
Use this option to create a new object template based
on the programming code from an existing library
object. When you select this option, a “Based on” box
replaces the “Object type” box. Select the object you
want to copy from the drop-down list. Refer to the

28 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual for
more information on extending templates.

3. In the “Template Name” box, type a name for the new
template. Each template in the workspace must have a
unique name. A template name has no size limitation
but must start with a letter. A name cannot contain
spaces but may use the underline character (_). The
percent (%), pound (#), and dollar sign ($) symbols can
be used at the end of the name.

4. The last box is labeled either “Object Type” or “Based
on” depending on the option you selected.

In the “Object Type” box, select the type of object you
are creating from the drop-down list, as follows:

For more information on object types, refer to Chapter
8, “Basic Design” and to Appendix A, “Glossary of
Software Terms.”

In the “Based on” box, select the library object on
which the new object template is to be based. The pro-
gramming code from the library object will be copied
to the new object template.

5. Click [OK] to create the new template.

5.1.2 Edit a Template Icon

Each template is identified in the Object Tree by an icon. To
customize the icon for a template, click the template name
in the Add/Edit Templates dialog box, then click [Edit
Icon]. The following dialog box is displayed.

The icon form is graphically represented as a grid. Each
square in the grid is an individual pixel. On the grid, draw
the icon for the template using the following tools.

• If you want to modify an existing icon to create a new
one, click the drop-down arrow at the “Copy icon” box,
and select an icon from the list. The selected icon is dis-
played.

• If you would like to start with all pixels the same color
(i.e., white, black, or a shade of gray), click the starting
color next to the “Fill Icon” label.

• By default, click a pixel with the left mouse button to
make the pixel black; click with the right mouse button to
make it white. You can also specify colors other than
black and white for each mouse button, as follows:

• Next to the “Left Button” label, click the color that
you want to apply when you click the left mouse
button.

• Next to the “Right Button” label, click the color that
you want to apply when you click the right mouse
button.

• Click to move or offset the graphic in the grid.

However, any pixels with a color other than white are
changed to white when they are moved from the display
area. For example, if you change the default fill to black,

and click twice then click once, a one pixel wide
white border is added to the right side of the image. Click

 twice and once to add a white top border.

Container
An object that contains other objects
(e.g., a form). It can be defined as
part or all of the terminal screen.

Area object
A display element (e.g., text object,
bitmap object, line object, etc.)

Non-drawable
object

An object that serves a function not
related to the display (e.g., key defi-
nition, communications, etc.).

OptoTerminal Qlarity Foundry User’s Manual 29

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

• Click to return the graphic to its original
design.

• Click to invert the color of each pixel in the
icon.

5.1.3 Rename a Template

In the Add/Edit Templates dialog box, do the following to
change an object template’s name.

1. Click the template name that you want to edit. It is
highlighted in blue.

2. Click [Rename Template].

3. Type the new name over the old name.

4. Press <Enter> to save the new name, or press <Esc> to
revert to the old name.

5.1.4 Remove a Template

In the Add/Edit Templates dialog box, do the following to
remove an object template from the workspace.

1. Click the template that you want to remove. It is high-
lighted in blue.

2. Click [Remove Template].

3. A prompt is displayed to confirm that you want to
remove the template. Select [Yes] to remove the object
template from the workspace.

5.1.5 Send Template to Library

After you have created and customized an object template,
you can add it to a library. By placing your object templates
in a library, they can easily be distributed to other locations
or computers by copying the library file (e.g,
libraryname.lib).

NOTE: do not add to QSI libraries
You should not save your new object templates to QSI
libraries. QSI libraries are regularly updated, and the new

libraries replace the existing ones, so your templates would
be overwritten. Instead, you should create a new library in
which to store your own object design work. Refer to
section 5.3, “Edit Libraries” for more information.

In the Add/Edit Templates dialog box, do the following to
add an object template to a library.

1. Click the template that you want to add to a library. It is
highlighted in blue.

2. Click [Send Template to Library]. The following dia-
log box is displayed.

3. In the “Select Library” box, select the library to which
you want the object template copied.

4. The “Entry Name” box displays the name of the object
template. To assign it a different name within the
library, type a new name.

5. If you want to leave the template in the current work-
space after you copy it to the library, select Leave tem-
plate in workspace when done.

6. Click [OK] to place the object template in the selected
library.

5.1.6 Change Template Type

In the Add/Edit Templates dialog box, do the following to
change the object type of a template.

1. Click the template that you want to change. It is high-
lighted in blue.

30 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

2. Click the radio button for the object template type to
which you want to change the template, as follows.

For more information on object types, refer to Chapter
8, “Basic Design” and to Appendix A, “Glossary of
Software Terms.”

5.1.7 Extend a Template

A template may extend another “base” template. A template
that extends another template “inherits” the base template’s
properties and methods. In the Add/Edit Templates dialog
box, do the following to extend a template.

1. Click the template that you want to modify. It is high-
lighted in blue.

2. From the “Extends template” drop-down list, select the
base template that you want the selected template to
extend. If you do not want the template to extend
another template, select <none> from the drop-down
list. Refer to the OptoTerminal Programmer’s Refer-
ence Manual for detailed information on extending
object templates.

5.2 Edit Resources

Resources include all bitmap images, fonts, audio files, and
binary data files that are available in a workspace and, even-
tually, in the user application. You must add resources to a
workspace before you can use them in object instances.

Use the “Edit Resources” option to add resource files to
your workspace or to change or remove the resources avail-
able. Because resources become part of the user application
when it is compiled, you should delete any unnecessary
resources.

NOTE: default bitmaps and fonts
When you create a new workspace, you have the option to
add default bitmap images and fonts to your workspace.
Some objects may require at least one bitmap, BDF font, or
TT font resource before the object will function properly.
When you have finished creating a workspace, however,
you may want to remove any unused default bitmaps and
fonts before you download the user application to the Qlar-
ity-based terminal to conserve the terminal’s flash and
RAM memory.

Click on the toolbar or select Edit Resources from the
Edit menu, and the Edit Resources dialog box is displayed.

All resources used in a workspace are managed from this
dialog box.

Click the tab for the resource type you want to manage, then
follow the procedures in the following sections as applica-
ble to add a new resource, rename an existing resource,
change the file for an existing resource name, or remove a
resource from the workspace. Additional information on
each resource type is also provided in the following sec-
tions.

After you have finished adding, editing, or removing
resources, click [OK] to save your changes and exit the Edit
Resources dialog box. The workspace is compiled.
Resources that you added are available for use in the

Container
An object that contains other objects
(e.g., a form). It can be defined as
part or all of the terminal screen.

Area object
A display element (e.g., text object,
bitmap object, line object, etc.)

Non-drawable
object

An object that serves a function not
related to the display (e.g., key defi-
nition, communications, etc.).

OptoTerminal Qlarity Foundry User’s Manual 31

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

objects, and resources that you removed are no longer avail-
able.

Save the workspace to save the new information to disk.

NOTE: button labels
The labels on the buttons used to edit resources change to
match the resource tab you selected. For example, you click
[New bitmap] to add a bitmap image, [New BDF font] to
add a BDF font, and [New audio resource] to add an audio
file. The label on the “Rename” button changes to the name
of the resource you selected to rename.

5.2.1 Add a Resource

In the Edit Resources dialog box, do the following to add a
new resource to the workspace.

1. Click [New resource type] (e.g., [New BDF Font]) and
an Open dialog box appears. Resource files in the
default folder are listed (change folders if necessary).

2. Select the resource file or files that you want to add.

NOTE: select multiple files
To select multiple files that appear consecutively in a list,
press and hold <Shift>, then click the first and last file in the
group you want to select. To select multiple non-consecu-
tive files, press and hold <Ctrl>, then click each file that you
want to select.

3. Click [Open]. The resource is added to the list of
resources.

When you add a resource, it is given the name of the file by
default. The resource name is the name that appears in the
Properties window for you to select the resource for an
object instance. For information on changing the name,
refer to section 5.2.3.

5.2.2 Preview Resources
When you select a resource in the list, a preview of the
resource is displayed in the “Preview” box (as shown
below) if appropriate. If you selected an audio resource,
click the button in the “Preview” box to listen to the sound. 5.2.3 Rename a Resource

In the Edit Resources dialog box, do the following to
change the name of a resource. This changes the name that
appears in the Properties window for you to select the
resource for an object instance; it does not change the file
name of the resource.

32 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

1. From the list of resources, select the resource that you
want to rename, and click [Rename “resource name”]
(e.g., [Rename “qterm_g70”]). A dialog box is dis-
played with the current name of the resource selected in
the text box.

2. Type over the name with the new name, or edit the
name as desired.

3. Click [OK] to rename the resource and close the dialog
box. The new name appears in the “name” column of
the resource list.

5.2.4 Change a Resource File

In the Edit Resources dialog box, do the following to
change the file assigned to an existing resource name.

1. From the list of resources, select the resource for which
you want to change the file.

2. Click [Browse] and an Open dialog box appears.

3. Select the file that you want to assign to the resource
name.

4. Click [Open] to accept the file and close the dialog
box, and the file is changed.

5.2.5 Remove a Resource

In the Edit Resources dialog box, do the following to
remove a resource from the workspace.

1. From the list of resources, select the resource or
resources that you want to remove. You can select mul-
tiple resources as described in the note above.

2. Click [Remove resource type] (e.g., [Remove BDF
Font]). The selected resource(s) is removed from the
workspace.

5.2.6 Bitmaps

Qlarity Foundry supports bitmap images in the standard
.bmp format. Use the following guidelines when creating
bitmap images to be displayed on Qlarity-based terminals:

Bitmap Size:
The size of a bitmap image is normally shown as the num-
ber of pixels in width by the number of pixels in height
(e.g., 25 x 10). The standard Qlarity-based terminal display
is 320 pixels in width by 240 pixels in height (320 x 240).
Therefore, you can easily determine what size to make your
bitmap images so they will be in proportion to the size of
your terminal. Refer to your Qlarity-based terminal specifi-
cations for its exact size.

Transparent Background:
You can specify that a color in a bitmap image become
transparent in the workspace. If you want the background of
a bitmap image to be transparent in the workspace, make
the background a color that is not used in the bitmap, then
select the background color as the transparent color in the
bitmap object properties in Qlarity Foundry. Bright magenta
and bright green are often used as transparent background
colors.

5.2.7 Fonts

Qlarity-based terminals support BDF (raster) and TrueType
fonts. Use the following guidelines to help you determine
which fonts to use in a workspace:

Scalable and Non-scalable Fonts:
BDF (raster) fonts are non-scalable, which means that you
need to load a separate font file for each point size (e.g.,
Arial 8, Arial 14, Arial 20, etc.). TrueType (TT) fonts are
scalable, which means that a single font can typically be
scaled to several different point sizes.

Rotating a Font:
A TT font can be rotated to any angle. A BDF font can only
be displayed at the angle at which it was created.

Availability:
BDF fonts and TrueType fonts are readily available from
several sources, including many public domain Internet
sources. TrueType fonts can be used on any Windows com-
puter.

OptoTerminal Qlarity Foundry User’s Manual 33

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Terminal Memory Use:
A BDF font file is smaller than a TT font file. If you are
using only one or two sizes of a specific font (Arial, Times
Roman, etc.), you can save terminal memory using BDF
fonts. If you are using several point sizes for a specific font,
the TT font will likely use less memory than three or more
BDF fonts.

Display Speed:
BDF fonts are displayed more quickly than TrueType fonts
on Qlarity-based terminals. While the terminal renders Tru-
eType fonts fast enough that the difference in drawing speed
is rarely noticeable, you might consider using BDF fonts for
display items that will change their text frequently (such as
items that are frequently polled from a remote device).

Copyright:
Many fonts are copyrighted. Be sure to purchase or obtain
permission to use a copyrighted font in your user applica-
tions.

5.2.8 Audio

Some Qlarity-based terminals have an audio decoder option
that enables them to play waveform audio files. If your ter-
minal supports an audio decoder, you can add audio files in
the .wav format to your workspace. You can play the audio
files using the PlaySound API function.

5.2.9 Binary

Binary resources are files that you want to add to your user
application unchanged. For example, you could use a binary
resource in your application if you wanted the Qlarity-based
terminal to communicate with an embedded device (with no
PC connection). You could, for example, add a configura-
tion or firmware file to the application as a binary resource
file, and then use the GetBinaryResource API function to
download the file from the Qlarity-based terminal to the
embedded device when the application is running.

5.3 Edit Libraries

Object libraries are provided by QSI (and other sources) to
assist you in designing user applications. Each library con-
tains several predefined Qlarity objects. This enables you to
add object instances to your workspaces without the need to
program new object templates.

When you add a library to a workspace, the objects in the
library are added to the Object Palette and to the drop-down

list in the Instance Properties dialog box (right-click any-
where in the Object Tree, and click New Object Instance).

NOTE: default libraries
When you create a new workspace, you have the option to
add default libraries to the workspace. You can remove a
default library or add new libraries to the workspace using
the “Edit Libraries” option.

NOTE: library object templates
Object templates in libraries are not listed under “Tem-
plates” in the Object Tree. Only object templates created in
the workspace are listed under this heading. However, you
can create a new object template based on an existing
library object (see section 5.1, “Add/Edit Templates”).

To add a library to or remove a library from your work-
space, click on the toolbar, or select Edit Libraries from
the Edit menu. A dialog box similar to the following is dis-
played.

All libraries currently in the workspace are listed. Click a
library to display its entries and object templates at the bot-
tom of the dialog box.

5.3.1 Add Existing Library

Do the following to add a new library to the workspace.

1. Click [Add Existing Library], and a dialog box appears
that lists all the libraries included with Qlarity Foundry
that have not been added to the workspace.

2. Select one or more libraries from the list.

34 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

To select multiple libraries that appear consecutively in
the list, press and hold <Shift>, then click the first and
last library in the group you want to select. To select
multiple non-consecutive libraries, press and hold
<Ctrl>, then click each library that you want to select.

The objects in the selected library or libraries are dis-
played at the bottom of the dialog box.

3. Click [OK] to close the dialog box, and the selected
libraries are added to the workspace. The objects in the
new libraries are added to the Object Palette.

4. To add a library that is not listed, click [Add Other
Library] and an Open dialog box appears. Select the
library or libraries that you want to add (change the
folder if necessary), and click [Open]. The library is
added to the workspace.

5. Click [Close] to save your changes and exit the dialog
box. The workspace is compiled and the objects in the
new library are available for use in the workspace.

6. Save the workspace to save the information to disk.

5.3.2 Remove Library

Do the following to remove a library from the current work-
space.

1. All libraries that are loaded in the workspace are listed.
Click the library that you want to remove. It is high-
lighted.

2. Click [Remove Library] and the library file is removed
from the workspace.

3. Click [Close] to save your changes and exit the dialog
box. The workspace is compiled and the objects in the
library are no longer available for use in the workspace.

5.3.3 Edit Library

Library editing functions require an understanding of Qlar-
ity programming. Refer to Chapter 9, “Intermediate
Design” and Chapter 10, “Advanced Design” for informa-
tion on Qlarity programming.

NOTE: do not edit QSI libraries
You should not edit QSI libraries. QSI libraries are regularly
updated, and the new libraries replace the existing ones, so

any changes are overwritten. You should edit only libraries
that you created (see section 5.3.5, “Create a New
Library”). You can modify an object template by importing
it into your workspace (see section 5.1.1, “Add a New
Object Template”).

In the Libraries dialog box, click a library to select it, then
click [Edit Library], and the following dialog box is dis-
played.

NOTE: use caution in editing libraries
Changes that you make to libraries take effect immediately
and cannot be undone. Remember that a library may be
used in more than one workspace, and changes made to the
library affect every workspace in which it is loaded.

You can change the library name, version, or icon colors, as
well as change the entries in the library.

Name
To change the library’s name, click in the “Name” text box,
and type over the existing entry. The change is reflected in
the “Filename” column in the Libraries dialog box.

Version
To change the version number of the library, click in the
“Version” text box, and type over the existing number. The
change is reflected in the “Status” column in the Libraries
dialog box.

OptoTerminal Qlarity Foundry User’s Manual 35

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Icon Foreground/Icon Background
On the Object Palette, icons for all objects in a library use a
common color scheme. Use these options to specify or
change the foreground and/or background color of the
library’s object icons. Click [Icon Foreground] or [Icon
Background] and a color palette is displayed. A rectangle
appears around the current foreground or background color.
Click a different color square to change the color, then click
[OK].

5.3.3.1 Edit Entry

Click an object template entry in the “Entry Name” list to
select it, then click [Edit Entry] to edit the programming
code of the selected object. This function is only available
for “source” type entries.

The object template is displayed in a text editor similar to
Code View, as shown below.

Edit the code, and click [OK] when you are finished to save
the changes.

The Edit Library Entry window has a File menu and an Edit
menu with the standard save, edit, and find options. The File
menu also contains the following option.

Save changes to library as hidden code
This option gives the developer the option of hiding the
source code in the library. Once the source code is hidden, it
cannot be viewed or edited.

WARNING:
Make a copy of the source code before using the “Save
changes to library as hidden code” option. Once saved to
the library, it can no longer be viewed or edited by anyone.

5.3.3.2 Rename Entry

Click an entry in the list to select it, then click [Rename
Entry] to change the name of the selected entry. A dialog
box is displayed for you to type the new name. Click [OK]
to apply the change and close the dialog box.

5.3.3.3 Remove Entry

Click an entry in the list to select it, then click [Remove
Entry] to remove the selected entry from the library. A mes-
sage is displayed warning you that this will permanently
remove the entry from the library. Click [Yes] to remove the
entry.

5.3.3.4 Set Entry Version

Click an entry in the list to select it, then click [Set Entry
Version] to change the version number of the selected entry.
A dialog box is displayed for you to type the new number.
Click [OK] to apply the change and close the dialog box.

5.3.3.5 Add New Entry

A library contains two types of entries:

• Source objects (object templates)

• Embedded resources (e.g., bitmaps, BDF fonts, and TT
fonts). Only resources that are used in an object template,
(e.g., a custom button, tab, etc.) need to be embedded in
the library. Libraries can also reference any resource that
has been loaded into a workspace. However, by embed-
ding the resource in the library, you make certain that it
is available when an object instance is created.

To add a new entry to a library, click [Add New Entry]. The
following dialog box is displayed.

36 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Entry Name
Enter a name for the new entry. A name has no size limita-
tion but must start with a letter or underline character (_). A
name cannot contain spaces but may contain the underline
character. The percent (%), pound (#) and dollar sign ($)
symbols can be used at the end of the name.

Entry Type
From the drop-down list, select the type of entry:

• Source (object template)

• Bitmap (resource)

• BDF font (resource)

• TT font (resource)

• Audio file

• Binary file

Filename
If the library entry is a resource (e.g., bitmap or font) enter
the location of the resource file. Click [Browse] to find the
file if necessary.

Click [OK] to continue. If the library entry is a “source”
(object template), a message is displayed explaining that
Qlarity Foundry will insert a blank entry in the library. To
enter the programming code for the object template, select
the new entry and click Edit Entry.

You can also add new object templates that you have
already created with the “Send Template to Library” option
in Add/Edit Templates (see section 5.1.5) for information.

5.3.4 Advanced

Click [Advanced] to display the advanced options for edit-
ing the standard and core libraries.

5.3.4.1 Edit Standard (natives.lib)

In addition to native API functions (as described in the
OptoTerminal Programmer’s Reference Manual), the stan-
dard Natives library (natives.lib) contains several utility
functions written in the Qlarity language. To make these
functions available, type the following in the Globals sec-
tion of your workspace:

library standard source <entryname>

<entryname> is the name of the library that contains the
additional API functions you want to use. To determine the
entry in which a function resides, locate the function in the
Object Documentation Help file. Each utility function in the
library begins with the underscore (_) character.

Click the [Edit standard] button to view the utility func-
tions included in the Natives library.

OptoTerminal Qlarity Foundry User’s Manual 37

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Do not modify these functions, as objects in various librar-
ies also use them. In addition, any changes you make to
Natives library functions are overwritten when you upgrade
Qlarity Foundry.

Refer to section 5.3.3, “Edit Library” for information on
editing functions.

5.3.4.2 Edit Core (core.qlib.qhide)

The Core library contains core object definitions that are
used as a base for extension. Many standard Qlarity objects
extend templates in this library. Objects in the Core library
do not appear in the Object Palette. Select this option to ref-
erence code in the Core library.

5.3.4.3 System Libraries That Are Not Explicitly
Included in This Workspace

A system library is one that resides in the same directory as
the QlarityFoundry.exe executable file. Some system library
template code may rely on templates in other libraries. This
is common when extending templates. If the other libraries
are not available to the Qlarity compiler, compile time
errors will occur. The drop-down list at this field contains
options to indicate how to include system libraries that are
not specified in the workspace.

Do not include
If you select this option, other system libraries are not
included. If code in one library relies on code in another
library that is not included in the Qlarity workspace, the
compiler will generate errors.

Include as reference
If you select this option, a reference to all system libraries in
your workspace is included. A library that is included as a
reference is available to the Qlarity compiler but will not
generate an error if the workspace is moved to a computer
that does not have that library.

Include directly
If you select this option, all system libraries are included
directly. If the workspace is moved to a computer that does
not have one of the system libraries, compile time errors
will occur.

38 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

NOTE: included system library objects
If you select an option to include additional system librar-
ies, the library objects do not appear in the Object Palette.

5.3.5 Create a New Library

Do the following to create a new Qlarity Foundry library.

1. Click [Create New Library]. A dialog box similar to
the one shown below is displayed.

2. Enter a file name for the new library (e.g., mylib) and
click [Save]. The extension (.lib) is added automati-
cally.

The following dialog box is displayed.

3. Enter a descriptive name for the library (e.g., “arch
library” or “Johns library”) and click [OK].

The new library file is created and added to the Qlarity
Foundry folder. Use the Edit Library function to add entries
(object templates and resources) to the library (see
section 5.3.3.5, “Add New Entry” for information).

You can also add new object templates to a library using the
“Send Template to Library” option in Add/Edit Templates
(see section 5.1.5 for information).

5.4 Edit Named Colors

You can use “named colors” and “themes” to simplify the
process of assigning fill and line colors to objects. Rather
than manually selecting a color from a palette for each
property of an object, you can assign one named color to
one or more properties of an object and to any number of
objects in the workspace. This improves color matching and
helps to control the range of colors used. For example, you
can assign a named color to several objects and then change
the color of all those objects at the same time by simply
changing the color of the named color. You can also assign
colors to properties without using named colors if you
choose.

Qlarity Foundry includes several predefined named colors
with each new workspace (e.g., Clr_ScreenBackground and
Clr_ScreenForeground, Clr_ButtonBackground and
Clr_ButtonForeground, and so on). You can create as many
additional named colors as needed for a workspace (e.g.,
Clr_StartEndButtons_BG and Clr_StartEndButtons_FG).

The colors of named colors (along with named borders; see
section 5.5) are set up in “themes” (see section 5.4.1). You
can create your own themes and named colors, and you can
edit the predefined themes and named colors.

To create or edit named colors and themes for a workspace,
select Edit Named Colors from the Edit menu. The follow-
ing dialog box is displayed.

5.4.1 Themes

The colors and border definitions assigned to named colors
and named borders are grouped together in themes. (See
section 5.5, “Edit Named Borders” for information on
named borders.) Several predefined themes are set up in
Qlarity Foundry. You can change the colors or border defi-

OptoTerminal Qlarity Foundry User’s Manual 39

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

nitions in a predefined theme, or you can save the changes
as a new theme.

Generally, a theme represents a color scheme, such as a
theme with all grayscale colors, a theme with shades of
blue, or a theme with neon colors. To view the colors in a
theme, select the theme from the Theme drop-down list.
The colors assigned to the named colors are shown. Each
theme uses the same named color labels, only the colors
assigned to them are different from theme to theme.

Theme
Click the drop-down list and select a theme. Its defined col-
ors are shown next to the named color labels.

Save Current Border and Color Settings As Theme
To save as a theme any changes you made to the named col-
ors, click [Save current border and color settings as
theme]. A prompt appears with the name of the currently
selected theme. If you do not want to change the colors in
the theme displayed, enter a new name to create a new
theme. Remember that the current named border definitions
(see section 5.5, “Edit Named Borders”) are also saved as
part of the theme.

NOTE: save current theme
If you change themes without saving the changes you made
to the current theme, the changes to the unsaved theme are
not saved when you click [OK].

5.4.2 Named Colors

NOTE: named colors not supported for older objects
Named colors cannot be assigned to objects in libraries
from Qlarity Foundry versions earlier than 2.1.

To create or edit named colors, begin by selecting a theme
from the Theme drop-down list. Named colors are saved in
themes. The colors assigned to all named colors for the
selected theme are displayed. Both the named color label
and the color currently assigned to the named color are
shown.

NOTE: changes to named colors and themes
Any change to a named color only applies to the currently
selected theme. If you are making changes to more than one
theme, make sure you click [Save current border and
color settings as theme] before you change themes.

When you have finished editing or creating named colors,
click [OK] to save the changes and exit, or click [Cancel] to
discard the changes and exit.

5.4.2.1 Change Named Color

To change the color assigned to a named color, click the
named color to select it, then click a color in one of the
color palettes. The new color is assigned to the named color.
Click [Save current border and color settings as theme]
to save the new color in the theme.

NOTE: named color changed for all assigned objects
When you change the color assigned to a named color, it is
changed for all objects and properties to which the named
color is assigned.

5.4.2.2 Create New Named Color
Click [New named color] to create a new named color. You
are prompted to enter a label. A label has no size limitations
but must start with a letter or underline character (_). A
label cannot contain spaces but may contain the underline
character. The percent (%), pound (#), and dollar sign ($)
symbols can be used at the end of the label. Enter a label for
the new named color and click [OK]. The new named color
is added to the list with a default color of white. To change
the color, click a color in one of the color palettes. The color
selected will be the color in every theme unless you change
it for a selected theme and click [Save current border and
color settings as theme].

5.4.2.3 Delete Named Color
To delete a named color that you created, select it, then click
[Delete named color]. A prompt is displayed to confirm
that you want to delete it. Click [Yes] to delete the named
color. You cannot delete the default named colors.

5.4.2.4 Rename Named Color
To rename a named color that you created, select it, then
click [Rename color]. A message is displayed to warn you
that you should not rename a named color that has been
assigned to objects. If you do, the workspace will not com-
pile. Click [Yes] to rename the named color. After changing
the name, click [OK] to save the change. You cannot rename
the default named colors.

5.4.2.5 Reset Color to Theme Default
To restore the originally assigned color to a theme’s default
named color, select the named color you want to restore,
and click [Reset color to theme default].

40 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

5.5 Edit Named Borders

You can use “named borders” to assign borders to objects.
Rather than manually creating a border for each object, you
can assign one named border to any number of objects in
the workspace. All objects assigned a named border will
then have the same border characteristics. When you change
the characteristics of a named border, it is changed for all
objects using that named border.

Qlarity Foundry includes several predefined named borders
with each new workspace (e.g., Bdr_ButtonBorder,
Bdr_LabelBorder, etc.). You can create as many additional
named borders as needed for a workspace.

The designs for named borders (along with the colors for
named colors; see section 5.4) are set up in “themes” (see
section 5.5.1). You can create your own themes and named
borders, and you can edit the predefined themes and named
borders.

To create or edit named borders and themes for a work-
space, select Edit Named Borders from the Edit menu. The
following dialog box is displayed.

5.5.1 Themes

The colors and border definitions assigned to named colors
and named borders are grouped together in themes. (See
section 5.4, “Edit Named Colors” for information on named
colors.) Several predefined themes are set up in Qlarity
Foundry. You can change the colors or border definitions in
a predefined theme, or you can save the changes as a new
theme.

Generally, a theme represents a color scheme, such as a
theme with all grayscale colors, a theme with shades of
blue, or a theme with neon colors. To view the borders in a

theme, select the theme from the Theme drop-down list.
The borders assigned to the named borders are shown. Each
theme uses the same named border labels, only the border
types assigned to them are different from theme to theme.

Theme
Click the drop-down list and select a theme. Its defined bor-
ders are shown next to the named border labels.

Save Current Border and Color Settings As Theme
To save as a theme any changes you made to the named bor-
ders, click [Save current border and color settings as
theme]. A prompt appears with the name of the currently
selected theme. If you do not want to change the border
designs in the theme displayed, enter a new name to create a
new theme. Remember that the current named colors (see
section 5.4, “Edit Named Colors”) are also saved as part of
the theme.

NOTE: save current theme
If you change themes without saving the changes you made
to the current theme, the changes to the unsaved theme are
not saved when you click [OK].

5.5.2 Named Borders

NOTE: named borders not supported on older objects
Named borders cannot be assigned to objects in libraries
from Qlarity Foundry versions earlier than 2.1.

To create or edit named borders, begin by selecting a theme
from the Theme drop-down list. The attributes of named
borders are saved in themes.

All named border attributes for the selected theme are dis-
played. Both the named border label and the border
attributes currently assigned to the named border are shown.

To change the attributes for a named border, click the
named border to select it, then select from the “General
Effects,” “Rounded Corners,” and “Double Borders”
options (see the following sections for details) to modify the
border. The new attributes are shown in the small image
next to the label, as well as in the preview box.

NOTE: named border changed for all assigned objects
When you change the border design for a named border, it
is changed for all objects and properties to which the named
border is assigned.

OptoTerminal Qlarity Foundry User’s Manual 41

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

NOTE: changes to named borders and themes
Any change to a named border only applies to the currently
selected theme. If you are making changes to more than one
theme, make sure you click [Save current border and
color settings as theme] before you change themes.

When you have finished editing or creating named borders,
click [OK] to save the changes and exit, or click [Cancel] to
discard the changes and exit.

5.5.2.1 General Effects

Border Width
In the Border width box, enter (or click the arrow buttons
to select) the width of the border in number of pixels.

3D Bevel
If you want a beveled border (as for a button), select 3D
Bevel. The options to select a raised or sunken bevel
appear. You can see the effect of each option in the pre-
view.

Border Color
If you do not select a 3D bevel, you can select a different
color for the border. Click Border Color, and a Select Color
palette appears from which to select the color.

If you want to match a color from another object in the
workspace, click beneath the color palette, and an image
of the workspace is displayed. Click in the area of the work-
space that has the color you want to match. The color of the
area you clicked is shown in the “Sample” box. In addition,
the “4X” box displays the area magnified four times.

You can click a color in the “4X” box to select it. This is
useful if you want to identify a color in a congested area of
the display. You can also click in the “4X” box, and drag
the mouse to shift the displayed area slightly.

Click [OK] to close the workspace image, and the color you
selected is shown in the Select Color palette. Click [OK] at
the Select Color palette to assign the selected color to the
border.

Fade Effect
If you have defined a wide border, you can select Fade
Effect to add a fading color effect to the border. Refer to the
preview for an illustration of the fade effect.

5.5.2.2 Rounded Corners
Select Use rounded corners to round the corners of the
border. Then enter (or click the arrow buttons to select) the
radius of the corners in number of pixels. The greater the
number of pixels, the more rounded the corner.

5.5.2.3 Double Border
Select Use a double border to create a double border. Then
enter (or click the arrow buttons to select) the width of each
border in pixels (1-3).

5.5.2.4 Preview
The options in the Preview section, including [Object Fill
Color] and [Background Color] allow you to experiment
with color combinations but have no effect on the colors in
the workspace. All object background and fill colors in the
workspace are determined by the color or named color
assigned to the objects or properties.

5.5.2.5 Create New Named Border
Click [New named border] to create a new named border.
You are prompted to enter a label. A label has no size limi-
tations but must start with a letter or underline character (_).
A label cannot contain spaces but may contain the underline
character. The percent (%), pound (#), and dollar sign ($)
symbols can be used at the end of the label. Enter the a label
for the new named border and click [OK]. The new named
border is added to the list with default attributes. To change
the border, change the “General Effects,” “Rounded Cor-
ners,” and “Double Borders” options. The border attributes
selected will be the same in every theme unless you change
them for a selected theme and click [Save current border
and color settings as theme].

5.5.2.6 Delete Named Border
To delete a named border that you created, select it, then
click [Delete named border]. A prompt is displayed to con-
firm that you want to delete it. Click [Yes] to delete the
named border. You cannot delete the default named bor-
ders.

5.5.2.7 Rename Named Border
To rename a named border that you created, select it, then
click [Rename border]. A message is displayed to warn
that you should not rename a named border that has been
assigned to objects. If you do, the workspace will not com-
pile. Click [Yes] to rename the named border. After chang-
ing the name, click [OK] to save the change. You cannot
rename the default named borders.

42 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

5.5.2.8 Reset Border to Default
To restore the originally assigned attributes to a theme’s
default named border, select the named border you want to
reset, and click [Reset border to default].

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 6

QLARITY FOUNDRY PREFERENCES

Use the “Settings” option to record the display configura-
tion of your Qlarity-based terminal and to enter Qlarity
Foundry preferences. Qlarity Foundry requires this infor-
mation to simulate as accurately as possible the terminal
display. The “Settings” option is also used to set up options
for the code editor (Code View) and to enable or disable
warnings and other defaults for compiling.

Click on the toolbar, or select Settings from the Tools
menu, and the Qlarity Foundry Preferences dialog box is
displayed.

Tabs are available to define your Qlarity-based terminal
display, to define the layout of the Qlarity Foundry work
area, to set up the code editor, and to set up compile
defaults, as described in the following sections.

6.1 Terminal

The options in the Terminal tab are for advanced users or
for those setting up a custom hardware configuration. Gen-
erally, you should use the Hardware Configuration Assis-
tant to set up your terminal.

Base Terminal
To change the type of Qlarity-based terminal you want to
program, select the new terminal type from the drop-down
list. The type of terminal selected determines the legend you
will see around the display in Layout View. The display
“Dimensions” setting changes to match that of the selected
terminal.

6.1.1 Display Setup

Dimensions
From the drop-down list, select the display dimensions (in
pixels) of your model of Qlarity-based terminal. Refer to
your Qlarity-based terminal specifications for this informa-
tion.

Orientation
A terminal may be mounted in landscape (longest dimen-
sion is horizontal) or portrait (longest dimension is vertical)
mode. Select one of the following options from the drop-
down list: Portrait, Landscape, Portrait II, or Landscape
II.

The Portrait II and Landscape II options can be used by
advanced programmers in conjunction with the GetSystem-
Setting() API to modify the behavior of workspace objects
in Simulation View based on the display orientation of the
target terminal. Most users should select Landscape or
Portrait.

Display Type
Select one of the following options from the drop-down list
to indicate the type of display on your terminal: Color,
Color TFT, Color Enhanced TFT, Grayscale (Transflec-
tive), or Grayscale (Transmissive).

The Color TFT and Color Enhanced TFT options can be
used by advanced programmers in conjunction with the
GetHardwareInfo() API to modify the behavior of work-
space objects in Simulation View based on the display type
of the target terminal. If you are not sure which type of
color display you have, select Color.

44 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

If you select Grayscale (Transflective), the default color
theme is dark text and borders on a light background. If you
select Grayscale (Transmissive), the default color theme is
light text and borders on a dark background. Refer to
section 5.4.1, “Themes” for information on selecting and
modifying a color theme. If you are not sure which type of
grayscale display you have, select Grayscale (Transflec-
tive).

Audio Decoder
If the terminal has the audio decoder option, which allows it
to play waveform audio files, you can select this option to
enable it.

Ethernet
If the terminal has an Ethernet port and you will be using it
for communication, select this option to enable the port.

6.1.2 Input

Keyboard/External Keypad/TouchScreen
Click the input mode or modes that are supported by your
terminal and that you plan to use.

If you select [External Keypad], click [Select] to select an
external keypad configuration, create a new configuration,
or modify an existing one to match the actual keypad that
you are using with the terminal.

6.1.3 Communications

Number of serial ports
Select the number of serial ports available on your Qlarity-
based terminal. Most terminals have either one or two serial
ports.

6.1.4 Miscellaneous

Manufacturer ID (MID)
If you purchased a custom MID code for your Qlarity-based
terminal, enter it in the text box. Your Qlarity-based termi-
nal will emulate a terminal with the MID code. If you did
not purchase a custom MID code, leave this value at the
default.

6.2 Layout

Click the Layout tab to define the layout of the Qlarity
Foundry work area to simulate your terminal display.

Show legend around display
With touch screen displays, you can add a border around the
display for a stick-on, touch key legend. If you are using a
touch key legend, select this option. If you are not using a
touch key legend, leave the checkbox empty.

Grid Spacing
You can display a grid over the work area to help you more
accurately place and align objects. Enter the space between
grid lines in pixels (between 2 and 25).

Show Grid
Select this option to make the work area grid visible.

Snap to Grid
Select this option to force objects to “snap” to the nearest
grid line when added or moved. This is useful for more
accurate placement and alignment of objects.

Preview while dragging
(only available in Windows 2000 and Windows XP) This
option controls the way objects appear while dragging them
with the mouse to move them in Layout View. If selected, a
preview of the object in the new location is displayed. If not
selected, an outline of the object is displayed.

Time the mouse must be held...
This setting determines how long (in milliseconds) the
redraw function is delayed when dragging an object. For
most systems, the default should be optimum. If you need to
increase or decrease the time interval, enter a new value.

OptoTerminal Qlarity Foundry User’s Manual 45

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Highlight object under the mouse
If this option is enabled, each object’s outline is highlighted
as you move the mouse pointer over it. If disabled, an
object’s outline only appears when you click it.

Show data types in properties window
If this option is enabled, the data type of each property
(integer, color, string, boolean, bdf font, etc.) is shown in
the Properties window.

Show pop-up help for objects and properties
If this option is enabled, a Help pop-up appears when you
move the mouse pointer over icons in the Object Palette and
when you click on properties in the Properties window. The
text for the pop-up Help is based on the Object Documenta-
tion file, which you can view by pressing <F1>.

Tab Location
From the drop-down list, select your preferred location in
the window for the Layout View and Code View tabs.

Layout View Colors
The components that appear in the work area layout are
listed. Click a component to display an example (in the
“Sample” box) of the color in which it appears in the work
area. Double-click an item to change the color. A color
selector dialog box appears. Click a color in the basic colors
section to select it. To create a custom color, drag the color
selector in the rainbow palette to a color and then drag the
slider up or down to adjust the saturation and lightness of
the color; or enter the HSL or RGB of a color. Click [OK] to
change the component to the selected color.

The work area components include the following:

Out of Display
The area that the legend covers (not shown if “Show
Legend Around Display” is enabled).

Display Border
The line separating the border and the work area (not
shown if “Show Legend Around Display” is enabled).

Selected Object
An object that you click. The selected color outlines the
object to show that it is selected.

Hot Object
The object under the mouse pointer if “Highlight object
under the mouse” is selected. The selected color out-
lines the object as the pointer moves over it.

Object Outlines
The outlines around objects if “Outline all objects” on
the toolbar is enabled.

Grid
Grid lines appear in the selected color if “Show Grid”
is enabled.

Allow Locked Objects to be Moved within Object Tree
If an object is locked, it cannot be moved in the work area.
If this function is enabled, however, a locked object can be
moved in the Object Tree.

6.3 Editor

Click the Editor tab to set up options for Code View. The
code editor is displayed when Code View is selected and is
used to enter and edit objects’ programming code.

6.3.1 Colors

You can specify a background color or different colors for
different parts of the programming code, as follows:

• Background

• Normal text

• Keywords

• Strings

• Symbols

46 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

• Comments

• Documentation

• Errors

• Selection

• Popup help background

• Popup help border

• Help accent color

You can specify that keywords, strings, symbols, comments,
or errors appear in colors different from normal text to assist
in finding and identifying them within the code.

Click an item to display its color in the “Sample Text” box.
Double-click an item, or click [Set Color] to change the
color. A color selector dialog box appears. Click a color in
the basic colors section to select it. To create a custom color,
drag the color selector in the rainbow palette to a color, and
then drag the slider up or down to adjust the saturation and
lightness of the color; or enter the HSL or RGB of a color.
Click [OK] to change the item to the selected color.

Automatic Color
Click an item, then click [Automatic Color] to set the color
to the automatic color.

Reset All Colors to Default
Click [Reset All Colors to Default] to set the color of every
item to the Qlarity Foundry default.

6.3.2 Font

From the Font drop-down list, select a font for the text in
Code View. A sample of the font is shown in the “Sample
Text” box. From the Point Size drop-down list, select a
point size for the selected font. The “Sample Text” reflects
the selected point size.

6.3.3 Tab Spacing

Enter the number of characters (or use the selection arrows
to select the number) to be indented when you press <Tab>.

6.3.4 Show Advanced Code Sections in Object Tree

(Normally disabled) Select this option to show the advanced
code sections in Code View. This adds an “Advanced
Code,” “Libraries,” and “Internals” branch to the Object
Tree, and enables advanced users to work with advanced

and library code. For information on these functions, refer
to section 10.1.

6.3.5 Fast Selection

This option determines how text selected in Code View is
displayed. If you enable this option, selected text is
inverted. If disabled, text is blocked and highlighted.

6.3.6 Parenthesis Matching

If you enable this option, when the cursor in Code View is
at a parenthesis or square bracket character, both the charac-
ter at the cursor and the matching parenthesis or square
bracket are underlined. If disabled, parentheses and square
brackets are not matched.

6.3.7 Edit Events in the Event Builder

If you enable this option, the default event editor is Event
Builder (see section 8.4). If disabled, the default event edi-
tor is Code View. In Layout View, double click an object
that supports events to launch the default event editor.

6.3.8 AutoHelp Settings

The AutoHelp feature assists you in writing Qlarity source
code. If specific settings are enabled, while writing code in
Code View, pop-up lists are displayed from which you can
make selections. Click [AutoHelp Settings] to set up or dis-
able the AutoHelp options.

NOTE: AutoHelp is an aid only
AutoHelp is designed only to be an aid in code develop-
ment. It may not be available in some circumstances, and
the information that it contains may be out of date or in an
improper context. Using AutoHelp is no substitute for good
programming practices.

OptoTerminal Qlarity Foundry User’s Manual 47

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

6.3.8.1 Functions and Methods

Use this option to set the level of help offered when writing
a function or method call. The following options are avail-
able:

None
AutoHelp will not automatically appear when writing func-
tion or method calls.

Standard
AutoHelp will attempt to appear whenever it seems likely
that you are going to edit a function or method call.

High
AutoHelp will attempt to appear when you position the cur-
sor in a function call.

6.3.8.2 Identifier Completion

Use this option to set the level of help offered when refer-
encing methods or properties of an object. The following
options are available:

None
AutoHelp will not offer identifier completion assistance.

Standard
AutoHelp will appear when it seems likely that you are ref-
erencing an object property or method. In general, this
means after you type an object name and type in the dot (.)
operator.

High
AutoHelp will attempt to appear any time the cursor is over
an object property or method that is referenced via the dot
operator.

6.3.8.3 Assignment and Parameters

Use this option to set the level of help offered when editing
the right-hand side of an assignment statement or entering
parameters in a function call. Some information is drawn
from the last time the workspace was compiled. Data types
that have been added or changed since the last compile may
not be available. The following options are available:

None
AutoHelp will not offer assignment and parameter comple-
tion assistance.

Standard
AutoHelp will appear whenever it seems likely hat you are
editing the right-hand side of an assignment or a parameter
to a function or method call, and AutoHelp has information
about the current context.

High
AutoHelp will always attempt to appear when the cursor is
in the context of the right-hand side of an assignment or a
parameter to a function or method call, and AutoHelp has
information about the current context.

AutoHelp for assignment and parameters will always dis-
play constant values for user-defined data types. You can
also configure AutoHelp for assignment and parameters to
display additional items, if desired.

6.3.8.4 Show Global Variables and Functions

Select this option if you want AutoHelp to add appropriate
global variables and functions with return values to the lists
displayed.

6.3.8.5 Show Object Properties and Methods

Select this option if you want AutoHelp to add object prop-
erties and methods to its lists. This option may make the
completion list quite large.

6.3.8.6 Show for Built In Data Types

By default, AutoHelp does not show completion results for
built-in data types, such as integer and float. Select this
option if you want AutoHelp to show the completion results
for built-in data types.

6.3.8.7 Fade AutoHelp Tips

(Only available in Windows 2000 and Windows XP.) Select
this option if you want the AutoHelp display window to
fade out as the mouse pointer approaches it. This allows you
to view the code under the AutoHelp window without clos-
ing AutoHelp.

6.4 Compile

Before you download a workspace to the Qlarity-based ter-
minal, it must be compiled into the format required for a
user application. Compiling is also required to update modi-
fications made in Code View before they can be seen in

48 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Layout View. Click the Compile tab to set up the options for
compiling.

Enabled Warnings
All possible warning messages that may appear when com-
piling a workspace are listed. Click the checkbox to select
each warning that you want displayed after a compile.
When you first start programming in Qlarity Foundry you
probably want to display all warnings; however, if you are
an advanced user, you may find some of the less serious
warnings to be unnecessary. An error message is displayed
when an error occurs that prevents compiling. Error mes-
sages cannot be disabled.

Limit BDF Fonts to ASCII Characters
If this option is enabled, only the ASCII characters in BDF
fonts are displayed. Unless you need to use characters
beyond the standard ASCII character set, you should enable
this option to reduce the memory requirements for BDF
fonts. (The Qlarity-based terminal contains 256 ASCII
characters.)

Enable Unicode support in the standard objects
If this option is enabled, the workspace is compiled so that
all text is drawn using the Unicode character set. This
option is primarily used when developing Qlarity applica-
tions that support non-Latin based languages such as Chi-
nese or Japanese. To use the extended characters in the
Unicode character set, you must include one or more fonts
in the workspace that contain the Unicode characters that
you want to display. There are many such BDF and True-
Type fonts available on the Internet.

NOTE: Unicode support and advanced programming
When Unicode support is enabled, Qlarity Foundry treats
the charstr data type as a unistring rather than a string. Since
most objects’ value or caption properties are of type charstr,
string (or byte array) data must be converted to a charstr
before they can be displayed in an object. This includes all
data received from a serial or Ethernet port, as well as many
API functions such as Str(). Also, data in objects must be
converted to strings before they can be transmitted out the
serial port. You may use the _StrToCharstr() and
_CharstrToStr() functions to convert between string types.
For more information, press <F1> to view Object Docu-
mentation (refer to section 3.4.5, “Help Menu”).

Start in Layout View
If this option is enabled, a workspace is compiled as soon as
you load it. If you typically work in Layout View, you will
want this feature enabled. If you work more often in Code
View or your workspace has errors that haven’t been cor-
rected yet, you may want to disable it.

6.5 Simulation View

Use the options in the Simulation View tab to adjust or mute
the sound during terminal simulation, to set up communica-
tions for the Communications window in Simulation View,
to set up the computer’s ports to simulate the serial ports on
the Qlarity-based terminal, and to specify simulated keypad
settings for applications that use an external keypad.

OptoTerminal Qlarity Foundry User’s Manual 49

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Speaker Volume
Click and drag the slide button to adjust the volume in Sim-
ulation View.

Mute
Enable this option to turn sound off in Simulation View.

Ethernet Simulation
Select a network simulation choice from the drop-down list.
If you select Default simulation, your computer’s network
connection (if available) will be used in Simulation View to
transmit and receive data requested by the application.
Select Do not simulate if you do not want Qlarity Foundry
to access the network in Simulation View.

If your PC has 2 or more IP addresses assigned to it, those
addresses will also appear in the drop-down list, and you
can select the IP address to use when simulating TCP and
UDP communication.

Play Sound at Breakpoint
If this option is enabled, a sound is played each time the
source-level debugger reaches a breakpoint in the code.
Refer to section 3.10.3 for more information. Click [Select]
to display an Open dialog box, and select the waveform file
you want to use.

6.5.1 Communications Window Settings

Click [Communications Window Settings] to set up com-
munication preferences for the Communications window in
Simulation View.

The default settings are generally adequate for most users,
but you can change any of the following settings.

Display as hexadecimal
If this option is enabled, while in Simulation View, data
transmitted by the Qlarity-based terminal appears in the
Communications window in hex format rather than text
(e.g., “ABCD” appears as “41 42 43 44”).

Wrap line on newline characters
Enable this option if you want characters in the Communi-
cations window to wrap to the next line when a newline
character is encountered.

Favor wrapping lines on word breaks
If “Wrap line on newline characters” is enabled, select this
option to wrap to the next line after a word (rather than
between characters in a word) whenever possible.

Show only transmitted data
If this option is enabled, the Communications window will
display only data that is transmitted from the application
program. Disable this option to show both data transmitted
both received by the application.

Add a tab for each opened network channel
If this option is enabled, each time a network channel is
opened in Simulation View, a new tab is created for the

50 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

channel. The tab displays the data that is sent and received
on the channel.

On network channel open, switch to its tab
This option becomes available when you select the previous
option. If this option is enabled, each time a network chan-
nel is opened, the channel’s tab is displayed.

Non-printable character
Space character
Newline and carriage return
Enter the character that you want to appear on the screen in
Simulation View when a non-printable, space, or newline/
carriage return character is encountered. Click [Default] to
enter the default character.

Maximum buffer size
Enter the maximum amount of data (in bytes) to be held in
the Communications window buffer. When this number of
bytes is reached, data will be removed from the top of the
buffer as new data appears at the bottom. Click [Default] to
enter the default buffer size.

6.5.2 Keypad Settings

This option only applies to applications that use an external
keypad (not a keyboard). Click [Keypad Settings] to con-
figure the keypad simulation.

Key Click
Select this option to turn the audible key click on in Simula-
tion View. If selected, you will hear a tone or “beep” when
you click a key on the simulated keypad.

Key Repeat
Select this option to turn the key repeat feature on. If
selected, a key entry repeats when you click and hold down
the mouse button on a key on the simulated keypad.

Repeat Delay
If you selected “Key Repeat,” enter the delay time (in milli-
seconds) that you want between when a key is pressed and
when it begins to repeat automatically.

Repeat Rate
If you selected “Key Repeat,” enter the time (in millisec-
onds) that you want between each repeat when a key begins
to repeat automatically.

Automatic Shift Key
When this option is enabled, clicking the Shift key on the
simulated keypad does not register a key press; it puts the
keypad into the shifted state. If there is a shift LED on the
simulated keypad, the LED state is automatically toggled.
Subsequent key presses are processed as shifted. When this
option is disabled, clicking the Shift key is processed as a
key press just like any other key.

Automatic Power Key
When this option is enabled, clicking the Power key on the
simulated keypad does not register a key press. While press-
ing this key on a real terminal would put the terminal in
sleep mode, clicking the simulated key has no effect other
than to toggle the power LED, if present. When this option
is disabled, clicking the Power key is processed as a key
press just like any other key.

6.5.3 Serial Port Setup

You can set up Simulation View to send and receive appli-
cation data through a serial port or ports on your computer.
Use the serial port setup to set up the computer’s ports to
simulate the serial ports on the Qlarity-based terminal.

The terminal’s available serial ports are listed. (For informa-
tion on entering the number of serial ports on your terminal,
see section 6.1.3.) To specify the PC port that you want to
use for the simulation and to set up the port’s configuration,
select the terminal port from the list, and click [Modify
Serial Port Settings] (or double-click the port). The follow-
ing dialog box is displayed.

OptoTerminal Qlarity Foundry User’s Manual 51

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Baud Rate
From the drop-down list, select the initial baud rate of the
PC port selected in “Sim on PC Port.”

Data Format
From the drop-down list, select the data bits, parity, and
stop bits of the PC port selected in “Sim on PC Port.”

Flow Control
From the drop-down list, select the flow control of the PC
port selected in “Sim on PC Port.”

Simulate on PC Port
From the drop-down list, select the serial port on your PC
that you want to use to transmit data in Simulation View. If
this option is set to <None>, any serial send and receive
requests by the application are ignored. If you are setting up
more than one port, assign a different PC serial port to each
terminal serial port.

52 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 7

DOWNLOAD SOFTWARE TO THE TERMINAL

This chapter provides information to do the following:

• Configure Communications Port

• Download a User Application

• Download a BFF File

• Upgrade the Firmware

7.1 Configure Communications Port

To configure the communications port used to download
user applications to your Qlarity-based terminal, select
Download Application from the File menu. The following
dialog box is displayed.

NOTE: settings must match the terminal
Your communication settings in Qlarity Foundry must
match those at the Qlarity-based terminal. For information
on referencing or changing the terminal’s communication
settings, refer to the OptoTerminal Hardware User’s Man-
ual.

7.1.1 Serial Port Settings

Click the Serial tab to set up a serial port.

Port
From the drop-down list, select the port used to communi-
cate with the Qlarity-based terminal (e.g., Com1).

Baud rate
From the drop-down list, select the baud rate for the port
(e.g., 115200).

Data Format
From the drop-down list, select the data format for the port
(e.g., 8n1).

7.1.2 Ethernet Port Settings

Click the Ethernet tab to set up an Ethernet port.

54 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

IP Address of Unit
Enter the IP address assigned to the Qlarity-based terminal,
or select it from the drop-down list of “recently used IP
addresses.”

Download to Multiple IP Addresses
If you want to download a user application to multiple ter-
minals on the network, select this option. Then click the
[Select IP addresses] button that appears. The Setup IP
List dialog box appears.

Enter an IP address in the text box at the bottom of the dia-
log box and click [Add]. The address is added to the list. In
the same manner, add each address to which you want to
download. Select an address in the list, and click [Delete
Item] to delete an address. Click [Clear List] to remove all
of the addresses from the list. Click [OK] when you are
done.

Recently Used IP Addresses
Select a recently used IP address from the drop-down list to
insert it in the “IP address of unit” box.

7.2 Download a User Application

When you download a workspace to your Qlarity-based ter-
minal, it is automatically compiled into binary file format
(BFF) for use as a user application on the terminal.

The following sections describe how to prepare your Qlar-
ity-based terminal for downloading and how to download
the user application.

7.2.1 Prepare the Terminal for Downloading

You may need to set up the Qlarity-based terminal for
downloading using the terminal’s Power On Setup utility.
Refer to the OptoTerminal Hardware User’s Manual for
information on using Power On Setup.

7.2.2 Download the User Application

Do the following to download a user application to the ter-
minal (refer to the previous section for information on pre-
paring the terminal for download).

1. Select Download Application from the File menu, and
the Download dialog box is displayed.

2. Click [Download Application] to proceed. A progress
graph tracks the download, and the “Results” box dis-
plays messages indicating whether the download was
successful.

If an error occurs, verify that your communications set-
tings are correct. Power the terminal off and back on,
and once again place the terminal in the proper mode.
Repeat the download process.

NOTE: clear results
Click [Clear Results Box] to clear the messages in the
“Results” box.

OptoTerminal Qlarity Foundry User’s Manual 55

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

7.3 Download a BFF File

You can download a user application that is not currently
loaded in Qlarity Foundry to the Qlarity-based terminal, but
the file must be in binary file format (BFF). Save a file to
BFF using the “Generate BFF” function on the File menu
(see section 4.6).

Select Download Application from the File menu, and the
Download dialog box is displayed.

Click [Download Other BFF], and the following dialog box
is displayed.

All BFF files in the default folder are listed (change folders
if necessary). Click the file that you want to download and
click [Open].

A progress graph tracks the download, and messages in the
“Results” box indicate whether the download was success-
ful.

7.4 Upgrade the Firmware

Use the [Upgrade Firmware] function to download a new
version of the terminal-resident software (firmware) to the
Qlarity-based terminal.

• Refer to section 7.4.1 (below) for information on identi-
fying the version of your current terminal firmware.

• Refer to section 7.4.2 for information on preparing your
terminal for downloading firmware.

• Refer to section 7.4.3 for information on downloading
the new firmware.

7.4.1 Determine Current Firmware Version

If you are not sure what version of firmware is on the Qlar-
ity-based terminal, do the following to determine the cur-
rent version of terminal firmware.

1. Verify that the Qlarity-based terminal is connected to
your computer.

2. Put the Qlarity-based terminal in “Develop” mode
(App Mode: Develop). Refer to the OptoTerminal
Hardware User’s Manual for instructions.

3. Select Download Application from the File menu.

4. Power the terminal on. If it is already on, power it off
and back on.

The firmware version and date of issue are displayed in
the “Results” box, as shown in the figure below.

56 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

7.4.2 Prepare Terminal for Upgrade

To prepare the terminal to receive new firmware using a
serial or Ethernet connection, set the “App Mode” option to
either Develop or Download. Refer to the OptoTerminal
Hardware User's Manual for Power On Setup instructions.

NOTE: if you cannot access the terminal
If you cannot access the Qlarity-based terminal, use the
“Induce Bootloader” function (refer to section 7.4.4 for
information).

7.4.3 Download New Firmware

Do the following to download a new version of the Qlarity-
based firmware.

1. Select Download Application from the File menu, and
the Download dialog box is displayed.

2. Click [Upgrade firmware] to proceed, and the follow-
ing dialog box is displayed.

3. Select the firmware upgrade file to be downloaded and
click [Open].

A progress graph tracks the download. Messages in the
“Results” box indicate whether the download was suc-
cessful. When finished, the new firmware version is
shown in the “Results” box.

7.4.4 Induce Bootloader

If the firmware on your Qlarity-based terminal has become
corrupt and you cannot run the Power On Setup utility, use
the “Induce Bootloader” function to upgrade (or reinstall)
the firmware.

NOTE: Ethernet connection
If your terminal is connected to an Ethernet port, you will
need to change it to a serial port to perform this function.

Do the following to download a new version of the Qlarity-
based terminal firmware.

1. Select Download Application from the File menu.

2. Click [Induce Bootloader], and an “Inducing Boot-
loader” message is displayed in the “Results” box.
After a time the following message is displayed:

...Bootloader induction terminated

Followed by the message:

NOTICE--received command from host to enter bootloader
Entering QSI Bootloader V1.014!

3. Click [Upgrade firmware] to proceed, and the follow-
ing dialog box is displayed.

OptoTerminal Qlarity Foundry User’s Manual 57

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

4. Select the firmware software file to be downloaded and
click [Open].

A progress graph tracks the download. Messages in the
“Results” box indicate whether the download was suc-
cessful.

When finished, the new firmware version is shown in the
“Results” box.

7.4.5 Set Unit Time

Use the Set Unit Time function to set the real-time clock on
the Qlarity-based terminal, as follows.

1. The terminal must be in “download” or “develop”
mode. If necessary, set up the Qlarity-based terminal
for downloading using the terminal’s Power On Setup
utility. Refer to the OptoTerminal Hardware User’s
Manual for information on using Power On Setup.

NOTE: time set through serial port
The time is set through the serial port connection. If your
terminal is connected to an Ethernet port, you will need to
change it to a serial port to perform this function.

2. Click Set Unit Time (bottom of the Serial tab).

The message, “<Setting Time>” is displayed in the
“Results” box. If no further message is displayed, the
terminal’s time has been set. If an error occurs, it is dis-
played in the “Results” box, as shown below.

58 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 8

BASIC DESIGN

You can use Qlarity Foundry to design a user application
using library objects and/or existing object templates. This
“basic” design requires no special programming skills.

This chapter provides instructions for using Qlarity
Foundry to design a user application using only the objects
and templates provided, as well as information on the basic
concepts of the Qlarity programming language.

All Qlarity Foundry users should review and become famil-
iar with the information in this chapter. If you want to learn
more about using Qlarity Foundry and Qlarity program-
ming, you can then proceed to Chapter 9, “Intermediate
Design” and Chapter 10, “Advanced Design.”

This chapter provides the following information:

Prepare Qlarity Foundry for Application Design

• Basic Design Layout

• Simulate the Terminal Display

• Drawing Aids (Zoom, Grid, Snap, etc.)

• Add/Remove Resources

• Add/Remove Libraries

Understanding Qlarity for Basic Design

• Workspaces and User Applications

• Qlarity Objects

• Parent/Child Relationships

• Z-Order

• Events and Messaging

• Enabled/Disabled Objects

Design a User Application

• Add an Object Instance

• Move, Resize and Reorder Objects

• Change an Object’s Properties

Event Builder

• Overview of Event Builder Steps

• Event Builder Dialog Box

• Select and Configure Actions

• Load Event Builder Sample Workspace

• Qlarity Code and Event Builder

• Troubleshooting

Communication Objects

• Serial Objects

• Ethernet Objects

• Receive Data

Test the User Application

Save and Compile a Workspace

Download a User Application

8.1 Prepare Qlarity Foundry for
Application Design

This section provides information on how to set up Qlarity
Foundry before you design a user application. Begin by
opening Qlarity Foundry and starting a new workspace.
Refer to Chapter 3, “Getting Started” for information.

8.1.1 Basic Design Layout

You work only in Layout View to create a basic design.
You should keep the following Qlarity Foundry windows
open, as you will use all of them:

• Toolbar

• Properties window

• Object Palette

• Object Tree

60 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

All four windows are open by default. If one is inadvert-
ently closed, you can open it from the View menu.

NOTE: workspace appearance variations
In the illustration above and elsewhere in this chapter, the
objects in the Object Palette and Object Tree may differ
from what you see in Qlarity Foundry. Object names may
also be different. This is the result of ongoing improve-
ments to Qlarity Foundry libraries.

8.1.2 Simulate the Terminal Display

Qlarity Foundry requires information about the display con-
figuration of your Qlarity-based terminal to simulate it
accurately in the work area and in Simulation View. The
settings required for this include the following:

• Display setup (including landscape/portrait and gray-
scale/color)

• Keyboard or valid input devices (type of key input used
with your terminal)

• Touch key legend (border around the edge of the touch
screen for a QSI standard touch key legend—enable if
you are using a touch key legend; disable if you are not.)

• Simulation setup (volume in Simulation View and Com-
munications window defaults) The Communications
window simulates the data received and sent via the com-
munications port.

Click on the toolbar, or select Settings from the View
menu.

OptoTerminal Qlarity Foundry User’s Manual 61

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The Qlarity Foundry Preferences dialog box is displayed.

Tabs are available to define your Qlarity-based terminal
display, to define the layout of the Qlarity Foundry work
area (which includes the QSI standard touch key legend set-
ting), to set up compile defaults, and to set up the Simula-
tion display. Refer to Chapter 6, “Qlarity Foundry
Preferences” for more information.

8.1.3 Drawing Aids

When arranging the graphical objects on the terminal dis-
play, proper alignment is important. Qlarity Foundry pro-
vides the following tools to assist you with object layout.

To change the scale of the work area, click the drop-down
arrow and select the scale from the drop-down list.

Select this option to draw a line around all defined objects.
This is useful when you want to know the exact border loca-
tion of each object, or when one or more objects was acci-
dently moved out of the work area.

Grid
You can display a grid over the work area to help you more
accurately place and align objects. You can turn the grid off
and on and change the spacing and color of the grid lines.

Snap to Grid
If enabled, this feature forces objects to “snap” to the near-
est grid line when added or moved. The top left corner of an
object’s rectangle snaps to the nearest horizontal and verti-
cal grid lines when you release the mouse button.

To customize the grid and enable “Snap to Grid,” click
on the toolbar, or select Settings from the View menu.
Click the Layout tab, and edit the follow settings as needed
(refer to section 6.2 for more information).

• Show Grid (show/hide grid)

• Snap to Grid (enable/disable snap to grid)

• Grid Spacing (set the spacing of the grid lines)

• Colors, Grid (set the color of the grid lines)

8.1.4 Add/Remove Resources

Resources include all bitmap images, fonts, audio files, and
binary data files available in a workspace and, eventually,
in the user application. You must add resources to a work-
space before you can use them in object instances.

Use the “Edit Resources” option to add resources to your
workspace or to change or remove the resources used.
Because resources become part of the user application when
it is compiled, you should delete any unnecessary resources.

NOTE: default bitmaps and fonts
When you create a new workspace, you have the option to
add default bitmap images and fonts to your workspace.
Some objects may require at least one bitmap, BDF font, or
TT font resource before the object will function properly.
When you have finished creating a workspace, however,
you may want to remove any unused default bitmaps and
fonts before you download the user application to the Qlar-
ity-based terminal to conserve the terminal’s flash and
RAM memory.

Click on the toolbar, or select Edit Resources from the
Edit menu, and the Edit Resources dialog box is displayed.

62 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

All resources used in a workspace are managed from this
dialog box. Select the tab for the resource type you want to
manage. You can add a new resource, rename an existing
resource, change the file for an existing resource name, or
remove a resource from the workspace. Refer to section 5.2
for information on editing resources.

8.1.5 Add/Remove Libraries

A library is a file that contains predefined object templates
that you can use to create user applications. Library object
templates are programmed to be flexible. This means that
you can modify them, without additional programming, to
meet most requirements.

In basic design, libraries are your primary source of new
objects. When you create a new workspace, your selections
in the New Qlarity Project dialog box determine which
libraries are automatically added to the new workspace.
You can also add or remove libraries after you open the
workspace .

NOTE: library object templates
Object templates in libraries are not listed in the Object
Tree under the Templates heading. Only object templates
created in the workspace are listed under this heading.

To add a library to or remove a library from a workspace,
click on the toolbar, or select Edit Libraries on the Edit
menu. A dialog box similar to the following is displayed.

Click [Add Library] to add a new library to the workspace.
Click [Remove Library] to remove the selected library. For
additional information on libraries, refer to section 5.3.

8.1.5.1 Libraries Provided with Qlarity Foundry

Qlarity Foundry includes libraries of object templates that
allow you to create interactive, complex user applications
without entering any programming code. After you add one
or more of these libraries to a workspace, you can change
the object properties to customize the object instances in
your user application. Two of the libraries provided with
Qlarity Foundry that are used at the basic design level are:

• Basic library (basic.qlib)

• Data Processing library (dataproc.qlib)

These libraries include the following types of objects:

• Container objects with tabs or buttons to switch from one
screen to the next (Basic library).

• Area objects with event functionality (all libraries). Refer
to section 8.4, “Event Builder” for information on con-
figuring objects to respond to events.

• Communication objects (Data Processing library). Refer
to section 8.4, “Event Builder” and section 8.5, “Com-
munication Objects” for information on using communi-
cation objects to send data to another device through the
Qlarity-based terminal’s serial or Ethernet port.

OptoTerminal Qlarity Foundry User’s Manual 63

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The Qlarity Foundry libraries are continually being added to
and improved. You can obtain the latest libraries at QSI
Corporation’s Web site, www.qsicorp.com/qlarity/. Also on
the Web site you will find descriptions of the objects
included in the libraries.

8.2 Understanding Qlarity for Basic Design

Before you can effectively design a user application, you
need to understand some basic Qlarity concepts, which are
explained in the following sections.

8.2.1 Workspaces and User Applications

A workspace is a Windows-based file created in Qlarity
Foundry that is compiled into a user application. Work-
space files are stored as plain text and typically have a .qly
file name extension. User application files have a .bff exten-
sion.

In Qlarity Foundry, you use a workspace to define functions
for the terminal; at the Qlarity-based terminal, you use a
user application to perform the functions.

When a workspace is compiled into a user application, the
Qlarity interpreter initializes the user application in Qlarity
Foundry so you can see the results. You can then download
the user application to the Qlarity-based terminal.

8.2.2 Qlarity Objects

A user application is constructed of Qlarity-programmed
objects. An object instance is an occurrence of an object in
the user application. An object template contains the pro-
gramming code that defines an object. When you create a
basic design, you will use objects from existing libraries
(several libraries are provided with Qlarity Foundry).

There are three types of objects, as follows. All three types
of objects can be found in QSI libraries.

Non-drawable object:
An object that serves a function not related to the display
(e.g., key definition, communications, etc.).

Area object:
An object that can be represented visually on the terminal
display. An area object might be any of the following:

• Bitmap (an imported bitmap image)

• Lines, circles or rectangles (may include custom borders
and fill colors)

• Text (labels, headings, or a field where text may be typed
or displayed)

Resources (bitmaps and fonts) are required for text and bit-
map objects.

Container object:
An area object that contains other objects (such as the
Screen object in the common.lib library). A container object
may occupy part of the terminal display or the full display
area. You use container objects to define an association
between objects and to indicate how they are displayed. All
objects in a container process information as a group. Con-
tainers are often stacked and identified with tabs.

8.2.3 Parent/Child Relationships

Qlarity allows you to group objects together. How objects
are grouped determines how information is processed (mes-
saging) and how the terminal screen redraws. The complex-
ity of your user application determines how much you need
to group objects. Grouped objects have a “parent/child”
relationship, with the parent always a container object and
the objects inside the container the children.

Each user application starts with a “root container.” Though
invisible, it is the container in which you place all other
objects. The following illustration shows a root container
with several objects in it.

In this illustration, two container objects plus another object
are linked to the root container. In addition, each container
object has objects linked to it, which are referred to as its
children.

64 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

In Qlarity Foundry, when you add a container object (e.g.,
tab, screen, etc.) to your work area and then place new
objects inside the container, the objects automatically
become children of the parent container object. If an object
is not placed inside a container object, it is linked to the root
container by default.

When you collapse the Object Tree, you can quickly iden-
tify all objects in the root container. In the following illus-
tration, the first two objects, EZBackButton_1 and
EZBackButton_2 are area objects that have been placed in
the root container. The [+] next to EZScreen_3, EZScreen_1
and EZScreen_2 indicate that they are container objects
with other objects in them (parents with children).

Click [+] next to a “parent” container object to see its “chil-
dren,” as shown below.

A parent object can also be a child (a container object with
children inside another container object). “HardwareNew”
and “SoftwareNew” in the illustration are examples of par-
ent objects within other parent objects.

8.2.4 Z-Order

Z-order is the order in which objects are layered. The Z-
order determines how objects are displayed (whether they
are behind or in front of another object or objects) and the
order in which information is processed (messaging). In a
Qlarity Foundry workspace, the Object Tree lists objects in
their Z-order, with those listed first receiving the highest
display and messaging priority.

To change an object’s Z-order, click and drag the object
name to a different position in the Object Tree. To learn
more about how parent/child relationships and Z-order
affect user applications, read the next section.

8.2.5 Events and Messaging

Qlarity is an event-driven programming language. An event
is any type of input, such as the following:

• A keyboard key press or release

• A touch screen press or release

• A change in a value (increment or decrement)

• A timer action

• Data received through the serial port

When an event occurs, a Qlarity user application responds
with all appropriate and specified actions.

The system generates a message indicating that the event
has occurred and what it is. The terminal’s message han-
dling system determines which object or objects get the
message and in what order the messages are processed.

The message is first passed to the root container, which
passes the message to each of its children, beginning with
the front-most object (highest Z-order). When the message
is passed to a container object, this object first handles the
message then passes it to each of its children beginning with
the front-most object in the container. The terminal pro-
cesses the message to completion.

OptoTerminal Qlarity Foundry User’s Manual 65

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

8.2.6 Enabled/Disabled Objects

An object instance can be enabled or disabled. On the Qlar-
ity-based terminal, only enabled objects are displayed. Dis-
abled objects still reside in the user application, but they
cannot receive or send most messages, nor are they dis-
played on the terminal. If a container object is disabled, it
cannot pass messages to its children.

In Qlarity Foundry, all objects are displayed in the work
area (by default) whether they are enabled or disabled.
However, you can select the “View Only Enabled Objects”
option on the Tools menu to hide disabled objects.

8.3 Design a User Application

This section provides instructions for adding and working
with object instances in a workspace to create a user appli-
cation. For information on adding, opening, and saving a
workspace, refer to Chapter 4, “Workspaces.”

8.3.1 Add an Object Instance

You can add object instances to your workspace from the
Object Palette or from the Object Tree shortcut menu, as
explained in the following sections.

8.3.1.1 Add an Object From the Object Palette

The Object Palette contains a tab for each library in the
workspace, as well as an All tab and an Other tab. Each tab
has icons for all of the object templates in the library. Click
a tab to select an object from the specified library. The All
tab contains icons for all objects available to the workspace
(from all of the libraries in the workspace). The background
color of each icon identifies the library in which the object
can be found. The Other tab contains objects from various
small libraries.

Refer to section 3.12 for more information on the Object
Palette.

Do the following to add an object instance from the palette.

1. Click the icon of the object you want to add.

2. Move the mouse pointer to the work area. The pointer
changes to a cross hair.

3. Click and hold the mouse button and drag the mouse to
draw a rectangle in the work area, then release the
mouse button.

Some objects have a default starting size and shape, so
the size of the rectangle doesn’t matter, only its posi-
tion in the work area. The size of other objects, such as
a line or rectangle, is initially determined by the size of
the rectangle you draw.

If you are adding a non-drawable object, the location in
the work area doesn’t matter since the object is not part
of the display. You may want to use the shortcut menu
to add a non-drawable object in its default position (see
section 8.3.1.2, “Add an Object From the Shortcut
Menu” for information).

NOTE: add multiple instances of the same object type
To add more than one instance of the same type of object,
press and hold the <Shift> key when you click the object
icon. The object type remains selected, and you can just
click and drag in the workspace to add objects until you
release the <Shift> key.

4. After you add an object, it remains selected and its
properties are displayed. Click the “Name” property,
and type a name for the new object (type over the
default name). Each object in the workspace must have
a unique name. An object name has no size limitation
but must start with a letter. A name cannot contain
spaces but may use the underline character (_). The
percent (%), pound (#) and dollar sign ($) symbols can
be used at the end of the name.

Refer to section 8.3.2 for information on moving, resizing
and changing the order of objects.

8.3.1.2 Add an Object From the Shortcut Menu

Do the following to add a new object instance from the
Object Tree shortcut menu.

1. Right-click anywhere in the Object Tree to display the
shortcut menu.

2. Click New Object Instance. The Instance Properties
dialog box is opened. All available objects are listed in
the drop-down list at the “Type” field, as shown below.

66 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

3. At the “Name” field, type a name for the new object
(type over the default name). Each object in the work-
space must have a unique name. An object name has no
size limitation but must start with a letter. A name can-
not contain spaces but may use the underline character
(_). The percent (%), pound (#) and dollar sign ($)
symbols can be used at the end of the name.

4. At the “Type” field, click the drop-down list, and select
the type of object that you want to add. After you select
an object, it is added to the work area at its default loca-
tion and is listed in the Object Tree.

The newly added object remains selected and its properties
are displayed. You can edit the properties as required.

8.3.2 Move, Resize and Reorder Objects

To select an object to move, resize or reorder, click on it.
The selected object is outlined with a colored box. You can
only select one object at a time. You cannot move or resize a
locked object.

Press <Tab> to move forward from object to object in Z-
order. Press <Shift>+<Tab> to move backwards.

NOTE: Properties window
When you press <Tab>, the Properties window changes to
match the newly selected object.

8.3.2.1 Move an Object

To move an object, do one of the following:

• Use the mouse. Click in the center of the object, hold
down the mouse button, and drag the object to a different
position. You can hold down the <Shift> key while mov-

ing an object to limit its movement to horizontal, vertical,
or a 45° angle.

• Use the Properties window. Enter a new x and/or y posi-
tion integer in the Properties window.

8.3.2.2 Resize an Object

To resize an object, do one of the following:

• Use the mouse. If the object has “resize grips” (sizing
handles), you can click and drag any grip to resize the
object. Click and drag a corner grip to maintain the
height/width proportions while resizing.

• Use the Properties window. Change the height and/or
width integer in the Properties window.

8.3.2.3 Change the Order of Objects

You can change the Z-order of an object or the parent/child
relationship simply by changing the object’s position in the
Object Tree.

To move an object to a different location in the Object Tree,
click and drag it to the desired position. The icon for the
object is dragged to the new location.

A horizontal placement line, as shown in the illustration
below, appears as you drag the object to indicate the new
position at which the object will be placed when you release
the mouse button.

A box appears around a container object as you drag
another object over it. If you release the mouse button when
the box appears, the object you are dragging is placed in the
container object.

If you move a parent object (a container object with chil-
dren), the children move with it. You can place a container
object inside another container object.

OptoTerminal Qlarity Foundry User’s Manual 67

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

To change the Z-order of an object within its family (with-
out moving it to a different parent), right-click the object
(either in the Object Tree or in the work area), and select
one of the following options from the shortcut menu.

Forward one
Move the object forward one position in the Z-order (one
position up the Object Tree).

Back one
Move the object back one position in the Z-order (one posi-
tion down the Object Tree).

Bring to front
Move the object to the front of the Z-order (top of the list of
children or top of the Object Tree).

Send to back
Move the object to the back of the Z-order (bottom of the
list of children or bottom of the Object Tree).

8.3.2.4 Align/Size/Space Objects

This option provides several tools for aligning, sizing, and
spacing a group of objects in the workspace. Before select-
ing a tool, select the group of objects you want to manipu-
late using one of the following methods:

• Click and drag to create a selection box that encompasses
all of the objects you want to select. To cancel the box,
click outside it.

• Press and hold <Ctrl> or <Shift> and select objects either
by clicking on them in the workspace or by clicking on
their names in the Object Tree.

NOTE: objects must have common parent
When aligning or spacing objects, all selected objects must
share the same object parent (i.e., must be in the same ter-
minal screen). When sizing objects, all selected objects
must have a width or height property.

With the group of objects selected, either right-click one of
the selected objects in the work area, or pull down the Tools
menu, and select Align/Size/Space Objects.

If you are aligning or sizing the objects, they will be aligned
or sized with the actively selected object in the group. To
make an object active, do one of the following:

• Right-click the object to select Align/Size/Space
Objects from its right-click menu.

• Press and hold <Ctrl> while you click the object in the
workspace or the Object Tree.

The active object is indicated by solid resize grips and by
bold highlighting in the Object Tree.

The following options are available on the Align/Size/Space
Objects menu.

Align left
Aligns the left-most resize grip of each selected object with
the left-most resize grip of the active object.

Align center horizontal
Aligns the horizontal center of each selected object with the
center of the active object.

Align right
Aligns the right-most resize grip of each selected object
with the right-most resize grip of the active object.

Align top
Aligns the top-most resize grip of each selected object with
the top-most resize grip of the active object.

Align center vertical
Aligns the vertical center of each selected object with the
center of the active object.

Align bottom
Aligns the bottom-most resize grip of each selected object
with the bottom-most resize grip of the active object.

Make same width
Changes the width of each selected object to the width of
the active object. All objects must have a “width” property.

Make same height
Changes the height of all selected objects to the height of
the active object. All objects must have a “height” property.

Space evenly horizontally
Finds the left-most and right-most objects among the
selected objects and positions the remaining selected
objects evenly between them. This option works best when
all objects are the same width.

Space evenly vertically
Finds the top-most and bottom-most objects among the
selected objects and positions the remaining selected

68 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

objects evenly between them. This option works best when
all objects are the same height.

8.3.3 Change an Object’s Properties

Each object has properties that help define the object
instance. Click an object in the work area, or click an object
name in the Object Tree, to display the Properties window.
If the Properties window is not displayed, pull down the
View menu, and click Properties Window.

The default properties for an object instance are defined in
the object template from which the object instance was
added. You can change any of the default properties for an
object instance to create a unique object that meets your
requirements.

Properties that are common to almost all objects include:

• Object name

• Enable/disabled status

• Parent specification

A wide range of additional properties vary depending on the
type of object. For example, some typical properties for area
objects include:

• Size (“height” and “width”)

• Alignment (“xalign” and “yalign”)

• Color (for borders, fill, foreground, background, font,
etc.)

• Font (for a text area object)

• Position in display (“xpos” and “ypos,” where both posi-
tions start at the top left corner of the parent object. The
“xpos” value increases right; “ypos” increases down.)

For specific information about any QSI library object, open
Object Documentation (<F1>).

The following illustration shows an example of the Proper-
ties window for a button object.

Note that the properties are grouped by category. Click the
name of a category to open or close the list of properties in
the category. Refer to section 3.11 for a description of each
category.

The first column lists the name of each property. Property
names are defined in the object template. The middle col-
umn (optionally displayed; see section 6.2, “Layout”) lists
the data type of each property (for information only). The
property settings, which you can change, are listed in the
third column.

Click the property that you want to change. Enter the new
property setting in the third column. You can enter new
property settings by typing the new information (type over
the default setting) or by selecting from a drop-down list or
dialog box.

In the following illustration, the property “ezimage” is
selected. This is the name of the bitmap image used in the
object instance. The drop-down list shows all bitmap
images available for use in the object instance. A different
image can be selected by clicking it.

OptoTerminal Qlarity Foundry User’s Manual 69

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

If appears in a property field when you select the prop-
erty, a drop-down list of property options is available. Click

 to display the drop-down list, and then click the option
you want to use.

If the property is a workspace resource (bitmap image, font,
sound, or binary data), a Select button () is displayed
next to the drop-down arrow. If the resource you want is not
in the drop-down list, click to open the Qlarity
Resources dialog box. Select a resource, and click [OK] to
add it to the workspace and to the property’s drop-down list.
Select the resource from the drop-down list to place it in the
property. Refer to section 5.2, “Edit Resources” for infor-
mation on the Qlarity Resources dialog box. Refer to
section 8.3.3.1, “Select Color” for information on selecting
a color.

NOTE: selecting a parent object
If you want an object instance to be the child of a parent
object (placed in a container object), from the “parent”
property drop-down list, select a container object, and the
object instance is automatically moved and attached to the
selected object in the Object Tree. To move an object to the
root container, click “default” in the drop-down list.

8.3.3.1 Select Color

If a color can be selected for an object property (e.g., bor-
ders, fill, foreground, background, font, etc.), when you
select the property, two Select buttons are displayed:
and .

Click to display a drop-down list of available named
colors in the workspace. You can use named colors to sim-
plify matching and coordinating colors to create a color
scheme for the workspace. Refer to section 5.4 for informa-
tion on named colors.

Click a named color to select it for the object property.

Click to display a Select Color palette from which to
choose a color for the property.

The list of named colors is also displayed in this dialog box.

The current color of the property is displayed beneath the
palette. If it is a named color, the named color label is high-
lighted in the list. If it is a color from the color palette, it is
selected in the color palette.

To edit a named color, click [Edit Named Colors]. Refer to
section 5.4 for information on editing and creating named
colors.

70 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Click either a named color or a color in the palette to assign
a different color to the property.

If you want to match a color from another object in the
workspace, click , and an image of the workspace is dis-
played. Click in the area of the workspace that has the color
you want to match.

The color of the area you clicked is shown in the “Sample”
box. In addition, the “4X” box displays the area magnified
four times.

You can click a color in the “4X” box to select it. This is
useful if you want to identify a color in a congested area of
the display. You can also click in the “4X” box, and drag the
mouse to shift the displayed area slightly.

Click [OK] to close the workspace image, and the color you
selected is shown in the Select Color palette.

Click [OK] at the Select Color palette to apply the selected
color to the property.

8.4 Event Builder

Qlarity is an event-driven programming language. An event
is any type of input, such as a key or button press, a value
change, a timer action, data received through the serial port,
and so on. When an event occurs, a Qlarity user application
responds with an action.

Event Builder is a tool in Qlarity Foundry to help you add
events to your Qlarity user applications. Event Builder
allows you to assign actions to events without any program-
ming knowledge.

Using the options in the Event Builder dialog box, you can
link one or more actions to an event, even when the action
involves several objects or includes one or more serial
objects. You assign an action to an object and its properties
from drop-down lists.

The type of object you select determines the type of event or
events that can be performed by the object. For example, a

button will have a “click” event, and a serial object will
have “data receive” and “send data” events. Keep this in
mind when you are adding objects to your workspace. The
Object Documentation Help file (<F1>) provides informa-
tion about all object templates in the QSI libraries, includ-
ing events and actions that can be performed by the object
type.

8.4.1 Overview of Event Builder Steps

To design a user application using Event Builder, you will
generally take the following steps:

• Decide what you want your Qlarity application to do.

• Determine which objects you need. Some objects will be
used for events; others will perform the actions associ-
ated with the events. Place all of the objects in the work-
space.

• Outline each event/action association (e.g., when a but-
ton is pressed, an action or actions occur).

• Use Event Builder to assign actions to each event.

8.4.2 Event Builder Dialog Box
In Layout View, select an object in the workspace for which
you want to set up an event. The properties and events asso-
ciated with the object are displayed in the Properties win-
dow.

Click the Events tab to see the events associated with the
selected object.

Click next to an event to open the Event Builder dialog
box to assign actions to the event.

OptoTerminal Qlarity Foundry User’s Manual 71

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The Event Builder dialog box contains the action table that
lists all actions assigned to the selected event and the action
configuration that contains options to set up each action.

Action Table
The action table lists all actions configured for the selected
event. Each action is on a separate line in the table.

To modify an existing action, click the action in the table.
To add a new action, click the last line in the table (labeled
“Click to add action”), and select the action from the drop-
down list. Then modify or set up the selected action in the
action configuration area.

Action Configuration
After you select an action in the action table, applicable
options are displayed in the action configuration area to set
up the action.

Click [OK] to accept the event as currently configured. If
any configuration contains an error, a message is displayed.

Edit in Code View
Click [Edit in Code View] to view the event’s actions as
programming code. If you understand the Qlarity program-
ming language, you may use Code View to work with pro-
gramming code. You generally only work in Code View if
you are customizing actions or creating actions. If you are
learning Qlarity programming, it may also be helpful to
view the code to understand how an event is programmed.

Descriptions/Code Preview
Click [Descriptions] to display the Qlarity programming
code for the actions in the “Description” column of the
action table. The button label changes to [Code Preview].
Click [Code Preview] to switch back to a description of
each action in the table.

8.4.3 Select and Configure Actions

A sample workspace, eventbuilder.qly, containing events
created using Event Builder is included with Qlarity
Foundry. For information on loading and using the sample
workspace, refer to section 8.4.4, “Load Event Builder
Sample Workspace.” The sample workspace is used in the
images and examples in this section. You may find it helpful
to load the sample workspace and use it to view examples of
the actions described in this section.

8.4.3.1 Select Actions

To select actions for an object’s events, do the following:

1. In the open workspace, (e.g., eventbuilder.qly) select
the object for which you want to set up an event (e.g.,
Tank_slider).

2. In the Properties window, click the Events tab. All
events associated with the object are shown. For exam-
ple, the Tank_slider object in eventbuilder.qly has one
event, “Change.”

3. Click next to the event to open the Event Builder
dialog box. The action table lists all actions that have
been configured for the event.

Action Table
Action Configuration

72 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The last line of the action table always contains a drop-
down list that you use to add a new action to the event.

4. Click anywhere on the line to open the drop-down list,
and select an action. The action and its description are
added to the table.

If you want to add a new action in the middle of the
table, or remove an action from the table, right-click in
the action line. A shortcut menu is displayed with
options to insert or remove actions.

5. Refer to the next section for information on each type
of action and how to configure them.

8.4.3.2 Configure Actions

The action drop-down list contains the following actions:

• Show Screen

• Enable/Disable Object

• Set Property

• Serial Transmit

• Play Note

• Set Contrast

• Set Backlight

• Custom Action

After you select an action, options appear in the action con-
figuration area of the Event Builder dialog box to configure
the action. Refer to the following sections for information
on each action’s configuration.

Show Screen
This action selects a new object to show. While this action is
typically used for screens, any object may be selected.
When this action is executed, the currently displayed screen
is hidden and the newly selected screen is shown. If you
want to an object or screen to “pop up” over the current
screen, you should use the Enable/Disable Object action
instead.

Click the drop-down arrow, and select the object from the
list with which you want to replace the current object.

Enable/Disable Object
This action enables or disables the selected object. When an
object is disabled, it is not shown on the terminal display
and will not respond to most events. In the following action
example, when the event occurs, a spinner object is dis-
abled. To enable the spinner object, a second event and
action are required.

Set Property
This action sets the value of an object property or global
variable. You can use Set Property, for example, to change
the value of a property in another object. The property to set
is the action that results from the event.

In the “Property to Set” section, select the target object
(object to be changed when the event takes place, such as
moving a gauge) from the “Object” drop-down list. From
the “Property” drop-down list, select the target property
(property to be changed by the action).

In the “Set to this Value” section, use one of the following
options to set the value for the property.

Use the value of this object property
Select this option to use the value of a specified object
and property. Then select the source object from the
“Object” drop-down list and the source property from
the “Property” drop-down list. In the example above,
the target and source properties both use the “value”
property, but any compatible property can be used. For
example, if the target object is a label, you might select
the “caption” property.

OptoTerminal Qlarity Foundry User’s Manual 73

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Use this explicit value
For some properties, you may need to enter or select an
explicit value. For example, if you want your own mes-
sage displayed when a button is pressed, enter the mes-
sage in this text box. A drop-down list may appear with
available values, depending on the object selected.

Some objects may require additional configuration,
such as selecting a color. If additional configuration is
available for the selected object, a button appears
next to the text box.

NOTE: some objects are not compatible
Some object properties are not compatible. If you select an
incompatible value for the target property, an error is gener-
ated when you click [OK] and close the Event Builder dia-
log box.

Serial Transmit
This action transmits data out one of the terminal's serial
ports.

From the “Select Serial Port” drop-down list, select the
communications port on the Qlarity-based terminal from
which the data will be sent. If you have only one, select
[COM1]. (For information on entering the number of serial
ports on your terminal, see section 6.1.3.)

In the “Message to Transmit” box, enter the string to send
out the serial port or a description of the value to be sent.
Enable Pause until transmission completed only if you
want the terminal to pause. Generally, you should leave this
disabled as it may decrease performance on the terminal.

Play Note
This action sounds a tone on the terminal's speaker.

Select which note to play at the “Note” field. Valid values
range from 1 (very low pitch) to 86 (very high pitch). The
standard beep when a button is pressed is 30. Selecting 0
generates no sound.

At the “Duration” field, select the duration of the note in
milliseconds. The standard button beep lasts 100 ms. Refer
to the OptoTerminal Programmer’s Reference Manual
“PlayNote” section for more information.

Set Contrast
This action changes the level of contrast on the terminal
screen when the event occurs.

For example, you might use this action to provide a contrast
adjustment in case the display becomes difficult to read.
Create two buttons, one for lighter contrast and one for
darker contrast. Each event (e.g., button press) changes the
contrast one step lighter or darker.

NOTE: contrast level temporary and TFT displays
The contrast level set with this action is not permanent.
When the terminal is reset, it reverts to the default contrast
level. If you want to save the contrast level, use a
DisplaySettingV2 object. Terminals with TFT displays
ignore this command as TFT displays do not support a con-
trast setting.

Set Backlight
This action brightens, darkens, turns off, or turns on the dis-
play backlight.

For example, you might use this action to provide a back-
light adjustment if the terminal is used in low light situa-
tions or in situations in which the light levels may vary
dramatically. You may also want to turn the backlight off to
extend its life.

74 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Create two buttons for each adjustment: one for lighter
backlight and one for darker backlight, one to turn the back-
light on and one to turn it off. Each event (e.g., button press)
changes the backlight as follows:

• Backlight Lighter and Backlight Darker adjust the back-
light one level brighter or darker with each event.

• Backlight Off turns the backlight off.

• Backlight On turns the backlight on to the level it was at
before turning it off.

Custom Action
This option allows you to program a custom action if an
available Event Builder action does not meet your require-
ments. Any action supported by the Qlarity programming
language may be used. Complex actions and events that
require the full expressiveness of the Qlarity programming
language, such as loops and if/then/else logic, should be
entered in Code View.

Insert a Blank Line
This action is not available from the drop-down list of
actions. It appears only if the selected event has been previ-
ously edited in Code View and blank lines were inserted in
the event's code. This action does nothing. It is used to for-
mat the code generated by Event Builder.

8.4.4 Load Event Builder Sample Workspace

A sample workspace, eventbuilder.qly, containing events
created with Event Builder is included with Qlarity
Foundry. You may find it helpful to load the sample work-
space and view examples of the objects, events, and actions
that can be set up using Event Builder.

To open the sample workspace, click Open and go to the
folder: ...Qlarity Foundry/Samples/Eventbuilder demo.
Select the file eventbuilder.qly.

An image of the workspace is shown below.

The functions in the sample application are described in the
following sections.

8.4.4.1 Tank Demo

The Tank Demo controls the level of liquid in a tank with a
slider. When the position of the slider in the Tank_Slider
object changes, it triggers the following actions:

• Transmits its current value out the serial port to a control-
ler that adds liquid to or drains liquid from a tank to
achieve the required level.

• Changes the text label above the slider to the current
value of the slider.

• Sets the fill level of the gauge. (In a real-life situation, the
controller to which you transmit the value would start the
process to fill or drain the tank and send a value back to
the gauge to update it. However, in the sample simula-
tion, the value is sent to the gauge directly.)

• Plays a musical note when the slider is moved.

8.4.4.2 Toggle Demo

The Toggle Demo toggles a spinner on and off. When on, a
spinner object is displayed that allows a user to increase/
decrease the value shown. The Status_toggle object (the
button) uses the following events:

TurnOn – triggers the following actions:

• Changes the caption above the toggle button to reflect the
current status of “On.”

• Enables the spinner object.

OptoTerminal Qlarity Foundry User’s Manual 75

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

TurnOff – triggers the following actions:

• Changes the caption above the toggle button to reflect the
current status of “Off.”

• Disables the spinner object.

8.4.4.3 Keypad Demo

The Keypad Demo provides a keypad that can be used to
enter numerical data to be sent to a controller. The follow-
ing objects have programmed events:

Enable_button
A press or “click” event enables the numeric keypad (makes
it viewable) so it can be used for data input.

Numeric_keypad
The following two actions have been programmed to the
keypad:

• When the <Enter> key is pressed, any data entered (the
value) is posted to the “Keypad_value” text box located
above the keypad.

• When the <Enter> key is pressed, the value is sent out
the serial port to a controller expecting a value.

8.4.5 Qlarity Code and Event Builder

While Event Builder requires no programming experience,
it uses the Qlarity programming language. Events created
with Event Builder generate Qlarity program code. This
means that it is possible to develop events in Event Builder
and then add advanced functionality in Code View. It is also
useful if you are learning the Qlarity programming lan-
guage to create events using Event Builder and then study
the program code generated. If you modify an event in Code
View and later open the event in Event Builder, your
changes are reflected.

8.4.6 Troubleshooting

If you make a mistake while configuring an action, an error
message is displayed in red in the “Description” column of
the action table.

If any error messages are shown, you will be unable to click
[OK] to save and exit the dialog box. In some cases, Qlarity

Foundry may not detect the error until you click [OK]. In
those cases, Event Builder remains open for you to correct
the error. After you correct the error, click [OK] again. If
there are no more errors, Event Builder closes and the event
is configured.

If you cannot, or do not want to, correct the error, click
[Cancel]. Event Builder closes and any changes you made
are not saved.

Advanced users may click [Edit in Code View] to edit the
object template code to correct any errors. Errors must be
corrected in Code View before you can exit or switch
back to Layout View.

8.5 Communication Objects

The Common library (common.lib) provided with Qlarity
Foundry contains object templates that are programmed to
send data to a computer or other compatible device through
a serial or Ethernet port. Once a communication object (or
objects) is set up, you can use Event Builder (section 8.4) to
set up an event to send data out the port. No programming is
required.

8.5.1 Serial Objects

To use the serial port to send data, add a serial object to the
workspace. The optional second serial port can also be used
by adding a second serial object.

Following are the properties of a Serial object.

(Name)
Type a name for the new object (type over the default
name). Each object in the workspace must have a unique
name. An object name has no size limitation but must start
with a letter. A name cannot contain spaces but may use the
underline character (_). The percent (%), pound (#) and dol-
lar sign ($) symbols can be used at the end of the name.

enabled
If the object is to be enabled, select true from the drop-
down list. To disable the object, select false.

parent
To make the object the “child” of a “parent” object, select a
container object from the drop-down list, and the object
instance is automatically moved and linked to the selected
object in the Object Tree. To move an object to the root con-
tainer, select “default.”

76 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

comport
From the drop-down list, select the communications port on
the Qlarity-based terminal from which the data will be sent.
If you have only one, select COM1.

sendtoport
This property receives the data string that is to be sent
through the serial port. Data can be sent to this property
from a serial object configured in Event Builder (see
section 8.4). When the serial object’s “sendtoport” property
receives data, it automatically sends the data followed by a
semicolon (;) out the port.

appendterminator
This property determines whether a semicolon is appended
to the end of all data sent out the serial port.

8.5.2 Ethernet Objects

To use the Ethernet port to send data, add one or more
Ethernet objects. If you want to send data to multiple
addresses on a network, you can create a separate Ethernet
object for each address; or you can send to different
addresses from a single Ethernet object by changing the net-
work address in the object instance as required.

Following are the properties of an Ethernet object.

(Name)
Type a name for the new object (type over the default
name). Each object in the workspace must have a unique
name. An object name has no size limitation but must start
with a letter. A name cannot contain spaces but may use the
underline character (_). The percent (%), pound (#) and dol-
lar sign ($) symbols can be used at the end of the name.

enabled
If the object is to be enabled, select true from the drop-
down list. To disable the object, select false.

parent
To make the object the “child” of a “parent” object, select a
container object from the drop-down list, and the object
instance is automatically moved and linked to the selected
object in the Object Tree. To move an object to the root con-
tainer, select “default.”

sendtoport
This property receives the data string that is to be sent
through the Ethernet port. Data can be sent to this property
from an Ethernet object configured in Event Builder (see

section 8.4). When the Ethernet object’s “sendtoport” prop-
erty receives data, it automatically sends the data followed
by a semicolon (;) out the port.

protocol
Enter the protocol to be used to send the data (e.g., UDP or
TCP).

localport
Enter the address for the UDP or TCP port on the Qlarity-
based. For additional information, refer to your Ethernet
protocol or contact your network administrator.

foreignport
Enter the address for the UDP or TCP port on the host. For
additional information, refer to your Ethernet protocol or
contact your network administrator.

targetipaddress
Enter the IP address of the device to which you are sending
data.

connected
This property reflects the connected status of the Ethernet
object.

appendterminator
This property determines whether a semicolon is appended
to the end of all data sent out the Ethernet port.

8.5.3 Receive Data

You can send data from an external device (e.g., computer)
to a Qlarity-based terminal via the port (serial or Ethernet).
To do this, you specify an object and its property to receive
the data in a user application. This changes the specified
property value to the received data value.

Use the following format to send data to a user application.

<Object name>.<property name>=<value>;

(Do not include the angle brackets.)

<Object name>
The name of the targeted object instance.

<property name>
The name of the targeted property (must be entered exactly
as it appears in the Properties window).

OptoTerminal Qlarity Foundry User’s Manual 77

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

<value>
The value that you want to insert in the targeted property.

You can also request that an object’s property value be sent
back to the external device from a Qlarity-based terminal by
sending the object name and property as follows.

<object name>.<property name>;

(Do not include the angle brackets.)

<Object name>
The name of the targeted object instance.

<property name>
The name of the targeted property (must be entered exactly
as it appears in the Properties window).

The value of the property followed by a semicolon (;) is
sent back out the terminal’s port to the device making the
query.

NOTE: property value requests
You cannot request property values for the following
properties: color, bitmap, ttfont, and bdffont.

8.6 Test the User Application

You can test most of your application's functionality in
Simulation View before you download it to the terminal. If
the application uses serial communication, you may want to
configure Simulation View to use your PC's serial port(s) to
simulate serial communication (refer to section 6.5.3,
“Serial Port Setup”).

8.7 Save and Compile a Workspace

8.7.1 Save a Workspace

You should save your workspace often while you are work-
ing on it to prevent losing work in the event of a computer
lockup or power failure. To save a workspace, click on
the toolbar or select Save Workspace from the File menu.
For more information on saving a workspace, refer to
section 4.4.

8.7.2 Compile a Workspace

You should compile your workspace periodically while you
are working on it to properly display the changes in Layout
View. Compiling is also required before you download a
user application. Click on the toolbar, or select Com-
pile Workspace from the File menu to compile the current
workspace into the format required for a user application.

If the compile is successful, the program displays the work-
space in Layout View. If any errors occur during the com-
pile, the program switches to Code View, and the error
messages are displayed in the Compile dialog box.

8.8 Download a User Application

Before you can download a user application to the Qlarity-
based terminal, you need to configure communications in
Qlarity Foundry and at the terminal and prepare the termi-
nal for download.

For information on setting up communications, refer to
section 7.1.

For information on preparing the terminal for downloading,
refer to section 7.2.1.

For information on downloading a user application to the
terminal, refer to section 7.2.2.

78 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 9

INTERMEDIATE DESIGN

Chapter 8, “Basic Design” introduces some basic applica-
tion design techniques using Qlarity Foundry. It also pro-
vides information on Qlarity Foundry’s Event Builder,
which can be used to add events to your applications with
no programming. While this is enough for many applica-
tions, if you require very complex, flexible, or custom
applications, you will want to have some Qlarity program-
ming skills.

To assist you with intermediate design and help you get
started with Qlarity Programming, this chapter provides
information on overriding object functions to change the
object’s behavior and discusses adding global code and cre-
ating new object templates based on templates that already
exist in libraries. By applying a small amount of program-
ming, you can add a great deal of flexibility and power to
your applications.

Before proceeding, you should be familiar with the con-
cepts presented in Chapter 8, “Basic Design.” Also, this
chapter includes many references to the OptoTerminal Pro-
grammer’s Reference Manual. The OptoTerminal Pro-
grammer’s Reference Manual will provide an invaluable
resource to you as you learn intermediate Qlarity design and
eventually, advanced Qlarity design as explained in
Chapter 10.

This chapter covers the following information:

Viewing the Code

Understanding Qlarity for Intermediate Design

• Qlarity Programming Language

• Objects and Templates

Qlarity Code for Objects

• Property Initializations

• Method Overrides

Handling Events With Qlarity Code

• Override an Object Method

Global Code

• Add a Global Variable to a Workspace

• Add a Global Function to a Workspace

• Add a Global Message Handler to a Workspace

Create a New Object Template

9.1 Viewing the Code

To view and change the Qlarity code for an object, select
the object in Layout View or in the Object Tree and then
click the Code View tab at the bottom of the work area (see
section 3.9, “Layout and Code Views”). In the illustration
on the next page, the “global” code for an example work-
space is shown. The Messages and Errors window at the
bottom shows any compiling errors that occurred during the
last compile.

80 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

9.2 Understanding Qlarity for Intermediate
Design

Before you can effectively design a user application at the
intermediate level, you need to understand some basic Qlar-
ity concepts, which are explained in the following sections.

9.2.1 Qlarity Programming Language

Qlarity syntax is based on the BASIC programming lan-
guage with extensions added to handle creation and manip-
ulation of objects. This chapter provides examples of
programming code written in the Qlarity language. For
additional examples and information, refer to the OptoTer-
minal Programmer’s Reference Manual.

9.2.2 Objects and Templates

A Qlarity application consists primarily of objects. An
object template defines a new type of object with certain
properties and behaviors. Any number of object “instances”
that are based on the object template may be added to an
application.

Object templates typically reside in libraries where they can
be used in many different applications. However, templates
can also exist in a normal workspace. When templates are
part of a workspace, they appear at the bottom of the Object
Tree when Code View is selected.

A template defines the properties (variables) and methods
(functions) for a certain type of object. The properties and
methods in a template completely define the behavior of
object instances that are created from the template. Proper-

OptoTerminal Qlarity Foundry User’s Manual 81

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

ties may also be assigned default values in the template.
These values are used if the object instance does not assign
an initial value to a property. Details on creating templates
are provided in Chapter 10, “Advanced Design.”

Each object instance may be customized by changing the
values of the properties and by overriding methods defined
in the template. A “method override” is a function defined
in the object instance that replaces the method of the same
name defined in the template (for the specific instance
only). If the functionality of the template method is desired,
it can still be called from inside the override method.

Customizing object instances by changing their initial prop-
erties requires no programming and is discussed in
Chapter 8. Conversely, overriding methods does require
some programming and is the main focus of this chapter.

9.3 Qlarity Code for Objects

The following sections describe the Qlarity code used to
define an object and the method overrides in an object tem-
plate.

9.3.1 Property Initializations

Code for a typical object includes several lines in the fol-
lowing format:

init <propertyname> := <value>

<propertyname>
This is the name of one of the object’s properties.

<value>
This assigns the initial value for the property in the applica-
tion. If a property is not shown, it is assigned the default ini-
tial value from the object template. Changing “<value>” in
one of these statements is the same as changing the property
value in the Properties window.

9.3.2 Method Overrides

Most methods defined in an object template may be over-
ridden in any instance created from the template. Indeed,
many objects have methods that are intended only for over-
ride; the default method in the template does nothing. This
allows an object to provide or “publish” a way to customize
the behavior of the object without modifying the template.
For example, a timer object might provide a function called
Alarm(), which is called by the object each time a preset

time period expires. The function in the template does noth-
ing, but it allows instances to override the function to pro-
vide a desired response to the timer expiration.

The code for the method override is defined inside the
object instance. The override method must have the same
name, parameters, and return type as the template method
that is being overridden. For example, if the method in the
template is named “foo,” and it takes an integer and a float
as parameters and returns a float, then the override function
must also be named “foo” and must also take an integer and
a float as parameters (in the same order as the template
method) and return a float.

In addition, if the template method handles one or more
messages, the override must handle the same message(s).
This may require you to examine the code in the template
(possibly in a library). Otherwise, the method is like any
other Qlarity function and may contain whatever Qlarity
code is desired.

The special function, Default(), when placed inside an over-
ride method, calls the overridden method in the template.
The same parameters that were passed to the override
method should be passed in Default().

Refer to the OptoTerminal Programmer’s Reference Man-
ual for information on how functions are defined in Qlarity.

NOTE: create a new template
If you find that you are adding identical override functions
to many instances of the same object, consider modifying
the object template to create a new template with the
desired functionality.

9.4 Handling Events With Qlarity Code

Many Qlarity objects publish events to signal when an
action has taken place, such as the user pressing the touch
screen, data arriving on the serial port, and so on. Qlarity
objects provide this notification in the form of functions
that may be overridden in object instances to provide spe-
cific object behavior.

For example, many button-like objects (such as the
ButtonV2 or IconButtonV2 objects) publish a function
called Click(). By default, this function does nothing, but
each instance of this object can include an override of the
Click() function to take some action in response to a press
event on the object. A typical response might include send-
ing some characters to a communications port, switching to

82 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

a different screen, or modifying the contents of another
object.

In this manner, an object’s response to events is pro-
grammed using the Qlarity programming language. Once
you are familiar with the basics of Qlarity programming, it
is easy to program complex event handling into objects
without the need to manage numerous “event” properties.

9.4.1 Override an Object Method

To override an object method in your application, do the
following:

1. Add the object that will be used to handle the event
(e.g., ButtonV2, TimerV2).

2. Select the object in the workspace in Layout View or in
the Object Tree, and select Code View.

3. From the [Events/Overrides] drop-down list above the
code, select the method you want to override.

Select [Show only event functions] if you want the
drop-down list to displays only methods that have been
designated “event methods.” If [Show only event
functions] is not selected, all possible override meth-
ods are listed. Move the mouse pointer over a method
in the list to display a description of the function.

4. When you select a method from the list, code similar to
the following appears beneath all code for the object:

func click()

endfunc

5. Between the “func” statement and the “endfunc” state-
ment, add Qlarity code to implement the desired
response to the event.

A typical event response might include code to set
properties in this or another object. The Qlarity code to
do this is as follows:

<objname>.<propertyname>=<value>

<objname>
This is the name of the object whose property will be
changed. To assign values to its own properties, the
override function in an object can refer to itself using
the “me” keyword as the “<objname>.”

<propertyname>
This is the name of the property to change.

<value>
This is the new value to assign to the property.

Another common activity is switching screens (display
pages) or hiding one object and displaying another. To
switch screens, the method typically disables the cur-
rent screen object and enables the screen object for the
desired new screen, as follows:

curscreen.enabled = false
newscreen.enabled = true

where “curscreen” and “newscreen” are the names of
the screen objects to be manipulated.

Since the override method is a complete Qlarity func-
tion, local variables can be declared and code including
conditional statements (if-else), looping (for-next, do-
while, etc.), and any other legal Qlarity code can be
added to the function. Complete details on the Qlarity
programming language are found in the OptoTerminal-
Programmer’s Reference Manual.

NOTE: return from functions
Since Qlarity is an event-driven program, you should return
from functions in a timely manner. Writing code that does
not return will cause the system to hang.

6. Click (Compile button), or select Compile from the
File menu to compile the workspace. If there are com-
pile errors in your code, messages are displayed in the
Messages and Errors window. An example of such a
message is shown below.

The message includes a description of the error, includ-
ing the object and line number where the error
occurred. Double-clicking the error message in the
Messages and Errors window takes you to the location
of the error in Code View.

OptoTerminal Qlarity Foundry User’s Manual 83

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

NOTE: no errors
If there are no errors found during the compile, the work-
space is automatically returned to Layout View.

9.5 Global Code

In addition to method overrides, an application can be cus-
tomized by adding variables and functions to the Global
Code space. Global variables can be used to hold data not
stored in objects. Global functions can implement com-
monly performed routines that might be shared by many
objects. Also, most messages can be handled by global
“message handlers” if desired. Message handlers are special
functions that are called by the system software when the
message that the function “handles” is processed. Refer to
Chapter 10, “Advanced Design” for more information on
messages.

Since global functions are not overrides, there are few
restrictions on the names, parameters, or return type for glo-
bal functions.

9.5.1 Add a Global Variable to a Workspace

A global variable is a variable that is declared in the Global
Code section, outside of any object. There are two methods
for adding a global variable:

• Use the “New Variable” option in Code View (easiest
method).

• Enter the variable directly into the Global Code section
in the Code View window.

9.5.1.1 Add a Global Variable Using New Variable

Do the following to add a global variable using the “New
Variable” option:

1. Click the Code View tab.

2. Click Globals in the Object Tree to open the Global
Code section. Any current global source code is dis-
played in the editor window.

3. If you want the new variable inserted at a cursor loca-
tion, select Insert at Cursor, then click in the editor at
the location where you want the variable inserted. If
you do not select this option, the variable will be added
to the bottom of the Global Code section.

4. Click [New Variable]. (This button is only available
when the Globals section is selected.) The following
dialog box is displayed.

5. In the “Name” text box, enter a name for the variable.

6. In the “Data Type” text box, enter the variable’s data
type.

7. Select Create Validation Function if you want Qlarity
Foundry to automatically create a validation function.

8. Optionally enter an initial value for the variable, the
Properties window category in which the variable
should be placed (i.e. General, Main, etc.,), and any
text that you want added to the variable’s online docu-
mentation.

9. Click [OK] to add the global variable.

9.5.1.2 Add a Global Variable in the Global Code Sec-
tion

Use the following method to enter the variable directly in
the Globals section in the Code View window:

1. Click the Code View tab.

2. Click Globals in the Object Tree to open the Global
Code section. Any current global source code is dis-
played in the editor window.

3. On a blank line in the editor window (separate from any
other function), declare a new variable by typing the

84 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

“dim” (dimension) keyword, followed by the name of
the variable, the keyword “as,” and then the type of the
new variable.

For example, the following code declares a new integer
variable named “count”:

dim count as integer

4. If desired, also assign an initial value to the variable by
adding a new line containing the keyword “init,” the
name of the new variable, the “:=” operator, and the ini-
tial value of the variable.

For example, the following line initializes the new
count variable to a value of 10:

init count := 10

5. Repeat steps 3 and 4 for as many variables as desired.

6. Click or select Compile from the File menu to
compile the workspace. Any errors in the new source
code are identified by messages in the Messages and
Errors window. If no errors are present, the compiled
workspace is returned to Layout View.

9.5.2 Add a Global Function to a Workspace

To add a global function to the workspace, do the following:

1. Select Globals in the Object Tree to access the Global
Code space.

2. Select Code View. The editor window displays any cur-
rent global source code.

3. On a blank line in the editor window, outside of any
other function, declare a new function by typing the
“func” keyword, followed by the name of the function,
a left parenthesis, the parameters of the new function,
and a right parenthesis. If the function returns a vari-
able, the right parenthesis should be followed by the
keyword “returns,” then the type of the returned value.
The end of the new function is indicated by the “end-
func” keyword (on its own line). The parameters appear
as new variable declarations (see section 9.5.1) without
the “dim” keyword. Each parameter is separated from
other parameters by a comma.

For example, the following code declares a new func-
tion named “average” that takes two floats (named first
and second) as parameters and returns a float.

func average(first as float, second as ->
float) returns float
endfunc

NOTE: code formatting
A statement is defined as a single line of code. In order for
the compiler to distinguish between statements, each state-
ment must be separated by a “newline” character. If a state-
ment must be split into multiple lines, type -> at the end of
the line to tell the compiler to look for the rest of the state-
ment on the next line.

4. Fill the body of the function (between the “func” state-
ment and the “endfunc” statement) with the Qlarity
code to implement the desired function. If the function
returns a value, be sure to include a return statement,
followed by an expression that yields the value being
returned. For more information, see the OptoTerminal
Programmer’s Reference Manual.

In the example above, the completed function is as fol-
lows:

func average(first as float, second as ->
float) returns float

return (first + second)/2.1
endfunc

5. Repeat steps 3 and 4 for as many functions as desired.

6. Press or select Compile from the File menu to
compile the workspace. Any errors in the new source
code are identified by messages in the Messages and
Errors window. If no errors are present, the compiled
workspace is returned to Layout View.

9.5.3 Add a Global Message Handler to a Workspace

Message handlers are functions that are called by the system
in response to a message generated by an event. Examples
of such events are a touch screen press or the receipt of
characters through a serial port. There are two methods for
adding message handlers in the Global Code space, as fol-
lows:

• Use the “Message Handlers” drop-down list at the top of
the Code View window (easiest method).

OptoTerminal Qlarity Foundry User’s Manual 85

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

• Enter the message handler directly into the Global Code
section in the Code View window.

9.5.3.1 Add a Global Message Handler From a List

Do the following to add a global message handler from the
“Message Handlers” drop-down list:

1. Click the Code View tab.

2. Click Globals in the Object Tree to open the Global
Code section. Any current global source code is dis-
played in the editor window.

3. If you want the message handler inserted at a cursor
location, select Insert at Cursor, then click in the edi-
tor at the location where you want the handler inserted.
If you do not select this option, the handler will be
added to the bottom of the Global Code section.

4. Click the drop-down arrow at the “Message Handlers”
box, and select the message from the list. The message
handler code is inserted in the editor.

If the message handler is for a registered message, such
as the MSG_TIMETICK or MSG_COMM_RECEIVE
message, make sure you add code elsewhere (e.g., the
MSG_INIT message handler) to register to receive it.

5. A blank line is inserted in the message handler func-
tion. Enter the user code at this location.

6. Click or select Compile from the File menu to
compile the workspace. Any errors in the new source
code are identified by messages in the Messages and
Errors window. If no errors are present, the compiled
workspace is returned to Layout View.

NOTE: one message handler for each message
You can include only one message handler with each mes-
sage type added to the Global Code section.

9.5.3.2 Add a Global Message Handler in the Global
Code Section

Use the following method to enter a global message handler
directly in the Globals section in the Code View window:

1. Click the Code View tab.

2. Click Globals in the Object Tree to open the Global
Code section. Any current global source code is dis-
played in the editor window.

3. On a blank line in the editor window (outside of any
other function), declare a new function by typing the
“func” keyword, followed by the name of the function,
a left parenthesis, the parameters of the new function,
and a right parenthesis. If the function returns a value,
the right parenthesis should be followed by the key-
word “returns” and then the type of the returned value.
Indicate the end of the function with the “endfunc”
keyword (on its own line). The parameters appear as
new variable declarations (see section 9.5.1) without
the “dim” keyword. Each parameter is separated from
other parameters by a comma.

Since this is a message handler, there are restrictions on
the parameters and return type for this function. The
allowed parameters and return type depend on what
message is being handled. There are no restrictions on
the name of the function except those imposed by Qlar-
ity. (See the OptoTerminal Programmer’s Reference
Manual, for more details.)

Also, a “handles” statement is needed on the line fol-
lowing the function declaration. The statement begins
with the keyword “handles” followed by the name of
the message that is being handled by the function.

For example, the following code declares a new mes-
sage handler named “timer” that handles
MSG_TIMETICK. As explained in the OptoTerminal
Programmer’s Reference Manual, the handler takes no
parameters and does not return a value.

func timer()
handles MSG_TIMETICK

endfunc

4. Fill the body of the handler (on lines between the “han-
dles” statement and the “endfunc” statement) with the
Qlarity code to implement the desired function. If the
handler returns a value, be sure to include a “return”
statement. For more information, see the OptoTerminal
Programmer’s Reference Manual.

For example, the handler described above could check
the value of a global variable named “threshold” and
enable an object named “cal_screen” if threshold is
greater than 10.

86 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The complete function example follows:

func timer()
handles MSG_TIMETICK

if (threshold > 10) then
cal_screen.enabled = TRUE

endif
endfunc

5. Repeat steps 3 and 4 for as many handlers as desired.
Do not add two handlers for the same message.

6. Click or select Compile from the File menu to
compile the workspace. Any errors in the new source
code are identified by messages in the Messages and
Errors window. If no errors are present, the compiled
workspace is returned to Layout View.

9.6 Create a New Object Template

The method override mechanism provides a powerful way
to customize an individual object’s behavior and response to
events. However, you may want to change the behavior of
all instances of a particular object. Adding an identical
override to all objects from a particular template would be
tedious and prone to error. It is better to modify an existing
object template to create a new object template.

NOTE: do not modify code in libraries
It is recommended that you do not directly modify the code
in the QSI standard object libraries. QSI occasionally
updates these libraries, and your changes would be lost.
Rather, you should copy the template code into your work-
space or a personal library (e.g., mylib) and make your
modifications there.

Do the following to create a new object template based on a
library object template:

1. Click on the toolbar, or select Add/Edit Templates
from the Edit menu, and the Add/Edit Templates dialog
box is displayed. (You can also right-click anywhere in
the Templates branch of the Object Tree, and click
Add/Edit Templates on the shortcut menu).

2. Click [New Template] and the following dialog box is
displayed.

3. Select “Extend (inherit) a template from an existing
template in a library.”

This option is used to create a new object template
based on the programming code from an existing
library object. When you select this option, a “Based
on” box replaces the “Object type” box.

4. From the “Based on” list box, select the existing library
object on which you want to base the new object tem-
plate.

5. In the “Template name” box, type a name for the new
template. Each template in the workspace must have a
unique name. A template name has no size limitation
but must start with a letter or underline character (_). A
name cannot contain spaces but may contain the under-

OptoTerminal Qlarity Foundry User’s Manual 87

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

line character or pound sign (#). The percent (%) and
dollar sign ($) symbols can be used at the end of the
name.

6. Click [OK] to create the new template.

Many library templates depend on global code or other
resources in the library. Qlarity Foundry will add these
items to your workspace and inform you of the addi-
tional changes in a dialog box. When the dialog box
appears, click [OK] to proceed.

7. The template list in the Add/Edit Templates dialog
should now include the new template. Click Close to
close the dialog box.

Now do the following to edit the new template to your spec-
ifications.

1. Select Code View. The new template is now listed
under the Templates heading in the Object Tree.

2. Select the new template in the Object Tree. The source
code for the template is displayed in the editor window.

3. Edit the template source code. Variables declared
inside a template become properties of the template
object, and functions declared inside the template
become the object’s methods. Properties and methods
can be added, deleted, or modified as desired. You can
add properties and methods just as described for the
Global Code space (see section 9.5).

4. When you are finished editing the template, click
or select Compile from the File menu to compile the

workspace. Any errors in the new source code are iden-
tified by messages in the Messages and Errors window.
If no errors are present, the compiled workspace is
returned to Layout View.

Notice that the Object Palette contains a new icon rep-
resenting the new template. By default, the new tem-
plate’s icon is the same as the icon for the library
template that served as the basis for the new template
(except that the background color is different). Icons
for local templates in a workspace appear before library
template icons.

5. To edit the icon or change the name, click on the
toolbar, or select Add/Edit Templates from the Edit
menu. Click the template name in the Add/Edit Tem-
plates dialog box, then click [Edit Icon]. Refer to
section 5.1.2, “Edit a Template Icon” for more informa-
tion.

9.7 Where to Go From Here

This chapter introduced the basics of programming applica-
tions using Code View and the Qlarity programming lan-
guage. As your familiarity with Qlarity increases, your
ability to program complex tasks and customize your appli-
cation will grow. To strengthen your background in Qlarity,
you should read the OptoTerminal Programmer’s Refer-
ence Manual.

Next, proceed to Chapter 10, “Advanced Design” in this
manual to help you get started producing your own object
templates.

88 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 10

ADVANCED DESIGN

The ability to completely design custom objects for a user
application is the crowning feature of the Qlarity program-
ming language. This chapter provides information to help
users design their own objects using Qlarity.

Advanced users are not bound by the selection of objects
available in QSI libraries. As an advanced user, you can
design objects that best represent the data and user interface
elements for a particular application. For example, if the
Qlarity-based terminal is replacing an existing control
panel, you can create objects that mimic the “look and feel”
of the user interface elements on the old panel. The variety
of objects you can create with Qlarity is virtually unlimited.

This chapter introduces the Qlarity concepts that are crucial
for object design, including the following:

• Validation Functions

• The Qlarity API Library

• Exception Handling

It also includes information on the following:

• Create a New Object Template

• Guidelines for Designing New Object Templates

Before proceeding, you should be familiar with the con-
cepts presented in Chapter 8, “Basic Design” and Chapter 9,
“Intermediate Design” and have some practice with Qlarity
design at those levels. In addition, you should review the
OptoTerminal Programmer’s Reference Manual, as it cov-
ers basic information needed for programming in Qlarity.

10.1 Advanced Code Sections

To add advanced code constructs and to view and debug
code in Qlarity Foundry libraries, you need to enable the
advanced code sections in Code View.

To display the Advanced Code and Libraries branches in
the Object Tree and to make the sections available in the
editor window, click on the toolbar, or select Settings

from the Tools menu (or press <F12>), click the Editor tab,
and select the Show advanced code sections in the
Object Tree option.

10.1.1 Advanced Code

The Advanced Code section is intended for advanced users
that need more control over how Qlarity code is handled by
Qlarity Foundry. Code written in this area is treated as if it
were written using a basic text editor rather than Qlarity
Foundry. Qlarity Foundry does not interact with any code
authored in this section. Normally, Qlarity Foundry moni-
tors the code that you type in Code View. When you type an
advanced code construct (such as a declare or define state-
ment), Qlarity Foundry performs the action that you typed
(e.g., if you type in a define statement, Qlarity Foundry
removes the define statement and creates an object tem-
plate). In the Advanced Code section, this monitoring is dis-
abled, and you can type in advanced code constructs
without interference.

If you use the declare statement to create an object, the
object will be created and displayed in the Layout and Sim-
ulation Views, but will not appear in the Object Tree, nor
will it have resize grips.

10.1.2 Libraries

The Libraries section allows an advanced user to view and
debug code in the included libraries. It is recommended that
you do not edit QSI provided libraries. By default, library
code entries are locked and may not be edited. To unlock a
library code entry, click the lock icon next to the entry
name. To aid in debugging a workspace, software break-
points can be set in the library code.

10.2 Validation Functions

Validation functions are special functions that are closely
associated with object properties or global variables. When
a property is assigned a value using the validation assign-
ment operator (=), the associated validation function is
implicitly called and passed the new value as a parameter.
This facility allows objects to appropriately respond to

90 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

property changes. Validation functions are also called when
certain API functions (such as Val() and SetObjProp()) are
used to assign a value to a property.

Validation functions are also useful for assuring that the
new value is valid or within an appropriate range (hence the
term “validation function”).

To associate a validation function with a property, the func-
tion must have the same name as the property. In almost all
cases, it must take a single parameter of the same data type
as the property. The name of this parameter can be any legal
Qlarity variable name, but it is good style to use a common
name for all your validation functions (see section 10.6,
“Guidelines for Designing New Object Templates”). Valida-
tion functions should not have a return value. Apart from
these restrictions, the function is written and behaves as a
normal function. The validation function can be explicitly
called from other Qlarity functions if desired.

For example, when the graph level property of a bar graph
object is changed, you need to redraw the graph at the new
level. Also, values outside the range of the gauge should be
“clipped” to a maximum or minimum value. These can both
be accomplished with a validation function for the graph
level property. Suppose that the property is an integer
named “graphlevel.” The validation function might look
like the following:

func graphlevel(newval as integer)
‘clip to the max or min value
if (newval > maxval) then
newval = maxval
elseif (newval < minval) then
newval = minval
endif
‘Now assign newval to level
‘Note the use of strict assignment op.
graphlevel := newval
‘Now request this object to redraw
rerender(me)

endfunc

The Rerender() function is a Qlarity API function (see
section 10.3, “The Qlarity API Library”) that generates a
MSG_DRAW message for the area of the object.

For array properties, separate validation functions can be
written for assignment of the entire array and assignment of
individual elements of the array. See “Array Validation
Functions” and “Array Element Validation Function” sec-

tions of the OptoTerminal Programmer’s Reference Man-
ual for more detail.

Validation functions may also be associated with global
variables. These global validation functions should be
included in the Global Code space.

NOTE: strict assignment operator
Ordinarily, the validation function assigns the new value to
the property using the strict assignment operator (:=). It is
important to use the strict assignment operator when assign-
ing the new value to the property inside the validation func-
tion. If the validation assignment operator is used, the
validation function recursively calls itself until the system
software stack overflows.

Refer to “Validation Methods” section in the OptoTerminal
Programmer’s Reference Manual for additional details on
validation functions.

10.3 The Qlarity API Library

The Qlarity API (Application Programming Interface) is a
library of functions built into the Qlarity system software.
These functions allow Qlarity applications to interact with
the Qlarity-based hardware to perform tasks such as draw-
ing on the display or sending data to a communications
interface. Other functions perform common tasks that
would be tedious or difficult to implement using the Qlarity
language. Over 100 functions are available. All functions
are documented in “Qlarity API Function Reference” sec-
tion of the OptoTerminal Programmer’s Reference Manual.

10.4 Exception Handling

When an abnormal condition arises while a Qlarity applica-
tion is running, the system software generates an exception.
An application may also throw an exception when it detects
a problem. The Qlarity exception handling system allows
the exception handling code to be localized to a convenient
location, either within an object template or for the applica-
tion as a whole. This section describes the facilities that
Qlarity provides for generating and handling exceptions.

An exception is generated in one of two ways: the system
software throws an exception if it detects a problem, or the
application can throw an exception for any reason. The
application exception is thrown with a call to the Throw()
API function.

OptoTerminal Qlarity Foundry User’s Manual 91

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Each exception carries certain information regarding what
occurred and where. This information includes an exception
level (an indicator of severity), an exception type, a location
where the exception occurred, and a brief explanation of the
error.

The exception level can assume the following values (in
order of decreasing severity):

EXLEV_COMPILER
This level indicates a serious error most likely caused by the
Qlarity compiler.

EXLEV_SYSTEM
This level indicates a problem in the system software (such
as memory exhaustion, a problem with the message queue,
and so on).

EXLEV_IGNORABLE
This level indicates an unexpected condition that is gener-
ally serious but not fatal.

EXLEV_USER
This is the exception level for exceptions thrown by the
application (via the Throw() API function).

EXLEV_MIN
This level represents the minimum severity for an excep-
tion.

The exception type is an error code that describes the cause
of the error. Each exception type is accompanied by a short
text description of the problem. The error code provides a
convenient means for Qlarity exception handlers to deter-
mine what error occurred, while the description provides a
readable summary of the exception. The location string
indicates the Qlarity function or system software facility
that was executing when the error occurred. This is useful
for debugging the application.

The error codes and descriptions are listed in the “Excep-
tion List” of the OptoTerminal Programmer’s Reference
Manual.

Exception handling code is supported in the Qlarity pro-
gramming language by “check error”/”on error” blocks.
When an exception occurs, the Qlarity execution engine
determines if the offending code is inside a “check error”
block. If so, execution immediately jumps to the first state-
ment in the “on error” block. If the offending code is not in
a “check error” block, the Qlarity execution engine checks

the function that called the current Qlarity function for an
enclosing “check error” block. This process iterates until
either an enclosing “check error” block is found, or the mes-
sage handler for the current message is reached. Since the
message handler was called by the system in response to an
event, the call cannot be traced further than this function.

For example, suppose a Qlarity statement in function,
Foo(), causes an exception. Foo() is in turn called by a func-
tion named Bar(). Bar() is a handler called by the system in
response to a message. When the exception occurs, the
Qlarity execution engine first checks the function, Foo(), to
see if the offending statement is enclosed within a “check
error” block. If it is, execution jumps to the first statement
in the “on error” block that follows the “check error” block.
If it is not enclosed in a “check error” block, the Qlarity
execution engine then checks the Bar() function to deter-
mine if the call to Foo() was enclosed in a “check error”
block. If it is, execution jumps immediately from the
offending statement in Foo() to the first statement in the
corresponding “on error” block in Bar(). If no enclosing
block is found in Bar(), the system handles the exception as
described below.

Unhandled exceptions are maintained in a LIFO (last in first
out) stack by the system software. If multiple unhandled
exceptions are pending, a call to GetException() always
returns the most recently thrown exception on the stack.

If no enclosing “check error” block is found, an exception
remains in the system exception stack until the current mes-
sage completes processing. The handler that caused the
exception is aborted, but the current message continues to
propagate to other objects until it has been processed to
completion.

At this point, if there are any exceptions in the system
exception stack, the system software generates a
MSG_ERROR message, which is processed immediately
(i.e., before any other pending messages are processed).
MSG_ERROR is a special message that can only be pro-
cessed by handlers in the Global Code space. This allows
applications to provide a “last chance” global error handler
routine that receives all unhandled exceptions. The
MSG_ERROR handler has no parameters, so the exceptions
must still be retrieved by calls to GetException().

Retrieving an exception by calling GetException() removes
the exception from the system exception stack. Therefore,
calling GetException() terminates an exception unless it is
rethrown by calling the Rethrow() API function.

92 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

If the exception has not been handled (i.e., removed from
the system exception stack) after MSG_ERROR is pro-
cessed, or if there is no global MSG_ERROR handler, the
exception is either discarded (for exception levels of
EXLEV_IGNORABLE or lower), or the exception location
and description are transmitted from the primary serial port
(for exceptions of EXLEV_SYSTEM or higher).

The typical “check error” block or global MSG_ERROR
handler calls GetException() to retrieve information for the
last thrown exception, check the error type, and respond
appropriately to each type of anticipated exception. If the
error type is not what was anticipated, the exception should
be rethrown using the Rethrow() API function. This gives
higher level exception handling code the opportunity to
handle the exception if desired.

NOTE: GetException()
Ordinarily, GetException() should be called only ONCE in
an “on error” block. In a global MSG_ERROR handler,
GetException() is typically called repeatedly until all excep-
tions have been retrieved.

Details on the syntax of “check error”/”on error” can be
found in the “Exception Handling” section of the OptoTer-
minal Programmer’s Reference Manual.

10.5 Create a New Object Template

To create a new object template in your application, do the
following:

1. Click on the toolbar, or select Add/Edit Templates
from the Edit menu, and the Add/Edit Templates dialog
box is displayed. (You can also right-click anywhere in
the Templates branch of the Object Tree, and click
Add/Edit Templates on the shortcut menu).

2. Click [New Template] and the following dialog box is
displayed.

3. Select one of the following options to start the new
template:

Create a template ready to operate in Qlarity
Foundry
Use this option to insert the new template boilerplate
code into your workspace (see section 10.5.1, “New
Template Boilerplate Code”).

Create a completely blank template
Use this option to start with a blank, unprogrammed
object template. You will need to add all Qlarity code.

4. Type a name for the new template in the “Template
Name” edit box.

5. Select the type of object (non-drawable, area object, or
container) from the “Object Type” list box.

OptoTerminal Qlarity Foundry User’s Manual 93

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

6. Click [OK]. The new template name appears in the
Add/Edit Templates dialog box.

7. Click [Close] to close the Add/Edit Templates dialog
box.

8. Select Code View. The new template name appears
under the Templates icon in the Object Tree. Templates
are not shown in the Object Tree in Layout View.

9. Click on the new template in the Object Tree. If you
created a template “ready to operate in QF,” the boiler-
plate code appears in the edit window.

10. Variables declared inside a template become properties
of the template object, and functions declared inside
the template become the object’s methods. Add, delete,
or modify properties and methods as desired.

11. When you are finished defining the template, click
or select Compile from the File menu to compile the
workspace. Any errors in the new source code are iden-
tified by messages in the Error Messages box. If no

errors are present, the compiled workspace is returned
to Layout View.

Notice that the Object Palette contains a default icon
representing the new template.

12. To edit the icon or change the name, click on the
toolbar, or select Add/Edit Templates from the Edit
menu. Click the template name in the Add/Edit Tem-
plates dialog box, then click [Edit Icon]. Refer to
section 5.1.2, “Edit a Template Icon” for more informa-
tion.

10.5.1 New Template Boilerplate Code

The new template boilerplate code can be used as a founda-
tion for building new objects. Using the boilerplate code can
greatly simplify the creation of new objects. This section
provides an overview of what the boilerplate code is and the
functionality it provides. The actual boilerplate code gener-
ated by Qlarity Foundry is continually being improved and
may differ from the code described in this section. The
functionality, however, is mostly the same.

94 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The illustration above shows a portion of an example of the
“boilerplate” code provided by QSI as an optional starting
point when creating a new object template.

The boilerplate code included in a new template depends on
the type of object being created (i.e., non-drawable, area
object, or container). The purpose of the boilerplate code is
to provide a set of properties and methods found in a typical
object of the selected type. It also provides fully functional
tool methods. The source code is well documented and
serves as an example of a working Qlarity object.

Each property is defined as follows:

descriptive comment (describe the property)

dim statement (create the property)

init statement (assign a default value)

validation method (provide functionality for
property changes)

For example, the “enabled” property is common to all
objects and appears in the boilerplate code for any type of
template. The code that defines the property is as follows:

‘Whether the object is displayed on the ->
‘terminal
dim enabled as boolean
init enabled := true
func enabled(newval as boolean)

enabled := newval
Enable (me, enabled)

endfunc

The comment describes the purpose of the property. The
“dim” statement creates a boolean property named
“enabled.” The “init” statement assigns a default value of

OptoTerminal Qlarity Foundry User’s Manual 95

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

TRUE to the enabled property, which means that if the
property is not assigned an initial value in the object
instance, the value defaults to TRUE.

Finally, the validation function (see section 10.2, “Valida-
tion Functions”) describes the behavior of the object when
the value of “enabled” is changed. The validation function
first does a strict assignment of the new value to the prop-
erty then calls the Enable() API function to inform the firm-
ware that the enabled status of the object has changed.
Calling API functions to implement the effects of a property
change is a very common activity in validation methods.

An example of another property found in all versions of the
boilerplate code is the “parent” property, as follows:

‘Who do we attach to
dim parent as objref
init parent := default
func parent(newval as objref)

parent := newval
Attach(me, parent)

endfunc

This code creates a property of type “objref” named “par-
ent.” “Parent” is given a default value of “default,” which is
the root container when assigned to objref variables. The
validation method assigns the new value to the property
using the strict assignment operator, then calls the Attach()
API function to attach the object to its new parent container.

10.5.1.1 Non-Drawable Objects

The boilerplate code for a non-drawable object template
includes the “enabled” and “parent” properties. It also
includes a handler method that handles the MSG_INIT
message. The code is as follows:

‘Perform basic initialization for the object
‘The function will be called once when ->
‘the terminal starts up.
‘This function may also be called within ->
‘Qlarity Foundry whenever a property is ->
‘set in the properties window.
func StartUp()

handles MSG_INIT

Enable (me, enabled)
Attach (me, parent)

endfunc

The comments describe what the handler is and when it is
called. The method is called “StartUp,” takes no parame-

ters, and has no return value. It is declared as a handler for
the MSG_INIT message.

The body of the method merely calls the Enable() and
Attach() API functions, passing the values of the “enabled”
and “parent” properties. This is necessary to properly ini-
tialize the objects by informing the system software about
the state of the object at system startup.

All versions of the boilerplate code include a set of tool
message handlers so that they can properly function in Qlar-
ity Foundry. These methods are described in detail in the
next section. Other properties and methods can be added to
the boilerplate code to implement the desired behavior in
the object.

10.5.1.2 Area Objects

The area object boilerplate code implements a simple rect-
angular, drawable object. It also provides the “enabled” and
“parent” properties, as well as the “xPos”, “yPos,” “width,”
and “height” properties to represent the position and size of
the object on the display. The code for “xPos” is representa-
tive of the code for all the new properties, as shown below:

‘The horizontal position of the object
dim xPos as integer
init xPos := 0
func xPos(newval as integer)

xPos := newVal
Relocate (me, xPos, yPos)

endfunc

“xPos” is an integer with a default value of 0. The valida-
tion method assigns the new value to the property as previ-
ously described, then calls the Relocate() API function to
inform the system software that the object has moved to a
new location on the display. This generates a MSG_DRAW
message for the appropriate regions of the display.

The MSG_INIT handler in the area object boilerplate code
is similar to its counterpart in the non-drawable code, as fol-
lows:

‘Perform basic initialization for the object
‘The function will be called once when ->
‘the terminal starts up.
‘This function may also be called within ->
‘Qlarity Foundry whenever a property is ->
‘set in the properties window.
func StartUp()

handles MSG_INIT

96 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Relocate (me, xPos, yPos)
Resize (me, width, height)

Enable (me, enabled)
Attach (me, parent)

endfunc

Notice that calls to Relocate() and Resize() have been added
to the handler. These properly initialize the location and
size of the object on the display.

Since the area object is drawable, a MSG_DRAW handler
is required to do the actual drawing. The boilerplate version
of this method is as follows:

‘Display the object.
‘This function will be called whenever ->
‘necessary to show the object.
func Draw()

handles MSG_DRAW

SetFGColor (RGB_WHITE)
SetBGColor (RGB_GRAY)
DrawBox (xPos, yPos, xPos + width - 1, ->
yPos + height - 1)
DrawLine (xPos, yPos, xPos + width ->
- 1, yPos + height - 1)
DrawLine (xPos, yPos + height - 1, ->
xPos + width - 1, yPos)

endfunc

NOTE: code formatting
A statement is defined as a single line of code. In order for
the compiler to distinguish between statements, each state-
ment must be separated by a “newline” character. If a state-
ment must be split into multiple lines, type -> at the end of
the line to tell the compiler to look for the rest of the state-
ment on the next line.

This function sets the foreground color to white and the
background color to gray. It then draws a box using the
object’s properties to determine the location and size. The
two calls to DrawLine() draw an X inside the box. This
code is easily modified to provide the desired drawing
behavior.

10.5.1.3 Container Objects

The boilerplate code for a container template is very similar
to the code for an area object template. The MSG_DRAW
handler is slightly different, as follows:

‘Display the object.
‘This function will be called whenever ->
‘necessary to show the object.
func Draw(pass as boolean)

handles MSG_DRAW
if not pass then
SetFGColor (RGB_WHITE)
SetBGColor (RGB_GRAY)
DrawBox (xPos, yPos, xPos + width ->
- 1, yPos + height - 1)
DrawLine (xPos, yPos, xPos + width ->
- 1, yPos + height - 1)
DrawLine (xPos, yPos + height - 1, ->
xPos + width - 1, yPos)
endif

endfunc

Notice that the MSG_DRAW handler for a container takes
a boolean parameter. This is because a container receives
two opportunities to handle a MSG_DRAW message: once
before the message is passed to its children, and once after
the children have finished handling the message. The value
that the handler receives in the pass parameter indicates
whether or not the message has already been passed to the
container’s children (see “Draw Messages” section of the
OptoTerminal Programmer’s Reference Manual).

10.5.2 Getting New Object Templates to Work in
Qlarity Foundry

Since Qlarity Foundry does not have knowledge of the
implementation of a Qlarity object, the object template must
implement handlers for several tool messages to work prop-
erly in Qlarity Foundry. These messages are generated by
Qlarity Foundry when the user interacts with the object in
Layout View. For example, when an object is selected, it
should display a series of resize grips to allow the user to
resize the object by dragging the mouse. When the resize
grips are dragged, the object should respond accordingly.

Requiring each object to implement its own Layout View
behavior allows you to extend the functionality of Qlarity
Foundry in unique and powerful ways. This power and flex-
ibility comes at the price of some complexity in writing
handlers for the tool messages. Fortunately, the boilerplate
code is sufficient for most objects.

This section describes the implementation of the tool han-
dlers in the new template boilerplate code. The tool mes-
sages are explained in detail in the “Tool Messages” section
of the OptoTerminal Programmer’s Reference Manual.

OptoTerminal Qlarity Foundry User’s Manual 97

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Since a non-drawable object is not visible on the display in
Layout View, its handler methods for tool messages are
small and straightforward. The code for the handlers is as
follows:

#if _TOOL
‘This function is called by Qlarity ->
‘Foundry when you change the attachment ->
‘of an object (i.e. in response to ->
‘dragging it around the object tree).
‘Note: the purpose of this function is to ->
‘allow you to attach to another ->
‘container; you should not change your ->
‘parent property or call Tool_Persist ->
‘until you receive a MSG_TOOL_ATTACHED. ->
‘A MSG_TOOL_ATTACHED will be sent in ->
‘response to an Attach API function call.
func ToolAttach (attachTo as objref)

handles MSG_TOOL_ATTACH

Attach (me, attachTo)
endfunc

‘This function is called in response to ->
‘calling Attach (primarily in a handler ->
‘for MSG_TOOL_ATTACH, but possibly in ->
‘other places as well_.
func ToolAttached (newParent as objref)

handles MSG_TOOL_ATTACHED

‘Set our parent property to reflect ->
‘who we are attached to and save
parent := newParent
Tool_Persist (parent) ’Save parent

endfunc

‘This function is called when the user ->
‘created an instance of this template by ->
‘selecting it from the object palette and ->
‘dragging it in the layout view.
‘The handler for MSG_INIT is not called ->
‘automatically, and if you want it ->
‘called, you should call it manually.
‘You should call Tool_Persist on all the ->
‘properties that you set up in this ->
‘message handler.

func ToolDragCreate (parentObj as objref)
handles MSG_TOOL_DRAGCREATE

parent := parentObj
Tool_Persist (parent)

‘Call our MSG_INIT handler
Startup()

endfunc

#endif

First, note that all of the tool handlers are enclosed inside a
“#if _TOOL/#endif” block. This excludes the tool handlers
when the application is compiled for the Qlarity-based ter-
minal.

As noted in the comments, the MSG_TOOL_ATTACH
message is sent to an object when it has been dragged onto a
new parent in the Object Tree. An objref referencing the
new parent is passed to the handler as a parameter. In most
cases, the handler should merely call the Attach() API func-
tion to request attachment to the new parent. This is what
the boilerplate code does.

If the object has restrictions on where it can be attached or
what types of objects can serve as its parent, code should be
added to the handler to enforce the restrictions. For exam-
ple, the Tabs object in the QSI Common object library can
only attach to a Tab Container object. The
MSG_TOOL_ATTACH handler for the Tabs object
enforces this restriction.

After a requested attach is complete, the attached object
receives a MSG_TOOL_ATTACHED message from Qlarity
Foundry. An objref referencing the new parent is passed to
the handler as a parameter. This provides an opportunity for
the object to update its “parent” property (after the attach
has been completed successfully). The new parent may be
different from the parent that was passed to the Attach()
API function in the MSG_TOOL_ATTACH handler.

Also, note that the boilerplate handler calls the
Tool_Persist() API function after the parent property has
been updated. The Tool_Persist() function should be called
after any property update in a tool message handler.

The last handler included in the non-drawable boilerplate
code is the MSG_TOOL_DRAGCREATE handler. When
an object instance is created by selecting the template on the
Object Palette and dragging it into the Layout View display,
the object receives a MSG_TOOL_DRAGCREATE mes-
sage from Qlarity Foundry. This allows the object to initial-
ize itself properly. For a non-drawable object, the only
parameter passed to the handler is an objref referencing the
parent object. The handler updates its “parent” property and
calls Tool_Persist(). Note that the MSG_INIT handler is
called from the handler to complete the object initialization.

98 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

The tool message handlers for containers and area objects
are identical. In addition to the handlers described above,
the boilerplate code for these object types includes handlers
for the MSG_TOOL_MOVE, MSG_TOOL_GETHAN-
DLES, and MSG_TOOL_MOVEHANDLE messages.
Also, the MSG_TOOL_DRAGCREATE handler is larger
and more complex than the handler for non-drawables.

The MSG_TOOL_ATTACH and MSG_TOOL_AT-
TACHED handlers are identical to the handlers in the non-
drawable code, so they are omitted here. The code for the
MSG_TOOL_MOVE handler is as follows:

‘This function is called when the user ->
‘drags an object instance with the mouse ->
‘in Qlarity Foundry. dx and dy are ->
‘relative offsets from the current ->
‘location of the object.
func ToolMove (dx as integer, dy as integer)

handles MSG_TOOL_MOVE

xPos := xPos + dx
yPos := yPos + dy
Relocate (me, xPos, yPos)

‘Save the changes we just made
Tool_Persist (xPos)
Tool_Persist (yPos)

endfunc

When the user drags an object in Layout View, the object
dragged receives MSG_TOOL_MOVE messages from
Qlarity Foundry. The change in position is passed to the
handler in the “dx” and “dy” values. The object updates its
“xPos” and “yPos” properties to the new location and calls
the Relocate() API to generate a MSG_DRAW that updates
the screen (if necessary). Finally, the handler persists the
values of the updated properties with calls to Tool_Persist().

The code for the MSG_TOOL_GETHANDLES handler is
as follows:

‘This function is called by Qlarity ->
‘Foundry to obtain the coordinates of the ->
‘resize grips. The arrays xCoords, ->
‘yCoords, and cursors all contain 0 ->
‘elements initially. This means that you ->
‘should either call redim on those arrays ->
‘and set their values, or declare local ->
‘arrays, set the values of the local ->
‘arrays, and then assign xCoords, yCoords ->
‘and cursors to those local arrays. ->
‘Closed indicates whether the Foundry ->
‘should connect the first and last grips ->

‘to make a closed object. xCoords, ->
‘yCoords, and cursors should all contain ->
‘the same number of elements when this ->
‘function completes.
func ToolGetHandles (xCoords[] as ->
reference to integer,

yCoords[] as reference to integer,
cursors[] as reference to GuiCursors,
closed as reference to boolean)
handles MSG_TOOL_GETHANDLES

dim csrs[8] as GuiCursors
init csrs := [CSR_UPLEFT, CSR_UPDOWN, ->
CSR_UPRIGHT, CSR_LEFTRIGHT, ->
CSR_DOWNRIGHT, CSR_UPDOWN, ->
CSR_DOWNLEFT, CSR_LEFTRIGHT]

redim (xCoords, 8)
redim (yCoords, 8)
xCoords[0] = xPos
xCoords[1] = xPos + width / 2 - 1
xCoords[2] = xPos + width - 1
xCoords[3] = xCoords[2]
xCoords[4] = xCoords[2]
xCoords[5] = xCoords[1]
xCoords[6] = xPos
xCoords[7] = xPos

yCoords[0] = yPos
yCoords[1] = yPos
yCoords[2] = yPos
yCoords[3] = yPos + height / 2 - 1
yCoords[4] = yPos + height - 1
yCoords[5] = yCoords[4]
yCoords[6] = yCoords[4]
yCoords[7] = yCoords[3]

cursors = csrs
closed = true

endfunc

The MSG_TOOL_GETHANDLES message is sent to an
object by Qlarity Foundry when the object is created. All
objects receive this message when a workspace is initial-
ized. Qlarity Foundry requests the locations of the resize
grips (sizing handles) that are drawn on an object when it is
selected. The handler is passed references to three arrays
(xCoords, yCoords, and cursors) and a boolean variable
named “closed.” The handler places values in these parame-
ters to indicate the location and style of the resize grips.

The handler first creates and initializes an array of type Gui-
Cursors. This is an enumerated type whose values indicate
the style of the corresponding resize grip. The selected style
determines what cursor is drawn when the mouse passes

OptoTerminal Qlarity Foundry User’s Manual 99

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

over the resize grip and the restrictions on drag movement
for the resize grip. See “Tool Messages” in the OptoTermi-
nal Programmer’s Reference Manual.

The xCoords and yCoords arrays receive the horizontal and
vertical locations for each resize grip, respectively. The size
of the three arrays (xCoords, yCoords, and cursors) deter-
mines the number of resize grips that will be drawn. All
three arrays should be sized to the same value. The boiler-
plate code sizes these arrays to 8, so 8 resize grips will be
drawn for the object. The code then locates the grips on the
perimeter of the object at locations calculated from the posi-
tion and size properties.

Qlarity Foundry draws lines to connect each resize grip.
The closed parameter determines whether a line connecting
the first and last grips will be drawn. Ordinarily, this is
desirable. However, certain objects, such as the Line and
PolyLine objects in the QSI Common object library, do not
“enclose” a space on the screen and the last line is not desir-
able. A value of TRUE causes this line to be drawn. This
property also determines whether clicking inside the object
will select it in Layout View.

The code for the MSG_TOOL_MOVEHANDLE handler is
as follows:

‘This function is called in response to a ->
‘user moving a resize grip within Qlarity ->
‘Foundry. handleNum is the index into the ->
‘arrays that were returned by the handler ->
‘for MSG_TOOL_GETHANDLES. You should ->
‘return true from this function.
func ToolMoveHandle (handleNum as ->
reference to integer, dx as integer, dy ->
as integer)

handles MSG_TOOL_MOVEHANDLE

dim newX, newY, newWidth, newHeight, ->
tmp as integer
newX := xPos
newY := yPos
newWidth := width
newHeight := height

if (handleNum == 0) then
newX := xPos + dx
newWidth := width - dx
newY := yPos + dy
newHeight := height - dy
elseif (handleNum == 1) then
newY := yPos + dy
newHeight := height - dy
elseif (handleNum == 2) then

newY := yPos + dy
newHeight := height - dy
newWidth := width + dx
elseif (handleNum == 3) then
newWidth := width + dx
elseif (handleNum == 4) then
newWidth := width + dx
newHeight := height + dy
elseif (handleNum == 5) then
newHeight := height + dy
elseif (handleNum == 6) then
newX := xPos + dx
newWidth := width - dx
newHeight := height + dy
else
newX := xPos + dx
newWidth := width - dx
endif

if (newWidth < 1) then
newX := newX + newWidth - 1
newWidth := -newWidth + 2
tmp = handleNum mod 4
if tmp == 0 then
handleNum = handleNum + 2
elseif tmp == 2 then
handleNum = handleNum -2
else
handleNum = (handleNum + 4) mod 8
endif
endif

if (newHeight < 1) then
newY := newY + newHeight - 1
newHeight := - newHeight + 2
tmp = handleNum mod 4
if tmp == 0 then
handleNum = (handleNum + 6) mod 8
elseif tmp == 1 then
handleNum = (handleNum + 4) mod 8
else
handleNum = (handleNum + 2) mod 8
endif
endif

xPos := newX
yPos := newY
width := newWidth
height := newHeight

Relocate (me, xPos, yPos)
Resize (me, width, height)

‘Save any changes we just made
Tool_Persist (xPos)
Tool_Persist (yPos)

100 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Tool_Persist (width)
Tool_Persist (height)

endfunc

When the user drags a resize grip in Layout View, the object
being resized receives a MSG_TOOL_MOVEHANDLE
message from Qlarity Foundry. The grip being manipulated
and the change in position are passed to the handler as
parameters. The handler typically determines which grip is
being dragged, calculates its new size and position, updates
its properties, requests a redraw, and persists the values with
Tool_Persist. This is what the boilerplate code does. There
is also some validation code to prevent the object from
being sized to a height or width of 0.

The “handleNum” parameter is passed to the handler as a
reference, which allows the handler to change the currently
selected grip if desired. Notice that the boilerplate code
reassigns “handleNum” when the object is dragged “inside
out” (i.e., a grip at the bottom is dragged above the top of
the object, or a grip on the right edge of the object is
dragged past its left edge).

Finally, the container/area object boilerplate code for the
MSG_TOOL_DRAGCREATE handler is as follows:

‘The following function is called when ->
‘the user created an instance of this ->
‘template by selecting it from the object ->
‘palette and dragging it in the layout view.
‘The handler for MSG_INIT is not called ->
‘automatically, and if you want it ->
‘called, you should call it manually.
‘You should call Tool_Persist on all the ->
‘properties that you set up in this ->
‘message handler. (x1, y1) are the ->
‘coordinates that the user started his ->
‘drag and (x2, y2) are the coordinates ->
‘that the mouse was released.
func ToolDragCreate (parentObj as objref, ->
x1 as integer, y1 as integer, x2 as ->
integer, y2 as integer)

handles MSG_TOOL_DRAGCREATE

if (x2 < x1) then
xPos := x2
width := x1 - x2 + 1
else
xPos := x1
width := x2 - x1 + 1
endif

if (y2 < y1) then
yPos := y2

height := y1 - y2 + 1
else
yPos := y1
height := y2 - y1 + 1
endif

parent := parentObj
‘Save the properties that we just set
Tool_Persist(parent)
Tool_Persist (xPos)
Tool_Persist (yPos)
Tool_Persist (width)
Tool_Persist (height)

‘Call our MSG_INIT handler
StartUp()

endfunc

Since the location and size of an area object/container is
determined by the extent of the click-and-drag operation in
Layout View, this handler is necessarily more complex than
the handler in the non-drawable boilerplate code. The
(x1,y1) and (x2,y2) coordinates that are passed to the han-
dler as parameters indicate the locations of the initial click
and release, respectively, at the end of the drag.

The handler calculates the position and size properties of
the object based on the values of (x1,y1) and (x2,y2). It also
sets the parent, persists the changed properties, and calls the
MSG_INIT handler to complete the object initialization.

The boilerplate handlers should suffice for most objects,
and the code is easily modified to suit unusual circum-
stances. Writing these handlers “from scratch” can be
tedious and error-prone. For this reason, using the boiler-
plate code as a basis for new object template designs is rec-
ommended.

10.5.3 Adding Object Template Documentation

“AutoDoc” is a Qlarity Foundry feature that automatically
documents the object templates included in a workspace.
All libraries provided with Qlarity Foundry, as well as func-
tions, variables, and APIs, are already included in Object
Documentation and the optional “extra pop-up Help” (see
section 6.2, “Layout”).

Press <F1> or select Object Documentation on the Help
menu to open Object Documentation.

To add documentation on global variables, global functions,
objects, methods, or properties that you create, you must
add the proper “#doc” code to your code. AutoDoc will then

OptoTerminal Qlarity Foundry User’s Manual 101

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

find the information you enter and add it to the Object Doc-
umentation.

To document a program item, type the following in the
same location as the item (e.g., to document an object prop-
erty, enter the documentation within the object):

‘This documents an object property OR ->
‘global variable
#doc property <name>
#doc prop <name>

‘This documents a global function or ->
‘object method
#doc func <name>
#doc function <name>
#doc override <name> ‘(only use this ->
‘if the function is designed to be ->
‘overridden)

‘This documents an object itself
#doc object <name>

To enter a description of an item, begin each line of the
description with a tilde (~):

#doc object buttonV2
~The ButtonV2 object is a versatile ->
~object that responds to touchscreen ->
~input.
~When you touch an instance of the ->
~ButtonV2 object, the function called ->
~Click() is called.

The tilde must be the first non-whitespace character on the
line, otherwise it is treated as a comment.

When documenting a function, you can add parameter doc-
umentation as follows:

#doc func CalcFactoral
#param toCalc:The function calculates the
factoral of this parameter.
~CalcFactoral calculates the factoral ->
~of its parameter. The factoral of n ->
~(written n!) is defined as n * (n-1) *
~(n-2) * ... 1.
func CalcFactoral (toCalc as integer) ->
returns integer
...
endfunc

Note that “#param” lines must be completed in one line.
You cannot use the line continuation character to extend
them to more than one line.

10.6 Guidelines for Designing New Object
Templates

This section contains advice and collected wisdom regard-
ing the design of new Qlarity object templates. Designing
good object templates is the most complex task in Qlarity
programming. Once this skill is mastered, the full potential
of Qlarity can be utilized in your application development.

Look at template code in the QSI libraries.
Each library contains the full source code for every object
template in the library. You are encouraged to study the
code in these libraries to learn the techniques and conven-
tions used in their design. Often the easiest way to create a
custom object is to modify a template that is similar to the
desired object.

Use the boilerplate code.
This code provides a complete, working Qlarity object
ready for customization. Do not unnecessarily “reinvent the
wheel.”

Use a consistent style.
This is important in any programming project. QSI has
developed a set of Qlarity programming style conventions
for objects that are designed in-house. This was also used in
the boilerplate code. The style guide is available on the
Qlarity Web site: www.qlarity.com. Although you may
wish to modify these guidelines or develop your own, use of
a consistent style will make your object designs easier to
develop, maintain, and use.

Use consistent naming conventions for properties and
methods.
This is actually part of a consistent style. The QSI Qlarity
style guide lists the recommended names for properties that
are commonly used in objects. Using these conventions aids
the designer when the object is used in an application; it
also increases readability of the object template source
code.

Use validation functions.
A validation function is the link between an object's proper-
ties and its behavior. Almost every property should have a
validation function so that the object can properly respond
to property changes.

102 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Become familiar with the API library.
All interaction with the Qlarity-based hardware is achieved
through API function calls. You should be familiar with the
functions available and their capabilities.

Provide default values for all properties.
This provides a predictable starting point for each newly
created object instance.

Provide simple to use override functions.
Many of the objects in the QSI libraries include simple
override functions that are called from message handlers.
Most of these functions are empty by default, but they pro-
vide a way for each object instance to determine how it will
respond to a given event. These override functions often
take no parameters and have no return value, so they are
easy to remember and use. For example, many button-type
objects have a Click() function that is called from the han-
dler for a touch screen press and release. This function is
empty by default, but it provides an interface for each object
instance to customize its response to a press or release
event.

Keep the MSG_DRAW handler small.
Drawing requires the most computations on the Qlarity-
based terminal. The MSG_DRAW handler for an object
should be as concise and efficient as possible. Where con-

venient, data needed for drawing should be pre-calculated
and stored in private properties for later use in the
MSG_DRAW handler.

Use user messages to communicate between objects.
User messages provide an excellent way to communicate
between objects, because the sending object does not
require any knowledge about the receiving object. This fea-
ture allows Qlarity to be extended in a number of powerful
ways.

10.7 Where to Go From Here

The full power and potential of the Qlarity programming
language is now at your disposal. As your experience with
Qlarity grows, you will likely create objects that might be
useful for others. QSI encourages Qlarity programmers to
submit their object template designs to the Qlarity Web site
(www.qlarity.com) where they can be shared with others.

Questions and feedback about the Qlarity programming lan-
guage and the Qlarity-based terminal should be sent via e-
mail to support@qsicorp.com. You should also check the
www.qlarity.com Web site occasionally for software and
documentation updates, new library objects, and support
materials.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX A

GLOSSARY OF SOFTWARE TERMS

API Function
A function that is called from the user application to interact
with the Qlarity-based system software (firmware) and
hardware. You use API functions to draw to the screen, ren-
der text and bitmaps, send characters to the serial and net-
work ports, enable/disable objects, manipulate object order
in the hierarchy, perform complex math and so on.

Area Object
An object that directly interacts with the terminal display by
drawing something on the display and/or processing area-
based messages. Examples of area objects include: text
objects, bitmap objects and line objects.

BFF File Format
Binary file format (BFF) required for a user application to
run on a Qlarity-based terminal. When a workspace is com-
piled, it is converted to a BFF format.

Container Object
An object that contains other objects (e.g, a form or screen).
On the Qlarity-based display, a container may represent a
portion of the display or all of the display. Whether or not a
container is displayed depends on its position in the object
hierarchy and whether or not containers/objects in front of
the object are transparent. Also, the hierarchy determines
the order for messaging.

Enabled and Disabled Objects
An object may be enabled or disabled without deleting it
from the user application. An enabled object can process
most messages. Disabled objects are not drawn on the dis-
play and are not eligible to process messages. In Qlarity
Foundry, an object can be enabled or disabled using its
object properties, but disabled objects continue to be dis-
played.

Event
An occurrence that signals a change in the terminal state,
such as a touch screen press, a keyboard press, a serial char-
acter receive, or a system time tick. Events generate mes-
sages that allow the user application to react to the event in
a defined way.

Globals
Code and data that exists independently of objects in an
application.

Libraries
Collections of predefined object templates and/or resources
available in Qlarity Foundry. Some libraries are provided
by QSI; however, advanced users may create their own
libraries.

Message
Delivers information about an event to the user application.
User-defined functions and object methods are called when
the message they handle is generated.

Message Handling System
System that handles event processing for the Qlarity-based
terminal. When an event occurs, the system software and/or
hardware drivers generate a message indicating that the
event has occurred. The message is passed through the mes-
sage handling system in the Qlarity-based system software,
which reviews the object hierarchy and determines which
object gets the message and in what order the message will
be processed.

In order to process a message, an object must be enabled
(which also causes area and container objects with a defined
area to be drawn on the screen). Disabled objects do not
process most messages.

Methods
Functions contained in an object comprising much of the
code portion of the object. The methods for each type of
object are defined in the object template, but each object
instance may override some of the object template’s meth-
ods. Methods define the behavior of an object at runtime
and typically either manipulate or depend on the values of
the object's properties.

Method Override
A function in an object instance that “overrides” (or
replaces) the method defined in the object template. Each
object instance may override some of the template’s meth-
ods. The override function has the same name and parame-
ters as the template method, and the code in an override
may call the template method if desired.

104 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Non-Drawable Object
An object that has a purpose not directly related to the ter-
minal display. Examples of non-drawable objects include:
communication, event, and keyboard objects.

Object
The basic unit of a user application. You define objects by
type with each type representing a display element, button
or other function. Properties and methods define what an
object is and how it behaves. “Object types” may take many
forms and serve any number of purposes. Object types fall
into three categories: container objects, area objects and
non-drawable objects.

Object Hierarchy
For the display, it is the Z-order, or the order in which
objects are layered. For messaging, it is the order in which
objects are prioritized. The top object in the object hierar-
chy receives the highest messaging and display priority
(i.e., it is “on top” of other objects). However, any enabled
objects, regardless of their position in the hierarchy, may
receive or send messages. You can manipulate the position
of an object in the hierarchy with API functions. Each con-
tainer (including the root container) maintains a list of
objects attached to it (its children). The order of objects on
this list indicates the Z-ordering of objects (from front to
back). The Z-ordering may also be manipulated at runtime
using the Z-order primitive API functions.

Object Instance
An occurrence of an object in a user application. An object
instance is defined by the object template on which the
object is based. Each object maintains its own properties
and may contain code for method overrides.

Object Template
The programming code that defines an object. Each object
instance in a user application is based on a template. Object
templates can be a part of a workspace or supplied through
one or more libraries. The template defines which proper-
ties and methods are included in the object.

Properties
Variables that are stored in an object and comprise the data
portion of the object. The properties for each type of object
are defined in the object template, but each object instance
maintains its own properties. In Qlarity Foundry, object
properties can be changed in the Properties window in Lay-
out View without the need to modify the programming
code. Properties may also be changed at runtime to reflect
the current state of the object.

Qlarity
A BASIC-like scripting language that is used to write user
applications for the Qlarity-based terminal.

Resources
Bitmap images, fonts, audio files, and binary data files
available for use in an application.

Root Container
A root-level container that uses the global properties and
methods as its properties and methods. The root container is
best viewed as an abstraction. It gives you a place to attach
all other objects. An object that is not attached to a con-
tainer object is attached to the root container by default. The
root container is not a true object and cannot be disabled. Its
area cannot be modified. The root container is a launching
point for newly generated messages. This means global
message handlers have the highest priority for receiving
new messages.

User Application
A user-created program that controls the Qlarity-based ter-
minal. A user application interacts with the terminal’s sys-
tem software (firmware) to define and control the terminal’s
display, touch screen, speaker and input/output actions.

Validation Method
An object method that is implicitly called when the object
property of the same name is assigned a value. Although the
name validation implies that the function is used to validate
the value before it is assigned to the property, the validation
method may be used for any purpose. This is a powerful
feature of Qlarity, because it allows object behavior to be
controlled solely by manipulating the object properties.

Workspace
A file created in Qlarity Foundry that contains Qlarity pro-
gramming code and data for a user application. You use
Qlarity Foundry to compile the workspace file into a user
application and to download the user application to the
Qlarity-based terminal. You can create any number of
workspaces.

Z-Order
The order in which objects are layered. The order of objects
in the Object Tree indicates the Z-ordering of objects (from
front to back). The Z-ordering may also be manipulated at
runtime using the Z-order primitive API functions. (Also
see Object Hierarchy.)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX B

AUTODOC SPECIFICATION

AutoDoc is Qlarity meta data that automatically documents
source code in a workspace and Qlarity libraries. All of the
libraries provided with Qlarity Foundry have been docu-
mented using the AutoDoc feature. This appendix contains
the complete specification on how to write AutoDoc meta
data. If you choose not to add AutoDoc meta data, your
templates, properties, and methods will still appear in the
object documentation and be available for the AutoHelp
feature in Qlarity Foundry, but they will not contain helpful
descriptions.

B.1 Documentation Declaration

To begin documenting a program element, use the follow-
ing syntax:

#doc <element type> <element name>

Where <element type> is one of [func, prop, obj,
override, type, group], and <element name> is
the name of the element you are documenting. Normally,
you would place the documentation declaration immedi-
ately before the element declaration. However, #doc obj
declarations for object templates often appear inside the
template definition itself.

All AutoDoc constructs that follow a documentation decla-
ration apply to that declaration until a new declaration is
encountered. AutoDoc constructs that appear before a docu-
mentation declaration are not allowed.

#doc func MyNewFunc
#doc obj NewObject
#doc type DataType

The following program elements may be documented:

Func
A global function or an object method.

Prop
A global variable or object property.

Obj
An object template.

Override
The same as a function except that it denotes an object
method that is explicitly intended to be overridden in object
instances. Only object methods designated as “override”
may be edited in the Event Builder.

Type
A user-defined data type, such as an enumeration or a start
type.

Group
This does not correspond directly with a Qlarity syntax
structure, rather it designates a collection of related items.
For example, DrawBDFText, GetBDFTextSize, and GetB-
DFFontMetrics might all belong to the group BDF Text
Functions. When AutoDoc displays the documentation for
items that belong to the group, it contains a “see also” link
to the group itself. The documentation for the group dis-
plays a list of all items in the group. Group names may con-
tain multiple words and are not restricted to the Qlarity
naming rules.

B.2 Documentation Body

A documentation declaration is usually followed by one or
more documentation body elements. A documentation body
element must begin with the tilde (~) character, and must
begin a line. Documentation body elements may optionally
contain HTML tags for formatting purposes.

#doc func VerifyState
~This function checks the state of
~persistent variables in the application and
~verifies that each contains a valid value.
~

~This function must be called during
~a MSG_INIT message.

B.3 Linking Items

You can link related documentation items using the follow-
ing syntax

#link <element type> <element name>
[:<alternate text>]

106 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

This will insert a link to the documentation element speci-
fied by <element type> and <element name>. The optional
<alternate text> specifies the text that will appear in the
documentation.

#doc prop comPort
~Specifies the com port used for
~communication
~The value of this property will be passed to
~the
#link func Transmit
~API function

#doc prop resetNow

~Setting this property to true will cause
~the terminal to reset as if
#link func SoftReset:SoftReset(RESET_NORMAL)
~had been called

B.4 Importing Items

You can import all or part of the documentation from one
item into another item. This differs from linking in that the
documentation is directly displayed as part of the item
rather than indirectly displayed via a hyperlink.

#importdoc <element type> <element name> [@
[<import what>][,indent][,box][,fill]]

This imports the documentation from <element type> <ele-
ment name> directly into the documentation for the current
item. <element type> of “group” is not supported. The
items after the optional @ sign control exactly how the
import is handled.

 <import what> is one of the following items:

none
No import will occur.

all
The specified item will be imported in its entirety.

decl
Only the declaration line for the specified item will be
imported.

itemlist
Only valid for “type” <element types>. Imports a simple list
of enumeration or start type items for the specified data
type.

itemdesc
Only valid for “type” <element types>. Imports the list of
enumeration or start type items for the specified data type as
well as those items’ descriptions. The items and descrip-
tions are displayed in a table format.

In addition to <import what>, importing items also supports
the following (non-exclusive) format commands:

indent
The imported text/tables will be indented from the left mar-
gin.

box
The imported text/tables will be displayed in a box.

fill
The imported text/tables will be displayed in a box that is
filled with a gradient fill.

Examples:

~This function will return one of the
~following values:
#importdoc type weekday @ itemlist, indent,
box

~Please review the following valid
~protocols:
#importdoc type netprotocol @ all

B.5 Function Parameters

When documenting functions, you may use the #param
directive to describe the parameters of the function. When
the documentation is displayed, the parameters are summa-
rized in an easy-to-read table. #param directives are also
used for the AutoHelp feature in Qlarity Foundry.

#param <parameter name>:<parameter
description>

This assigns <parameter name> the given <parameter
description>. The #param directive must appear entirely on
one line. It may not be split into multiple lines.

#doc func sqrt
#param real:The value whose square root will
be calculated
~Calculates the square root of the parameter
read and returns that value
func sqrt(real as float) returns float

OptoTerminal Qlarity Foundry User’s Manual 107

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

...'calculate the square root
endfunc

You may also use the #link or #importdoc directives in a
#param directive as follows:

#param LEDCommand: Determines the behavior
of the LED. One of the following values
{#importdoc type ledcmd @ itemdesc}

#param PixmapToProcess: A pixmap to process.
This should be an array returned from the
{#link func GetObjPixmap} function

B.6 Data Type Elements

When documenting data types, you may assign descriptions
to each enumeration or start type item.

#item <item name>:<item description>

This assigns <item name> the specified <item description>.
The #item directive must be completely specified on a sin-
gle line. It may not be split into multiple lines

#doc type ledcmd
~Used by the
#link func SetLED
~API to determine the state to put the LED in
#item LED_ON: Turn on the specified LED
#item LED_OFF: Turn off the specified LED
#item LED_TOGGLE: Toggle the state of the
specified LED
enumerate ledcmd as LED_ON := 1, LED_OFF :=
2, LED_TOGGLE := 3

Like the #param directive, you may also embed #link and
#importdoc directives in the #item directive. See
section B.5, “Function Parameters” for an example.

B.7 Grouping Items

Occasionally, you may document several related items such
as a suite of related functions or objects. If you want the
user to see which items are related and be able to easily nav-
igate from one item to another, use groups. Start by docu-
menting the group itself using the #doc group <group
name> directive, and add any descriptive body. Next, add
the #group directive to each related item in the group.

#group <group name>

Where <group name> is the same name used in the #doc
group directive. There may be any number of documenta-
tion elements in a group, and a single documentation ele-
ment may belong to more than one group.

#doc group extended drawing functions
~These functions draw to the display

#doc func DecoratedCircle
#group extended drawing functions
~...(documentation as appropriate)

#doc func TransformAndDraw
#group extended drawing functions
#group transformation functions
~...(documentation as appropriate)

B.8 Hiding Documentation

AutoDoc will generally not display documentation informa-
tion on program elements that are not intended for general
use. This includes private methods and properties, #hidden
variables, validation functions, and a few other unusual
constructs. Sometimes you may wish to use the #undoc
directive to suppress the documentation on other program
elements, such as global variables that are intended for
internal use by a template.

#undoc <element type> <element name>

The #undoc directive has the same syntax and supports the
same <element types> as the #doc directive. You may also
specify a documentation body for an item that uses the
#undoc directive. While this body will never be displayed in
the documentation, it is a useful way to comment your code.

B.9 Property Flags

You may use the #flags directive to specify special flags
meta data for a property. #flags is only valid after a #doc
prop directive. The documentation flags are used by a few
select data types in the Properties window of Qlarity
Foundry to control how they are processed.

#flags <flag data>

<flag data> is interpreted by the Properties window based
on the data type of the property. #flags directives must
appear entirely on a single line.

The most common use of #flags is to define the grid shown
by the aggregate% data type. The aggregate% data type

108 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

uses a #flags directive to define the grid that is shown when
editing the property. The aggregate% data type’s #flags
directive uses the following format:

#flags <dialog title>~<dialog
instructions>;<column definition>[;<column
definition>[...;<column definition>]]

Where <column definition> has the following format:

[<column name>[,<column data type>[,<min
value>[,<max value>[,<column
width>[,<default value>]]]]]]

In <column definition> most items are optional, but if you
omit an item or include an item later in the list, you must
include placeholder commas. <column data type> may be
one of [string, integer, boolean, byte,
unibyte, float, or color]. For example:

~Provides a grid with a single column for
string entry
#flags Enter List~Type some strings.;List
Item,string;

~Provide a grid with several columns.
#flags Enter Data~Enter the title, min
value, and color for each display
element.;Item Title,string,,,200;Minimum
Value,integer,0,100,,50;Item
Color,color,,,,3;

In the first example, a single column is defined for string
entry. In the second example, three columns are defined: a
string column called “Item Title,” which is 200 pixels wide;
an integer column titled “Minimum Value” in which values
between 0 and 100 are accepted for entry, the column will
have a default width (based on the column title), and the
default value for the integers will be 100; and the final col-
umn, “Item Color,” will be of default width, and its type is
color. There are no restrictions on what colors may be
selected, but the default color is 3 (blue).

B.10 Sample Code

You may specify sample Qlarity code for any item you are
documenting. Sample code lines begin with the right-point-
ing double angle quotation mark (») character. The easiest
way to generate sample code is to author and test the sample
code, then select the code in Qlarity Foundry, and select
“Mark selected code as sample” from the Tools menu.

#doc func Min
#param item1: The first item to be compared
#param item2: The second item to be compared
~Returns the minimum value of its two
parameters
»func PrintMinimum()
» _Print("The minimum value is: " +
str(Min(9.9, 7.5)))
»endfunc
~The preceding example would print out
~<i>The minimum value is: 7.5</i>

B.11 Property Categories

When authoring your own objects, you may wish to specify
the category for the object’s properties in the Properties
window. To do this, use the #category directive.

#category <category name>

The #category directive is only valid when used for a #doc
prop directive. <category name> may be any string that
defines a category title. This will add <category name> to
the Properties window when an instance of the specified
type is selected, and the property will appear in that cate-
gory. All properties that share the same <category name>
appear in the same category in the Properties window.

#doc prop englishCaption
#category Language Data
~Defines the caption of this object when the
~English language is selected.

B.12 Default Items

When defining objects, you may specify one default prop-
erty and one default function. To edit the default function of
an object, double-click the object in Layout View or the
Object Tree, and the editor of your choice (either Code
View or the Event Builder) is opened. To edit an object’s
property in the Properties window, select the object in Lay-
out View and press <Enter>. If the default property is of a

data type that offers a Select button () in the Properties

window, click to edit the property in the custom editor
for the property.

#default item <item type> <item name>

<item type> is either func or prop. <item name> is the name
of a method or property in the current object template. The

OptoTerminal Qlarity Foundry User’s Manual 109

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

#default item directive is only valid as following a #doc obj
directive.

#doc object buttonv2
#defaultitem func Click
#defaultitem prop value
~(documentation as appropriate)

B.13 Defining Border Styles

You can use the #stylemap directive to specify a new border
style element for an object.

#stylemap <style name> <style assignment>[,
<style assignment> [...,<style assignment>]]

Where <style name> is a valid Qlarity identifier name that
names the style. Each <style assignment> defines the style
for a specific theme. If the user selects a theme in which the
specified style is not defined, and you do not specify a style
assignment for that theme, Qlarity Foundry uses the first
specified <style assignment>. <style assignment> has the
following syntax:

<theme name>:=<value>

<theme name> represents the name of a theme, such as
“standard” or “grayscale_light.” <value> is a border style
value.

#stylemap Bdr_ButtonBorder
standard:=0x00052025, classic:=0x1c022001
#stylemap Bdr_LabelBorder standard :=
331783, classic := 0

#stylemap directives are standalone directives and not part
of any other #doc directive. These directives may not be
broken over multiple lines.

B.14 Defining Named Colors

You can use the #colormap directive to specify a new
named color element for an object.

#colormap <color name> <color assignment>[,
<color assignment> [...,<color assignment>]]

Where <color name> is a valid Qlarity identifier name that
names the color. Each <color assignment> defines the color
for a specific theme. If the user selects a theme in which the
specified color is not defined, and the directive does not
specify a color assignment for that theme, Qlarity Foundry
uses the first specified <color assignment>. <color assign-
ment> has the following syntax:

<theme name>:=<value>

<theme name> represents the name of a theme, such as
“standard” or “grayscale_light.” <value> is a numeric color
value.

#colormap Clr_LabelBackground standard:=38,
classic:=183
#colormap Clr_LabelForeground standard:=255,
classic:=0

#colormap directives are standalone directives and not part
of any other #doc directive. These directives may not be
broken over multiple lines.

110 OptoTerminal Qlarity Foundry User’s Manual

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

	Contents
	Chapter 1 Introduction
	1.1 How to Use This Manual
	1.2 Description

	Chapter 2 Installation
	2.1 System Requirements
	2.2 Install Qlarity Foundry

	Chapter 3 Getting Started
	3.1 Start Qlarity Foundry
	3.2 Open a Workspace
	3.3 Main Window
	3.4 Menu Options
	3.4.1 File Menu
	3.4.2 Edit Menu
	3.4.3 View Menu
	3.4.4 Tools Menu
	3.4.5 Help Menu

	3.5 Toolbar
	3.5.1 Layout View Toolbar
	3.5.2 Code View Toolbar
	3.5.3 Simulation View Toolbar

	3.6 Miscellaneous Bar
	3.7 Navigation Bar (Code View only)
	3.7.1 Global, Template, or Library Code
	3.7.2 Object Instance Code

	3.8 Object Tree
	3.8.1 Globals
	3.8.2 Object Templates

	3.9 Layout and Code Views
	3.10 Simulation View
	3.10.1 Serial I/O Support
	3.10.2 Simulation View Limitations
	3.10.3 Source-Level Debugger
	3.10.4 Call Stack Window
	3.10.5 Watch Window

	3.11 Properties Window
	3.12 Object Palette
	3.12.1 Add a New Object Instance

	3.13 Move and Resize Windows
	3.14 Where to Go From Here

	Chapter 4 Workspaces
	4.1 Start a New Workspace
	4.2 Open a Workspace
	4.3 Close a Workspace
	4.4 Save a Workspace
	4.4.1 Save Workspace
	4.4.2 Save Workspace As
	4.4.3 Collect for Output

	4.5 Compile a Workspace
	4.6 Generate a BFF File

	Chapter 5 Templates, Resources, and Libraries
	5.1 Add/Edit Templates
	5.1.1 Add a New Object Template
	5.1.2 Edit a Template Icon
	5.1.3 Rename a Template
	5.1.4 Remove a Template
	5.1.5 Send Template to Library
	5.1.6 Change Template Type
	5.1.7 Extend a Template

	5.2 Edit Resources
	5.2.1 Add a Resource
	5.2.2 Preview Resources
	5.2.3 Rename a Resource
	5.2.4 Change a Resource File
	5.2.5 Remove a Resource
	5.2.6 Bitmaps
	5.2.7 Fonts
	5.2.8 Audio
	5.2.9 Binary

	5.3 Edit Libraries
	5.3.1 Add Existing Library
	5.3.2 Remove Library
	5.3.3 Edit Library
	5.3.3.1 Edit Entry
	5.3.3.2 Rename Entry
	5.3.3.3 Remove Entry
	5.3.3.4 Set Entry Version
	5.3.3.5 Add New Entry

	5.3.4 Advanced
	5.3.4.1 Edit Standard (natives.lib)
	5.3.4.2 Edit Core (core.qlib.qhide)
	5.3.4.3 System Libraries That Are Not Explicitly Included in This Workspace

	5.3.5 Create a New Library

	5.4 Edit Named Colors
	5.4.1 Themes
	5.4.2 Named Colors
	5.4.2.1 Change Named Color
	5.4.2.2 Create New Named Color
	5.4.2.3 Delete Named Color
	5.4.2.4 Rename Named Color
	5.4.2.5 Reset Color to Theme Default

	5.5 Edit Named Borders
	5.5.1 Themes
	5.5.2 Named Borders
	5.5.2.1 General Effects
	5.5.2.2 Rounded Corners
	5.5.2.3 Double Border
	5.5.2.4 Preview
	5.5.2.5 Create New Named Border
	5.5.2.6 Delete Named Border
	5.5.2.7 Rename Named Border
	5.5.2.8 Reset Border to Default

	Chapter 6 Qlarity Foundry Preferences
	6.1 Terminal
	6.1.1 Display Setup
	6.1.2 Input
	6.1.3 Communications
	6.1.4 Miscellaneous

	6.2 Layout
	6.3 Editor
	6.3.1 Colors
	6.3.2 Font
	6.3.3 Tab Spacing
	6.3.4 Show Advanced Code Sections in Object Tree
	6.3.5 Fast Selection
	6.3.6 Parenthesis Matching
	6.3.7 Edit Events in the Event Builder
	6.3.8 AutoHelp Settings
	6.3.8.1 Functions and Methods
	6.3.8.2 Identifier Completion
	6.3.8.3 Assignment and Parameters
	6.3.8.4 Show Global Variables and Functions
	6.3.8.5 Show Object Properties and Methods
	6.3.8.6 Show for Built In Data Types
	6.3.8.7 Fade AutoHelp Tips

	6.4 Compile
	6.5 Simulation View
	6.5.1 Communications Window Settings
	6.5.2 Keypad Settings
	6.5.3 Serial Port Setup

	Chapter 7 Download Software to the Terminal
	7.1 Configure Communications Port
	7.1.1 Serial Port Settings
	7.1.2 Ethernet Port Settings

	7.2 Download a User Application
	7.2.1 Prepare the Terminal for Downloading
	7.2.2 Download the User Application

	7.3 Download a BFF File
	7.4 Upgrade the Firmware
	7.4.1 Determine Current Firmware Version
	7.4.2 Prepare Terminal for Upgrade
	7.4.3 Download New Firmware
	7.4.4 Induce Bootloader
	7.4.5 Set Unit Time

	Chapter 8 Basic Design
	8.1 Prepare Qlarity Foundry for Application�Design
	8.1.1 Basic Design Layout
	8.1.2 Simulate the Terminal Display
	8.1.3 Drawing Aids
	8.1.4 Add/Remove Resources
	8.1.5 Add/Remove Libraries
	8.1.5.1 Libraries Provided with Qlarity Foundry

	8.2 Understanding Qlarity for Basic Design
	8.2.1 Workspaces and User Applications
	8.2.2 Qlarity Objects
	8.2.3 Parent/Child Relationships
	8.2.4 Z-Order
	8.2.5 Events and Messaging
	8.2.6 Enabled/Disabled Objects

	8.3 Design a User Application
	8.3.1 Add an Object Instance
	8.3.1.1 Add an Object From the Object Palette
	8.3.1.2 Add an Object From the Shortcut Menu

	8.3.2 Move, Resize and Reorder Objects
	8.3.2.1 Move an Object
	8.3.2.2 Resize an Object
	8.3.2.3 Change the Order of Objects
	8.3.2.4 Align/Size/Space Objects

	8.3.3 Change an Object’s Properties
	8.3.3.1 Select Color

	8.4 Event Builder
	8.4.1 Overview of Event Builder Steps
	8.4.2 Event Builder Dialog Box
	8.4.3 Select and Configure Actions
	8.4.3.1 Select Actions
	8.4.3.2 Configure Actions

	8.4.4 Load Event Builder Sample Workspace
	8.4.4.1 Tank Demo
	8.4.4.2 Toggle Demo
	8.4.4.3 Keypad Demo

	8.4.5 Qlarity Code and Event Builder
	8.4.6 Troubleshooting

	8.5 Communication Objects
	8.5.1 Serial Objects
	8.5.2 Ethernet Objects
	8.5.3 Receive Data

	8.6 Test the User Application
	8.7 Save and Compile a Workspace
	8.7.1 Save a Workspace
	8.7.2 Compile a Workspace

	8.8 Download a User Application

	Chapter 9 Intermediate Design
	9.1 Viewing the Code
	9.2 Understanding Qlarity for Intermediate Design
	9.2.1 Qlarity Programming Language
	9.2.2 Objects and Templates

	9.3 Qlarity Code for Objects
	9.3.1 Property Initializations
	9.3.2 Method Overrides

	9.4 Handling Events With Qlarity Code
	9.4.1 Override an Object Method

	9.5 Global Code
	9.5.1 Add a Global Variable to a Workspace
	9.5.1.1 Add a Global Variable Using New Variable
	9.5.1.2 Add a Global Variable in the Global Code Section

	9.5.2 Add a Global Function to a Workspace
	9.5.3 Add a Global Message Handler to a Workspace
	9.5.3.1 Add a Global Message Handler From a List
	9.5.3.2 Add a Global Message Handler in the Global Code Section

	9.6 Create a New Object Template
	9.7 Where to Go From Here

	Chapter 10 Advanced Design
	10.1 Advanced Code Sections
	10.1.1 Advanced Code
	10.1.2 Libraries

	10.2 Validation Functions
	10.3 The Qlarity API Library
	10.4 Exception Handling
	10.5 Create a New Object Template
	10.5.1 New Template Boilerplate Code
	10.5.1.1 Non-Drawable Objects
	10.5.1.2 Area Objects
	10.5.1.3 Container Objects

	10.5.2 Getting New Object Templates to Work in Qlarity Foundry
	10.5.3 Adding Object Template Documentation

	10.6 Guidelines for Designing New Object Templates
	10.7 Where to Go From Here

	Appendix A Glossary of Software Terms
	Appendix B AutoDoc specification
	B.1 Documentation Declaration
	B.2 Documentation Body
	B.3 Linking Items
	B.4 Importing Items
	B.5 Function Parameters
	B.6 Data Type Elements
	B.7 Grouping Items
	B.8 Hiding Documentation
	B.9 Property Flags
	B.10 Sample Code
	B.11 Property Categories
	B.12 Default Items
	B.13 Defining Border Styles
	B.14 Defining Named Colors

