SNAP PAC MOTION CONTROL USER'S GUIDE

SNAP-SCM-MCH16 Motion Module SNAP-SCM-BB4 Breakout Board OptoMotion Command Set

Form 1673-220718—July 2022

43044 Business Park Drive • Temecula • CA 92590-3614 Phone: 800-321-OPTO (6786) or 951-695-3000 Fax: 800-832-OPTO (6786) or 951-695-2712 www.opto22.com

Product Support Services

800-TEK-OPTO (835-6786) or 951-695-3080 Fax: 951-695-3017 Email: support@opto22.com Web: support.opto22.com SNAP PAC Motion Control User's Guide Form 1673-220718—July 2022

Copyright © 2003–2022 Opto 22. All rights reserved. Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22 assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation, labor, or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of 1/96 or newer are guaranteed for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID modules, and modules that contain mechanical contacts or switches. Opto 22 does not warrant any product, components, or parts not manufactured by Opto 22; for these items, the warranty from the original manufacturer applies. These products include, but are not limited to, OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson GT-48; see the product data sheet for specific warranty information. Refer to Opto 22 form number 1042 for complete warranty information.

Opto 22 FactoryFloor, *groov*, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, *groov* Server, ioControl, ioDisplay, ioManager, ioProject, ioUtilities, *mistic*, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl, OptoDataLink, OptoDisplay, OptoEMU, OptoEMU Sensor, OptoEMU Server, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, PAC Control, PAC Display, PAC Manager, PAC Project, SNAP Ethernet I/O, SNAP I/O, SNAP OEM I/O, SNAP PAC System, SNAP Simple I/O, SNAP Ultimate I/O, and Wired+Wireless are trademarks of Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET is a registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric, licensed to the Modbus Organization, Inc. Wiegand is a registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M Gateway Software, and Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia Corporation. Sony is a trademark of Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson. CompactLogix, MicroLogix, SLC, and RSLogix are trademarks of Rockwell Automation. Allen-Bradley and ControlLogix are a registered trademarks of ODVA.

groov includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org)

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

Opto 22 Automation Made Simple.

Wired+Wireless controllers and brains are licensed under one or more of the following patents: U.S. Patent No(s). 5282222, RE37802, 6963617; Canadian Patent No. 2064975; European Patent No. 1142245; French Patent No. 1142245; British Patent No. 1142245; Japanese Patent No. 2002535925A; German Patent No. 60011224.

Table of Contents

0PT0 22

Chapter 1: Overview	. 1
Introduction	. 1
Compatibility	2
About this Guide	. 2
Related Documentation	3
For Help	. 3
Chapter 2: Specifications	. 5
Module Specifications.	. 5
Module Bias and Termination	6
Module LEDs	6
Breakout Board Specifications	. 7
Breakout Board LEDs	7
Power and Serial LEDs	7
Axis LEDs	7
Breakout Board Connector Pins	8
J2: Serial Connector	8
J3 (dhu J0, J9, & JT2): Encouer Signal Inpuls	ة م
J5 (and J8, J11, & J14): Stepper Motor Inputs	0
J15: Auxiliary Power Input	8
Breakout Board Świtches	9
SW1–SW8: Signal Selection for Encoder Inputs	9
S3 (and S5, S4, & S6): Enable/Disable Axis	9
S7: Bias & Termination, Voltage Select, Breakout Board Address	9
ST & SZ: PUII-UP KESISTORS	9
	.10
	10
Calculating Power Requirements	10
Chapter 3: Hardware Quick Start	11
What You Will Need	. 11
Setting Up the SNAP-SCM-MCH16 Module	12

Configuring the Breakout Board Assigning an IP Address to the Controller or Brain Checking the Firmware Version of the Controller or Brain Component Connection Schematic Connecting Multiple Breakout Boards Daisy-Chained Breakout Boards Schematic	
Assigning an IP Address to the Controller or Brain Checking the Firmware Version of the Controller or Brain Component Connection Schematic Connecting Multiple Breakout Boards Daisy-Chained Breakout Boards Schematic	
Checking the Firmware Version of the Controller or Brain Component Connection Schematic Connecting Multiple Breakout Boards Daisy-Chained Breakout Boards Schematic	
Component Connection Schematic Connecting Multiple Breakout Boards Daisy-Chained Breakout Boards Schematic	
Connecting Multiple Breakout Boards Daisy-Chained Breakout Boards Schematic	
Daisy-Chained Breakout Boards Schematic	าา
Chapter 4: Commands Quick Start	23
Introduction	
Using the Example Strategies	
How To Structure a Motion Control Strategy in PAC Control	
1: Open a communication handle	
2: Reset the axes	25
3: Configure parameters	
4: Enable each axis	26
	/2 Z/
Single Axis Example	/227 77
Multiple Axis Example	
Moving a Set Distance	
Using a Smooth Start and Smooth Stop	
Host I/O Errors	
How To Use the Command Details	
Entering Commands in OptoScript	
Response Format	33
Chapter 5: Command Reference	35
Commands by Group	
Commands in Alphabetical Order	

Overview

Introduction

The easy-to-use SNAP PAC Motion Control Subsystem provides an integrated hardware and software toolset for controlling multi-axis stepper motors. The subsystem consists of:

- SNAP Motion Control host communication modules (SNAP-SCM-MCH16)
- SNAP Motion Control breakout boards
 (SNAP-SCM-BB4)
- OptoMotion command set.

The SNAP-SCM-MCH16 motion control

host module is a serial communication module that links up to four SNAP-SCM-BB4 motion control breakout boards with a SNAP PAC I/O unit. When mounted on an I/O unit and connected to a breakout board, a single SNAP-SCM-MCH16 module allows a SNAP PAC controller running a PAC Control[™] programming strategy to control up to 16 stepper motors. The module snaps into an Opto 22 SNAP PAC mounting rack right beside digital and analog modules. LED indicators are provided to indicate Transmit and Receive on each port.

Each SNAP-SCM-BB4 breakout board is equipped with a MagellanTM processor chip set that outputs pulse and direction signals for up to four stepper motor systems. You can daisy-chain up to four breakout boards connected to a single module. The module's external connector provides lines to power one breakout board; additional boards require a separate power source. The SNAP-SCM-BB4 breakout board is designed to be mounted using a DIN-rail system. For additional information on using the MagellanTM Motion Processor, see version 1.x of the *MagellanTM Motion Processor User's Guide* available on the web at www.pmdcorp.com.

The **OptoMotion** commands supports many of the Magellan[™] Motion Processor commands. These commands are entered in a PAC Control strategy as text strings using the Transmit String and Receive commands or the TransmitReceiveString command in OptoScript. The OptoMotion commands give you the ability to define and acquire motion process data such as position, velocity, acceleration, breakpoints, interrupts, and time intervals. In addition, you can execute motion-related actions such as smooth stops, stepping, and position adjustments.

DPT0

N N

Software

SNAP PAC controllers use Opto 22's **PAC Project** Microsoft[®] Windows[®]-compatible automation software for programming, human-machine-interface (HMI) development, and OPC connectivity. Two versions of PAC Project are available:

- PAC Project Basic includes PAC Control for developing control programs, PAC Display[™] for creating operator interfaces, and PAC Manager[™] configuration software.
- PAC Project Professional adds expanded versions of PAC Control and PAC Display plus OptoOPCServer[™] software for exchanging data with OPC 2.0-compliant client software applications.

For more information, see the PAC Project Data Sheet.

Software Availability

PAC Project Basic is included with SNAP PAC controllers and is a free download from the Opto 22 website. PAC Project Professional is available for purchase on a CD with both Acrobat PDF format and printed documentation.

To get PAC Project Professional immediately, you can buy and download the software from the Opto 22 website at www.opto22.com; the CD and printed documentation will be shipped to you. You can also separately purchase PAC Control Professional, PAC Display Professional, and OptoOPCServer as needed. For additional information, see the *PAC Project data sheet*, Opto 22 form 1699.

Compatibility

SNAP-SCM-MCH16 motion modules are designed to work with SNAP PAC mounting racks. For information on using older SNAP racks, see form 1688, *SNAP PAC System Migration Tech Note*.

About this Guide

This guide shows you how to install and use the SNAP PAC Motion Control Subsystem. This guide assumes that you know how to create a strategy in PAC Control, and how to use motion control technology. If you are not familiar with these subjects, we strongly suggest you consult commercially available resources to learn about them before attempting to install or use the SNAP PAC Motion Control Subsystem.

The following sections are included in this user's guide:

Chapter 1, "Overview"—Information about the guide and how to reach Opto 22 Product Support.

Chapter 2, "Specifications"—Specifications of the SNAP-SCM-MCH16 module and SNAP-SCM-BB4 breakout board.

Chapter 3, "Hardware Quick Start"—Quick-start steps to get SNAP PAC Motion Control Subsystem up and running quickly.

Chapter 4, "Commands Quick Start"—How to use the OptoMotion library of motion commands, which you can use within PAC Control strategies.

Chapter 5, "Command Reference"—A list of the motion control commands by group, and a detailed explanation of each command listed in alphabetical order.

Appendix A, "SNAP-SCM-MCH16 Conversion Formulas"—Provides a table for converting Counts/Cycle used by some of the motion commands.

Related Documentation

See the following documents for additional information.

For this information	See this guide	Form #
Designing flowchart-based control programs for the	PAC Control User's Guide	1700
system	PAC Control Command Reference	1701
Configuring I/O points and system functions	PAC Manager User's Guide	1704
Installing and using SNAP PAC brains and I/O units.	SNAP PAC Brains User's Guide	1690
Installing and using Opto 22's SNAP PAC R-series of programmable automation controllers	SNAP PAC R-Series Controllers User's Guide	1595

For Help

If you have problems installing or using SNAP PAC Motion Control Subsystem, first check this guide and the Troubleshooting section of the user's guide for your Opto 22 hardware. If you cannot find the help you need in the guides or on the Opto 22 website, contact Opto 22 Product Support.

Phone:	800-TEK-OPTO (800-835-6786) 951-695-3080 (Hours are Monday through Friday, 7 a.m. to 5 p.m. Pacific Time)	NOTE: Email messages and phone calls to Opto 22 Product Support are grouped together and answered in the order received.
Fax:	951-695-3017	
Email:	support@opto22.com	
Opto 22 website:	www.opto22.com	

Specifications

This chapter provides specifications of the SNAP-SCM-MCH16 module and SNAP-SCM-BB4 breakout board.

In This Chapter

Module Specifications	.below
Breakout Board Specifications	7
RS-422/485 Serial Cable	10
Calculating Power Requirements	10

Module Specifications

Baud rates	115,200
Parity	Even
Data bits	8 only
Logic supply voltage	5.0 to 5.2 VDC
Logic supply current	250 mA ¹ 500 mA ²
Number of ports per module	1
Maximum number of modules per rack	8 ¹
Maximum cable length, multi-drop	1,000 feet at 115,200 Baud
I/O processor (brain or on-the-rack controller) compatibility	SNAP-PAC-R1, SNAP-PAC-R2, SNAP-PAC-EB1, or SNAP-PAC-EB2
Operating temperature	-20 to 70 °C
Storage temperature	-30 to 85 °C
Torque, hold-down screws	4 in-lb (0.45 N-m)
Torque, connector screws	5.26 in-lb (0.6 N-m)
Agency Approvals	UL, CE, RoHS, DFARS
Warranty	30 months

1. Each breakout board is powered by a separate power supply.

2. Breakout board uses power from the module.

Module Bias and Termination

Module LEDs

Transmit and receive LEDs are provided as shown in the diagram at right.

LED	Indicates
1	Power Supply Fault
2	Тх
3	Status
4	Rx

Power Supply Fault indicates a fault on the internal power supply of the module (too much draw). This will happen if more than one breakout board is connected without additional power supplies, or there is a short in the system.

Tx: transmitting data

Status: shows module status. This LED blinks twice when the kernel is started.

Rx: receiving data

Breakout Board Specifications

Power Requirements	8.0 to 32.0 VDC @ 250mA 5.00 to 5.20 VDC @ 500mA
Operating Temperature	-20 to 70 °C
Relative Humidity	95%, non-condensing
Agency Approvals	UL, DFARS
Warranty	30 months

Breakout Board LEDs

There are LED indicators for power and serial, and there are four sets of LEDs for the axis connections, one for each axis.

Power and Serial LEDs

Axis LEDs

There is one set of LED indicators for each axis that indicates the following:

Power

RX

+5V

Breakout Board Connector Pins

J15: Auxiliary Power Input

Pin	Description
1	Aux +5Vin
2	Aux +8-24Vin
3	GND
4	Chassis GND

J2: Serial Connector

Pin	Description
1	ToHost+
2	ToHost-
3	GND
4	FromHost+
5	FromHost-
6	Chassis GND
7	VMod
8	VMod
9	GND
10	GND

J4 (and J7, J10, & J13): Stepper Motor Outputs

Pin	Description
1	Pulse+
2	Pulse-
3	GND
4	Direction+
5	Direction-
6	AtRest+
7	AtRest-
8	GND
9	AxisOut+
10	AxisOut-

J3 (and J6, J9, & J12): Encoder Signal Inputs

Pin	Description
1	QuadA+
2	QuadA-
3	GND
4	QuadB+
5	QuadB-
6	Index+
7	Index-
8	GND
9	Home+
10	Home-

J5 (and J8, J11, & J14): Stepper Motor Inputs

Pin	Description
1	PosLimit
2	GND
3	NegLimit
4	GND
5	AxisIn
6	GND

Breakout Board Switches

SW1–SW8: Signal Selection for Encoder Inputs

All up=Non-differential

All down=Differential

Position	Description				
SW1 (and SW3, SW5, & SW7)					
1 & 2	QuadA				
3 & 4	QuadB				
SW2 (and SW4, SW6, & SW8)					
1 & 2	Index				
3 & 4	Home				

S1 & S2: Pull-up Resistors

-ON

Switch	Axis	Description								
S1: J5 & J8 470 Ohm Pull Up Resistors										
1	0	PosLimit								
2	0	NegLimit								
3	0	AxisIn								
4	1	PosLimit								
5	1	NegLimit								
6	1	AxisIn								
S2: J [⁄]	11 & J1	4 Pull Ups								
1	2	PosLimit								
2	2	NegLimit								
3	2	AxisIn								
4	3	PosLimit								
5	3	NegLimit								
6	3	AxisIn								

See also, "If Pull-Up Resistors Are Not Used" on page 10.

Use switches 5 and 6 to set the address as follows:

Switch 5 (ADDR0)	Switch 6 (ADDR1)	Address
OFF	OFF	0
ON	OFF	1
OFF	ON	2
ON	ON	3

53	(and	55,	54,	& 56	5): El	nable	e/Dis	able	AXIS

	↓ Enable
--	--------------------

Position	Enable/Disable
Up	Disable
Middle	Enable
Down	Enable

S7: Bias & Termination, Voltage Select, Breakout Board Address

Switch	Description	
1	ToHost Termination	
2	FromHost Termination	
3	VMod/Aux +8-24Vin	* Set both switches to
4	Select*	ON for VMod, or both to
5	ADDR0	0FF 10f Aux +8-24vin.
6	ADDR1	

If Pull-Up Resistors Are Not Used

If pull-up resistors are not used, the inputs shown on page 9 (see "S1 & S2: Pull-up Resistors") will be floating and could cause unexpected behavior if not driven by an external source.

If driven to +5v, the Limit inputs will be asserted. If driven to GND, the Limit inputs will be de-asserted. See circuit below. If you wish to invert this logic, see the SetSignalSense command. If you wish to disable the limit inputs, see the SetLimitSwitchMode command on page 93.

RS-422/485 Serial Cable

Use the following schematic to build the RS-422/485 cable that connects the module to the breakout board. The connectors (Opto part numbers 6346 and R80088) are provided in the motion control kit.

SNAP-SCM-MCH16		SNAP-SCM-BB4				
Description	Pin	Pin	Description			
GND	1, 2	3, 9, 10	GND			
TX+	3	4	FROM HOST+			
TX-	4	5	FROM HOST-			
RX+	5	1	TO HOST+			
RX-	6	2	TO HOST-			
VMOD*	7, 8	7, 8	VMOD*			

* VMOD can only power one SNAP-SCM-BB4

Calculating Power Requirements

When you assemble a SNAP rack that includes a SNAP-SCM-MCH16, you need to calculate the power requirements to make sure that the rack's power supply is adequate for the combined current needed by the brain or controller and all the I/O modules. For more information and power requirements worksheets, see the *SNAP I/O Wiring Guide* (form 1403) as well as the wiring appendices in the brain or controller's user's guide.

Hardware Quick Start

OPTO 22

This chapter describes how to set up the Motion Control Subsystem hardware.

In This Chapter

What You Will Need	.below
Setting Up the SNAP-SCM-MCH16 Modu	ıle12
Configuring the Breakout Board	15
Component Connection Schematic	20
Connecting Multiple Breakout Boards	21

What You Will Need

To set up the Motion Control Subsystem you need the following things:

- SNAP-SCM-MCH16 motion module
- SNAP-SCM-BB4 motion control breakout board
- RS-422/485 serial cable (see "RS-422/485 Serial Cable" on page 10)
- PC running Opto 22 PAC Project software version 8.0 or newer
- SNAP PAC rack-mounted controller or brain with firmware version 8.0 or newer.

NOTE: The I/O unit must be part of a system using PAC Control on a SNAP PAC controller.

A SNAP PAC rack

NOTE: Assemble the hardware according to the directions that came with it. For help with wiring, see product data sheets, which are available on our website at www.opto22.com.

- Power supply
- Stepper motor

Setting Up the SNAP-SCM-MCH16 Module

The SNAP-SCM-MCH16 module snaps into place in the row of connectors on any SNAP PAC rack. Each module connector has a number.

1. Set the termination and bias for the SNAP-SCM-MCH16 as follows:

- 2. Place the rack so that the module connector numbers are right-side up, with zero on the left.
- **3.** With the power off, position the SNAP-SCM-MCH16 module over the module connector in position 0, aligning the small slot at the base of the module with the retention bar on the rack. The module can be placed in any position on the rack. This example shows the module in position 0.

4. With the module correctly aligned over the connector, push on the module to snap it into place.

When positioning modules next to each other, be sure to align the male and female module keys (shown in the detailed view in the illustration at right) before snapping a module into position.

Modules snap securely into place and require a special tool (provided) to remove them. To remove a module, see page 14.

5. As shown in the photo at right, use standard 4-40 x 1/4 truss-head Phillips hold-down screws to secure both sides of each module.

CAUTION: Do not over-tighten screws.

6. Make sure the rack is wired to receive 5.0 to 5.2 VDC @ 4A. Leave the power supply off at this time. For more information on power requirements, see , the SNAP I/O Racks Data Sheet.

Removing a Module

- **1.** If the module is held in place with screws, remove them.
- 2. Holding the SNAP module tool (provided) as shown in the illustration at right, insert it into the notch at the base of the module.
- **3.** Squeeze the module tool against the module to open the release latch, and pull straight up on the module to remove it.

Configuring the Breakout Board

For breakout board layout information, see "Breakout Board Specifications" on page 7.

- 1. Decide which of the following example strategies you want to use. For the Electronic Gearing Example you will need to attach a stepper motor (described below) to Axis 0 and Axis 1. For all other example strategies you only need a stepper motor on axis 0.
 - Electronic Gearing Example
 - S-Curve Contouring Example
 - Trapezoidal Contouring Example
 - Velocity Contouring Example

For more information, see "Using the Example Strategies" on page 24.

2. (Optional) If you have an encoder, set the Signal Selection switches for Axis 0 (SW1 and SW2) as shown below for your encoder type. If you are using the Electronic Gearing example strategy, also set the switches for Axis 1 (SW3 and SW4). For help locating the switches on the board, see "Breakout Board Switches" on page 9.

If your encoder outputs differential signals, make sure they are in the Differential Signals position: all *down*.

If your encoder outputs non-differential signals, make sure they are in the Non-Differential Signals position: all *up*.

3. Enable Axis 0 by setting S3 to the Enabled position. If you are using the Electronic Gearing example strategy (see page 24), enable Axis 1 too by setting S5 to the Enabled position.

4. Set the SNAP-SCM-BB4 address and termination on S7 as shown at right.

5. Connect the SNAP-SCM-MCH16 to the SNAP-SCM-BB4 with the RS-422/485 serial cable (see "RS-422/485 Serial Cable" on page 10).

6. Connect your stepper motors to the SNAP-SCM-BB4. Minimum connections are Pulse, Direction, and GND. Make sure you have a power supply for the stepper motor. To locate the connector pins on the board, see "Breakout Board Connector Pins" on page 8.

- 7. (Optional) If you have an encoder, see "Breakout Board Connector Pins" on page 8 to locate and connect the connector pins.
- **8.** If the controller or brain on the rack already has an IP address, skip to "Checking the Firmware Version of the Controller or Brain" on page 19. If not (as indicated by the STAT LED on controller or brain blinking orange), assign an IP address by following the steps in the next section.

Assigning an IP Address to the Controller or Brain

The following instructions for assigning an IP address are provided here in simplified form for your convenience. For detailed instructions on assigning an IP address, please see form 1704, the PAC Manager User's Guide.

Before you begin, please note the following:

 All SNAP Ethernet-based controllers and brains must be assigned a unique, static IP address. If the network you're using has a Dynamic Host Configuration Protocol (DHCP) server, either assign a static IP address before connecting the device to the network (preferred), or disable the server. (These servers may respond to BootP requests and assign a dynamic address.)

CAUTION: To make sure the controller or I/O unit is not on a network with a DHCP server, we recommend you use a crossover cable with a direct connection to assign IP addresses.

- If you are adding an I/O segment to an existing Ethernet network, your network administrator must provide static IP addresses and subnet masks for the I/O units. If you are creating an independent, dedicated Ethernet network just for I/O, you can choose your own addresses.
- You will need to know the device's MAC address. The MAC address is printed on a label on the side of the device.
- BootP broadcasts cannot get through a firewall in the PC where PAC Manager is running. Make sure any firewall in the computer (such as the built-in firewall in Windows XP) is disabled before you try to assign IP addresses. Firewalls in a router should not be a problem.

To assign an IP address:

1. Connect the device (controller or brain) using ETHERNET 1. (Only Ethernet 1 sends a BootP request.)

NOTE: As stated in the CAUTION above, we recommend you use a crossover cable with a direct connection to assign IP addresses.

- 2. Choose Start > Programs > Opto 22 > PAC Project > PAC Manager.
- **3.** Choose Tools > Assign IP Address.

In the dialog that opens you should see the device's MAC address. Addresses of other Opto 22 Ethernet-based devices without IP addresses might appear as well.

-	🛋 Assign IP Address							
	Units Requesti	ng IP Addresses						
	Status	MAC Address	IP Add					
	Discovered	00-A0-3D-00-E1-16						

- 4. Turn on the controller.
- 5. Double-click the MAC address of the device to open the Mapping dialog box.

CAUTION: PAC Manager lists ALL Opto 22 devices sending BootP or DHCP broadcasts. Assign IP addresses only to the ones you know are yours!

差 Add MAC To IP Mapping							2	<	
MAC Address:	0	0-A	0-3	3D-0)0-	E1-	16	•	
IP Address:	Γ	C		0		0		0	
Subnet Mask:	Γ	0		0		0		0	
Gateway Address:	Γ	0		0		0		0	
DNS Address:	Γ	0		0		0		0	
Host Name:	Γ	_	_	_	_	_	_		
OK Cancel									

6. Enter an IP Address and Subnet Mask compatible with your network.

WARNING! Each device on your network, including computers, routers, controllers, brains, and so on, must have a unique IP address. Failure to assign unique IP addresses may cause catastrophic network or hardware failures. If you don't know which IP addresses are safe to use, check with your system administrator.

7. When the IP address, subnet mask, and other fields are correct, click OK.

The new IP address information appears in the upper list in the dialog box, and the device's status changes to Mapped. The address information also appears in the lower list to show that this device has been mapped to this address.

8. With the device still highlighted, click Assign.

The address is saved to flash memory, and the status changes to Static IP.

9. To verify that the IP address has been successfully assigned, highlight the device in the upper list and click Test.

A DOS window opens and the IP address is automatically contacted using the PING program. You should see a reply similar to the following:

🛤 C:\WINDOWS\system32\cmd.exe	- 🗆 🗙
Pinging 10.192.50.11 with 32 bytes of data:	_
Reply from 10.192.50.11: bytes=32 time<1ms TTL=255 Reply from 10.192.50.11: bytes=32 time<1ms TTL=255 Reply from 10.192.50.11: bytes=32 time<1ms TTL=255 Reply from 10.192.50.11: bytes=32 time<1ms TTL=255	
Ping statistics for 10.192.50.11: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = Øms, Maximum = Øms, Average = Øms	
Press any key to continue	
	-

If you don't see a reply, make sure the subnet mask you've assigned matches the subnet mask on your PC.

10. For future reference, write the IP address next to the MAC address on the white sticker provided on the device, then close the DOS window.

11. Click Close to exit.

Next you will check to make sure the controller or brain is running firmware version 8.0 or newer.

Checking the Firmware Version of the Controller or Brain

- 1. Choose Start > Programs > Opto 22 > PAC Project > PAC Manager.
- 2. In the PAC Manager main window, click Inspect [.
- **3.** In the IP Address field, type the IP address of the SNAP-PAC-R controller or brain, and then click Status Read.

ddress: 10.192	54.115 _ Port: 2001	Timeout: 1000 ms Status: Status Read	area last read at 12/13/06 12:28:5	0
Status Read	Status Read			
Status Write	ADDRESS	DESCRIPTION	VALUE	Refresh
Point Config	0xFFFF F030 0004 0xFFFF F030 0008	Powerup Clear Flag PUC Needed Busy Flag	PUC Received (0) O	
)igital Bank	0xFFFF F030 0018	Loader Version	R1.0d	
			Contraction of the second s	

Firmware version

If you don't have firmware version 8.0 or newer, new firmware can be downloaded from our website, www.opto22.com. For information on how to load new firmware, see Chapter 6 of the *PAC Manager User's Guide*, form 1704.

Component Connection Schematic

The following schematic shows a basic connection of one module to one breakout board, and includes an optional encoder.

Connecting Multiple Breakout Boards

You can daisy-chain up to four breakout boards as shown here. The first breakout board in the chain receives power from the motion module, while each additional breakout board requires its own external power supply. The boards are connected with serial RS-422/485 cables. You can connect up to four stepper motors per breakout board. Also see the schematic on the next page.

A PC is used to develop and maintain a PAC Control strategy. The strategy is downloaded to the controller where it runs independently of the PC.

Daisy-Chained Breakout Boards Schematic

Use the following schematic to daisy-chain SNAP-SCM-BB4 breakout boards.

SNAP-SCM-BB4		Next SNAP-SCM-BB4		
Description	Pin	Pin	Description	
TO HOST+	1	1	TO HOST+	
TO HOST-	2	2	TO HOST-	
GND	3	3	GND	
FROM HOST+	4	4	FROM HOST+	
FROM HOST-	5	5	FROM HOST-	

Commands Quick Start

OPTO 22

This chapter gets you started using the OptoMotion library of motion commands, which you can use within PAC Control strategies.

In This Chapter

Introduction	.24
Using the Example Strategies	.24
How To Structure a Motion Control Strategy in PAC Control	.25
How To Find Home	.27
Moving a Set Distance	.29
Using a Smooth Start and Smooth Stop	.29
Host I/O Errors	.30
How To Use the Command Details	31
Entering Commands in OptoScript	.32
Response Format	33

Introduction

The OptoMotion commands support many of the Magellan[™] Motion Processor commands, giving you the ability to define and acquire motion process data such as position, velocity, acceleration, breakpoints, interrupts, and time intervals. In addition, you can execute motion-related actions such as smooth stops, stepping, and position adjustments.

Commands are sent to the SNAP-SCM-MCH16 motion module via PAC Control. The SNAP-SCM-MCH16 motion module acts as a communication link between Opto 22 controllers and the SNAP-SCM-BB4 breakout board. Using a PAC Control strategy, you open a TCP Communication Handle to the module. Then you use Transmit/Receive in an OptoScript block to send to the module native English text commands used by the motion processor. The module converts the text strings to binary commands, which it then passes to the motion processor on the breakout board to control the motion of a stepper motor.

You can also use standard PAC Control blocks to enter the motion control commands. However, this typically takes several blocks in a strategy, so it is usually better to use OptoScript. For detailed descriptions of the available commands, see the commands starting on page 38.

Using the Example Strategies

Four example strategies are available on the Opto 22 website, www.opto22.com. Click here, or else navigate to the Downloads section and search for "Motion_Control_Example_Strategies.zip".

The ZIP file contains the following example strategies:

- Electronic Gearing Example: causes axis 0 and axis 1 to rotate for 10 seconds and then stop for 10 seconds.
- S-Curve Contouring Example: turns the motor a quarter turn every 10 seconds. This example uses the S-curve profiling mode.
- Trapezoidal Contouring Example: Turns the motor a quarter turn every 10 seconds. This
 example uses the Trapezoidal profiling mode.
- Velocity Contouring Example: Turns axis 0 on for 10 seconds then off for 10 seconds.

You can use the example strategies as a starting point for creating your own control strategies. In particular, take a look at the OptoScript blocks, Axis Setup and Axis 0 Move for each example. The Axis Setup block initializes the SNAP-SCM-BB4 and the Axis 0 Move block makes axis 0 move.

If you don't have PAC Control you can download it from our website, www.opto22.com. For the Electronic Gearing Example you need a stepper motor attached to axis 0 and axis 1. For all other example strategies you only need a stepper motor on axis 0.

To use an example strategy:

- 1. Unzip the examples from the CD provided to a directory on your local hard drive, and then open one of the strategies.
- 2. With an example strategy open in Configure mode or Online mode, double-click the Control Engines folder on the Strategy Tree and add the control engine as described in Chapter 5 of the *PAC Control User's Guide*, form 1700.

In the Control Engine dialog box, you only need to enter a descriptive Control Engine Name and the Primary IP address, which is the address of the controller. In the Configure Control Engines dialog box, make sure to select the control engine and click Set Active.

- **3.** Close the dialog boxes for adding a control engine.
- Choose Mode > Debug.
 The strategy is downloaded to the controller.
- 5. Click Run Strategy ▶, then attend to any dialog boxes that might appear. At this point your stepper motor should be spinning.

How To Structure a Motion Control Strategy in PAC Control

A motion control strategy in PAC Control should have the following structure:

- 1: Open a communication handle (page 29)
- 2: Reset each axis (page 29)
- 3: Configure parameters (page 30)
- 4: Enable each axis (page 31)
- 5: Close the communication handle (page 32)

Also see, "Entering Commands in OptoScript" on page 32 and "Response Format" on page 33.

1: Open a communication handle

Before anything else, open a communication handle in your PAC Control strategy using the Open Outgoing Communication command.

For example, the comm handle used in this example is comMotionModule.

	tion	ommunica	Outgoing Co	Open
	comMotionModule	Handle	munication	Con
status	comMotionModule		Result in	Put

For more information on using communication handles, see form 1700, the PAC Control User's Guide.

2: Reset the axes

To start configuration, it's a good idea to reset all four axes (0-3).

In an OptoScript block use the PAC Control command Transmit/Receive to the send the motion control Reset command.

For example, to reset the axes for board 0, enter the following code using your own com handle and response string variable:

```
Status = TransmitReceiveString(">Reset,0", ComHandleVariable,
RespStringVariable)
```

Also see, "Entering Commands in OptoScript" on page 32

For more information on using the Transmit/Receive command, see form 1701, the PAC Control Command Reference.

NOTE: It's not necessary to reset with every move.

3: Configure parameters

Next you'll want to configure all of the parameters.

comMotionModule, sCommandResponse);

In the following example, the parameters are borrowed from the S-Curve Contouring example included with the motion control example strategies (see "Using the Example Strategies" on page 24). Only 8 of the parameters are set. The rest have been commented out with //.

Example:

```
// Setup Axis 0 for S-Curve Contouring.
nStatus = TransmitReceiveString(">SetAcceleration,0,3,FF",
comMotionModule, sCommandResponse);
nStatus = TransmitReceiveString(">SetDeceleration,0,3,FF",
comMotionModule, sCommandResponse);
nStatus = TransmitReceiveString(">SetActualPosition,0,0,0",
```

```
nStatus = TransmitReceiveString(">SetActualPositionUnits,0,1",
comMotionModule, sCommandResponse);
```

```
nStatus = TransmitReceiveString(">SetProfileMode,0,2",
comMotionModule, sCommandResponse);
nStatus = TransmitReceiveString(">SetLimitSwitchMode,0,1",
comMotionModule, sCommandResponse);
```

```
nStatus = TransmitReceiveString(">SetSignalSense,0,0800",
comMotionModule, sCommandResponse);//StepOutput Bit 11
nStatus = TransmitReceiveString(">SetJerk,0,2,FFFF",
comMotionModule, sCommandResponse);
```

4: Enable each axis

After configuring the parameters, make sure each axis you are using is enabled by sending the GetMotorMode command.

For example, for axis 0 send >GetMotorMode, 0. If the response is 1, the axis is ready. If its 0, troubleshoot the configuration strings used in the previous step.

Example:

```
sVelocity0 = ">SetVelocity,0,";
nVelocity0 = nRPM * 447.392426667; // Look in the User's
Guide to Calculate RPMs, etc.
NumberToHexString((nVelocity0 >> 16) bitand 0xFFFF, sTemp);
sVelocity0 += sTemp; // Append the first data word.
sVelocity0 += Chr(',');
NumberToHexString(nVelocity0 bitand 0xFFFF, sTemp);
sVelocity0 += sTemp; // Append the second data word.
```

```
nStatus = TransmitReceiveString(sVelocity0, comMotionModule,
sCommandResponse);
```

5: Close the communication handle

Finally, close the communication handle.

Example:

Close Communication	
Communication Handle	comMotionModule
Put Status in	comMoitonModule_status

How To Find Home

For many applications it's important to be able to move your device to the home position. To do this, send the SetBreakPointValue and SetBreakPoint commands to enable a breakpoint at home. Then send the device position to a value past the home point. This allows you to rely on the home inputs and the breakpoints to stop the device.

NOTE: Always make sure to load the breakpoint comparison value (SetBreakPointValue command) before setting a new breakpoint condition (SetBreakPoint command). Failure to do so will likely result in unexpected behavior.

Single Axis Example

```
// Set Positions to a value just past home.
nPosition0 = 280000;
sPosition0 = ">SetPosition,0,";
NumberToHexString((nPosition0 >> 16) bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the first data word.
sPosition0 += Chr(',');
NumberToHexString(nPosition0 bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the second data word.
nStatus = TransmitReceiveString(sPosition0,
comMotionModule,sCommandResponse);
// Set Breakpoint 0 setup for signal status
nStatus = TransmitReceiveString(">SetBreakPointValue,0,0,0008,0000",
comMotionModule, sCommandResponse);
//Breakpoint 0, abrupt stop, signal status
nStatus = TransmitReceiveString(">SetBreakPoint,0,0,0A20",
comMotionModule, sCommandResponse)
```

```
//Send the update command that will the axis move
nStatus = TransmitReceiveString(">Update,0", comMotionModule,
sCommandResponse);
```

Multiple Axis Example

For a multi-axis system, multiple homes can be done simultaneously by setting up all of the axes individually and then using the MultiUpdate command instead of the Update command used above.

```
// Set Positions to a value just past home for axis 0.
nPosition0 = 280000;
sPosition0 = ">SetPosition,0,";
NumberToHexString((nPosition0 >> 16) bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the first data word.
sPosition0 += Chr(',');
NumberToHexString(nPosition0 bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the second data word.
nStatus = TransmitReceiveString(sPosition0,
comMotionModule,sCommandResponse);
// Set Breakpoint 0 setup for signal status
nStatus = TransmitReceiveString(">SetBreakPointValue,0,0,0008,0000",
comMotionModule, sCommandResponse);
//Breakpoint 0, abrupt stop, signal status
nStatus = TransmitReceiveString(">SetBreakPoint,0,0,0A20",
comMotionModule, sCommandResponse)
// Set Positions to a value just past home for axis 1.
nPosition1 = -170000;
sPosition1 = ">SetPosition,1,";
NumberToHexString((nPosition1 >> 16) bitand 0xFFFF, sTemp);
sPosition1 += sTemp; // Append the first data word.
sPosition1 += Chr(',');
NumberToHexString(nPosition1 bitand 0xFFFF, sTemp);
sPosition1 += sTemp; // Append the second data word.
nStatus = TransmitReceiveString(sPosition1,
comMotionModule,sCommandResponse);
```

// Set Breakpoint 1 setup for signal status

```
nStatus = TransmitReceiveString(">SetBreakPointValue,1,1,0008,0000",
comMotionModule, sCommandResponse);
```

```
//Breakpoint 1, abrupt stop, signal status
nStatus = TransmitReceiveString(">SetBreakPoint,1,1,0A21",
comMotionModule, sCommandResponse)
```

```
//Send the update command that will make all the axis move
nStatus = TransmitReceiveString(">MultiUpdate,0,F", comMotionModule,
sCommandResponse);
```

Moving a Set Distance

To move a set distance, set a variable such as "X_MOVE_COUNT" with an integer. In the following example code taken from a strategy for a module test bed, 12,000 is the number of steps from one module to the next on an X-Y table.

```
sPosition0= ">SetPosition,0,";
nPosition0 = X_MOVE_COUNT ; //12000 is the
distance(Steps) between the modules.
NumberToHexString((nPosition0 >> 16) bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the first data word.
sPosition0 += Chr(',');
NumberToHexString(nPosition0 bitand 0xFFFF, sTemp);
sPosition0 += sTemp; // Append the second data word.
nStatus = TransmitReceiveString(sPosition0,
comMotionModule, sCommandResponse);
nStatus = TransmitReceiveString(">Update,0",
comMotionModule, sCommandResponse);
```

The actual move happens when the >Update, 0 command is executed.

Using a Smooth Start and Smooth Stop

The SetStopMode command and the breakpoint commands (such as SetBreakPoint) all have SmoothStop or AbruptStop options.

Set the starting acceleration with the SetAcceleration command. For example, >SetAcceleration, 0, 3, FF.

Host I/O Errors

The motion processor performs a number of checks on the commands sent to it. These checks improve the safety of the motion system by eliminating incorrect command data values. All such checks associated with host I/O commands are referred to as host I/O errors. To determine the error's cause, use the command GetHostIOError. This command also clears both the error code and the I/O error bit in the I/O status read word.

The following I/O error codes may be returned by the GetHostIOError command.

Code (hex)	Indication	Cause
00	No error	No error condition
01	Magellan reset	Default value of error code on reset or power-up.
02	Invalid instruction	Instruction is not valid in the current context, or an illegal instruction code has been detected.
03	Invalid axis	The axis number contained in the upper bits of the instruc- tion word is not supported by this motion processor.
04	Invalid parameter	The parameter value sent to the motion processor was out of its acceptable range.
05	Trace running	An instruction was issued that would change the state of the tracing mechanism while the trace is running. Instructions which can return this error are SetTraceVariable, SetTrace-Mode & SetTracePeriod.
06	Reserved	
07	Block bound exceeded	 The value sent by SetBufferLength or SetBufferStart would create a memory block which extends beyond the allowed limits of 400h - 7FFFFFFh. Either SetBufferReadIndex or SetBufferWriteIndex sent an index value greater than or equal to the block length.
08	Trace zero	SetTraceStart Immediate was issued, but the length of the trace buffer is currently set to zero.
09	Bad checksum (Serial port only)	The checksum complied and returned by Magellan does not match the checksum which was sent by the host.
0A	Communication Timeout	 Make sure your communication handle is pointing to the SNAP-SCM-MCH16. Check the SNAP-SCM-BB4 address, switch S7. Each motion command has an "Axis" parameter that corresponds to a SNAP-SCM-BB4 address. Check the physical link between the SNAP-SCM-MCH16 and SNAP-SCM-BB4.
0B	Negative velocity	An attempt was made to set a negative velocity without the axis being in velocity contouring profile mode.
0C	S-curve change	The axis is currently executing an S-curve profile move and an attempt was made to change the profile parameters. This is not permitted.
0D	Limit event pending	A limit switch event has occurred.
0E	Move into limit	An attempt was made to execute a move without first clear- ing the limit bit(s) in the event status register.

How To Use the Command Details

Also see, "Entering Commands in OptoScript" on page 32 and "Response Format" on page 33.

For each command in Chapter 5, the instruction mnemonic is shown in the command heading at the left. Certain parameters and other data written to the motion processor are buffered. That is, they are not acted upon until the next Update or MultiUpdate command is executed. These parameters are identified by the word **buffered** in the command heading at the right.

The details for each command are as follows:

- **Syntax** The instruction mnemonic and its required arguments are shown with all arguments separated by commas.
- **Arguments** Encoded-field arguments are packed into a single 16-bit data word. The **Name** of the argument is that shown in the generic syntax.

Instance is the mnemonic used to represent the data value. **Encoding** is the value assigned to the field for that instance.

For numeric arguments, the parameter **Value**, the **Type** (signed or unsigned integer) and **Range** of acceptable values are given. Numeric arguments may require one or two data words. For 32-bit arguments, the high-order part is transmitted first.

You must specify the location of the stepper for each command. The number of the stepper motor identifies one of four SNAP-SCM-BB4 breakout boards as follows:

Stepper Motor Location	Breakout Board Address
0 to 3	0
4 to 7	1
8 to B	2
C to F	3

Data Structure This is a graphic representation of the 16-bit words transmitted in the packet: the instruction, which is identified by its name, followed by 1, 2, or 3 data words. Bit numbers are shown directly below each word. For each field in a word, only the high and low bits are shown. For 32-bit numeric data, the high-order bits are numbered from 16 to 31, the low-order bits from 0 to 15.

Argument names are shown in their respective words or fields.

For data words, the direction of transfer-read or write-is shown at the left of the word's diagram.

Unused bits are shaded. All unused bits must be 0 in data words and instructions sent (written) to the motion processor.

Description Describes what the instruction does and any special information relating to the instruction.

Restrictions Describes the circumstances in which the instruction is not valid, that is, when it should not be issued. For example, velocity, acceleration, deceleration, and jerk parameters may not be issued while an S-curve profile is being executed.

OptoScript
ExampleThe syntax of the text string entered within the TransmitReceiveString OptoScript command, which
is sent to the motion module for conversion to the corresponding PMD C-Motion command for
implementation by the motion control processor.

See Also Refers to related instructions.

Entering Commands in OptoScript

A motion control command is entered as a text string in OptoScript using the TransmitReceiveString command, which is the same as Transmit/Receive String in standard PAC Control. This command sends the motion control command to the processor and then waits for a response. For more information on the Transmit/Receive String command, see the *PAC Control Command Reference*, form 1701. For information on motion control strategy examples available on the Opto 22 website, see "Using the Example Strategies" on page 24.

To enter a motion control command, use the > symbol at the beginning of the command and enclose the command in double quotes, as shown in the following example:

Syntax:

```
TransmitReceiveString(">Command", Communication Handle, Put Result in)
```

```
PAC Control command Motion control command Communication Handle Put Result in

Status = TransmitReceiveString(">SetAcceleration,4,0,3E", ComHandleVariable, RespStringVariable)
```

For the PAC Control command use TransmitReceiveString. Note that the Put Result in parameter is for the response from the motion control command. The following examples show the SetAcceleration and Get Acceleration commands. Quotation marks are used here because these are string literals rather than string variables.

Example 1: SetAcceleration.

Motion control command:

Put Result in:

RespStringVariable

If the status byte returns a 00, the command is successful. Any other response indicates an error. See "Response Format" on page 33.
Example 2: Get Acceleration.

Motion control command:

Communication Handle:

tcp:	127.0.0.	1:22500
IP a	address of	Port
the	e controller	22500 - 22531
		even only

For more information on communication handles, see Chapter 10 in the PAC Control User's Guide.

Put Result in:

RespStringVariable

If the status byte returns a 00, the command is successful. Any other response indicates an error. See "Response Format," below.

Response Format

Command responses are in the following format:

16-bit returned data encoded as a hex string. Depending on the command, includes 0, 1, 2, or 3 parameters.

I Status: If successful, 00 If not successful, a code from the Host I/O Errors list.

Returned packet examples:

Successful command: >00,0123,4567,89AB Not successful: >04

Command Reference

OPTO 22

This command reference provides a list of the motion control commands by group, and a detailed explanation of each command listed in alphabetical order.

For an explanation on how to use the information included for each command, page 31.

In This Chapter

Commands by Group

The following Magellan[™] Motion Processor commands are supported in PAC Control using OptoScript.

Commands	Description
Breakpoints and Interrupts	
ClearInterrupt	Reset interrupt line.
GetInterruptAxis	Get the axes with pending interrupts.
SetBreakPoint, GetBreakPoint	Set/Get breakpoint type.
SetBreakPointValue, GetBreakPointValue	Set/Get breakpoint comparison value.
SetInterruptMask, GetInterruptMask	Set/Get interrupt mask.
Digital Servo Filter	•
ClearPositionError	Set position error to 0.
GetPositionError	Get the position error.
SetAutoStopMode, GetAutoStopMode	Set/Get auto stop on position error (on or off).
SetPositionErrorLimit, GetPositionErrorLimit	Set/Get the maximum position error limit.
Encoder	
AdjustActualPosition	Sum the specified offset with the actual encoder position.
GetActualVelocity	Get the actual encoder velocity.
GetCaptureValue	Get the position capture value, and reset the capture.
SetActualPosition, GetActualPosition	Set/Get the actual encoder position.
SetActualPositionUnits, GetActualPositionUnits	Set/Get the unit type returned for the actual encoder position.
SetCaptureSource, GetCaptureSource	Set/Get the capture source (home or index).
SetEncoderModulus, GetEncoderModulus	Set/Get the full scale range of the parallel-word encoder
SetEncoderSource, GetEncoderSource	Set/Get the encoder type.
SetEncoderToStepRatio, GetEncoderToStepRatio	Set/Get encoder count to step ratio.
External RAM	
ReadBuffer	Read a long word value from a buffer memory locations.
SetBufferLength, GetBufferLength	Set/Get the length of a memory buffer.
SetBufferReadIndex, GetBufferReadIndex	Set/Get the buffer read pointer for a particular buffer.
SetBufferStart, GetBufferStart	Set/Get the start location of a memory buffer.
SetBufferWriteIndex, GetBufferWriteIndex	Set/Get the buffer write pointer for a particular buffer.
WriteBuffer	Write a long word value to a buffer memory location.
Motor Output	
SetMotorMode, GetMotorMode	Set/Get motor loop mode.
SetStepRange, GetStepRange	Set/Get the allowable range (in kHz) for step output generation.
Profile Generation	
GetCommandedAcceleration	Get commanded (instantaneous desired) acceleration
GetCommandedPosition	Get commanded (instantaneous desired) position.
GetCommandedVelocity	Get commanded (instantaneous desired) velocity.
MultiUpdate	Forces buffered command values to become active for multiple axes.
SetAcceleration, GetAcceleration	Set/Get acceleration limit.

Commands	Description
SetDeceleration, GetDeceleration	Set/Get deceleration limit.
SetGearMaster, GetGearMaster	Set/Get the electronic gear mode master axis and source (actual or target-based).
SetGearRatio, GetGearRatio	Set/Get commanded electronic gear ratio.
SetJerk, GetJerk	Set/Get jerk limit.
SetPosition, GetPosition	Set/Get the destination position.
SetProfileMode, GetProfileMode	Set/Get the profile mode (S-curve, trapezoidal, velocity-contouring, or electronic gear).
SetStartVelocity, GetStartVelocity	Set/Get start velocity.
SetStopMode, GetStopMode	Set/Get stop command; abrupt, smooth, or none.
SetVelocity, GetVelocity	Set/Get velocity limit.
Update	Forces buffered command values to become active.
ServoLoopControl	
GetTime	Get current chip set time (number of servo loops).
SetAxisMode, GetAxisMode	Set/Get the axis operation mode (enabled or disabled).
SetLimitSwitchMode, GetLimitSwitchMode	Set/Get the limit switch mode (on or off).
SetMotionCompleteMode, GetMotionCompleteMode	Set/Get the motion complete mode (target-based or actual).
SetSampleTime, GetSampleTime	Set/Get servo loop sample time.
SetSettleTime, GetSettleTime	Set/Get the axis-settled time.
SetSettleWindow, GetSettleWindow	Set/Get the settle-window boundary value.
SetTrackingWindow, GetTrackingWindow	Set/Get the tracking window boundary value.
Status Registers and AxisOut Indicator	
GetActivityStatus	Get activity status register.
GetEventStatus	Get event status register.
GetSignalStatus	Get the signal status register.
ResetEventStatus	Reset bits in event status register.
SetAxisOutSource, GetAxisOutSource	Set/Get axis out signal monitor source.
SetSignalSense, GetSignalSense	Set/Get the interpretation of the signal status bits.
Miscellaneous	
NoOperation	Perform no operation.
Reset	Reset the SNAP-SCM-BB4.

Commands in Alphabetical Order

AdjustActualPosition 33	GetJerk 50	SetBufferLength, GetBufferLength 73
ClearInterrupt 34	GetLimitSwitchMode 50	SetBufferReadIndex, GetBufferReadIndex 74
ClearPositionError 35	GetMotionCompleteMode 50	SetBufferStart, GetBufferStart 75
GetAcceleration 35	GetMotorMode 50	SetBufferWriteIndex, GetBufferWriteIndex 76
GetActivityStatus 36	GetPosition 50	SetCaptureSource, GetCaptureSource 77
GetActualPosition 37	GetPositionError 51	SetDeceleration, GetDeceleration 78
GetActualPositionUnits 37	GetPositionErrorLimit 51	SetEncoderModulus,GetEncoderModulus 79
GetActualVelocity 38	GetProfileMode 51	SetEncoderSource, GetEncoderSource 80
GetAutoStopMode 39	GetSampleTime 52	SetEncoderToStepRatio, GetEncoderToStepRatio 81
GetAxisMode 39	GetSettleTime 52	SetGearMaster, GetGearMaster 82
GetAxisOutSource 39	GetSettleWindow 52	SetGearRatio, GetGearRatio 83
GetBreakPoint 39	GetSignalSense 52	SetInterruptMask, GetInterruptMask 85
GetBreakPointValue 39	GetSignalStatus 53	SetJerk, GetJerk 86
GetBufferLength 39	GetStartVelocity 54	SetLimitSwitchMode, GetLimitSwitchMode 87
GetBufferReadIndex 40	GetStepRange 54	SetMotionCompleteMode, GetMotionCompleteMode 88
GetBufferStart 40	GetStopMode 54	SetMotorMode, GetMotorMode 89
GetBufferWriteIndex 40	GetTrackingWindow 54	SetPosition, GetPosition 90
GetCaptureSource 40	GetTime 55	SetPositionErrorLimit, GetPositionErrorLimit 91
GetCaptureValue 41	GetVelocity 55	SetProfileMode, GetProfileMode 92
GetCommandedAcceleration 42	MultiUpdate 56	SetSampleTime, GetSampleTime 93
GetCommandedPosition 43	NoOperation 57	SetSettleTime, GetSettleTime 94
GetCommandedVelocity 44	ReadBuffer 58	SetSettleWindow, GetSettleWindow 95
GetDeceleration 45	Reset 59	SetSignalSense, GetSignalSense 96
GetEncoderModulus 45	ResetEventStatus 61	SetStartVelocity, GetStartVelocity 98
GetEncoderSource 45	SetAcceleration, GetAcceleration 62	SetStepRange, GetStepRange 99
GetEncoderToStepRatio 45	SetActualPosition, GetActualPosition 63	SetStopMode, GetStopMode 100
GetEventStatus 46	SetActualPositionUnits, GetActualPositionUnits 64	SetTrackingWindow, GetTrackingWindow 101
GetGearMaster 47	SetAutoStopMode,GetAutoStopMode 65	SetVelocity, GetVelocity 102
GetGearRatio 47	SetAxisMode, GetAxisMode 66	Update 103
GetHostIOError 48	SetAxisOutSource, GetAxisOutSource 67	WriteBuffer 104
GetInterruptAxis 49	SetBreakPoint, GetBreakPoint 69	
GetInterruptMask 50	SetBreakPointValue, GetBreakPointValue 71	

AdjustActualPosition

Syntax	Adjust/	ActualPosition, axi	s, P1, P2			
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Ad 0 1 2 3	dress	
		Туре	Ra	ange	Scaling	Units
	position	signed 32 bi	ts -2	31 to 231-1	unity	counts/cycle ² microsteps/cycle
Data Structure	Adjust	ActualPosition				
	P1 writ	e position (high-	First da order part)	ata word		
	P2 writ	31 e <u>position (low-c</u> 15	Second order part)	data word		16 0
Description	The post register to the c actual p position modifie issued. position proced	sition specified as (encoder position current actual pos position value min n is established. Th ed by this amount In effect, this instr ns can be calculat ure. The position take	the parar n) for the s ition. At the nus the po- ne destina so that n ruction es ed. It is co- error is als	neter to Ad specified ax ne same tim osition error ation position trajectory tablishes a ommonly us o zeroed. mmediately	justActualP is. This has ne, the com This preve on (see "Set motion wi new referen sed to set a	Position is summed with the actual position the effect of adding or subtracting an offset manded position is replaced by the new ents a servo "bump" when the new axis tPosition, GetPosition" on page 96) is also ill occur when the update instruction is nce position from which subsequent known reference position after a homing
	najasa				, 1015 1101 0	
Example	Statu: (">Ad	s=TransmitReco justActualPos	eiveStr ition,4	ing ,0,3E″,Co	omHandle,	ResponseString)
See Also	GetPos GetAct	itionError (page 5) ualPositionUnits (j	7), GetAct bage 70),	ualVelocity SetActualPo	(page 44), osition, Get	SetActualPositionUnits, ActualPosition (page 69)

ClearInterrupt

Syntax ClearInterrupt, axis

Arguments		Туре	Range	Board Address
	axis	unsigned 8 bits	0 to 3	0
			4 to 7	1
			8 to B	2
			C to F	3

Description ClearInterrupt resets the HostInterrupt signal to its inactive state. If interrupts are still pending, the HostInterrupt line will return to its active state within one chip cycle. Refer to Set/GetSampleTime for information on chip cycle timing (page 99). It is used after an interrupt has been recognized and processed by the host. This command does not affect the event status register. The ResetEventStatus command should be issued prior to the ClearInterrupt command to clear the condition which generated the interrupt. The ClearInterrupt command has no effect if it is executed when no interrupts are pending.

The axis number is not used.

OptoScript	Status=TransmitReceiveString
Example	(">ClearInterrupt,0",ComHandle,ResponseString)

See Also GetInterruptAxis (page 55), SetInterruptMask, GetInterruptMask (page 91), ResetEventStatus (page 67)

ClearPositionError

Syntax

ClearPositionError, axis

buffered

Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3				
Description	ClearPo input), the axi	ositionError sets t thereby clearing s is at rest, or whe	he profile's the positio en it is mov	commanded position n error for the specified ing.	equal to the actual p d axis. This command	position (encoder d can be used when		
Restrictions	ClearPo Update This co mode.	ClearPositionError is a buffered command. The new value set will not take effect until the next Update or MultiUpdate instruction. This command should not be sent while the chip is executing a move using the S-curve profile mode.						
OptoScript Example	Statu (">Cl	s=TransmitRec earPositionE	ceiveStr: rror,1",(ng ComHandle,Response	eString)			
See Also	GetPos (page s	sitionError (page ! 97)	57), MultiU	odate (page 62), SetPos	sitionErrorLimit, GetF	² ositionErrorLimit		

GetAcceleration

See "SetAcceleration, GetAcceleration" on page 68.

GetActivityStatus

Syntax

Arguments		Туре	Range	Board Address		
-	axis	unsigned 8 bits	0 to 3	0		
		•	4 to 7	1		
			8 to B	2		
			C to F	3		
Returned Data	Name status	Type unsigned 32	2 bits se	e below		
Data Structure	GetActi	vityStatus				
	First data word					
	P1 rea	d <i>position</i> (high 16	-order part)		0	

GetActivityStatus, axis, P1

Description GetActivityStatus reads the 16-bit activity status register for the specified axis. Each of the bits in this register continuously indicate the state of the motion processor without any action on the part of the host. There is no direct way to set or clear the state of these bits, since they are controlled by the motion processor.

The following table shows the encoding of the data returned by this command

Name	Bits	Description				
reserved	6	Not used; may be 0 or 1.				
reserved	0	Not used; may be 0 or 1.				
At maximum velocity	1	Set to 1 when the trajectory is at maximum velocity. This bit is deter- mined by the trajectory generator, not the actual encoder velocity.				
Tracking	2	Set to 1 when the axis is within the tracking window.				
Current profile mode	3-5	Contains trajectory mode encoded as follows:				
		bit 5bit 4bit 3Profile Mode000trapezoidal001velocity contouring010s-curve011electronic gear				
Axis settled	7	Set to 1 when the axis is settled.				
Motor on/off	8	Set to 1 when motor mode is on, 0 when off.				
Position capture	9	Set to 1 when a value has been captured by the high speed position capture hardware but has not yet been read.				
In-motion	10	Set to 1 when the trajectory generator is executing a profile.				
In positive limit	11	Set to 1 when the positive limit switch is active.				
In negative limit	12	Set to 1 when the negative limit switch is active.				

	Name	Bits	Description				
	Profile segment	13-15	When the profile mode is S-curve, it contains the profile segment number 1-7 while profile is in motion, and contains a value of 0 when the profile is at rest. This field is undefined when using the Trapezoi- dal and Velocity Contouring profile modes.				
OptoScript Example	<pre>Status=TransmitReceiveString (">GetActivityStatus,2",ComHandle,ResponseString)</pre>						
See Also	GetEventStatus (page 52), GetSignalStatus (page 59)						

GetActualPosition

See "SetActualPosition, GetActualPosition" on page 69.

GetActualPositionUnits

See "SetActualPositionUnits, GetActualPositionUnits" on page 70.

GetActualVelocity

Syntax	GetActu	alVelocity, <i>axis</i>						
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board A	Address 0 1 2 3			
Returned Data	Name velocity	Type signed 32 b	Ran	ge to 231-1	Scaling 1/2 ¹⁶	Units counts/cycle ²		
Data Structure	GetActu P1 read	alVelocity	First da / (high-orde	ata word er part)				
	P2 read	31 actual velocity 15	Second (low-order	data word part)				
Description	on GetActualVelocity reads the value of the velocity for the specified axis. The actual veloc by subtracting the actual position during the previous chip cycle from the actual posit chip cycle. The result of this subtraction will always be integer because position is alwa a result the value returned by GetActualVelocity will always be a multiple of 65,536 sin represents a value of one in the 16.16 number format. The low word is always zero.						ity is derived on for this ys integer. As ce this	
	This valu Scaling 01Ah, lo "SNAP-S	ue is the result of example: If a valu wwword: 0h) this CM-MCH16 Con	the last e ue of 1,703 correspor	ncoder in 3,936 is re nds to a ve prmulas" c	put, so it w trieved by t elocity of 1, on page 11	vill be accurate to the GetActualVelo ,703,936/65,536 o 1.	within one cyc ocity commanc or 26 counts/cy	le. I (high word: cle. See
Restrictions	The actu the actu position multiple always z	ual velocity is der al position for th is always intege of 65,536 since zero.	ived by su iis chip cyo r. As a resu this repres	Ibtracting cle. The re ult the val sents a va	the actual esult of this ue returned lue of one i	position during t subtraction will a d by GetActualVe in the 16.16 num	the previous chi always be integ locity will alway ber format. The	ip cycle from er because /s be a low word is
OptoScript Example	Status (">Get	=TransmitRec ActualVeloci	eiveStr ty,3″,C	ing omHandl	e,Respon	seString)		
See Also	GetCom	mandedVelocity	v (page 50))				

GetAutoStopMode

See "SetAutoStopMode, GetAutoStopMode" on page 71.

GetAxisMode

See "SetAxisMode, GetAxisMode" on page 72.

GetAxisOutSource

See "SetAxisOutSource, GetAxisOutSource" on page 73.

GetBreakPoint

See "SetBreakPoint, GetBreakPoint" on page 75.

GetBreakPointValue

See "SetBreakPointValue, GetBreakPointValue" on page 77.

GetBufferLength

See "SetBufferLength, GetBufferLength" on page 79.

GetBufferReadIndex

See "SetBufferReadIndex, GetBufferReadIndex" on page 80.

GetBufferStart

See "SetBufferStart, GetBufferStart" on page 81.

GetBufferWriteIndex

See "SetBufferWriteIndex, GetBufferWriteIndex" on page 82.

GetCaptureSource

See "SetCaptureSource, GetCaptureSource" on page 83.

GetCaptureValue

Syntax	GetCaptureValue, axis								
Arguments	ן <i>axis</i> נ	Гуре Insigned 8	bits 0 4 8 C	Range to 3 to 7 to 8 to 8 C to F	Board Address 0 1 2 3				
	Name captured (T bosition s	Type signed 32 b	bits	Range -231 to 231-1	Scaling unity	Units counts microsteps		
Data Structure	GetCaptureValue								
	First data word P1 read <u>captured position (high-order part)</u> 31 16								
	P2 read	capture 15	ed position	Second o (low-ord)	lata word er part)		0	I	
Description	GetCaptureValue returns the contents of the position capture register for the specified axis. This command also resets bit 9 of the activity status register; thus allowing another capture to occur.								
	lf actual	position u	inits is set	t to step	s, the returned p	osition wi	ll be in units	of steps.	
OptoScript Example	Status= (">Get(<pre>Status=TransmitReceiveString (">GetCaptureValue,4",ComHandle,ResponseString)</pre>							
See Also	SetCaptureSource, GetCaptureSource (page 83), SetActualPositionUnits, GetActualPositionUnits (page 70), GetActivityStatus (page 42)								

GetCommandedAcceleration

Syntax	GetCommandedAccele	ration, <i>axis</i>		
Arguments	Type axis unsigned 8 bits	RangeBoard A0 to 34 to 78 to BC to F	Address 0 1 2 3	
Returned Data	Name Type acceleration signed 32	Range bits -231 to 231-1	Scaling 1/2 ¹⁶	Units counts/cycle ² microsteps/cycle
Data Structure	GetCommandedAcceleration (P1 read acceleration (31 P2 read acceleration (15	ation First data word (high-order part) Second data word (low-order part)		16 0
Description	GetCommandedAccele Commanded accelerati generator. Scaling example: If a va 114,688/ 65,536 = 1.750 Formulas" on page 111.	ration returns the co on is the instantaned lue of 114,688 is retri 0 counts/cycle2 acce	mmanded a ous accelera ieved using eleration valu	acceleration value for the specified axis. tion value output by the trajectory this command then this corresponds to ue. See "SNAP-SCM-MCH16 Conversion
OptoScript Example See Also	Status=TransmitRe (">GetCommandedAc	ceiveString celeration,5″,C n (page 49), GetCom	omHandle, nmandedVe	ResponseString) locity (page 50)

GetCommandedPosition

Syntax	GetCor	nmandedPositior	n, <i>axis</i>						
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Add 0 1 2 3	dress				
Returned Data	Name position	Type signed 32 b	Ra bits -2	ange 31 to 231-1	Scaling unity	Units counts microsteps			
Data Structure	GetCon P1 rea	GetCommandedPosition First data word P1 read position (high-order part) 31 16 Second data word P2 read position (low-order part)							
Description	6 GetCommandedPosition returns the commanded position for the specified axis. Commanded position is the instantaneous position value output by the trajectory generator. This command functions in all profile modes.								
OptoScript Example	Statu: (">Ge	Status=TransmitReceiveString (">GetCommandedPosition,6",ComHandle,ResponseString)							
See Also	GetCommandedAcceleration (page 48), GetCommandedVelocity (page 50)								

GetCommandedVelocity

Syntax	GetCo	mmandedVelocit	y, axis			
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Add 0 1 2 3	ress	
Returned Data	Name velocity	Type signed 32 b	Ra bits -2.	n ge 31 <i>t</i> o 23 ¹ -1	Scaling 1/2 ¹⁶	Units counts/cycle microsteps/cycle
Data Structure	GetCor P1 rea P2 rea	mmandedVelocity ad <u>velocity (high-</u> 31 ad <u>velocity (low-c</u> 15	First da order part) Second o order part)	ata word		16 0
Description	GetCor velocit Scaling 2979h value.	mmandedVelocity y is the instantand g example: If a val in low word) ther See "SNAP-SCM-N	y returns th eous veloc ue of -1,23 n this corre MCH16 Cor	ne command ity value out 4,567 is retrie sponds to -1 nversion Forn	ed velocity v but by the tr eved using th ,234,567/65, nulas" on pa	value for the specified axis. Commanded ajectory generator. his command (FFEDh in high word, 536 = -18.8380 counts/cycle velocity ge 111.
OptoScript Example	Statu (">Ge	s=TransmitRec tCommandedVel	ceiveStri locity,7	ing ",ComHandl	e,Respons	seString)
See Also	GetCo	mmandedAccelei	ration (pag	e 48), GetCor	mmandedPc	osition (page 49)

GetDeceleration

See "SetDeceleration, GetDeceleration" on page 84.

GetEncoderModulus

See "SetEncoderModulus, GetEncoderModulus" on page 85.

GetEncoderSource

See "SetEncoderSource, GetEncoderSource" on page 86.

GetEncoderToStepRatio

See "SetEncoderToStepRatio, GetEncoderToStepRatio" on page 87.

GetEventStatus

Syntax	GetEve	entStatus	s, axis														
Arguments	Туре			Ra	nge	в	oard	Addr	ess								
	axis	unsigne	d 8 bit	s	0 t	о З			0								
	-			4 to 7 1		1											
					8 t	o B			2								
		C to F							3								
Returned Data	Name status	T	`ype Insigne	ed 16	3 bits	S	ee be	elow									
Data Structure	GetEve	entStatus						-									
	D1 roc							Data	à	r –			1	r	r –		
	PTrea	10 15	14	13	12	11	10		8	7	6	5	4	3	2		0
		10	17	.0	12		10		0	'	5	0	Ŧ	5	2	'	5
	P1 rea	nd 15	14	13	12	11	10	Data	8	7	6	5	4	3	2	1	(

Description GetEventStatus reads the event register for the specified axis. All of the bits in this status word are set by the motion processor and cleared by the host. To clear these bits, use the ResetEventStatus command. The following table shows the encoding of the data returned by this command.

Name	Bit(s)	Description
Motion complete	0	Set to 1 when motion has completed. SetMotionCompleteMode determines if this bit is based on the trajectory generator position or the encoder position.
Wrap-around	1	Set to 1 when the actual (encoder) position has wrapped from maximum allowed position to minimum, or vice versa.
Breakpoint 1	2	Set to 1 when breakpoint 1 has been triggered.
Capture received	3	Set to 1 when a position capture has occurred.
Motion error	4	Set to 1 when a motion error has occurred.
In positive limit	5	Set to 1 when the axis has entered a positive limit switch.
In negative limit	6	Set to 1 when the axis has entered a negative limit switch.
Instruction error	7	Set to 1 when an instruction error has occurred.
reserved 8 - 10	8 - 10	Not used; may be 0 or 1.
Commutation error	11	Set to 1 when a commutation error has occurred.
reserved 12 - 13	12 - 13	Not used; may be 0 or 1.
Breakpoint 2	14	Set to 1 when breakpoint 2 has been triggered.
reserved 15	15	Not used; may be 0 or 1.

OptoScript

Status=TransmitReceiveString

Example (">GetEventStatus, 8", ComHandle, ResponseString)

See Also GetActivityStatus (page 42), GetSignalStatus (page 59)

GetGearMaster

See "SetGearMaster, GetGearMaster" on page 88.

GetGearRatio

See "SetGearRatio, GetGearRatio" on page 89.

GetHostIOError

Syntax	GetHostlOE	error, <i>axis</i>				
Arguments	Typ <i>axi</i> s uns	be igned 8 bits	Range 0 to 3 4 to 7	Board Address 0 1		
			8 to B C to F	2 3		
Returned Data	Name axis mask	Instance None Axis0mask Axis1mask Axis2mask Axis3mask	Encod 0 1 2 4 8	ling		
Name Type Range	<i>error</i> unsigr	ned 16 bits 0 -	- Eh			
Packet Structure	GetHostIOE	15		Data error	4 3	
						5

Description GetHostlOError returns the code for the last host I/O error, and then resets the error to zero. Generally, this command is issued only after the instruction error bit in the event status register indicates there was an I/O error. It also resets the HostlOError bit in the I/O status read word to zero.

Error Code	Encoding
No error	0
Processor Reset	1
Invalid instruction	2
Invalid axis	3
Invalid parameter	4
Trace running	5
reserved	6
Block out of bounds	7
Trace buffer zero	8
Bad serial checksum	9
reserved	Ah
Invalid negative value	Bh
Invalid parameter change	Ch

The error codes are encoded as defined below:

Error Code	Encoding
Invalid move after limit condition	Dh
Invalid move into limit	Eh

OptoScript
ExampleStatus=TransmitReceiveString
(">GetIOHostError,0",ComHandle,ResponseString)

See also GetEventStatus (page 52)

GetInterruptAxis

Syntax	GetInterrup	tAxis, <i>axis</i>						
Arguments	none							
Returned Data	Typ axis unsi	e igned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3				
	Name axis mask	Instance None Axis0mask Axis1mask Axis2mask Axis3mask	Encodi 0 1 2 4 8	ing				
Data Structure	GetInterrupt	Axis		Data				
	P1 read	15		0	4	axis 3	s mask 0	
Description	GetInterruptAxis returns a field which identifies all axes on the breakout board with pending interrupts. Axis numbers are assigned to the low-order four bits of the returned word; bits corresponding to interrupting axes are set to 1. If there are no pending interrupts, the returned word is 0. If any axis has a pending interrupt, the <i>HostInterrupt</i> signal will be in an active state.							
OptoScript Example	<pre>Status=TransmitReceiveString (``>GetInterruptAxis,9",ComHandle,ResponseString);</pre>							
See Also	ClearInterru	pt (page 40),	SetInterru	ptMask, GetInte	rruptMask (pa	age 91)		

GetInterruptMask

See "SetInterruptMask, GetInterruptMask" on page 91.

GetJerk

See "SetJerk, GetJerk" on page 92.

GetLimitSwitchMode

See "SetLimitSwitchMode, GetLimitSwitchMode" on page 93.

GetMotionCompleteMode

See "SetMotionCompleteMode, GetMotionCompleteMode" on page 94.

GetMotorMode

See "SetMotorMode, GetMotorMode" on page 95.

GetPosition

See "SetPosition, GetPosition" on page 96.

GetPositionError

Syntax	GetPos	sitionError, <i>axis</i>				
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Ad 0 1 2 3	dress	
Returned Data	Name velocity	Type v signed 32 b	Ra pits -23	inge 31 to 231-1	Scaling unity	Units counts microsteps
Data Structure	GetPos P1 rea P2 rea	ad <u>position error</u> 31 ad <u>position error</u> 15	First da (high-order Second d (low-order p	ata word part) data word art)		16 0
Description	GetPos the act traject the err comm	sitionError returns tual position (enco ory generator). W ror is defined as th anded position (in	the position oder position hen used w he difference hstantanece	on error of t on) and the with the mo ce between ous output (he specifie commance otor type se the encod of the trajec	d axis. The error is the difference between ded position (instantaneous output of the et to microstepping, or pulse and direction, er position (represented in steps), and the ctory generator).
OptoScript Example	Statu (">Ge	us=TransmitRec etPositionErro	ceiveStr: or,9″,Cor	ing mHandle,H	lesponses	String)
See Also	SetPos	ition, GetPosition	(page 96),	SetPositior	ErrorLimit,	GetPositionErrorLimit (page 97)

GetPositionErrorLimit

See "SetPositionErrorLimit, GetPositionErrorLimit" on page 97.

GetProfileMode

See "SetProfileMode, GetProfileMode" on page 98.

GetSampleTime

See "SetSampleTime, GetSampleTime" on page 99.

GetSettleTime

See "SetSettleTime, GetSettleTime" on page 100.

GetSettleWindow

See "SetSettleWindow, GetSettleWindow" on page 101.

GetSignalSense

See "SetSignalSense, GetSignalSense" on page 102.

GetSignalStatus

Syntax	GetSignalStatus, <i>axis</i>			
Arguments	Туре	Range	Board Address	
	axis unsigned 8 bits	0 to 3	0	
		4 to 7	1	
		8 to B	2	
		C to F	3	
Returned Data	Name Type see below unsigned 1	6 bits		
Data Structure	GetSignalStatus			
		First da	ita word	
	P1 read <u> status</u> 15			0

Description GetSignalStatus returns the contents of the signal status register for the specified axis. The signal status register contains the value of the various hardware signals connected to each axis of the motion processor. The value read is combined with the signal sense register (see "SetSignalSense, GetSignalSense" on page 102) and then returned to the user. For each bit in the Signal Sense register that is set to 1, the corresponding bit in the GetSignalStatus command will be inverted. Therefore, a low signal will be read as 1, and a high signal will be read as a 0. Conversely, for each bit in the signal sense register that is set to 0, the corresponding bit in the GetSignalStatus command is not inverted. Therefore, a low signal will be read as 0, and a high signal will be read as a 1.

> All of the bits in the GetSignalStatus command are inputs, except for AxisOut. The value read for this bit is equal to the value output by the axis out mechanism. See "SetAxisOutSource, GetAxisOutSource" on page 73 for more details. The bit definitions are as follows:

Description	Bit Number
Encoder A	0
Encoder B	1
Encoder Index	2
Encoder Home	3
Positive limit	4
Negative limit	5
AxisIn	6
reserved	7–9
AxisOut	10
reserved	11–15

OptoScript Example

Status=TransmitReceiveString (">GetSignalStatus, A", ComHandle, ResponseString)

See Also GetActivityStatus (page 42), GetEventStatus (page 52), SetSignalSense, GetSignalSense (page 102)

59

GetStartVelocity

See "SetStartVelocity, GetStartVelocity" on page 104.

GetStepRange

See "SetStepRange, GetStepRange" on page 105.

GetStopMode

See "SetStopMode, GetStopMode" on page 106.

GetTrackingWindow

See "SetTrackingWindow, GetTrackingWindow" on page 107.

GetTime

Syntax	GetTime,	axis					
Arguments	Ty <i>axi</i> s ur	/ pe nsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Add 0 1 2 3	dress		
Returned Data	Name velocity	Type signed 32 bi ^r	Ra ts -23	i nge 31 <i>to</i> 231-1	Scaling unity	Units counts	
Data Structure	GetTime P1 read P2 read	<i>time</i> (high-orde 31 <u>time</u> (low-order 15	First da er part) Second o part)	ata word		16]
Description	GetTime r reset.	eturns the num	nber of cyc	cles which h	nave occurr	red since the mo	tion processor was last
OptoScript Example	Status='	TransmitRece	eiveStr	ing (">Ge	tTime,B″	,ComHandle,R	esponseString)

GetVelocity

See "SetVelocity, GetVelocity" on page 108.

MultiUpdate

Syntax	MultiU	pdate, <i>axis</i> , P1						
Arguments		Туре	Range	Board Address				
	axis	unsigned 8 bits	0 to 3	0				
		-	4 to 7	1				
			8 to B	2				
			C to F	3				
	Name	Instance	Encodin	g				
	mask	None	0					
		Axis0mask	1					
		Axis1mask	2					
		Axis2mask	4					
		Axis3mask	8					
Returned data	none							
Data Structure	MultiUp	odate						
	•			Data				
	P1 wri	te		0			mask	
		15			4	3	0	

Description

MultiUpdate causes an Update to occur on all axes whose corresponding bit is set to 1 in the mask argument. After this command is executed, and for those axes which are selected using the mask, all buffered data parameters are copied into the corresponding run-time registers. The following table shows the buffered commands and variables which are made active as a result of the Update command.

Туре	Command
General	ClearPositionError
Trajectory	Acceleration Deceleration GearRatio Jerk Position ProfileMode StopMode Velocity
Servo	DerivativeTime IntegrationLimit Kaff Kd Ki Kp Kvff
Motor	MotorCommand

See Also Update (page 109)

NoOperation

Syntax	NoOp	eration, <i>axis</i>					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3			
Returned Data	none						
Description	The N	The NoOperation command has no effect on the motion processor.					

ReadBuffer

Syntax	ReadBuffe	r, axis, P1		
Arguments	Ty <i>axis</i> un	pe signed 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3
	Name bufferID	Type unsigned 16	F bits -	Range -0 to 31
Returned Data	Name data	Type signed 32 bi	Ra ts -23	ange 131 to 231-1
Data Structure	ReadBuffe	r		First data word
	P1 write	45		0 bufferID
		15	S	Second data word
	P1 read	data (high-orde	er part)	16
	P2 read	<i>data</i> (high-orde	er part)	Third data word
Description	ReadBuffer specified b equal to th automatica	r returns the 32 puffer. After the ne buffer lengtl ally changed a	2-bit conte contents n (set by S t the com	rents of the location pointed to by the read buffer index in the s have been read, the read index is incremented by 1; if the result is SetBufferLength), the index is reset to 0. The read index is apletion of a trace when in rolling trace mode.
OptoScript Example	Status=1 (">ReadE	PransmitRece Buffer,C,P1	eiveStri ",ComHar	ing ndle,ResponseString)
See Also	SetBufferR GetBufferS	eadIndex, Gett tart (page 81),	BufferReac SetBuffer	dIndex (page 80), WriteBuffer (page 110), SetBufferStart, rLength, GetBufferLength (page 79)

Reset

Syntax Reset, axis

Arguments		Туре	Range	Board Address
	axis	unsigned 8 bits	0 to 3	0
			4 to 7	1
			8 to B	2
			C to F	3

Returned Data none

Description

Reset restores the motion processor to its initial condition, setting all motion processor variables to their default values.

Variable Name	Default Value	Variable Name	Default Value
StartVelocity	0	LimitSwitchMode	1
Acceleration	0	MotionCompleteMode	0
ActualPosition	0	MotorBias	0
ActualPositionUnits	0	MotorCommand	0
AutoStopMode	1	MotorLimit	32767
AuxilliaryEncoderSource	0	MotorMode	1
AxisMode	1	OutputMode	-
AxisOutSource	0	PhaseAngle	0
BiQuadCoefficients	0	PhaseCorrectionMode	-
Breakpoint 1	0	PhaseCounts	-
Breakpoint 2	0	PhaseCounts	1
BreakpointValue 1	0	PhaseInitializeMode	0
BreakpointValue 2	0	PhaseInitializeTime	0
BufferLength	0	PhaseOffset	65535
BufferReadIndex	0	PhasePrescaleMode	0
BufferStart	0	Position	0
BufferWriteIndex	0	PositionErrorLimit	65535
CaptureSource	0	ProfileMode	0
CommutationMode	-	PWMFrequency (kHz)	-
Deceleration	0	SampleTime	see notes
DerivativeTime	1	SettleTime	0
EncoderModulus	0	SettleWindow	0
EncoderSource	3	SPIMode	-
EncoderToStepRatio	00010001h	StepRange	1*
EventStatus	1	StepRange	see notes
GearMaster	0	StopMode	0
GearRatio	0	SynchronizationMode	0
GetSignalStatus	800 (hex)	TraceMode	0
IntegrationLimit	0	TracePeriod	1
InterruptMask	0	TraceStart	0
Jerk	0	TraceStop	0
Kaff	0	TraceVariable 1	0

Variable Name	Default Value	Variable Name	Default Value
Kd	0	TraceVariable 2	0
Ki	0	TraceVariable 3	0
Kout	65535	TraceVariable 4	0
Кр	0	TrackingWindow	0
Kvff	0	Velocity	0

*The SNAP-SCM-BB4 has a maximum step range of 100kHz which cannot changed.

Notes:

- All axes supported by the motion processor are enabled at reset.
- See "SetSampleTime, GetSampleTime" on page 99 for information regarding the default sample time.
- The typical time before the device is ready for communication after a Reset is 20ms.
- The Reset command "axis" parameter selects the board to reset. Axes 0x00-0x03 will reset board 0. Axes 0x04-0x07 will reset board 1. Axes 0x08-0x0B will reset board 2. Axes 0x0C-0x0F will reset board 3. No motion command directly addresses a SNAP-SCM-BB4 by board address. Instead the board address is determined by which axis the command is sent to. See the following examples.

Reset Board 0:

"Status=TransmitReceiveString	(">Reset,0",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,1",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,2",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,3",ComHandle,ResponseString)"
Reset Board 1:	
"Status=TransmitReceiveString	(">Reset,4",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,5",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,6",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,7",ComHandle,ResponseString)"
Reset Board 2:	
"Status=TransmitReceiveString	(">Reset,8",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,9",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,10",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,11",ComHandle,ResponseString)"
Reset Board 3:	
"Status=TransmitReceiveString	(">Reset,12",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,13",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,14",ComHandle,ResponseString)"
"Status=TransmitReceiveString	(">Reset,15",ComHandle,ResponseString)"
<pre>Status=TransmitReceiveString ("></pre>	Reset,0",ComHandle,ResponseString)

OptoScript

Example

ResetEventStatus

Syntax	ResetEv	entStatus, <i>axis, P1</i>					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3			
	Name mask	Instance Motion Complete Wrap-Around Breakpoint 1 Capture Received Motion Error In positive limit In negative limit In negative limit Instruction error Commutation error Breakpoint 2	Encodin 0001h 0002h 0004h 0008h 0010h 0020h 0040h 0080h 0800h 4000h	g			
Returned Data	none						
Packet Structure	ResetEv	v entStatus e <u>mask</u> 15	Da	ata			
Description	ResetEv a value a mask	entStatus clears (s of 0 in the mask se value of 1) are una	ets to 0), ent with tl affected.	for the specified axis, his command. All oth	, each bit in the ner event status	event status register register bits (bits whi	that has ich have
OptoScript Example	Status (">Res	s=TransmitRece setEventStatus	eiveStri ,D,P1",	ing ComHandle,Respo	onseString)		
See Also	GetEver	ntStatus (page 52)					

SetAcceleration, GetAcceleration

buffered

Syntax	SetAcceleration, <i>axis,</i> GetAcceleration, <i>axis</i> ,	P1, P2			
Arguments	Type axis unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3		
	Name Type	Ra	inge Scaling	Units	
	acceleration unsigned	1 32 DIIS 0 t	023'-1 1/2'°	counts/cycle ² microsteps/cycle ²	
Data Structure	SetAcceleration	First da	ata word		
	P1 write acceleration 31	on (high-order p	part)	16	
	P2 write <i>acceleratio</i> 15	Second o on (low-order pa	data word art)	0	
	GetAcceleration				
	P1 read acceleration	First da on (high-order p Socond d	ata word	16	
	P2 read <i>acceleration</i> 15	n (low-order pa	art)	0	
Description	SetAcceleration loads command is used wit	the maximu h the Trapezo	m acceleration buff bidal, Velocity Conte	fer register for the specified axis. This ouring, and S-curve profiling modes.	
	GetAcceleration read	the maximu	m acceleration buf	fer register.	
	Scaling example: To lo the resultant number See "SNAP-SCM-MCH	ad a value of as a 32-bit nu 16 Conversio	1.750 counts/cycle umber, giving 0001 n Formulas" on pag	^{,2} multiply by 65,536 (giving 114,688) and loa in the high word and C000h in the low wor ge 111.	ad [.] d.
	Values returned by Ge of counts/cycle ² or st	etAcceleratior eps/cycle ² . Se	n must correspondi ee "SNAP-SCM-MCI	- ingly be divided by 65,536 to convert to unit H16 Conversion Formulas" on page 111.	ts
Restrictions	SetAcceleration may	not be issued	while an axis is in r	motion with the S-curve profile.	
	SetAcceleration is not	valid in Elect	ronic Gearing profi	ile mode.	
	SetAcceleration is a b the next Update or M	uffered comn ultiUpdate in	nand. The value set struction.	using this command will not take effect un	til
OptoScript Example	Status=TransmitF (">SetAccelerati	eceiveStri on,C,P1,P2	ing 2″,ComHandle,Re	esponseString)	
```
Status=TransmitReceiveString
(">GetAcceleration,C",ComHandle,ResponseString)
```

See Also SetDeceleration, GetDeceleration (page 84), SetJerk, GetJerk (page 92), SetPosition, GetPosition (page 96), SetVelocity, GetVelocity (page 108), MultiUpdate (page 62), Update (page 109)

SetActualPosition, GetActualPosition

Description SetActualPosition loads the position register (encoder position) for the specified axis. At the same time, the commanded position is replaced by the loaded value minus the position error. This prevents a servo "bump" when the new axis position is established. The destination position (see "SetPosition, GetPosition" on page 96) is also modified by this amount so that no trajectory motion will occur when the update instruction is issued. In effect, this instruction establishes a new reference position from which subsequent positions can be calculated. It is commonly used to set a known reference position after a homing procedure.

For axes configured as Pulse & Direction or Microstepping motor types, ActualPositionUnits determines if the position is specified and returned in units of counts or steps. Additionally, for these motor types, the position error is zeroed when the SetActualPosition command is sent. SetActualPosition takes effect immediately, it is not buffered. GetActualPosition reads the contents of the encoder's actual position register. This value will be accurate to within one cycle (as determined by Set/GetSampleTime).

OptoScript Example	Status=TransmitReceiveString (``>SetActualPosition,D,P1,P2",ComHandle,ResponseString)
	Status=TransmitReceiveString (``>GetActualPosition,D",ComHandle,ResponseString)
See Also	GetPositionError (page 57) SetActualPositionUnits, GetActualPositionUnits (page 70),

AdjustActualPosition (page 39)

SetActualPositionUnits, GetActualPositionUnits

SetAutoStopMode, GetAutoStopMode

Syntax	SetAut GetAut	oStopMode, <i>axis,</i> toStopMode, <i>axis</i>	P1		
Arguments	axis	Type unsigned 8 bits	Range 0 to 3	Board Address 0	
			4 to 7 8 to B C to F	1 2 3	
	Name mode	Instance Disable Enable	Encodin 0 1	ıg	
Data Structure	SetAut	oStopMode		Data	
	P1 wri	te		0	mode
		15			
	GetAut	oStopMode		Data	
	P1 rea	ld 15		0	1 0
Description	SetAut auto st error o motior GetAut	oStopMode dete op is enabled (Se ccurs. When Auto n error. toStopMode retu	rmines the tAutoStopl o-Stop is di rns the stat	behavior of the specified a Mode Enable), the axis goes sabled (SetAutoStopMode te of the Auto-Stop mode.	xis when a motion error occurs. When into open-loop mode when a motion Disable), the axis is not affected by a
Restrictions	When Enable	the encoder sour will not stop mo	ce is set to tion in the	none (SetEncoderSource N event that the position erro	one), setting the auto stop mode to or limit is exceeded.
OptoScript Example	<pre>Status=TransmitReceiveString (">SetAutoStopMode,F,P1",ComHandle,ResponseString) Status=TransmitReceiveString (">GetAutoStopMode,F",ComHandle,ResponseString)</pre>				
See Also	GetEve	entStatus (page 5	2), SetPosit	ionErrorLimit, GetPositionE	rrorLimit (page 97)

SetAxisMode, GetAxisMode

SetAxisOutSource, GetAxisOutSource

Data Structure

SetAxisOutSource, axis, P1 Syntax

GetAxisOutSource, axis

Arguments		Туре	Range	Board Address
	axis	unsigned 8 bits	0 to 3	0
			4 to 7	1
			8 to B	2
			C to F	3

NOTE: The source axis must be on the same SNAP-SCM-BB4 as the axis argument.

Name	Туре	Range	Board Address
sourceA	xis unsigned 8 bi	ts 0 to 3	0
	0	4 to 7	1
		8 to B	2
		C to F	3
Name	Instance	Encoding	
bit	see below	0 to 15	
register	Disabled	0	
	EventStatus	1	
	ActivityStatus	2	
	SignalStatus	3	
SetAxis	Mode		
			Data

Description SetAxisOutSource maps the specified bit of the specified status register of axis to the AxisOut pin for the specified axis. The state of the AxisOut pin will thereafter track the state of bit. If register is absent (encoding of 0), bit is ignored, and the specified AxisOut pin is, in effect, turned off (inactive). When the AxisOutSource is set to disabled, the AxisOut signal can be set high or low using SetSignalSense bit 10.

GetAxisOutSource returns the mapping of the AxisOut pin of axis.

The following table shows the corresponding value for combinations of *bit* and *register*.

bit	event status register	activity status register	signal status register
0	Motion complete	Phasing initialized	Encoder A
1	Wrap-around	At maximum velocity	Encoder B
2	Breakpoint 1	Tracking	Encoder index

bit	event status register	activity status register	signal status register
3	Position capture		Home
4	Motion error		Positive limit
5	In positive limit		Negative limit
6	In negative limit		AxisIn
7	Instruction error	Axis settled	Hall sensor 1
8		Motor on/off	Hall sensor 2
9		Position capture	Hall sensor 3
0Ah		In motion	
0Bh	Commutation error	In positive limit	
0Ch		In negative limit	
0Dh			
0Eh	Breakpoint 2		
0Fh			

OptoScript Example Status=TransmitReceiveString (">SetAxisOutSource,1,P1",ComHandle,ResponseString) Status=TransmitReceiveString (">GetAxisOutSource,1",ComHandle,ResponseString)
See Also SetSignalSense, GetSignalSense (page 102)

SetBreakPoint, **GetBreakPoint**

SetBreakPoint, axis, P1, P2 **Syntax**

GetBreakPoint, axis, P1

Arguments		Туре	Range	Board Address
	axis	unsigned 8 bits	0 to 3	0
		-	4 to 7	1
			8 to B	2
			C to F	3

NOTE: The source axis must be on the same SNAP-SCM-BB4 as the axis argument.

Name	Instance	Encoding
breakpointID	Breakpoint1	0
	Breakpoint2	1
sourceAxis	Axis0	0
	Axis1	1
	Axis2	2
	Axis3	3
action	(none)	0
	Update	1
	AbruptStop	2
	SmoothStop	3
	MotorOff	4
trigger	(none)	0
	GreaterOrEqualCommandedPosition	1
	LesserOrEqualCommandedPosition	2
	GreaterOrEqualActualPosition	3
	LesserOrEqualActualPosition	4
	CommandedPositionCrossed	5
	ActualPositionCrossed	6
	Time	7
	EventStatus	8
	ActivityStatus	9
	SignalStatus	Ah

SetBreakPoint

Description

n SetBreakPoint establishes a breakpoint for the specified axis to be triggered by a condition or event on sourceAxis, which may be the same as or different from axis. Up to two concurrent breakpoints can be set for each axis, each of which may have its own breakpoint type and comparison value. The breakpointID field specifies which breakpoint the SetBreakPoint and GetBreakPoint commands will address.

The six Position breakpoints and the Time breakpoint are threshold-triggered; the breakpoint occurs when the indicated value reaches or crosses a threshold. The Status breakpoints are level-triggered; the breakpoint occurs when a specific bit or combination of bits in the indicated status register changes state. Thresholds and bit specifications are both set by the SetBreakPointValue instruction.

Action	Resultant command sequence
None	No action
Update	Update axis
AbruptStop	The profile executes an abrupt stop
SmoothStop	The profile executes a smooth stop
MotorOff	SetMotorMode axis, Off

action determines what the motion processor does when the breakpoint occurs, as follows:

GetBreakPoint returns the trigger, action, and axis for the specified breakpoint (0 or 1) of the indicated axis. When a breakpoint occurs, the trigger value will be reset to none. The CommandedPositionCrossed and the ActualPositionCrossed triggers are converted to one of the Position trigger types 1-4; depending on the current position when the command is issued.

Restrictions Always load the breakpoint comparison value (SetBreakPointValue command) before setting a new breakpoint condition (SetBreakPoint command). Failure to do so will likely result in unexpected behavior.

OptoScript	Status=TransmitReceiveString
Example	(">SetBreakPoint,2,P1,P2",ComHandle,ResponseString)
	Status=TransmitReceiveString (``>GetBreakPoint,2,P1",ComHandle,ResponseString)

See Also SetBreakPointValue, GetBreakPointValue (page 77)

SetBreakPointValue, GetBreakPointValue

Description SetBreakPointValue sets the breakpoint comparison value for the specified axis. For the position and time breakpoints, this is a threshold comparison value.

The value parameter is interpreted according to the trigger condition for the selected breakpoint; see "SetBreakPoint, GetBreakPoint" on page 75. The data format for each trigger condition is as follows:

Breakpoint Trigger	Value Type	Range	Units
GreaterOrEqualCommandedPosition	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts

Breakpoint Trigger	Value Type	Range	Units
LesserOrEqualCommandedPosition	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts
GreaterOrEqualActualPosition	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts
LesserOrEqualActualPosition	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts
CommandedPositionCrossed	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts
ActualPositionCrossed	signed 32-bit	-2 ³¹ to 2 ³¹ -1	counts
Time	unsigned 32-bit	0 to 2 ³¹ -1	cycles
EventStatus	2 word mask	-	boolean status values
ActivityStatus	2 word mask	-	boolean status values
SignalStatus	2 word mask	-	boolean status values

For level-triggered breakpoints, the high-order part of value is the selection mask, and the low-order word is the sense mask. For each selection bit that is set to 1, the corresponding bit of the specified status register is conditioned to cause a breakpoint when it changes state. The sense-mask bit determines which state causes the break. If it is 1, the corresponding status-register bit will cause a break when it is set to 1. If it is 0, the status-register bit will cause a break when it is set to 0.

For example assume it is desired that the breakpoint type will be set to EventStatus and that a breakpoint should be recognized whenever the motion complete bit (bit 0 of event status register) is set to 1, or the commutation error bit (bit 11 of event status register) is set to 0. In this situation the high and low words for value would be high word: 0x801 (hex) and low word: 1.

GetBreakPointValue returns the breakpoint value for the specified breakpointID.

Two completely separate breakpoints are supported, each of which may have its own breakpoint type and comparison value. The breakpointID field specifies which breakpoint the SetBreakPointValue and GetBreakPointValue commands will address.

Restrictions Always load the breakpoint comparison value (SetBreakPointValue command) before setting a new breakpoint condition (SetBreakPoint command). Failure to do so will likely result in unexpected behavior.

OptoScript Example	Status=TransmitReceiveString (``>SetBreakPointValue,3,P1,P2,P3",ComHandle,ResponseString)
	Status=TransmitReceiveString (``>GetBreakPointValue,3,P1",ComHandle,ResponseString)

See Also SetBreakPoint, GetBreakPoint (page 75)

SetBufferLength, GetBufferLength

SetBufferReadIndex, GetBufferReadIndex

Syntax SetBufferReadIndex, axis, P1, P2, P3 GetBufferReadIndex, axis, P1

Arguments		Туре	Range	Board Address	
	axis	unsigned 8 bits	0 to 3	0	
		Ū	4 to 7	1	
			8 to B	2	
			C to F	3	
	Name	Туре	Range	Scaling	Units
	bufferID	unsigned 16 bits	0 <i>to</i> 31	unity	-
	index	unsigned 32 bits	0 <i>to</i> buffe	er unity length - 1	double words

16

Λ

	Third data word	
P2 read	<i>length</i> (low-order part)	
	15	0

Description SetBufferReadIndex sets the address of the read index for the specified bufferID. GetBufferReadIndex returns the current read index for the specified bufferID.

Restrictions If the read index is set to an address beyond the length of the buffer, the command will not be executed and will return host I/O error code 7, buffer bound exceeded.

OptoScript Status=TransmitReceiveString (">SetBufferReadIndex, 5, P1, P2, P3", ComHandle, ResponseString) Example Status=TransmitReceiveString (">GetBufferReadIndex,5,P1",ComHandle,ResponseString) See Also SetBufferLength, GetBufferLength (page 79), SetBufferStart, GetBufferStart (page 81),

SetBufferWriteIndex, GetBufferWriteIndex (page 82)

SetBufferStart, GetBufferStart

Syntax	SetBuffe GetBuffe	rStart, <i>axis, P1, P2, F</i> rStart, <i>axis, P1</i>	93					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3				
	Name bufferID address	Type unsigned 16 bits unsigned 32 bits	Range 0 <i>to</i> 31 0 <i>to</i> 2 ³	Scaling unity ¹ - 1 unity	Units - double words			
Data Structure	SetBuffe P1 write	rStart 15	First 0	data word 5 4	bufferID	0		
	P2 write	address (high-orde	Second er part)	d data word		16		
	P3 write	address (low-order 15	Third r part)	data word		0		
	GetBufferStart							
	P1 write	15	First 0	data word 5 4	bufferID	0		
	P1 read	address (high-orde	Second er part)	d data word		16		
	P2 read	<i>address</i> (low-order 15	Third r part)	data word		0		
Description	SetBuffe memory	rStart sets the start block identified by	ing addre y bufferID	ess for the specified.	d buffer, in doub	le-words, of the buffer in the		
	NOTE: Se	tBufferStart resets tl	he buffers	read and write inde	exes to 0.			
	GetBuffe	rStart returns the s	tarting ac	dress for the spec	ified bufferID.			
OptoScript Example	Status: (">Set]	=TransmitRecei BufferStart,6,	veStrin P1,P2,F	g 3″,ComHandle,I	ResponseStri	ng)		
	Status: (">Getl	=TransmitRecei BufferStart,6,	veStrin P1″,Com	g Handle,Respon	seString)			
See Also	SetBuffe SetBuffe	rLength, GetBufferl rWriteIndex, GetBu	Length (p fferWritel	age 79), SetBufferf ndex (page 82)	ReadIndex, GetB	ufferReadIndex (page 80),		

SetBufferWriteIndex, GetBufferWriteIndex

Syntax SetBufferWriteIndex, *axis*, *P1*, *P2*, *P3* GetBufferWriteIndex, *axis*, *P1*

Arguments		Туре	Range	Board Address	
	axis	unsigned 8 bits	0 to 3	0	
		•	4 to 7	1	
			8 to B	2	
			C to F	3	
	Name	Туре	Range	Scaling	Units
	bufferID	unsigned 16 bits	0 <i>to</i> 31	unity	-
	index	unsigned 32 bits	0 <i>to</i> buffe length - 1	er unity 1	double words

Description

SetBufferWriteIndex sets the write index for the specified bufferID.

GetBufferWriteIndex returns the write index for the specified bufferID.

SetCaptureSource, GetCaptureSource

Syntax	SetCaptureSource, axis, I GetCaptureSource, axis	01	
Arguments	Type axis unsigned 8 bits	Range Board Address 0 to 3 0 4 to 7 1 8 to B 2 C to F 3	
	NameInstancesourceIndexHome	Encoding 0 1	
Data Structure	SetCaptureSource P1 write 15	Data 0	source 1 0
	GetCaptureSource P1 read 15	Data 0	source 1 0
Description	SetCaptureSource detern high-speed capture of th	mines which of two encoder signed ne actual axis position for the sp	gnals, Index or Home, is used to trigger the becified axis.
	GetCaptureSource return	ns the capture signal source for	the selected axis.
OptoScript Example	Status=TransmitRec (">SetCaptureSourc Status=TransmitRec (">GetCaptureSourc	eiveString e,2,P1",ComHandle,Respo eiveString e,2",ComHandle,Response	estring)
See Also	GetCaptureValue (page	47)	

SetDeceleration, GetDeceleration

buffered

OptoScript	Status=TransmitReceiveString
Example	(">SetDeceleration,5,P1,P2",ComHandle,ResponseString)
	<pre>Status=TransmitReceiveString (">GetDeceleration,5",ComHandle,ResponseString)</pre>
See Also	SetAcceleration, GetAcceleration (page 68), SetPosition, GetPosition (page 96), SetVelocity, GetVelocity (page 108), MultiUpdate (page 62), Update (page 109)

SetEncoderModulus, GetEncoderModulus

Syntax	SetEncoderModulus, <i>axis, P1</i> GetEncoderModulus, <i>axis</i>
Arguments	TypeRangeBoard Addressaxisunsigned 8 bits0 to 304 to 718 to B2C to F3
	NameTypeRangeScalingUnitsmodulusunsigned 16bits0 to 2 ¹⁶ -1unitycounts
Data Structure	SetEncoderModulus Data P1 write modulus 15 0 GetEncoderModulus Data P1 read modulus 15 0
Description	SetEncoderModulus sets the parallel word range for the specified <i>axis</i> when parallel-word feedback is used. <i>Modulus</i> determines the range of the connected device. For multi-turn systems, this value is used to determine when a position wrap condition has occurred. The value provided should be one half of the actual range of the axis. For example if the parallel-word input is used with a linear potentiometer connected to an external A/D (Analog to Digital converter) which has 12 bits of resolution, then the total range is 4,096 and a value of 2,048 should be loaded with this command. GetEncoderModulus returns the encoder modulus.
Restrictions	A value for encoder modulus is only required when the encoder source is set to parallel.
OptoScript Example	Status=TransmitReceiveString (``>SetEncoderModulus,5,P1",ComHandle,ResponseString) Status=TransmitReceiveString (``>GetEncoderModulus,5",ComHandle,ResponseString)
See Also	SetEncoderSource, GetEncoderSource (page 86)

SetEncoderSource, GetEncoderSource

SetEncoderToStepRatio, GetEncoderToStepRatio

Syntax	SetEnc GetEnc	oderToStepRatio, coderToStepRatio,	axis, P1, P2 axis	2			
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board	Address 0 1 2 3		
	Name	Туре	Ra	nge	Scaling	Units	
	counts	unsigned 16	bits 0 to	$02^{15}-1$	unity	counts	
	steps	unsigned 16	bits 0 to	o 2 ¹⁵ -1	unity	microsteps	
Data Structure	SetEnc	oderToStepRatio					
	P1 writ	te counts	Firs	t data wo	ord		
	I I WIN	15				0	
	P2 writ	te <u>steps</u> 15	Seco	nd data v	vord	0	
	GetEnc	oderToStepRatio	_ .				
	P1 rea	d counts	Firs	t data wo	ord		
		15				0	
			Seco	nd data v	vord		
	P2 rea	d steps 15				0	
Description	SetEnc steps p is the n by the parame count t	oderToStepRatio s er motor rotation number of encode motion processor eters do not have to step ratio.	sets the rai used by th cr counts p per full ro to be for a	tio of th ne motio per full ro ptation c a full rota	e number of on processor otation of the of the motor. ation as long	encoder counts to the number of out to convert encoder counts into steps. e motor. Steps is the number of steps of Since this command sets a ratio, the g as they correctly represent the encod	put Counts output ler
	GetEnc steps p	oderToStepRatio er motor rotation	returns the	e ratio o	f the numbe	er of encoder counts to the number of	output
OptoScript Example	Statu (">Se	s=TransmitRec tEncoderToSte	eiveStr: pRatio,8	ing 8,P1,P	2",ComHan	dle,ResponseString)	
-	Statu (">Ge	s=TransmitRec tEncoderToSte	eiveStr: pRatio,8	ing 8″,Com	Handle,Re	sponseString)	
See Also	SetAct	ualPositionUnits, (GetActual	Position	Units (page 7	70)	

SetGearMaster, GetGearMaster

ArgumentsTypeRangeBoard Addressaxisunsigned 8 bits0 to 304 to 714 to 718 to B2C to F3

NOTE: The master axis must be on the same SNAP-SCM-BB4 as the axis argument.

Description SetGearMaster establishes the slave (axis) and master (masterAxis) axes for the electronic-gearing profile, and sets the source, Actual or Commanded, of the master axis position data to be used.

The masterAxis determines the axis that will drive the slave axis. Both the slave and the master axes must be enabled (SetAxisMode command). The source determines whether the master axis' commanded position as determined by the trajectory generator will be used to drive the slave axis, or whether the master axis' encoder position will be used to drive the slave.

GetGearMaster returns the value for the geared axes and position source.

OptoScript	Status=TransmitReceiveString
Example	(">SetGearMaster,A,P1",ComHandle,ResponseString)
	Status=TransmitReceiveString (``>GetGearMaster,A",ComHandle,ResponseString)
See Also	SetGearRatio, GetGearRatio (page 89)

SetGearRatio, GetGearRatio

buffered

Syntax	SetGearRatio GetGearRatio	o, slaveAxis, P1, F o, slaveAxis	2					
Arguments	T <u>ı</u> slaveaxis uı	ype nsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3				
	Name ratio	Type signed 32 bits	Range -2 ³¹ to 2	Scaling ³¹ -1 1/2 ¹⁶	Units SlaveCts/Ma	asterCts		
Data Structure	SetGearRatic P1 write) atio (high-order p 1	First data art)	word		16		
	P2 write r 1	<i>atio</i> (low-order pa 5	Second da irt)	ta word		0		
	GetGearRation	o atio (high-order p 1	First data art)	n word		16		
	Second data word P2 read ratio (low-order part) 15 0							
Description	SetGearRatio sets the ratio between the master and slave axes for the electronic gearing profile for the current axis. Positive ratios cause the slave to move in the same direction as the master, negative ratios in the opposite direction. The specified ratio has a unity scaling of 65,536. GetGearRatio returns the gear ratio set for the specified slave axis. Scaling examples:							
	Ratio Value	Resultant Rat	tio					
	-32,768	.5 negative sla	ave counts for	r each positive mas	ster count			
	1,000,000	15.259 positiv	e slave count	s for each positive	master count			
	123 .0018	positive slave	counts for ea	ch positive master	count			
Restrictions	This is a buff MultiUpdate	ered command instruction is e	l. The new v entered.	alue set will not t	take effect ur	itil the next U	pdate or	

OptoScript	Status=TransmitReceiveString
Example	(">SetGearRatio,B,P1,P2",ComHandle,ResponseString)
	Status=TransmitReceiveString (">GetGearRatio,B",ComHandle,ResponseString)

See Also SetGearMaster, GetGearMaster (page 88), MultiUpdate (page 62), Update (page 109)

SetInterruptMask, GetInterruptMask

Syntax	SetInterr GetInterr	uptMask, <i>axis, P1</i> ruptMask, <i>axis</i>				
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3		
	Name mask	Instance Motion complete Wrap-around Breakpoint 1 Capture received Motion error In positive limit In negative limit Instruction error Commutation error Breakpoint 2	End 000 000 000 001 002 004 008 080 400	eoding 1h 2h 4h 8h 0h 0h 0h 0h 0h 0h		
Data Structure	SetInterro P1 write GetInterro P1 read	uptMask <u>mask</u> 15 uptMask <u>mask</u> 15		Data	0	
Description	SetInterr host inte will cause 0 will no GetInterr Example bit or the	uptMask determir rrupt. For each inte e an interrupt whe t generate interrup ruptMask returns t : The interrupt ma e "capture received	nes which errupt ma en that sta ots. he mask sk value 2 d" bit of th	bits in the event status reg ask bit that is set to 1, the c atus register bit goes active for the specified axis. 28h will generate an interru ne event status register goe	gister of the specified axis will cause corresponding event status register b e (is set to 1). Interrupt mask bits set t upt when either the "in positive limit es active (set to 1).	a bit to
OptoScript Example	Status= (">Set] Status= (">Get]	=TransmitRecei InterruptMask, =TransmitRecei InterruptMask,	iveStri: C,P1", iveStri: C",Com	ng ComHandle,ResponseSt ng Handle,ResponseStrir	tring) ng)	
See Also	ClearInte	errupt (page 40), G	etInterru	ptAxis (page 55)		

SetJerk, GetJerk

buffered

Syntax	SetJerk, <i>a.</i> GetJerk, a	xis, P1, P2 axis					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3			
	Name	Туре	Range	e Scaling	Units		
	jerk	unsigned 32 bits	0 <i>to</i> 2 ³	³¹ -1 1/2 ³²	counts/cycle ³ microsteps/cycle ³		
Data Structure	SetJerk		First de	to word			
	P1 write	<i>jerk</i> (high-order pa 31	rt)		16		
	P2 write	<i>jerk</i> (low-order par 15	Second o	data word	0		
	GetJerk		First da	ata word			
	P1 read	<i>jerk</i> (high-order pa	rt)		16		
	P2 read	<i>jerk</i> (low-order par 15	Second o	data word	0		
Description	SetJerk lo	ads the jerk registe	er in the pa	arameter buffer fo	the specified axis.		
	GetJerk reads the contents of the Jerk register. Scaling example: To load a jerk value (rate of change of acceleration) of 0.012345 counts/cycle3 (or steps/cycle3) multiply by 232 or 4,294,967,296. In this example this gives a value to load of 53,021,371 (decimal) which corresponds to a high word of 0329h and a low word of 0ABBh when loading each word in hexadecimal. See "SNAP-SCM-MCH16 Conversion Formulas" on page 111.						
Restrictions	SetJerk is Update of	a buffered comma r MultiUpdate instr	nd. The va ruction.	alue set using this	command will not take effect u	ntil the next	
	This comr velocity c	mand is used only ontouring, or elect	with the S ronic gea	5-curve profile mo r profile modes.	de. It is not used with the trapez	zoidal,	
OptoScript Example	Status= (">SetJ	TransmitReceiv erk,D,P1,P2",C	veString ComHandl	g Le,ResponseStr	ing)		
	<pre>Status=TransmitReceiveString (">GetJerk,D",ComHandle,ResponseString)</pre>						

See Also SetAcceleration, GetAcceleration (page 68), SetDeceleration, GetDeceleration (page 84), SetPosition, GetPosition (page 96), SetVelocity, GetVelocity (page 108), MultiUpdate (page 62), Update (page 109)

SetLimitSwitchMode, GetLimitSwitchMode

SetMotionCompleteMode, GetMotionCompleteMode

SetMotorMode, GetMotorMode

Description SetMotorMode determines the mode of motor operation. When set to On, several events take place. For step motor and microstepping axes, the trajectory generator controls the motor output. For all motor types, when the encoder source (Set/GetEncoderSource) is set to incremental or parallel, the position error is cleared; equivalent to a ClearPositionError command.

When the motor mode is set to Off, the axis is in open-loop mode, and is controlled by commands placed directly into the motor output register by the host. Setting the motor mode to Off also resets the trajectory generator, bringing any active motion to an abrupt stop. In addition, the maximum velocity (Set/GetVelocity) is set to zero. On axes configured for step motor and microstepping motor types, the step generator is switched off when the motor mode is set to Off. The following table shows the motor output source for each motor type and mode.

Motor type	Motor mode	Motor output source
Pulse & direction;	Off	N/A
microstepping	On	Trajectory generator

GetMotorMode returns the value of the motor mode.

 OptoScript
 Status=TransmitReceiveString

 Example
 (">SetMotorMode, 3, P1", ComHandle, ResponseString)

 Status=TransmitReceiveString
 (">GetMotorMode, 3", ComHandle, ResponseString)

See Also GetActivityStatus (page 42)

SetPosition, GetPosition

buffered

Syntax	SetPositic GetPositic	on, <i>axis, P1, P2</i> on, <i>axis</i>					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board	Address 0 1 2 3		
	Name position	Type signed 32 bits	Range -2 ³¹ to	e 2 ³¹ -1	Scaling unity	Units counts microsteps	
Data Structure	SetPosition	on <u>position (high-ord</u> 31	First da er part)	ata word		16	
	Second data word P2 write position (low-order part) 15 0						
	GetPositie P1 read	on [<i>position</i> (high-ord 31	First da er part)	ata word		16	
	P2 read	<i>position</i> (low-orde	Second or r part)	data word	1	0	l
Description	SetPosition specifies the trajectory destination of the specified axis. It is used in the Trapezoidal and S-curve profile modes.						
Restrictions	SetPosition is a buffered command. The value set using this command will not take effect until the next Update or MultiUpdate instruction.						
OptoScript Example	Status= (">SetF	TransmitRecei Position,5,P1, TransmitRecei	veString P2",ComP	g Handle,	Responses	String)	ResponseString)
See Also	Status=TransmitReceiveString (">GetPosition, 5", ComHandle, ResponseString) SetAcceleration, GetAcceleration (page 68), SetDeceleration, GetDeceleration (page 84), SetJerk, GetJerk (page 92), SetVelocity, GetVelocity (page 108), MultiUpdate (page 62), Update (page 109)						

SetPositionErrorLimit, GetPositionErrorLimit

Syntax	SetPositi GetPositi	onErrorLimit, <i>axis,</i> onErrorLimit, <i>axis</i>	P1, P2					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3				
	Name	Туре	Range	Scaling	Units			
	limit	unsigned 32 bits	0 <i>to</i> 2 ³¹ -1	unity	counts			
Data Structure	SetPositi	onErrorLimit						
	P1 write	<i>limit</i> (high-order	First da	ta word				
		31				16		
	P2 write	<i>limit</i> (low-order p 15	Second c art)	lata word		0		
	GetPositi	onErrorLimit						
	P1 read	limit (high-order	First da part)	ta word				
		31				16		
	P2 read	<i>limit</i> (low-order p 15	Second c art)	lata word		0		
Description	SetPositionErrorLimit sets the absolute value of the maximum position error allowable by the motion processor for the specified axis. If the position error exceeds this limit, a motion error occurs. Such a motion error may or may not cause the axis to stop moving depending on the value set using the SetAutoStopMode command.						irs.	
	GetPositi	onErrorLimit retu	rns the value	e of the position e	error limit.			
OptoScript Example	Status= (">SetI	=TransmitRece PositionError	iveString Limit,6,P	1,P2",ComHand	lle,Respo	nseString)		
	Status= (">GetI	=TransmitRece PositionError	iveString Limit,6″,	ComHandle,Res	sponseStr	ing)		
See Also	GetPositi (page 96	onError (page 57))	, SetActualF	Position, GetActua	alPosition (p	age 69), SetPc	sition, GetPositio	on

SetProfileMode, GetProfileMode

buffered

SetSampleTime, GetSampleTime

Syntax	SetSamı GetSam	oleTime, <i>axis, P1, F</i> pleTime, <i>axis</i>	2				
Arguments		Туре	Range	Board Address			
	axis	unsigned 8 bits	0 to 3	0			
		5	4 to 7	1			
			8 to B	2			
			C to F	3			
	Name	Туре	Range	Units			
	time	unsigned 32 bits	51 <i>to</i> 2 ²⁰) microseconds			
Data Structure	SetSamp	bleTime	First	data word			
	P1 write	time (high-order	r part)				
		31	. ,		16		
	Second data word						
	P2 write	time (low-order	part)				
	15						
	GetSam	oleTime					
	First data word						
	Fileau	31	partj		16		
			Secon	d data word			
	P2 read	time (low-order	part)				
		15			0		

Description SetSampleTime sets the time basis for the motion processor. This time basis determines the trajectory update rate for all motor types as well.

The time value is expressed in microseconds. The motion processor hardware can adjust the cycle time only in increments of 51.2 microseconds; the time value passed to this command will be rounded up to the nearest increment of this base value.

# enabled axes	minimum cycle time	cycle time w/ trace capture	time per axis	maximum cycle frequency
1	51.2 µs	102.4 µs	51.2 µs / 102.4 µs	19.53 KHz (9.76 w/ trace capture)
2	153.6 µs	153.6 µs	76.8 µs	6.51 KHz
3	204.8 µs	204.8 µs	68.3 µs	4.88 KHz
4	256 µs	256 µs	64 µs	3.91 KHz

Minimum cycle time depends on the number of enabled axes as follows:

Using the trace feature on single axis products with the sample time set to 51.2µs will result in unexpected behavior.

GetSampleTime returns the value of the sample time.

Restrictions This command affects the cycle time for all axes on a given SNAP-SCM-BB4.

This command cannot be used to set a sample time lower than the required minimum cycle time for the current configuration. Attempting to do so will set the sample time to the required minimum cycle time as specified in the previous table.

 OptoScript
 Status=TransmitReceiveString

 Example
 (">SetSampleTime, P1, P2, ComHandle, ResponseString)

 Status=TransmitReceiveString
 (">GetSampleTime, ComHandle, ResponseString)

SetSettleTime, GetSettleTime

SetSettleWindow, GetSettleWindow

Syntax	SetSettle GetSettle	eWindow, <i>axis, P1</i> eWindow, <i>axis</i>				
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3		
	Name window	Type unsigned 16 bits	Range 0 <i>to</i> 2 ¹⁶ -1	Scaling unity	Units cycles	
Data Structure	SetSettle P1 write]0				
	GetSettle P1 read	Window window 15	D	ata	0	
Description	SetSettleWindow sets the position range within which the specified axis must remain for the duration specified by SetSettleTime before the axis-settled indicator in the activity status register is set.					
	GetSettle	eWindow returns	the value o	f the settle windo	W.	
OptoScript Example	Status: (">Set;	=TransmitRece SettleWindow,	iveString A,P1",Cor	g nHandle,Respor	nseString)	
	Status: (">Get;	=TransmitRece SettleWindow,	iveString A″,ComHan	g ndle,Responses	String)	
See Also	SetMotionCompleteMode, GetMotionCompleteMode (page 94), SetSettleTime, GetSettleTime (page 100), GetActivityStatus (page 42)					

SetSignalSense, GetSignalSense

Syntax SetSignalSense, axis, P1 GetSignalSense, axis

Arguments	Туре		Range	Board Add	ress	
	axis	unsigned 8 bits	0 to 3 4 to 7 8 to B C to F	0 1 2 3		
	Name	Indicator		Encoding	Bit Number	
	mask	QuadA QuadB Index Home PosLimit AxisIn reserved reserved AxisOut Pulse Direction reserved		0001h 0002h 0004h 0008h 0010h 0020h 0040h 0080h 0100h 0200h 0400h 0800h 1000h	0 1 2 3 4 5 6 7 8 9 10 11 12 13 - 15	
Data Structure	SetSigr	alSense		Data		
	P1 writ			Data	mask	
		15 13	12		maak	0
	GetSigr	nalSense		Data		
	P1 rea	d 0			mask	
		15 13	12			0

Description SetSignalSense establishes the sense of the corresponding bits of the signal status register, with the addition of StepOutput and MotorDirection, for the specified axis. For all input signals, the input is inverted if the corresponding sense bit is one; otherwise it is not inverted.

For encoder index/home: if the sense bit is 1, a capture will occur on a low-to-high signal transition. Otherwise, a capture will occur on a high-to-low transition.

For positive and negative limit: if the sense bit is 1, an over-travel condition will occur if the signal is high. Otherwise, an over-travel condition will occur when the signal is low.

The AxisOut signal is inverted if the sense bit is set to one; otherwise it is not inverted.

When the StepOutput bit is set to 1, a step will be generated by the motion processor with a low-to-high transition on the Pulse signal. Otherwise, a step will be generated by the motion processor with a high-to-low transition on the Pulse signal.

Setting the MotorDirection bit has the effect of swapping the sense of positive and negative motor movement.

GetSignalSense returns the value of the signal sense mask.

Restrictions Inverting the encoder A or B signal may prevent the index capture mechanism from operating correctly.

 OptoScript
 Status=TransmitReceiveString

 Example
 (">SetSignalSense, B, P1", ComHandle, ResponseString)

 Status=TransmitReceiveString
 (">GetSignalSense, B", ComHandle, ResponseString)

 See Also
 GetSignalStatus (page 59)

SetStartVelocity, GetStartVelocity

Syntax	SetStartV GetStart\	′elocity, <i>axis, P1, P.</i> /elocity, <i>axis</i>	2			
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Addres 0 1 2 3	s	
	Name velocity	Type unsigned 32 bits	Range 0 <i>to</i> 2 ³¹ -1	Scaling 1/2 ¹⁶	Units counts/cycle microsteps/cycle	
Data Structure	SetStartV P1 write	elocity velocity 31	First da	ta word	16	
	P2 write	velocity 15	Second d	lata word	0	
	GetStartV	Velocity	First da	ta word		
Description	P2 read SetStartV instantar GetStartV Scaling e 114,688) C000h in 65,536 tc page 111	21 velocity 15 velocity loads the neous velocity at t velocity reads the vample: To load a and load the resu the low word. Va convert them to 1.	Second d starting velo the start and value of the starting vel ultant numb lues returne units of cou	lata word bocity register for a t the end of e starting veloc locity value of er as a 32-bit r ed by GetStartV unts/cycle. See	o or the specified axis. The start velocity is the the profile. ity register. 1.750 counts/cycle multiply by 65,536 (giving number, giving 0001 in the high word and /elocity must correspondingly be divided by "SNAP-SCM-MCH16 Conversion Formulas" on	
Restrictions	StartVelo	city is only used i	n the Veloci	ty Contouring	and Trapezoidal profile modes.	
OptoScript Example	<pre>Status=TransmitReceiveString (">SetStartVelocity,C,P1,P2",ComHandle,ResponseString) Status=TransmitReceiveString (">GetStartVelocity,C,P1",ComHandle,ResponseString)</pre>					
See Also	SetVeloci GetDece	ity, GetVelocity (p leration (page 84)	age 108), Se), SetPositior	etAcceleration, n, GetPosition (GetAcceleration (page 68), SetDeceleration, (page 96)	
SetStepRange, GetStepRange

Syntax	SetStepRange, <i>axis, P1</i> GetStepRange, <i>axis</i>			
Arguments	Type axis unsigned 8 bits	RangeBoard Addres0 to 304 to 718 to B2C to F3	3S	
	Name Instance frequency 5 MHz 625 kHz 156.25 kHz 39.062 kHz	Encoding 1 4 6 8		
Data Structure	SetStepRange P1 write 15 GetStepRange	Data 0 Data	frequency 4 3 0	
	P1 read 15	0	4 3 0	
Description	SetStepRange sets the desired maximum puls issued.	maximum pulse rate freque se rate is 200,000 pulses/sec	ency for the specified axis. For example, i cond, the command SetStepRange 4 sho	if the ould be
	GetStepRange returns	the maximum pulse rate fre	equency for the specified axis.	
OptoScript Example	Status=TransmitRe (">SetStepRange,I Status=TransmitRe	eceiveString),P1",ComHandle,Respo eceiveString (">GetSt	onseString) tepRange,D",ComHandle,Response;	String)

SetStopMode, GetStopMode

buffered

Syntax	SetSto GetSto	pMode, <i>axis, P1</i> pMode, <i>axis</i>			
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Address 0 1 2 3	
	Name mode	Instance Disabled AbruptStop SmoothStop		Encoding 0 1 2	
Data Structure	SetSto P1 wri	pMode te 15		Data 0 mode 2 1 0	
	GetSto P1 rea	pMode ad 15		Data 0 mode 2 1 0	
Description	SetSto (witho decele is gene	pMode stops the s ut any deceleratio ration value and p erally used to turn	specified a n phase) s rofile shap off a prev	axis. The available stop modes are AbruptStop, which instantly stops the axis, SmoothStop which uses the programmed pe for the current profile mode to stop the axis, or Disabled, whi viously issued set stop command.	ich
	NOTE: , conditi a GetSi	After an Update, a l ion. In other words, topMode command	buffered st if the com d, the retrie	top command (SetStopMode command) will reset to the Disabled nmand SetStopMode is followed by an Update command and then ieved stop mode will be Disabled.	by
	GetSto	pMode returns th	e value of	f the stop mode.	
Restrictions	Smoot SetSto the ne	hStop mode is no pMode is a buffere xt Update or Multi	t available ed comma Update ir	e in the Electronic gear profile mode. and. The value set using this command will not take effect until nstruction.	
OptoScript Example	Statu (">Se Statu	us=TransmitRec etStopMode,E,P us=TransmitRec	eiveStr 1″,ComH eiveStr	ing Handle,ResponseString) ing (">GetStopMode,E",ComHandle,ResponseString)
See Also	MultiU	lpdate (page 62), l	Jpdate (pa	age 109)	

SetTrackingWindow, GetTrackingWindow

Syntax	SetTracki GetTracki	ngWindow, <i>axis, F</i> ingWindow, <i>axis</i>	21					
Arguments	axis	Type unsigned 8 bits	Range 0 to 3 4 to 7 8 to B C to F	Board Addre 0 1 2 3	255			
	Name window	Type unsigned 16 bits	Range 0 <i>to</i> 2 ¹⁶ -1	Scaling unity	Units counts			
Data Structure	SetTracki P1 write	ngWindow window 15	Da	ita		0		
	GetTracki P1 read	i ngWindow window 15	Da	ita		0		
Description	SetTracki of the po register) i set to 1.	ngWindow sets b sition error excee is set to 0. When 1	oundaries f ds the track he position	or the position ing window, 1 error returns	n error of the the tracking i to within the	e specified ax indicator (bi e window, th	kis. If the absol t 2 of the activ ne tracking ind	ute value ity status icator is
	GetTracki	ingWindow returi	ns the value	of the trackir	ng window.			
OptoScript Example	Status= (">SetT Status= (">CetT	TransmitRece: TrackingWindow TransmitRece:	iveString w,F,P1",C iveString w,F"_ComH	comHandle,F	ResponseSt	ring)		
See Also	GetActivi	ityStatus (page 42	!), SetActual	Position, Get/	ActualPositio	n (page 69)		

SetVelocity, GetVelocity

buffered

OptoScript Example	Status=TransmitReceiveString (">SetVelocity,0,P1,P2",ComHandle,ResponseString) Status=TransmitReceiveString (">GetVelocity,0",ComHandle,ResponseString)
See Also	SetAcceleration, GetAcceleration (page 68), SetDeceleration, GetDeceleration (page 84), SetJerk, GetJerk (page 92), SetPosition, GetPosition (page 96), MultiUpdate (page 62), Update (page 109)

Update

Syntax U	pdate,	axis
----------	--------	------

Arguments		Туре		Board Address	
	axis	unsigned 8 bits	0 to 3	0	
			4 to 7	1	
			8 to B	2	
			C to F	3	

Description Update causes all buffered data parameters to be copied into the corresponding run-time registers on the specified axis.

The following table shows the buffered commands and variables which are made active as a result of the Update command.

Туре	Command
General	ClearPositionError
Trajectory	Acceleration
	Deceleration
	GearRatio
	Jerk
	Position
	ProfileMode
	StopMode
	Velocity
Motor	MotorCommand

OptoScript Status=TransmitReceiveString (">Update,1",ComHandle,ResponseString)
Example

See Also MultiUpdate (page 62)

WriteBuffer

Syntax	WriteBuffer, axis, P1, P2, P3							
Arguments	Ty axis ur Name bufferID value	ype nsigned 8 bits Type unsigned 16 bits signed 32 bits	Range 0 to 3 4 to 7 8 to B C to F Range 0 to 31 -2 ³¹ to 2	Board Address 0 1 2 3				
Data Structure	WriteBuffe P1 write P2 write	er 15 [<i>value</i> (high-orde	First 0 First er part)	data word data word	5 4	bufferID	0	
Description	P3 write WriteBuffe specified result is ee	31 <i>value</i> (low-order 15 er writes the 32- buffer. After the qual to the buffer	Secon r part) -bit value i contents er length (d data word nto the location have been writte set by SetBufferL	pointed en, the w ength), t	to by the v rite index i he index is	vrite buffe s incremer s reset to 0	r index in the nted by 1. If the).
OptoScript Example	Status=' (">Write	TransmitRece eBuffer,2,4,	eiveStri 0,3E″,C	ng omHandle,Res	ponseSt	tring)		
See Also	ReadBuffe	er (page 64), Set	BufferWrit	elndex, GetBuffe	rWriteInd	dex (page	82)	

SNAP-SCM-MCH16 Conversion Formulas

Use the table on the next page to convert Counts/Cycle used by some of the motion commands.

OPTO 22

